
Node Immunization on Large Graphs:
Theory and Algorithms

Chen Chen, Hanghang Tong, B. Aditya Prakash, Charalampos E. Tsourakakis,

Tina Eliassi-Rad, Christos Faloutsos, and Duen Horng Chau

Abstract—Given a large graph, like a computer communication network, which k nodes should we immunize (or monitor, or remove),

to make it as robust as possible against a computer virus attack? This problem, referred to as the node immunization problem, is the

core building block in many high-impact applications, ranging from public health, cybersecurity to viral marketing. A central component

in node immunization is to find the best k bridges of a given graph. In this setting, we typically want to determine the relative importance

of a node (or a set of nodes) within the graph, for example, how valuable (as a bridge) a person or a group of persons is in a social

network. First of all, we propose a novel ‘bridging’ score D�, inspired by immunology, and we show that its results agree with intuition

for several realistic settings. Since the straightforward way to compute D� is computationally intractable, we then focus on the

computational issues and propose a surprisingly efficient way (Oðnk2 þmÞ) to estimate it. Experimental results on real graphs show

that (1) the proposed ‘bridging’ score gives mining results consistent with intuition; and (2) the proposed fast solution is up to seven

orders of magnitude faster than straightforward alternatives.

Index Terms—Immunization, graph mining, scalability

Ç

1 INTRODUCTION

GIVEN a graph, we want to quickly find the k best nodes
to immunize (or, equivalently, remove), to make the

remaining nodes to be most robust to the virus attack.
This is the core problem for many applications: In a com-
puter network intrusion setting, we want the k best nodes
to defend (e.g., through expensive and extensive vigi-
lance), to minimize the spread of malware. Similarly, in a
law-enforcement setting, given a network of criminals,
we want to neutralize those nodes that will maximally
scatter the graph.

There are three main challenges behind this problem.
First (C1. Vulnerability measure), we need a ‘Vulnerability’
measure of the graph, that is, how likely/easily that a graph
will be infected by a virus. Second (C2. Shield-value), based
on the ‘Vulnerability’ measure of the entire graph, we further
need a measure to quantify the ‘Shield-value’ of a given set of
nodes in the graph, i.e., how important are they in terms of
maintaining the ‘Vulnerability’ of the graph? Alternatively,
how much less vulnerable will be the graph to the virus

attack, if those nodes are removed/immunized? Third (C3.
Algorithms), based on the ‘Shield-value’ measure of a set of
nodes, we need an effective and scalable algorithm to
quickly determine the k nodes that collectively exhibit the
highest ‘Shield-value’ score on large, disk-resident graphs.

In this paper, we aim to address these challenges in
multiple dimensions. Motivated from immunology and
graph loop/path capacity, we adopt the first1 eigenvalue
� of the graph as the ‘Vulnerability’ measurement (for C1).
Based on that, we propose a novel definition of the
‘Shield-value’ score SvðSÞ for a specific set of nodes (for
C2). By carefully using the results from the theory of
matrix perturbation, we show that the proposed ‘Shield-
value’ gives a good approximation of the corresponding
eigen-drop (i.e., the decrease of the ‘Vulnerability’ mea-
surement if we remove/immunize the set of nodes S
from the graph). Furthermore, we show that the proposed
‘Shield-value’ score is sub-modular, which enables us to
develop a near-optimal and scalable algorithm (NetShield)
to find a set of nodes with highest ‘Shield-value’ score (for
C3). Finally, we propose a variant (NetShieldþ) to further
balance the optimization quality and computational cost.

The main contributions of this paper can be summa-
rized as

1. A novel definition of the ‘Shield-value’ score SvðSÞ for
a set of nodes, by carefully using the results from the
theory of matrix perturbation.

2. A near-optimal and scalable algorithm (NetShield) and
its variant (NetShield+) to find a set of nodes with
highest ‘Shield-value’ score, by carefully using results
from the theory of sub-modularity.

� C. Chen and H. Tong are with Computer Science Department, Arizona
State University, Tempe, AZ. E-mail: {cchen211, hanghang.tong}@asu.edu.

� B. Aditya Prakash is with the Virginia Tech, Blacksburg, VA.
E-mail: badityap@cs.vt.edu.

� C. Tsourakakis is with the School of Engineering and Applied Science,
Harvard University, Cambridge, MA. E-mail: babis@seas.harvard.edu.

� T. Eliassi-Rad is with the Computer Science Department, Rutgers
University, Piscataway, NJ. E-mail: tina@eliassi.org.

� C. Faloutsos is with the Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA. E-mail: christos@cs.cmu.edu.

� D. H. Chau is with the School of Computational Science & Engineering,
Georgia Tech, Atlanta, GA. E-mail: polo@gatech.edu.

Manuscript received 25 Nov. 2014; accepted 26 July 2015. Date of publication
6 Aug. 2015; date of current version 3 Dec. 2015.
Recommended for acceptance by R. Jin.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2015.2465378

1. In this paper, the first eigenvalue means the eigenvalue with the
largest module.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 1, JANUARY 2016 113

1041-4347� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3. Extensive experiments on several real data sets, illus-
trating the effectiveness and efficiency of the pro-
posed methods.

The rest of the paper is organized as follows: Section 2
gives the problem definitions. We present the ‘Vulnerability’
measurement in Section 3. The proposed ‘Shield-value’ score
is presented in Section 4. We address the computational
issues in Section 5 and evaluate the proposed methods in
Section 6. Section 7 gives the related work, and Section 8
gives the conclusions.

2 PROBLEM DEFINITIONS

Table 1 lists the main symbols we use throughout the paper.
In this paper, we focus on un-directed un-weighted graphs.
We represent the graph by its adjacency matrix. Following
standard notations, we use capital bold letters for matrices
(e.g., A), lower-case bold letters for vectors (e.g., a), and cal-
ligraphic fonts for sets (e.g., S). We denote the transpose

with a prime (i.e., A0 is the transpose of A), and we use
parenthesized superscripts to denote the corresponding
variable after deleting the nodes indexed by the super-

scripts. For example, � is the first eigenvalue of A, then �i is
the first eigenvalue of A after deleting its i(th) row/column.
We use ð�i;uiÞ to denote the ith eigen-pair (sorted by the
magnitude of the eigenvalue) of A. When the subscript is
omitted, we refer to them as the first eigenvalue and eigen-
vector respectively (i.e., � , �1 and u , u1).

With the above notations, our problems can be formally
defined as follows:

Problem 1.Measuring ‘Vulnerability’

Given: A large un-directed un-weighted connected graph G
with adjacency matrix A;

Find: A single number VðGÞ, reflecting the ‘Vulnerability’
of the whole graph.

Problem 2.Measuring ‘Shield-value’

Given: A subset S with k nodes in a large un-directed un-
weighted connected graph G with adjacency matrix A;

Find: A single number SvðSÞ, reflecting the ‘Shield-value’
of these k nodes (that is, the benefit of their removal/
immunization to the vulnerability of the graph).

Problem 3. Finding kNodes of Best ‘Shield-value’

Given: A large un-directed un-weighted connected graph G
with n nodes and an integer k;

Find: A subset S of k nodes with the highest ‘Shield-value’

score among all n
k

� �
possible subsets.

In the next three sections, we present the corresponding
solutions respectively.

3 BACKGROUND: OUR SOLUTION FOR PROBLEM 1

As mentioned in Section 1, the ultimate goal of node immu-
nization problem is to contain epidemic over the network.
In an epidemic network, nodes can have different states
depending on the epidemic model. The model we simulate
here is SIS model [46]. In SIS model, each node would have
one of the following two states: susceptible and infected.
Susceptible nodes can be infected by infected nodes with
infection rate b at each time stamp, and each infected node
can get back to susceptible state with host-recovery rate d.
Epidemic threshold is an intrinsic property of a network.
When the strength of the virus is greater than the epidemic
threshold, then the epidemic would breakout.

Here, we begin to address Problem 1. According to [46],
the epidemic thresholds of arbitrary cascade models on
arbitrary networks can be determined by the largest eigen-
value of network’s connectivity matrix. The intuition is that,
the larger the largest eigenvalue is, the more connected the
graph is, and therefore the more vulnerable the structure is
under epidemic. Thus we suggest using the first eigenvalue
� as ‘Vulnerability’ score. We should point out that it is not
our main contribution to adopt � as the ‘Vulnerability’ mea-
sure of a graph. Nonetheless, it is the base of our proposed
solutions for both Problem 2 and Problem 3.

3.1 ‘Vulnerability’ Score

In Problem 1, the goal is to measure the ‘Vulnerability’ of the
whole graph by a single number. We adopt the first eigen-
value of the adjacency matrix A as such a measurement
(eq. (1)): the larger � is, the more vulnerable the whole
graph is.

