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Subspace Based Network Community Detection
Using Sparse Linear Coding

Arif Mahmood and Michael Small

Abstract—Information mining from networks by identifying communities is an important problem across a number of research fields
including social science, biology, physics, and medicine. Most existing community detection algorithms are graph theoretic and lack the
ability to detect accurate community boundaries if the ratio of intra-community to inter-community links is low. Also, the algorithms
based on modularity maximization may fail to resolve communities smaller than a specific size if the community size varies significantly.
In this paper we present a fundamentally different community detection algorithm based on the fact that each network community
spans a different subspace in the geodesic space. Therefore, each node can only be efficiently represented as a linear combination of
nodes spanning the same subspace. To make the process of community detection more robust, we use sparse linear coding with `1
norm constraint. In order to find a community label for each node, sparse spectral clustering algorithm is used. The proposed
community detection technique is compared with more than ten state of the art methods on two benchmark networks (with known
clusters) using normalized mutual information criterion. Our proposed algorithm outperformed existing algorithms with a significant
margin on both benchmark networks. The proposed algorithm has also shown excellent performance on three real-world networks.

Index Terms—Complex Networks, Community Detection, Sparse Linear Coding, Sparse Subspace Clustering, Subspace Community
Detection
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1 INTRODUCTION

Many real world systems emerging from computational areas in
social science, biology, physics, and medicine naturally map to
network data structures [3], [36]. To analyse the structure of
the original systems, often the corresponding network structure
is studied using groups of nodes having more intra-group and
less inter-group edges. Such groups exist in most real world
networks and influence the behaviour of the underlying system.
The community detection is an important problem and it has
the potential to solve many real world problems. For example,
information propagation across the globe is influenced by the
group structure in the online social communities [31]. Spread of
disease across continents depends on the network of migratory
birds or humans. Failure propagation in an electrical supply system
can be predicted by the grid community structure [39]. Efficient
layout of an electric circuit is computed by finding the community
structure [6], [35]. The Internet, the web of hyper links, the
connections between neurons and the protein-protein interaction
networks collectively demonstrate the importance of community
detection [16], [18].

Most of the existing community detection algorithms [8], [13],
[20], [37], [40], [42], [44], [50] lack the ability to detect accurate
community boundaries if the difference between the internal
and the external node degree does not exceed a detectability
threshold [41]. Most of these methods use modularity [37], [19]
as the quality index of a community scheme. It has been observed
that in networks with communities of significantly different sizes,
modularity maximization algorithms may fail to accurately resolve
communities smaller than a specific size. This behaviour has been
reported even in cases with well defined community structure [27].
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Fig. 1. We consider a community as a set of nodes spanning the same
subspace in the geodesic space. Each community spans a different
subspace due to different degree distribution and internal structure from
the remainder of the communities.

The community detection algorithm proposed in this paper
is fundamentally different from existing methods because it does
not directly operate on the adjacency matrix and also it is not
based on modularity maximization. We propose to represent each
network node by a vector of geodesic distances with respect to
all other nodes in the network. In case of unweighted networks,
geodesic distance is the number of links between the two nodes
along the shortest path. For the case of weighted graphs geodesic
distance is the sum of the link weights along the shortest path.
Such a mapping is one-to-one because each node is mapped to
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Fig. 2. The proposed subspace based community detection algorithm has three main steps. For a given network geodesic distances are computed
for all pairs and each node is represented by the corresponding vector of distances. Then a sparse linear coding is used to decompose each node
as a linear combination of all other nodes. Finally a spectral clustering algorithm is used to find communities in the network.

a unique point in a high dimensional geometric space. Since
communities are defined as group of nodes having more intra-
group and less inter-group links, therefore the expected value of
geodesic distance between two nodes in the same community will
be smaller than that of the two nodes in two different communities.
As a result, in the mapped geometric space, each community will
span a different subspace. Although the apparent dimensionality
of a node is the same as the number of nodes in the network,
the actual dimensionality is significantly smaller depending on the
size of the community that node occupied.