VðGÞ , �: (1)

Fig. 1 presents an example, where we have four graphs
with five nodes. Intuitively, the graph becomes more and
more vulnerable from the left to the right. In other words,
for a given strength of the virus attack, it is more likely that
an epidemic will break out in the graphs on the right than
those on the left side. Therefore, the vulnerability of the
graph increases. We can see that the corresponding �
increases from left to right as well. Note that ‘Vulnerability’
score in this paper is not necessarily comparable between

TABLE 1
Symbols

Symbol Definition and Description

A;B; . . . matrices (bold upper case)
Aði; jÞ the element at the ith row and jth

column of matrix A
Aði; :Þ the ith row of matrix A
Að:; jÞ the jth column of matrix A
A0 transpose of matrix A
a;b; . . . column vectors
S; T ; . . . sets (calligraphic)

n number of nodes in the graph
m number of edges in the graph

ð�i;uiÞ the ith eigen-pair of A
� first eigenvalue of A (i.e., � , �1)
u first eigenvector of A (i.e., u , u1)
�ðiÞ, �ðSÞ first eigenvalue of A by deleting

node i (or the set of nodes in S)
D�ðiÞ eigen-drop: D�ðiÞ ¼ �� �ðiÞ

D�ðSÞ eigen-drop: D�ðSÞ ¼ �� �ðSÞ

SvðiÞ ‘Shield-value’ score of node i
SvðSÞ ‘Shield-value’ score of nodes in S
VðGÞ ‘Vulnerability’ score of the graph

114 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 1, JANUARY 2016

graphs with different number of nodes. That means if we
have two graphs with the same ‘Vulnerability’ score but dif-
ferent number of nodes, this does not necessarily means
that they two have the same ability to contain the epidemic.

Notice that the concept of ‘Vulnerability’ is different from
vertex connectivity of the graph [20]. For ‘Vulnerability’, we
want to quantify how likily/easiy a graph will be infected
by a virus (given the strength of virus attack). Whereas for
vertex connectivity, we want to quantify how difficult for a
graph to be disconnected. For example, both graph (a) and
(b) in Fig. 1 have the same vertex connectivity (both are 1).
But graph (b) is more vulnerable to the virus attack. Also
notice that although ‘Vulnerability’ is related to both graph
density (i.e., average degree) and diameter, neither of them
can fully describe the ‘Vulnerability’ by itself. For example,
in Fig. 1, (a) and (b) share the same density/average degree
although (b) is more vulnerable than (a); (b) and (c) share
the same diameter although (c) is more vulnerable than (b).

3.2 Justifications

The first eigenvalue � is a good measurement of the graph
‘Vulnerability’, because of recent results on epidemic thresh-
olds from immunology [7]: � is closely related to the epi-
demic threshold t of a graph under a flu-like susceptible-
infective-susceptible (SIS) epidemic model, and specifically
t ¼ 1=�. This means that a virus less infective than t will
quickly get extinguished instead of lingering forever. There-
fore, given the strength of the virus (that is, the infection
rate and the host-recovery rate), an epidemic is more likely
for a graph with larger �.

We can also show that the first eigenvalue � is closely
related to the so-called loop capacity and the path capacity of
the graph, that is, the number of loops and paths of length l
(l ¼ 2; 3; . . .). If a graph has many such loops and paths, then
it is well connected, and thusmore vulnerable (i.e., it is easier
for a virus to propagate across the graph = the graph is less
robust to virus attack). Note that although there are many
other measurements that are also related to graph connectiv-
ity like second smallest eigenvalue of the LaplacianMatrix of
the graph, they are not as directly related to epidemic thresh-
old as � is, as shown in [46]. Thus, for the epidemic-like influ-
ence process, � is more suitable for evaluating vulnerability
score than those alternativemeasurements.

4 OUR SOLUTION FOR PROBLEM 2

In this section, we focus on Problem 2. We first present our
solution, and then provide justifications.

4.1 Proposed ‘Shield-Value’ Score

In Problem 2, the goal is to quantify the importance of a
given set of nodes S, and specifically the impact of their

deletion/immunization to the ‘Vulnerability’ of the rest of
the graph. The obvious choice is the drop in eigenvalue, or
eigen-drop D� that their removal will cause to the graph. We
propose to approximate it, to obtain efficient computations,
as we will describe later. Specifically, we propose using
SvðSÞ defined as:

SvðSÞ ¼
X
i2S

2�uðiÞ2 �
X
i;j2S

Aði; jÞuðiÞuðjÞ: (2)

Intuitively, by eq. (2), a set of nodes S has higher ‘Shield-
value’ score if (1) each of them has a high eigen-score (uðiÞ),
and (2) they are dissimilar with each other (small or zero
Aði; jÞ). Fig. 2 shows an example on measuring the ‘Shield-
value’ score of a given set of nodes. The best k nodes found by
ourNetShield (which will be introduced very soon in the next
section) are shaded. The result is consistent with intuition. In
Fig. 2a, it picks node 13 as best k ¼ 1 node (although nodes 1,
5 and 9 have the highest degree). In Fig. 2b, deleting the
shaded nodes (node 1, 5, 9 and 13) will make the graph least
vulnerable (i.e., the remaining graphs are sets of isolated
nodes; and therefore it is most robust to virus attack).

4.2 Justifications

Here, we provide some justifications on the proposed
‘Shield-value’ score, which is summarized in Lemma 1. It
says that our proposed ‘Shield-value’ score SvðSÞ is a good
approximation for the eigen-drop D�ðSÞ when deleting the
set of nodes S from the original graph A.

Lemma 1. Let �ðSÞ be the (exact) first eigen-value of Â, where Â
is the perturbed version of A by removing all of its rows/col-
umns indexed by set S. Let d ¼ �� �2 be the eigen-gap, and d
be the maximum degree of A. If � is the simple first eigen-value

of A, and d � 2
ffiffiffiffiffiffiffiffi
2kd

p
, then

D�ðSÞ ¼ SvðSÞ þO
X
j2S

kAð:; jÞk2
 !

; (3)

where SvðSÞ is computed by eq. (2) and D�ðSÞ ¼ �� �ðSÞ.

Proof. First, let us write Â as a perturbed version of the orig-
inal matrix A:

Â ¼ Aþ E; and E ¼ Fþ F0 þG; (4)

Fig. 1. An example of measuring ‘Vulnerability’ of the graph. More
edges, and carefully placed, make the graph better connected, and thus
more vulnerable. Notice that the chain (a) and the star (b) have the
same number of edges, but our � score correctly considers the star as
more vulnerable.

Fig. 2. An example on measuring the ‘Shield-value’ score of a given set
of nodes. The best k nodes found by our NetShield are shaded. In (a),
notice that the highest degree nodes (e.g., node 1) is not chosen. In (b),
immunizing the shaded nodes makes the remaining graph most robust
to the virus attack.

CHEN ET AL.: NODE IMMUNIZATION ON LARGE GRAPHS: THEORY AND ALGORITHMS 115

where Fð:; jÞ ¼ �Að:; jÞ ðj 2 S and Fð:; jÞ ¼ 0 ðj =2 SÞ;
Gði; jÞ ¼ Aði; jÞ ði; j 2 SÞ andGði; jÞ ¼ 0ði =2 S; or j =2 SÞ.

Since Au ¼ �u, we have

u0F0u ¼ u0Fu ¼ ðF0uÞ0u ¼ �
X
j2S

�uðjÞ2

u0Gu ¼
X
i;j2S

Aði; jÞuðiÞuðjÞ:
(5)

Let ~� be the corresponding perturbed eigen-value of �,
according to the matrix perturbation theory (p.183 [53]),
we have

~� ¼ �þ u0EuþOðkEk2F Þ
¼ �þ u0Fuþ u0F0uþ u0GuþOðkEk2F Þ

¼ ��
X
j2S

2�uðjÞ �
X
i;j2S

Aði; jÞuðiÞuðjÞ
 !

þO
X
j2S

kAð:; jÞk2
 !

¼ �� SvðSÞ þO
X
j2S

kAð:; jÞk2
 !

:

(6)

Let ~�iði ¼ 2; . . . ; nÞ be the corresponding perturbed
eigen-value of �iði ¼ 2; . . . ; nÞ. Again, by the matrix per-
turbation theory (p.203 [53]), we have

~� � �� kEk2 � �� kEkF � ��
ffiffiffiffiffiffiffiffi
2kd

p

~�i � �i þ kEk2 � �i þ kEkF � �i þ
ffiffiffiffiffiffiffiffi
2kd

p
:

(7)

Since d ¼ �� �2 � 2
ffiffiffiffiffiffiffiffi
2kd

p
, we have ~� � ~�iði ¼ 2; . . . ; nÞ.

In other words, we have �ðSÞ ¼ ~�. Therefore,

D�ðSÞ ¼ �� �ðSÞ ¼ �� ~�

¼ SvðSÞ þO
X
j2S

kAð:; jÞk2
 !

(8)

which completes the proof. tu

Notice that kEkF and kEk2 refer to the Frobenious
norm and the l2 norm of E, respectively. The former is

defined as kEkF ¼
Pn

i¼1

Pn
j¼1 a

2
ij, while kEk2 equals to the

largest eigenvalue of E. And the inequality kEkF > kEk2
always holds.

5 OUR SOLUTION FOR PROBLEM 3

In this section, we deal with Problem 3. Here, the goal is
to find a subset of k nodes with the highest ‘Shield-value’

score (among all n
k

� �
possible subsets). We start by show-

ing that the two straightforward methods (referred to as
‘Com-Eigs’, and ‘Com-Eval’) are computationally intrac-
table. Then, we present the proposed NetShield algorithm
and analyze its accuracy as well as its computational
complexity. Finally to further balance the optimization
quality and computational cost, we propose a variant of
NetShield, NetShield+.

5.1 Challenges

There are two obviously straightforward methods for
Problem 3. The first one (referred to as ‘Com-Eigs’2)
works as follows: for each possible subset S, we delete
the corresponding rows/columns from the adjacency
matrix A; compute the first eigenvalue of the new per-
turbed adjacency matrix; and finally output the subset of
nodes which has the smallest eigenvalue (therefore has
the largest eigen-drop). Despite the simplicity of this
strategy, it is computational intractable due to its combi-
natorial nature. It is easy to show that the computational

complexity of ‘Com-Eigs’ is Oð n
k

� �
�mÞ.3 This is computa-

tionally intractable even for small graphs. For example, in
a graph with 1 K nodes and 10 K edges, suppose that it
takes about 0.01 second to find its first eigenvalue. Then
we need about 2,615 years to find the best-5 nodes with
the highest ‘Shield-value’ score!

A more reasonable (in terms of speed) way to find the
best-k nodes is to evaluate SvðSÞ, rather than to compute

the first eigenvalue �ðSÞ, n
k

� �
times, and pick the subset

with the highest SvðSÞ. We refer to this strategy as
‘Com-Eval’. Compared with the straightforward method

(referred to as ‘Com-Eigs’, which is Oð n
k

� �
�mÞ); ‘Com-

Eval’ is much faster (Oð n
k

� �
� k2Þ). However, ‘Com-Eval’ is

still not applicable to real applications due to its combi-
natorial nature. Again, in a graph with 1 K nodes and
10 K edges, suppose that it only takes about 0.00001 sec-
ond to evaluate SvðSÞ once. Then we still need about 3
months to find the best-5 nodes with the highest ‘Shield-
value’ score!

Theorem 1. K-node immunization with � is NP complete.

Proof. See the appendix. tu

5.2 Proposed NetShield Algorithm

The proposed NetShield is given in Alg. 1. In Alg. 1, we com-
pute the first eigenvalue � and the corresponding eigenvec-
tor u in step 1. In step 4, the n� 1 vector v measures the
‘Shield-value’ score of each individual node. Then, in each
iteration of steps 6-17, we greedily select one more node
and add it into set S according to scoreðjÞ (step 13). Note
that steps 10-12 are to exclude those nodes that are already
in the selected set S.

5.3 Analysis of NetShield

Here, we analyze the accuracy and efficiency of the pro-
posed NetShield.

First, according to the following theorem, Alg. 1 is near-
optimal wrt ‘Com-Eval’. In addition, by Lemma 1, our
‘Shield-value’ score (which ‘Com-Eval’ tries to optimize) is a
good approximation for the actual eigen-drop D�ðSÞ (which
‘Com-Eigs’ tries to optimize). Therefore, we would expect
that Alg. 1 also gives a good approximation wrt ‘Com-Eigs’
(See Section 6 for experimental validation).

2. To our best knowledge, this is the best known method to get the
optimal solution of Problem 3.

3. We assume that k is relatively small compared with n andm (e.g.,
tens or hundreds). Therefore, after deleting k rows/columns from A,
we still have OðmÞ edges.

116 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 1, JANUARY 2016

Algorithm 1. NetShield

Input: the adjacency matrix A and an integer k
Output: a set S with k nodes
1: compute the first eigenvalue � of A; let u be the correspond-

ing eigenvector uðjÞðj ¼ 1; . . . ; nÞ;
2: initialize S to be empty;
3: for j ¼ 1 to n do
4: vðjÞ ¼ ð2 � ��Aðj; jÞÞ � uðjÞ2;
5: end for
6: for iter ¼ 1 to k do
7: let B ¼ Að:;SÞ;
8: let b ¼ B � uðSÞ;
9: for j ¼ 1 to n do
10: if j 2 S then
11: let scoreðjÞ ¼ �1;
12: else
13: let scoreðjÞ ¼ vðjÞ � 2 � bðjÞ � uðjÞ;
14: end if
15: end for
16: let i ¼ argmaxjscoreðjÞ, add i to set S;
17: end for
18: return S.

Theorem 2 Effectiveness of NetShield. Let S and ~S be the
sets selected by Alg. 1 and by ‘Com-Eval’, respectively. Let

D�ðSÞ and D�ð~SÞ be the corresponding eigen-drops. Then,

D�ðSÞ � ð1� 1=eÞD�ð~SÞ.

Proof. Let I ;J ;K be three sets and I � J . Define the fol-
lowing three sets based on I ;J ;K: S ¼ I [K; T ¼
J [K; R ¼ J n I .

Substituting eq. (2), we have

SvðSÞ � SvðIÞ ¼
X
i2K

2�uðiÞ2 �
X
i;j2K

Aði; jÞuðiÞuðjÞ

� 2
X

j2I ;i2K
Aði; jÞuðiÞuðjÞ

SvðT Þ � SvðJ Þ ¼
X
i2K

2�uðiÞ2 �
X
i;j2K

Aði; jÞuðiÞuðjÞ

� 2
X

j2J ;i2K
Aði; jÞuðiÞuðjÞ:

(9)

According to Perron-Frobenius theorem, we have
uðiÞ � 0ði ¼ 1; . . . ; nÞ. Therefore,

ðSvðSÞ � SvðIÞÞ � ðSvðT Þ � SvðJ ÞÞ
¼ 2

X
i2K;j2R

Aði; jÞuðiÞuðjÞ � 0

) SvðSÞ � SvðIÞ � SvðT Þ � SvðJ Þ:

(10)

Therefore, the function SvðSÞ is sub-modular.
Next, we can verify that node i selected in step 16

of Alg. 1 satisfies i ¼ argmaxj =2 SSvðS [jÞ for a fixed

set S.
Next, we prove that SvðSÞ is monotonically non-

decreasing wrt S. According to eq. (9), we have

SvðSÞ � SvðIÞ ¼
X
i2K

2�uðiÞ2 �
X
i;j2K

Aði; jÞuðiÞuðjÞ

� 2
X

j2I ;i2K
Aði; jÞuðiÞuðjÞ

�
X
i2K

2�uðiÞ2 � 2
X

j2S;i2K
Aði; jÞuðiÞuðjÞ

¼ 2
X
i2K

uðiÞð�uðiÞ �
X
j2S

Aði; jÞuðjÞÞ

� 2
X
i2K

uðiÞð�uðiÞ �
Xn
j¼1

Aði; jÞuðjÞÞ

¼ 2
X
i2K

uðiÞð�uðiÞ � �uðiÞÞ ¼ 0;

(11)

where the last equality is due to the definition of
eigenvalue.

Finally, it is easy to verify that SvðfÞ ¼ 0, where f is an
empty set. Using the property of sub-modular func-

tions [30], we have D�ðSÞ � ð1� 1=eÞD�ð~SÞ. tu

According to Lemma 2, the computational complexity of
Alg. 1 is Oðnk2 þmÞ, which is much faster than both ‘Com-

Eigs’ (Oð n
k

� �
�mÞ) and ‘Com-Eval’ (Oð n

k

� �
� k2Þ).

Lemma 2 (Computational Complexity of NetShield). The
computational complexity of Alg. 1 is Oðnk2 þmÞ.

Proof. The cost of step 1 is OðmÞ, and the cost of step 2 is
constant. For steps 3-5, its cost is OðnÞ. For each inner
loop of steps 6-17, its cost is OðnÞ þOðn � iterÞ. Therefore,
we have

costðNetshieldÞ ¼ OðmÞ þOðnÞ þ
Xk
iter¼1

ðnþ n � iterÞ

¼ Oðnk2 þmÞ
(12)

which completes the proof. tu

Finally, according to Lemma 3, the space cost of Alg. 1 is
also efficient (i.e., linear wrt the size of the graph).

Lemma 3 (Space Cost of NetShield). The space cost of Alg. 1
is Oðnþmþ kÞ.

Proof. The space cost of step 1 is Oðnþmþ 1Þ: OðmÞ for
storing the graph, OðnþmÞ for running the eigen-
decomposition algorithm, OðnÞ for storing u and Oð1Þ for
storing �. The cost for step 2 is Oð1Þ. For steps 3-5, we
need an additional OðnÞ space. Then, it takes OðnÞ space
for each inner loop (steps 6-17) and we can re-use this
space for the next iteration. Finally, we need OðkÞ to store
the selected nodes (step 18).