As an example, consider an unweighted and undirected net-
work having two disconnected 3-cliques, with nodes labeled as
{1, 2, 3} and {4, 5, 6}. Geodesic distance is the minimum number
of edges or the shortest path distance between two nodes. In this
network, each node is represented by a column in a matrix of
Geodesic distances P :

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 ∞ ∞ ∞
1 0 1 ∞ ∞ ∞
1 1 0 ∞ ∞ ∞
∞ ∞ ∞ 0 1 1
∞ ∞ ∞ 1 0 1
∞ ∞ ∞ 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

An inverse exponential mapping of the type s = exp(−p2/σ2)
will map P to a matrix of similarities S:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.85 0.85 0 0 0
0.85 1 0.85 0 0 0
0.85 0.85 1 0 0 0
0 0 0 1 0.85 0.85
0 0 0 0.85 1 0.85
0 0 0 0.85 0.85 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Nodes in each community span a different subspace R3 while the
overall dimensionality is R6. A similar network connected by a
single edge has been analyzed in Fig. 3.

A vector with apparent dimensionality of n and actual di-
mensionality of n′ such that n′ ≤ n can only be represented
as a linear combination of n′ independent vectors spanning the
same subspace. In such a decomposition the linear coefficients
corresponding to the vectors spanning different subspaces will
become zero. Due to the complex network structure, a simple
linear decomposition estimated by least squared error solution
may result in non-zero linear coefficients of small magnitude
for nodes corresponding to different communities. In order to
solve this problem we use sparse linear coding in which linear
coefficients are estimated such that in addition to minimization of

reconstruction error, the number of linear coefficients, or `o norm,
is also constrained. By introducing this constraint we ensure that
the linear coefficients corresponding to dimensions spanned by
other communities become zero.

In order to obtain subspace based communities, we represent
each node as a sparse linear combination of all other nodes in
the same network and use the magnitude of the linear coefficients
as the similarity values to define a proximity matrix. We then
use spectral clustering to partition the graph represented by this
proximity matrix into k clusters. The value of k is obtained
corresponding to the minimum reduction rate of the clustering
error in the Euclidean space.

In dense networks the small world phenomena [53], [52]
renders the process of accurate community boundary identifi-
cation more challenging. In order to mitigate this effect, node
representation from the traditional spectral clustering algorithms
is fused with the proposed geodesic distance based algorithm.
The information captured by the both algorithms being different,
complement each other and improve the accuracy of community
detection. Both versions of the proposed algorithm are compared
with more than ten existing community detection methods on two
benchmark networks with varying community sizes. The proposed
algorithms have shown excellent performance in all experiments.

2 RELATED WORK

Most of the existing community detection algorithms directly
operate on the adjacency matrix which encodes local network
structure at each node. Although it appears simple and natural, it
constraints the set of algorithms which may potentially be applied
for community detection. In particular, most machine learning
and data mining algorithms cannot be directly applied to this
network representation. Recently, some researchers have proposed
the use of clustering algorithms such as K-means or Voronoi
diagrams [12], DBSCAN [21], DENCLUDE [25] and sub graph
detection [7] for community detection. However, in most of these
techniques a network is not globally mapped to a space, rather
the mapping is local or discrete, considering only two nodes at a
time. In contrast, in the current work we propose to map a network
to a continuous high dimensional space. We define a community
as a set of nodes spanning the same subspace within the high
dimensional space.

Most of the classical community detection algorithms are
graph theoretic. For example, S. Dongen [50] proposed Markov
cluster algorithm [50] based on the idea of current flow in the
graph. If natural groups are present in a network, then the current
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across group borders will be small thus revealing group structure
in the graph. Radicchi et al. [42] proposed a divisive algorithm
based on edge-clustering coefficient, the ratio of number of tri-
angles an edge belongs to the potential number of such triangles.
Edges connecting different groups have low clustering coefficient
and are removed first. Girvan and Newman [20], [37] proposed
a community detection algorithm (GN) based on the concept of
edge betweenness which is the number of shortest paths that run
along an edge. The edge with highest betweenness is removed and
shortest paths are recomputed each time. Clauset et al.[8] proposed
a fast greedy modularity optimization algorithm which is very effi-
cient on sparse graphs with hierarchical structure. Blondel et al.[4]
proposed a modularity optimization based fast heuristic algorithms
for community structure extraction in large networks. Recently
Deritei et al [12] represented distance between two nodes based
on the edge-clustering coefficient and used Voronoi diagrams for
community detection. Palla et al. [40] first located all cliques of the
network and then found communities by carrying out a standard
component analysis of the clique−clique overlap. Rosvall and
Bergstrom have proposed an information-theoretic framework for
resolving community structure in complex networks [45] known
as Infomap. A network is divided into small modules such that
Minimum Description Length (MDL) is minimized. Wang et
al. [51] have proposed dynamic community detection algorithm.
Tang et al. [48] have suggested an approach for evolving group
detection in dynamic networks. Liu et al. [32] has proposed a
community detection algorithm in directional networks.