Putting the above together and ignoring the constant
term, we have that the space cost of Alg. 1 is
Oðnþmþ kÞ, which completes the proof. tu

5.4 A Variant: NetShield+ Algorithm

Recall in Lemma 1, the eigen-gap d, max degree d and k

should satisfy d � 2
ffiffiffiffiffiffiffiffi
2kd

p
. Given the fact that � � d, we have

d � d. Therefore we get the constraint between max degree

CHEN ET AL.: NODE IMMUNIZATION ON LARGE GRAPHS: THEORY AND ALGORITHMS 117

d and k, which can be simplified as k � d=8. The constraint
implies that in order to get a good approximation of
D�ðSÞ with SvðSÞ, the number of nodes we select to
immunize should be less than d=8, which might not hold
when the max degree of the graph is relatively small. To
address this problem and further balance the optimiza-
tion quality and the computational cost, we propose
NetShield+ algorithm, which is given in Alg. 2. Instead of
finding out all the k nodes to delete in one round as in
NetShield (i.e., compute the first eigenvalue and corre-
sponding eigenvector only once), NetShield+ tries to find
out those k nodes iteratively. By fixing a batch number b
as an extra input, NetShield+ would pick out and delete b
best nodes for current graph at each round, and then use
the updated graph for next round of computation. More
discussion on choosing an appropriate value of b is in
Section 6. In Alg. 2, an extra variable b is provided as
input compared to NetShield. It first computes the number
of iterations t in step 1. In each iteration of steps 3-8, we
find b nodes to delete from current graph by NetShield
algorithm and add them to S. At the end of each iteration,
we update matrix A by deleting those selected nodes
from it. The algorithm will terminate when all the k nodes
are collected.

Algorithm 2. NetShield+

Input: the adjacency matrix A, two integers k and b
Output: a set S with k nodes
1: compute the number of iterations t ¼ bk=bc;
2: initialize S to be empty;
3: for j ¼ 1 to t do
4: initialize S0 to be empty;
5: S0 ¼ NetShieldðA; bÞ;
6: S ¼ S

S
S0;

7: update A by deleting the nodes in S0;
8: end for
9: if k > tb then
10: S0 ¼ NetShieldðA; k� tbÞ;
11: S ¼ S

S
S0;

12: end if
13: return S.

By a similar procedure for Lemma 2, we can show that
the time complexity of NetShield+ is Oðmk=bþ nkbÞ; and its
space cost is the same as that of NetShield. Thus, it is still a
linear algorithm wrt the size of the input graph.

6 EXPERIMENTAL EVALUATIONS

We present detailed experimental results in this section. All
the experiments are designed to answer the following
questions:

1: (Effectiveness) How effective is the proposed SvðSÞ in
real graphs?

2: (Efficiency) How fast and scalable is the proposed
NetShield?

6.1 Data Sets

The real data sets we used are summarized in Table 2. The
first data set (Karate) is a unipartite graph, which describes
the friendship among the 34 members of a karate club at a

US university [65]. Each node is a member in the karate club
and the existence of the edge indicates that the two corre-
sponding members are friends. Overall, we have n ¼ 34
nodes andm ¼ 156 edges.

The second data set (AA) is an author-author network
from DBLP.4 AA is a co-authorship network, where each
node is an author and the existence of an edge indicates the
co-authorship between the two corresponding persons.
Overall, we have n ¼ 418; 236 nodes and m ¼ 2; 753; 798
edges. We also construct much smaller co-authorship net-
works, using the authors from only one conference (e.g.,
KDD, SIGIR, SIGMOD, etc.). For example, KDD is the co-
authorship network for the authors in the ‘KDD’ conference.
For these smaller co-authorship networks, they typically
have a few thousand nodes and up to a few ten thousand
edges. In this graph, the node immunization algorithm can
help us identify a set of authors who are most important in
terms of their influence in data mining and information
retrieval area.

The third data set (NetFlix) is from the Netflix prize.5 This
is also a bipartite graph. We have two types of nodes: user
and movie. The existence of an edge indicates that the corre-
sponding user has rated the corresponding movie. Overall,
we have n ¼ 2; 667; 199 nodes and m ¼ 171; 460; 874 edges.
This is a bipartite graph, and we convert it to a unipartite

graph A: A ¼ ð 0 B
B0 0

Þ, where 0 is a matrix with all zero

entries and B is the adjacency matrix of the bipartite graph.
Like the AA data set, by our node immunization algorithm,
it aims to a set of well connected users/movies.

The last is a series of data set (Oregon) from Oregon
autonomous system (AS) router graphs, which are AS-
level connectivity networks inferred from Oregon route-
views [57]. The number of nodes in this set ranges from
633 to 13,947, the corresponding edges ranges from 1,086
to 30,584. The result returned by node immunization
algorithm would be a set of most important routers in
the network to immunize when virus begins to spread
around the Internet.

Repeatability of Experimental Results. The code for the pro-
posedNetShield andNetShield+ is available in https://www.
dropbox.com/s/aaq5ly4mcxhijmg/Netshieldplus.tar.

TABLE 2
Summary of the Data Sets

Name n m

Karate 34 152
AA 418,236 2,753,798
NetFlix 2,667,199 171,460,874
Oregon-A 633 1,086
Oregon-B 1,503 2,810
Oregon-C 2,504 4,723
Oregon-D 2,854 4,932
Oregon-E 3,995 7,710
Oregon-F 5,296 10,097
Oregon-G 7,352 15,665
Oregon-H 10,860 23,409
Oregon-I 13,947 30,584

4. http://www.informatik.uni-trier.de/	ley/db/
5. http://www.netflixprize.com/

118 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 1, JANUARY 2016

6.2 Effectiveness

Here, we first test the approximation accuracy of the pro-
posed SvðSÞ. Then, we compare different immunization
policies, followed by some case studies. Notice that the
experiment results of quality versus speed trade-off for the
proposed NetShield, NetShield+, the optimal ‘Com-Eigs’ and
the alternative greedy method are presented in Section 6.3.

6.2.1 Approximation Quality of SvðSÞ
The proposed NetShield is based on eq. (2). That is, we
want to approximate the first eigenvalue of the perturbed
matrix by � and u. By Lemma 1, it says that SvðSÞ is a
good approximation for the actual eigen-drop D�ðSÞ.
Here, let us experimentally evaluate how good this
approximation is on real graphs. We construct an author-
ship network from one of the following conferences:
‘KDD’, ‘ICDM’, ‘SDM’, ‘SIGMOD’, ‘VLDB’, ‘NIPS’, ‘UAI’,
‘SIGIR’ and ‘WWW’. We then compute the linear correla-
tion coefficient between D�ðSÞ and SvðSÞ with several dif-
ferent k values (k ¼ 1; 2; 5; 10; 20). The results are shown in
Table 3. It can be seen that the approximation is very
good—in all the cases, the linear correlation coefficient is
greater than 0:9. Fig. 3 gives the scatter plot of D�ðSÞ (i.e.,
the actual eigen-drop) versus SvðSÞ (i.e., the proposed
‘Shield-value’) for k ¼ 5 on ‘ICDM’ data set.

6.2.2 Immunization by NetShield and NetShield+

Recall that the proposed ‘Vulnerability’ score of the graph is
motivated by the epidemic threshold [7]. In this paper, we
primarily use SIS model (like, e.g., the flu) in our experiment
for simplicity. Nonetheless, it has been proved that largest
eigenvalue of the connectivity matrix can be used as epi-
demic threshold for many other cascade models on arbi-
trary networks [46].

We compare NetShield and NetShield+ with the following
alternative choices: (1) picking a random neighbor of a ran-
domly chosen node [11] (‘Aquaintance’), (2) picking the
nodes with the highest eigen-scores uðiÞði ¼ 1; . . . ; nÞ
(‘Eigs’),6 (3) picking the nodes with the highest abnormality
scores [54] (‘abnormality’), (4) picking the nodes with the
highest betweenness centrality scores based on the shortest
path [15] (‘Short’), (5) picking the nodes with the highest
betweenness centrality scores based on random walks [39]
(‘N.RW’), (6) picking the nodes with the highest degrees
(‘Degree’), (7) picking the nodes with the highest PageRank
scores [43] (‘PageRank’) and (8) picking the nodes with

highest robustness scores [8] (‘Robust’). For each method,
we delete 5 nodes for immunization. Let s ¼ � � b=d be
the normalized virus strength (bigger s means more stron-
ger virus), where b and d are the infection rate and host-
recovery rate, respectively. The result is presented in Fig. 4,
which is averaged over 100 runs. It can be seen that the pro-
posed NetShield+ and NetShield are always the best—their
curves are always the lowest which means that we always
have the least number of infected nodes in the graph with
this immunization strategy. Notice that the performance of
‘Eigs’ is much worse than the proposed NetShield. This indi-
cates that by collectively finding a set of nodes with the high-
est ‘Shield-value’, we indeed obtain extra performance gain
(compared with na€ıvely choosing the top-k nodes which
have the highest individual ‘Shield-value’ scores). Fig. 5
shows the statistical significance of our proposed method
on Oregon-A with the same setting as Fig. 4b. Note that as
the average numbers of infectees and variances of abnor-
mality, shortest path betweenness centrality, eigen-scores
and robustness score based methods are relative large and
beyond the scope, we choose to only report the results of
other stable methods. The results on other Oregon graphs
are similar to those of Oregon-A.

6.2.3 Case Studies

Next, we will show some case studies to illustrate the effec-
tiveness of the proposed SvðSÞ, the ‘Shield-value’ score of a
subset of nodes.

We run the proposed NetShield on AA data set and return
the best k ¼ 200 authors. Some representative authors, to
name a few, are ‘Sudhakar M. Reddy’, ‘Wei Wang’, ‘Heinrich
Niemann’, ‘Srimat T. Chakradhar’, ‘Philip S. Yu’, ‘Lei Zhang’,

TABLE 3
Evaluation on the Approximation Accuracy of SvðSÞ

k ‘KDD’ ‘ICDM’ ‘SDM’ ‘SIGMOD’ ‘VLDB’ ‘NIPS’ ‘UAI’ ‘SIGIR’ ‘WWW’

1 0.9519 0.9908 0.9995 1.0000 0.9548 0.9915 0.9990 0.9882 0.9438
2 0.9629 0.9910 0.9984 0.9927 0.9541 0.9914 0.9988 0.9673 0.9427
5 0.9721 0.9888 0.9992 0.9895 0.9671 0.9925 0.9987 0.9423 0.9406
10 0.9726 0.9863 0.9987 0.9852 0.9382 0.9924 0.9986 0.9327 0.9377
20 0.9683 0.9798 0.9929 0.9772 0.9298 0.9907 0.9985 0.9354 0.9288

Larger is better.

Fig. 3. Evaluation of the approximation accuracy of SvðSÞ on the ‘ICDM’
graph. The proposed ‘Shield-value’ SvðSÞ (y-axis) gives a good approxi-
mation for the actual eigen-drop D�ðSÞ (x-axis). Most points are on or
close to the diagonal (ideal).

6. For the un-directed graph which we focus on in this paper, ‘Eigs’
is equivalent to ‘HITS’ [29].

CHEN ET AL.: NODE IMMUNIZATION ON LARGE GRAPHS: THEORY AND ALGORITHMS 119

‘Wei Li’, ‘Jiawei Han’, ‘Srinivasan Parthasarathy’, ‘Srivaths
Ravi’, ‘Antonis M. Paschalis’, ‘Mohammed Javeed Zaki’, ‘Lei
Li’, ‘Dimitris Gizopoulos’, ‘Alberto L. Sangiovanni-Vincentelli’,
‘Narayanan Vijaykrishnan’, ‘Jason Cong’, ‘Thomas S. Huang’,
etc. We can make some very interesting observations from
the result:

1. There are some multi-disciplinary people in the
result. For example, Prof. Alberto L. Sangiovanni-
Vincentelli from UC Berkeley is interested in ‘design
technology’, ‘cad’, ‘embedded systems’, and ‘formal
verification’; Prof. Philip S. Yu from UIC is interested
in ‘databases’, ‘performance’, ‘distributed systems’
and ‘data mining’.

2. Some people show up because they are famous in
one specific area, and occasionally have one/two
papers in a remotely related area (therefore, increas-
ing the path capacity between two remote areas). For
example, Dr. Srimat T. Chakradhar mainly focuses
on ‘cad’. But he has co-authored in a ‘NIPS’ paper.
Therefore, he creates a critical connection between
these two (originally) remote areas: ‘cad’ and
‘machine learning’.

3. Some people show up because they have ambiguous
names (e.g., Wei Wang, Lei Li, Lei Zhang, Wei Li,
etc.). Take ‘Wei Wang’ as an example; according to
DBLP,7 there are 49 different ‘Wei Wang’s. In our
experiment, we treat all of them as one person. That
is to say, it is equivalent to putting an artificial ‘Wei
Wang’ in the graph who brings 49 different ‘Wei
Wang’s together. These 49 ‘Wei Wang’s are in
fact spread out in quite different areas. (e.g., Wei
Wang@UNC is in ‘data mining’ and ‘bio’; Wei
Wang@NUS is in ‘communication’; Wei Wang@MIT
is in ‘non-linear systems’.)

6.3 Efficiency

We will study the wall-clock running time of the proposed
NetShield and NetShield+ here. Basically, we want to answer
the following three questions:

1. (Speed) What is the speedup of the proposed Net-
Shield over the straightforward methods (‘Com-Eigs’
and ‘Com-Eval’)?

2. (Scalability) How does NetShield scale with the size of
the graph (n andm) and k?

3. (Quality/Speed Trade-Off) How does NetShield and
NetShield+ balance between the quality and the
speed?

For the results we report in this section, all of the experi-
ments are done on the same machine with four 2.4 GHz
AMD CPUs and 48 GB memory, running Linux (2.6 kernel).
If the program takes more than 1,000,000 seconds, we stop
running it.

First, we compare NetShield with ‘Com-Eigs’ and ‘Com-
Eval’. Fig. 6 shows the comparison on three real data sets.
We can make the following conclusions: (1) Straightforward
methods (‘Com-Eigs’ and ‘Com-Eval’) are computationally
intractable even for a small graph. For example, on the
Karate data set with only 34 nodes, it takes more than
100,000 and 1,000 seconds to find the best-10 by ‘Com-Eigs’
and by ‘Com-Eval’, respectively. (2) The speedup of the pro-
posed NetShield over both ‘Com-Eigs’ and ‘Com-Eval’ is
huge—in most cases, we achieve several (up to 7) orders of
magnitude speedups! (3) The speedup of the proposed
NetShield over both ‘Com-Eigs’ and ‘Com-Eval’ quickly
increases wrt the size of the graph as well as k. (4) For a
given size of the graph (fixed n and m), the wall-clock time
is almost constant—suggesting that NetShield spends most
of its running time in computing � and u.

Next, we evaluate the scalability ofNetShield. From Fig. 7,
it can be seen thatNetShield scales linearly wrt both n andm,
which means that it is suitable for large graphs.

Then, we evaluate how the proposed NetShield balances
between the quality and speed. For the Karate graph, we use

Fig. 4. Evaluation of immunization of NetShield and NetShield+ on the Oregon-A graph. The fraction of infected nodes (in log-scale) versus the time
step. s is normalized virus strength. Lower is better. The proposed NetShield and NetShield+ is always the best, leading to the fastest healing of the
graph. Best viewed in color.

Fig. 5. Average number of infectees at the end of each simulation using
different methods and their corresponding variance.

7. http://www.informatik.uni-trier.de/	ey/db/indices/a-tree/w/
Wang:Wei.html

120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 1, JANUARY 2016

the proposed NetShield to find a set of k nodes and check the
corresponding eigen-drop (i.e., the decrease of the first
eigenvalue of the adjacency matrix) as well as the corre-
sponding wall-clock time. We compare it with ‘Com-Eigs’,
which always gives the optimal solutions (i.e., it returns the
subset that leads to the largest eigen-drop). The results
(eigen-drop versus wall-clock time) are plotted in Fig. 8. It
can been seen that NetShield gains significant of speedup
over the ‘Com-Eigs’, at the cost of a small fraction of quality
loss (i.e., the green dash lines are near-flat).

We also compare the proposed NetShield with the follow-
ing heuristic (referred to as ‘Greedy’): at each iteration, we re-
compute the first eigenvector of the current graph and pick a
node with the highest eigen-score uðiÞ; then we delete this
node from the graph and go to the next iteration. For the
NetFlix graph, we find a set of k nodes and check the corre-
sponding eigen-drop as well as the corresponding wall-clock
time. The quality/speed trade-off curve is plotted in Fig. 9.
From the figure,we canmake two observations: (1) the quality

of the two methods (‘Greedy’ versus the proposed NetShield)
are almost the same (note that the green dash curves in the
plots are always straight flat); (2) the proposed NetShield is
always faster than ‘Greedy’ (up to 103� speedup).

Finally, we evaluate how NetShield+ further balances
between the quality and speed. To try different batch value b,
we move the experiment on a larger data set, Oregon-G. In
Fig. 10a, we set k to different values. For each setting of k, we
change the value of b and report the relationship between
ratio b=k wrt eigen-drop. The three lines all begins with
b ¼ 1, that is b=k ¼ 0:02; 0:01; 0:005 for k ¼ 50; 100; 200
respectively. Note that when b=k increases to 1, NetShield+ is
reduced to NetShield. As we can see, as b increases, eigen-
drop decreases, but does not make significant differences in
each setting. Fig. 10b reports the relationship between wall
clock time and eigen-drop when setting different b=k ratios
and k values. Setting b ¼ 1 is very time consuming in all three
cases. Howeverwhen b is increased to k=10, the time is signif-
icantly reducedwhile eigen-drop still keeps relatively high.

7 RELATED WORK

In this section, we review the related work, which can be
categorized into five parts: measuring the importance of

Fig. 6. Wall-clock time versus the budget k for different methods. The time is in the logarithmic scale. Our NetShield (red star) is much faster. Lower is
better.

Fig. 7. Evaluation of the scalability of the proposed NetShield wrt. n
(number of nodes) and m (number of edges), respectively. The wall-
clock time of our NetShield scales linearly wrt n andm.