Our proposed algorithm is fundamentally different from all
of these methods because we define a community as a set of
nodes spanning the same subspace. A community is differentiated
from another community based on the difference of the sub-
space spanned by each. The closest existing algorithm is Donetti
and Munoz (DM) algorithm [13]. They represented each node
by a column of adjacency matrix. First a few eigenvalues and
eigenvectors of the network Laplacian matrix were computed
and then based on complete link clustering algorithm, network
communities were found. In contrast, we represent each node
by a vector of geodesic distances and then we use sparse linear
coding to compute a proximity matrix based on the subspace
spanned by each node. The matrix of linear coefficients is used as
a proximity matrix for the spectral clustering algorithm [15]. To
the best of our knowledge, no such network community detection
algorithm has been proposed before. Our work also bridges the
gap between subspace based clustering techniques and complex
networks. Note that the proposed algorithm is equally applicable
to both the weighted and un-weighted networks as well as directed
and undirected networks.

3 SPARSE LINEAR DECOMPOSITION OF NODES

Consider a network G with n nodes and m links represented by
an adjacency matrix A ∈ Rn×n such that if there is a link between
the two nodes {vi, vj} then A(i, j) = 1, otherwise A(i, j) = 0.
Each column of adjacency matrix is a vector in Rn and records
the nodes directly incident on vi, therefore it only captures the
local structure at vi. It does not record information of the nodes
which are further than one link from vi.

We propose to map V = {v1, ..., vi, ...vn} ↦ Rn such that
each dimension represents some type of distance of vi from a
particular node. Since geodesic distance satisfies the three proper-
ties of a metric including non-negativity, symmetry and triangular

inequality, it can be considered as an appropriate choice to define
such a representation. Another advantage is the availability of
many fast geodesic distance computation algorithms [24] that can
be utilized to efficiently compute this representation.

Each community has a relatively high number of intra-
community edges and low number of inter-community edges
therefore the nodes within the same community are expected to
have smaller geodesic distances as compared to the nodes in
the different communities. Also, due to different node and edge
distribution in each community, the geodesic distance vectors
pi corresponding to a particular community span a different
subspace. Hence our proposed sub-space based approach will
yield a new insight into the network community structure.

Let the vector pi be the set of geodesic distances of vi from all
vj ∈ G. The set of all such vectors is a matrix P ∈ Rn×n such that
P = [p1 p2 ⋯ pn]. Note that P (i, j) is the distance between
vi and vj and all diagonal entries of P are zero, P (i, i) = 0, that
is the network does not have any self loops. We transform the
geodesic distance vectors pi to similarity score vectors by using
Gaussian kernel function:

S = exp(−P ⊙ P
2σ2

s
), (1)

where σs controls the rate of decay and ⊙ is point-wise multipli-
cation operator. If a node vi is not reachable from a node vj then
P (i, j) = ∞ and S(i, j) = 0.

A column vector si ∈ S can only be represented as a linear
combination of other vectors sj ∈ S spanning the same subspace.
Therefore, if si is decomposed as a linear combination of the rest
of the vectors in S, defined as set difference: Ŝ = S ∖ si, the linear
coefficientsαi may be found by using si = Ŝαi. The least squares
solution is given by

αi = (Ŝ⊺Ŝ)−1Ŝ⊺si, (2)

where the vector of linear coefficients αi will have large magni-
tudes corresponding to nodes in the same community and small
magnitudes for nodes in different communities.