Fig. 8. Evaluation of the quality/speed trade off. Eigen-drop versus wall-
clock time, with different budget k.The proposed NetShield (red star)
achieves a good balance between eigen-drop and speed. Note that the
x-axis (wall-clock time) is in logarithmic scale. The number inside the
parenthesis above each green dash curve is the ratio of eigen-drop
between NetShield and ‘Com-Eigs’. NetShield is optimal when this ratio
is 1. Best viewed in color.

CHEN ET AL.: NODE IMMUNIZATION ON LARGE GRAPHS: THEORY AND ALGORITHMS 121

nodes on graphs, immunization, spectral graph analysis,
influence maximization, and general graph mining.

Measuring importance of nodes on graphs. In the literature,
there are a lot of node importance measurements, including
betweenness centrality, both the one based on the shortest
path [15] and the one based on random walks [39],
PageRank [43], HITS [29], and coreness score (defined by
k-core decomposition) [36]. Other remotely related works
include the abnormality score of a given node [54], articula-
tion points [20], and k-vertex cut [20]. Our ‘Shield-value’
score is fundamentally different from these node importance
scores, in the sense that they all aim to measure the impor-
tance of an individual node; whereas our ‘Shield-value’ tries
to collectively measure the importance of a set of k nodes.
Despite the fact that all these existing measures are success-
ful for the goal they were originally designed for, they are
not designed for the purpose of immunization. Therefore, it
is not surprising that they lead to sub-optimal immuniza-
tion results (See Fig. 4). Moreover, several of these impor-
tance measurements do not scale up well for large graphs,
being cubic or quadratic wrt the number of nodes n, even if
we use approximations (e.g., [37]). In contrast, the proposed

NetShield is linear wrt the number of edges and the number

of nodes (Oðnk2 þmÞ). Another remotely related work is
outbreak detection [31] in the sense that both works aim to
select a subset of “important” nodes on graphs. However,
the motivating applications (e.g., immunization) of this
work is different from detecting outbreak [31] (e.g., contami-
nants in water distribution network). Consequently we
solve a different optimization problem (i.e., maximize the
‘Shield-value’ in eq. (2)) in this paper.

Another related topic is information diffusion. Many
works in this domain are based on finding out the most
influential or critical nodes among the network to maxi-
mize/minimize the spread of information as shown
in [60], [22], [3]. Saito et al. [49] and Yamagishi et al. [64]
give the diffusion probability model and opinion forma-
tion model respectively based on node attributes. Tuli
et al. [58] present an approach for selecting critical nodes
for both simple and complex contagions, with the
assumption that a node can contract a contagion from
more than one neighbor. Another interesting work is
about selecting critical nodes from the network within
certain budget as in [42] and [41].

Immunization. There is vast literature on virus propaga-
tion and epidemic thresholds: for full cliques (e.g.,
Hethcote [24]), for power-law graphs [5], and studies of
heuristics for immunization policies [11]. The only papers
that study arbitrary graphs focus on the epidemic threshold
(Wang et al. [61] and its follow-up work [16], [7], [46]). In
short, none of the above papers solves the problem of opti-
mal immunization for an arbitrary, given graph.

Tong et al. in [57] address the problem of optimizing the
leading eigenvalue by edge manipulation. Prakash et al. [45]
present an immunization approach of online networks
based on self-similar selection, which does not require infor-
mation about network morphology at individual node level.
The reverse engineering of immunization problems can be
defined as follows: given a snapshot of a graph in which an
infection has been spreading for some time, find out the
original seed set where the infection started. Related works
about this topic are shown in [47] and [48]. Other related
works include [44], [46], [35] and [67] which study the the-
ory about determining epidemic in the network, algorithms
about effective immunization, reverse engineering and
node immunization given uncertain data.

Fig. 9. Comparison of NetShield versus ‘Greedy’. The proposed Net-
Shield (red star) is better than ‘Greedy’ (i.e., faster, with the same qual-
ity). Note that the x-axis (wall-clock time) is in logarithmic scale. The
number inside the parenthesis above each green dash curve is the
speedup of the proposed NetShield over ‘Greedy’. Best viewed in color.

Fig. 10. Evaluation of quality/speed trade off of NetShield+. Eigen-drop does not change linearly wrt computation time, it is easy to find compromise
points where we can get considerable eigen-drop with short computation time.

122 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 1, JANUARY 2016

Spectral graph analysis. Pioneering works in this aspect
can be traced back to Fiedler’s seminal work [14]. Represen-
tative follow-up works include [12], [40], [50], [66], etc. All
of these works use the eigenvectors of the graph (or the
graph Laplacian) to find communities in the graph.

Influence maximization. Although node immunization
and influence maximization all aim to find a subset of
nodes to affect the influence spread in the graph, they
are different with each other in the sense that node
immunization tries to minimize the influence spread by
changing the graph structure, while influence maximiza-
tion aims to choose an optimal subset of seeds to maxi-
mize the ‘infected’ population. The pioneering work in
influence maximization is from Kempe et al. [28]. To
address the NP-hardness of the problem, different effi-
cient and scalable algorithms were proposed to approxi-
mate the optimal solution for different models [9], [10],
[18], [19], [52].

General graph mining. In recent years, graph mining is a
very hot research topic. Representative works include
pattern and law mining [1], [6], frequent substructure
discovery [26], [63], community mining and graph parti-
tion [2], [27], proximity [17], [55], [56], bridgeness-based
detection of fuzzy communities [38], the network value
of a customer [13], the bridge centrality [25], graph
blocker [21], the connectivity of the small world [51] and
social capital [32], etc. Research about sampling in graph
shows that the influential individuals in the graph can
be identified by only accessing to a small portion of
nodes in the network. Also, certain sample biases are
beneficial for many applications [34], [33]. A large
amount of work is also done on analyzing the spreading
process of competing information, virus and etc. [4], [59],
[62]. The algorithm in [23] enables within-network
and across-network classification with regional features
of the graph.

8 CONCLUSION

We studied the node immunization problem on large
real graphs. Besides the problem definitions, our main
contributions can be summarized as the following three
perspectives. First, we proposed a novel definition of
‘Shield-value’ score SvðSÞ for a set of nodes S, by care-
fully using the results from the theory of matrix pertur-
bation. Second, we proposed a near-optimal and scalable
algorithm (NetShield) to find a set of nodes with the
highest ‘Shield-value’ score. We further proposed its vari-
ant (NetShield+) to balance the optimization quality and
speed. Finally, we conducted extensive experiments on
several real data sets to illustrate both the effectiveness
as well as the efficiency of our methods. Specifically, the
proposed methods (a) give an effective immunization
strategy (b) scale linearly with the size of the graph
(number of edges) and (c) outperform competitors by
several orders of magnitude.

Future work includes (1) to parallelize the current
method (e.g., using Hadoop8) and (2) to study extensions
for additional virus propagation models, like SIR [24] etc.

APPENDIX

Proof of NP-Completeness of K-Node Immunization

Proof. We consider the decision version of the K-node
immunization problem as follows. tu

Problem 4. K-node immunization (Decision Version) (IMM
ðG; kÞ)
Given: A large un-directed un-weighted connected graph

Gwith n nodes and an integer k;
Find: A subset S of k nodes. By deleting S from graph G

(with adjacency matrix A), we get a new graph

GðSÞ(with adjacency matrix Â), in which �ðSÞ � t.
To make the problem easier, we proof that the
problem is already NP-complete when t ¼ 0.

First, we show that K-node immunization problem is in
NP: given subset ðSÞ to be deleted from graph G, we can

check in poly-time if the first eigenvalue of new graph GðSÞ

is less than 0 or not.
Second, we prove that K-node immunization problem is

poly-time reducible from a known NP-complete problem,
i.e., the Independent Set problem(INDðG; kÞ).

Problem 5. Independent Set problem(INDðG; kÞ) Given a large
un-directed un-weighted connected graph G ¼ ðV;EÞ and a
number k > 0, is there a set of k vertices, no two of which are
adjacent?

Assume the size ofG is n. Given an instance of INDðG; kÞ,
we create an instance IMMðG;n� kÞ (delete n� k nodes in
G such that the the first eigenvalue in new graph is less or
equal to 0). We now need to prove two things:

1. If there is a YES answer to INDðG; kÞ, then there is a
YES answer to IMMðG; n� kÞ.

The adjacency matrix of G which has YES answer to
INDðG; kÞ is

A ¼ Sk�k Xk�ðn�kÞ
Xk�ðn�kÞ Tðn�kÞ�ðn�kÞ

� �
;

where Sk�k ¼ 0, because the k nodes in S are independent to
each other. By deleting the rest n� k nodes in T (T ¼ V =S),
we have Xk�ðn�kÞ ¼ 0, Tðn�kÞ�ðn�kÞ ¼ 0. Therefore the adja-

cency matrix for new graph GðT Þ has Â ¼ 0. Hence �ðT Þ ¼
�(0)¼ 0. So there is a YES answer to IMMðG; n� kÞ.

2. If there is a NO answer to INDðG; kÞ, then there is a
NO answer to IMMðG;n� kÞ.

Suppose we have a YES answer to IMMðG; n� kÞ. Then
by deleting n� k nodes from graph G (suppose they are in

T), we will get new graph GðT Þ with �ðT Þ � 0where

Â ¼ Sk�k 0k�ðn�kÞ
0k�ðn�kÞ 0ðn�kÞ�ðn�kÞ

� �
:

Since Sk�k � 0, to satisfy �ðT Þ � 0, we need to have Sk�k ¼
0, which implies that all the k nodes in S are independent to
each other. The conclusion is contradict with the assump-
tion that there is a NO answer to INDðG; kÞ, therefore
IMMðG;n� kÞ can only have NO answer here.

Hence K-node immunization (Decision Version) is NP-
complete.8. http://hadoop.apache.org/

CHEN ET AL.: NODE IMMUNIZATION ON LARGE GRAPHS: THEORY AND ALGORITHMS 123

REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabasi, “Diameter of the world
wide web,”Nature, vol. 401, pp. 130–131, 1999.

[2] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X. Lan,
“Group formation in large social networks: Membership, growth,
and evolution,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2006, pp. 44–54.

[3] T. Berger-Wolf and H. Habiba, “Working for influence: Effect
of network density and modularity on diffusion in networks,”
in Proc. IEEE 11th Int. Conf. Data Mining Workshops, 2011,
pp. 933–940.

[4] A. Beutel, B. A. Prakash, R. Rosenfeld, and C. Faloutsos,
“Interacting viruses in networks: Can both survive?” in Proc. 18th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012,
pp. 426–434.

[5] L. Briesemeister, P. Lincoln, and P. Porras, “Epidemic profiles and
defense of scale-free networks,” in Proc. ACMWorkshop Rapid Mal-
code, Oct. 27, 2003, pp. 67–75.

[6] A. Broder, R. Kumar, F. Maghoul1, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener, “Graph structure in the web:
Experiments and models,” in Proc. World Wide Web Conf. Comput.
Netw., 2000, pp. 309–320.

[7] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos,
“Epidemic thresholds in real networks,” ACM Trans. Inf. Syst.
Security, vol. 10, no. 4, p. 1, 2007.

[8] H. Chan, L. Akoglu, and H. Tong, “Make it or break it: Manipulat-
ing robustness in large networks,” in Proc. SIAM Int. Conf. Data
Mining, 2014, pp. 325–333.

[9] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization
in social networks,” in Proc. 15th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2009, pp. 199–208.

[10] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximiza-
tion in social networks under the linear threshold model,” in Proc.
10th Int. Conf. Data Mining, 2010, pp. 88–97.

[11] R. Cohen, S. Havlin, and D. ben Avraham, “Efficient immuniza-
tion strategies for computer networks and populations,” Phys.
Rev. Lett., vol. 91, no. 24, p. 247901, Dec. 2003.

[12] C. H. Q. Ding, T. Li, and M. I. Jordan, “Nonnegative matrix factor-
ization for combinatorial optimization: Spectral clustering, graph
matching, and clique finding,” in Proc. 11th Int. Conf. Data Mining,
2008, pp. 183–192.

[13] P. Domingos and M. Richardson, “Mining the network value of
customers,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2001, pp. 57–66.

[14] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Math.
J., vol. 23, no. 2, pp. 298–305, 1973.

[15] L. C. Freeman, “A set of measures of centrality based on
betweenness,” in Proc. Sociometry, 1977, pp. 35–41.

[16] A. Ganesh, E. Massouli, and D. Towsley, “The effect of network
topology on the spread of epidemics,” in Proc. IEEE INFOCOM,
2005, pp. 1455–1466.

[17] F. Geerts, H. Mannila, and E. Terzi, “Relational link-based
ranking,” in Proc. Int. Conf. Very Large Databases, 2004, pp. 552–563.

[18] A. Gionis, E. Terzi, and P. Tsaparas, “Opinion maximization in
social networks,” in Proc. SIAM Data Mining Conf., 2013,
pp. 387–395.

[19] A. Goyal, W. Lu, and L. V. Lakshmanan, “Simpath: An effi-
cient algorithm for influence maximization under the linear
threshold model,” in Proc. IEEE 11th Int. Conf. Data Mining,
2011, pp. 211–220.

[20] H. Nagamochi and T. Ibaraki, Algorithmic Aspects of Graph Connec-
tivity. Cambridge, U.K: Cambridge Univ. Press, 2008.

[21] H. Habiba and T. Y. Berger-Wolf, “Graph theoretic measures for
identifying effective blockers of spreading processes in dynamic
networks,” in Proc. MLG-ICML Workshop Mach. Learn. Graphs,
2008.

[22] H. Habiba, “Critical individuals in dynamic population
networks,” PhD dissertation, Northwestern Univ., Evanston, IL,
USA, 2013.

[23] K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H.
Tong, and C. Faloutsos, “It’s who you know: Graph mining using
recursive structural features,” in Proc. 17th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2011, pp. 663–671.

[24] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM
Rev., vol. 42, pp. 599–653, 2000.

[25] W. Hwang, T. Kim, M. Ramanathan, and A. Zhang, “Bridging
centrality: Graph mining from element level to group level,” in
Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2008,
pp. 336–344.

[26] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, and G. Agrawal,
“Discovering frequent topological structures from graph data-
sets,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min-
ing, 2005, pp. 606–611.

[27] G. Karypis and V. Kumar, “Multilevel K-way hypergraph parti-
tioning,” in Proc. 36th Annu. ACM/IEEE Design Automation Conf.,
1999, pp. 343–348.

[28] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. 9th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2003, pp. 137–146.

[29] J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” in Proc. ACM-SIAM Symp. Discrete Algorithms, 1998,
pp. 668–677.

[30] A. Krause and C. Guestrin, “Near-optimal observation selection
using submodular functions,” in Proc. 22nd Nat. Conf. Artif. Intell.,
2007, pp. 1650–1654.

[31] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. S. Glance, “Cost-effective outbreak detection in networks,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2007, pp. 420–429.

[32] L. Licamele and L. Getoor, “Social capital in friendship-event
networks,” in Proc. Int. Conf. Data Mining, 2006, pp. 959–964.

[33] A. S. Maiya, “Sampling and inference in complex networks,” PhD
dissertation, Stanford Univ., Stanford, CA, USA, 2011.

[34] A. S. Maiya and T. Y. Berger-Wolf, “Benefits of bias: Towards
better characterization of network sampling,” in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2011,
pp. 105–113.

[35] Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos,
“Rise and fall patterns of information diffusion: Model and
implications,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, 2012, pp. 6–14.

[36] J. Moody and D. R. White, “Social cohesion and embeddedness: A
hierarchical conception of social groups,” in Proc. Amer. Sociol.
Rev., 2003, pp. 1–25.

[37] J. I. Munro and D. Wagner, “Better approximation of betweenness
centrality,” in Proc. 10th Workshop Algorithm Eng. Experiments,
2008.

[38] T. Nepusz, A. Petraczi, L. Negyessy, and F. Bazso, “Fuzzy com-
munities and the concept of bridgeness in complex networks,” in
Proc. Phys. Soc., 2007.

[39] M. Newman, “A measure of betweenness centrality based on ran-
dom walks,” Soc. Netw., vol. 27, pp. 39–54, 2005.

[40] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in Proc. Adv. Neural Inf. Process. Syst.,
2001, pp. 849–856.

[41] H. Nguyen, “Interactions on complex networks: Inference algo-
rithms and applications,” PhD dissertation, Univ. of Houston,
Houston, TX, USA, 2013.

[42] H. Nguyen and R. Zheng, “On budgeted influence maximization
in social networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 6,
pp. 1084–1094, Jun. 2013.

[43] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” Stanford Digital Lib.
Technol. Project, Stanford, CA, USA, Tech. Rep. SIDL-WP-1999-
0120 (version of 11/11/1999), 1998.

[44] B. A. Prakash, “Propagation and immunization in large
networks,” XRDS: Crossroads, The ACM Mag. Students, vol. 19,
no. 1, pp. 56–59, 2012.

[45] B. A. Prakash, L. Adamic, T. Iwashyna, H. Tong, and C. Faloutsos,
“Fractional immunization in hospital-transfer graphs,”.

[46] B. A. Prakash, D. Chakrabarti, N. C. Valler, M. Faloutsos, and C.
Faloutsos, “Threshold conditions for arbitrary cascade models on
arbitrary networks,” Knowl. Inf. Syst., vol. 33, no. 3, pp. 549–575,
2012.

[47] B. A. Prakash, J. Vreeken, and C. Faloutsos, “Spotting culprits in
epidemics: How many and which ones?” in Proc. 12th IEEE/ACM
Int. Conf. Data Mining, 2012, pp. 11–20.

[48] B. A. Prakash, J. Vreeken, and C. Faloutsos, “Efficiently spotting
the starting points of an epidemic in a large graph,” Knowl. Inf.
Syst., vol. 38, pp. 35–59, 2014.

124 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 1, JANUARY 2016

[49] K. Saito, K. Ohara, Y. Yamagishi, M. Kimura, and H. Motoda,
“Learning diffusion probability based on node attributes in social
networks,” in Proc. Found. Intell. Syst., 2011, pp. 153–162.

[50] J. Shi and J. Malik, “Normalized cuts and image segmentation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 1997, pp. 731–737.

[51] X. Shi, M. Bonner, L. A. Adamic, and A. C. Gilbert, “The very
small world of the well-connected,” in Proc. 19th ACM Conf.
Hypertext Hypermedia, 2008, pp. 61–70.

[52] Y. Singer, “How to win friends and influence people, truthfully:
Influence maximization mechanisms for social networks,” in Proc.
5th ACM Int. Conf. Web Search Data Mining, 2012, pp. 733–742.

[53] G. W. Stewart and J.-G. Sun,Matrix Perturbation Theory. New York,
NY, USA: Academic, 1990.

[54] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos, “Neighborhood
formation and anomaly detection in bipartite graphs,” in Proc. Int.
Conf. Data Mining, 2005, pp. 418–425.

[55] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with
restart and its applications,” in Proc. Int. Conf. Data Mining, 2006,
pp. 613–622.

[56] H. Tong, J. He, M. Li, W.-Y. Ma, H.-J. Zhang, and C. Zhang,
“Manifold-ranking-based keyword propagation for image
retrieval,” EURASIP J. Appl. Signal Process., vol. 2006, p. 190, 2006.

[57] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C.
Faloutsos, “Gelling, and melting, large graphs by edge manipula-
tion,” in Proc. 21st ACM Int. Conf. Inf. Knowl. Manage., 2012,
pp. 245–254.

[58] G. Tuli, C. J. Kuhlman, M. V. Marathe, S. Ravi, and D. J.
Rosenkrantz, “Blocking complex contagions using community
structure,” in Proc. Workshop Multiagent Interaction Netw., 2012.

[59] N. C. Valler, “Spreading processes on networks theory and
applications,” PhD dissertation, Univ. of California, Oakland, CA,
USA, 2012.

[60] D. Wang, Z. Wen, H. Tong, C.-Y. Lin, C. Song, and A.-L. Barab�asi,
“Information spreading in context,” in Proc. 20th Int. Conf. World
Wide Web, 2011, pp. 735–744.

[61] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic
spreading in real networks: An eigenvalue viewpoint,” in Proc.
22nd Int. Symp. Rel. Distrib. Syst., 2003, pp. 25–34.

[62] X. Wei, N. C. Valler, B. A. Prakash, I. Neamtiu, M. Faloutsos, and
C. Faloutsos, “Competing memes propagation on networks: A
network science perspective,” IEEE J. Sel. Areas Commun., vol. 31,
no. 6, pp. 1049–1060, Jun. 2013.

[63] D. Xin, J. Han, X. Yan, and H. Cheng, “Mining compressed
frequent-pattern sets,” in Proc. Int. Conf. Very Large Databases,
2005, pp. 709–720.

[64] Y. Yamagishi, K. Saito, K. Ohara, M. Kimura, and H. Motoda,
“Learning attribute-weighted voter model over social networks,”
J. Mach. Learn. Res.-Proc. Track, vol. 20, pp. 263–280, 2011.

[65] W. W. Zachary, “An information flow model for conflict and fis-
sion in small groups,” J. Anthropol. Res., vol. 33, pp. 452–473, 1977.

[66] H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon, “Spectral
relaxation for k-means clustering,” in Proc. Adv. Neural Inf. Process.
Syst., 2001, pp. 1057–1064.

[67] Y. Zhang and B. A. Prakash, “Scalable vaccine distribution in large
graphs given uncertain data,” in Proc. 23rd ACM Int. Conf. Inf.
Knowl. Manage., 2014, pp. 1719–1728.

Chen Chen received the bachelor’s and master’s
degrees in computer science from Beihang Uni-
versity and New York University in 2011 and
2013, respectively. She is currently working
toward the PhD degree in the School of Comput-
ing, Informatics, and Decision Systems Engineer-
ing, Arizona State University. Her research
interests include large scale data mining in
graphs and real-world network analysis.

Hanghang Tong received the MSc and PhD
degrees from Carnegie Mellon University in 2008
and 2009, both majored in machine learning. He
is currently an assistant professor in the School
of Computing, Informatics and Decision Systems
Engineering, Arizona State University. Before
that, he was an assistant professor in the Com-
puter Science Department, City College, City Uni-
versity of New York, a research staff member at
IBM T.J. Watson Research Center, and a post-
doctoral fellow in Carnegie Mellon University. His

research interest includes large scale data mining for graphs and multi-
media. He has received several awards, including Best Paper Award in
CIKM 2012, SDM 2008, and ICDM 2006. He has published more than
80 referred articles and more than 20 patents. He has served as a pro-
gram committee member in top data mining, databases, and artificial
intelligence venues.

B. Aditya Prakash received the BTech degree in
CS from the Indian Institute of Technology (IIT)-
Bombay in 2007 and the PhD degree from the
Computer Science Department, Carnegie Mellon
University in 2012. He is an assistant professor in
the Computer Science Department, Virginia
Tech. He has published more than 28 refereed
papers in major venues, holds two U.S. patents
and has given two tutorials (VLDB 2012 and
ECML/PKDD 2012) at leading conferences. His
work has also received a Best Paper Award and

two Best-of-Conference Selections (CIKM 2012, ICDM 2012, and ICDM
2011) and multiple travel awards. His research interests include data
mining, applied machine learning and databases, with emphasis on big-
data problems in large real-world networks and time-series. He is also a
member of the Discovery Analytics Center at Virginia Tech.

Charalampos E. Tsourakakis received the
diploma in electrical and engineering from the
National Technical University of Athens and
the master’s of science degree from the Machine
Learning Department, Carnegie Mellon Univer-
sity. He received the PhD degree in algorithms,
combinatorics, and optimization from Carnegie
Mellon University. He is a postdoctoral fellow in
the Harvard School of Engineering and Applied
Sciences. His research interests include algo-
rithm design, random graphs, and data mining.

Tina Eliassi-Rad received the PhD degree in
computer sciences (with a minor in mathematical
statistics) from the University of Wisconsin-Madi-
son. She is an associate professor of computer
science at Rutgers University. Before joining aca-
demia, she was a member of Technical Staff and
principal investigator at Lawrence Livermore
National Laboratory. Her current research lays at
the intersection of graph mining, network science,
and computational social science. Within data
mining and machine learning, her research has

been applied to the world-wide web, text corpora, large-scale scientific
simulation data, complex networks, fraud detection, and cyber situational
awareness. She has published more than 60 peer-reviewed papers
(including a Best Paper Runner-Up Award at ICDM’09 and a Best Inter-
disciplinary Paper Award at CIKM’12); and has given more than
100 invited presentations. She is an action editor for the Data Mining and
Knowledge Discovery Journal and a member of the editorial board for the
Springer Encyclopedia of Machine Learning and Data Mining. In 2010,
she received an Outstanding Mentor Award from the US DOE Office of
Science.

CHEN ET AL.: NODE IMMUNIZATION ON LARGE GRAPHS: THEORY AND ALGORITHMS 125

Christos Faloutsos is a professor at Carnegie
Mellon University. He has received the Presiden-
tial Young Investigator Award by the US National
Science Foundation (1989), the Research Contri-
butions Award in ICDM 2006, the SIGKDD Inno-
vations Award (2010), 20 “Best Paper” Awards
(including two “Test of Time” awards), and four
teaching awards. Five of his advisees have
attracted KDD or SCS dissertation awards. He
has served as a member of the executive com-
mittee of SIGKDD. He has published more than

300 refereed articles, 17 book chapters, and two monographs. He holds
eight patents and he has given more than 35 tutorials and 15 invited dis-
tinguished lectures. His research interests include data mining for
graphs and streams, fractals, database performance, and indexing for
multimedia and bio-informatics data. He is a fellow of the ACM.

Duen Horng (Polo) Chau received the PhD
degree in machine learning and the master’s
degree in human-computer interaction (HCI). He
is an assistant professor in Georgia Tech’s
School of Computational Science and Engineer-
ing, and an associate director of the MS Analytics
program. His PhD thesis won Carnegie Mellon’s
Computer Science Dissertation Award, Honor-
able Mention. His research lab bridges data min-
ing and HCI to solves large-scale, real world
problems. They develop scalable, interactive,

and interpretable tools for big data analytics. Their patented Polonium
malware detection technology protects 120 million people worldwide.
Their auction fraud detection research was widely covered by media.
Their fake review detection research received the Best Student Paper
Award at the 2014 SIAM Data Mining Conference. He received a Yahoo
Faculty Research and Engagement Award, a Raytheon Faculty Fellow-
ship, and LexisNexis Dean’s Excellence Award. He is the only two-time
Symantec fellow and an award-winning designer. He designed Carnegie
Mellon’s ID card.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

126 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 1, JANUARY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