As a simple example, consider a network with k isolated
communities with no inter-community links. In this case, the
geodesic distance between two nodes in two different communities
will be P (i, j) = ∞, therefore S(i, j) = 0. The subspace spanned
by each community will be independent, therefore a node in
a particular community will only have nonzero coefficients in
αi for nodes within the same community. Coefficients in αi

corresponding to the nodes in the other communities will be zero.
In real world networks, community detection is significantly

more challenging than this simple example. Mostly there are a
significant number of inter-community links compared to the intra-
community links. Therefore the subspaces spanned by different
communities are neither independent nor disjoint; rather may have
significant overlap depending on the structure of the network. In
such cases, the least squares solution will yield non zero coeffi-
cients in αi corresponding to the nodes in the other communities
making community detection more challenging. To illustrate this
fact a simple network having two 3-cliques connected with a single
edge (Fig. 3a) is considered. The matrix of linear coefficients
computed by least squares solution is shown in Fig. 3c. This matrix
has a clear block structure however nodes in each community
have nonzero linear coefficients corresponding to the nodes from
the other community. Fig. 3b shows the plot of linear coefficients
obtained by sparse linear coding as discussed in the following
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Table of Geodesic Distances

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 1 0 1 1 2 3 3

Node 2 1 0 1 2 3 3

Node 3 1 1 0 1 2 2

Node 4 2 2 1 0 1 1

Node 5 3 3 2 1 0 1

(a) Node 6 3 3 2 1 1 0
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Fig. 3. (a) A network with two 3-cliques connected by a single edge along
with the table of geodesic distances. (b) The matrix of αi computed
by sparse linear coding (4). (c) The matrix of linear coefficients αi

computed by least error squares solution (2). The block structure in (b)
is significantly enhanced compared to the block structure in (c).

paragraph. In this case, most of the noisy coefficients have been
suppressed to zero.

In order to suppress response from less relevant subspaces and
to enable community detection in the presence of significant inter
community links, the linear decomposition must be performed
with sparsity constraint

min
αi

∣∣si − Ŝαi∣∣22 s. t. ∣∣αi∣∣0 ≤ λ , (3)

where ∣∣ ⋅ ∣∣0 is the `0 norm which is the number of nonzero
coefficients in αi. The parameter λ is the number of allowed
non zero coefficients. This constraint ensures that only λ best
nodes can participate to represent a given node, therefore the value
of λ must not exceed the size of the corresponding community.
In case of smaller communities, a larger vale of λ may allow
selection of some nodes from other communities. If the coeffi-
cients corresponding to these nodes are not very small an error
may be introduced in the community boundary. We avoid this by
constraining the sparsity indirectly and instead of minimizing `0
norm, we minimize `1 norm:

α∗i ∶= argmin
αi

(∣∣si − Ŝαi∣∣22 + λ∣∣αi∣∣1) , (4)

where the parameter λ assigns a relative importance to the sparsity
constraint as compared to the reconstruction error magnitude.
In this formulation, for each si, the value of λ is automati-
cally computed from the Ŝ. Sparse linear decomposition with
`1 norm regularization given by (4) is an unconstrained convex
optimization problem also known as Least Absolute Selection and
Shrinkage Operator (LASSO) [49]. A fast solution in Least Angle
Regression (LARS) framework [14] has the same asymptotic
complexity as the simple least squares regression.

4 SPARSE SUBSPACE COMMUNITY DETECTION

In our formulation, a community Ck containing a node vi is a set of
nodes containing the support of vi as its subset. The support is the
set of nodes correspond to the coefficients of larger magnitude in
αi compared to a threshold. Two nodes are considered to belong to
the same community if their supports have an overlap larger than
a given threshold. The overall community is then the union of the
supports of both nodes. Therefore all nodes having overlapping
supports will correspond to the same community which is then the

union of all these supports. In order to find all sets of nodes with
overlapping supports, clustering of the sparse linear coefficient
vectors αi is required.

Due to randomness in the optimization process in (4), the
coefficient αi(j) may be different from the coefficient αj(i).
It is also partially because of the fact that the set of vectors used to
represent vi is slightly different from the set used to represent vj .
We make the relationship normalized and symmetric by taking the
average of the both coefficients each normalized by the maximum
value of its own set:

F(i, j) = F(j, i) = 1

2
(∣ αi(j)
max(αi)

∣
1

+ ∣ αj(i)
max(αj)

∣
1

) , (5)

where F is the resulting matrix of symmetric linear coefficients.
Instead of directly applying an Euclidean space clustering algo-
rithm on F , we apply Spectral Clustering (SC) approach.

4.1 Spectral Clustering
SC acts as a kernel and maps data from nonlinear manifolds to the
Euclidean space where clustering methods such as K-means can
then be efficiently used to find linear groups [15], [33]. For this
purpose, a degree matrix D is computed

D(i, j) =
⎧⎪⎪⎨⎪⎪⎩

∑n
î=1F(̂i, j) if i = j

0 if i ≠ j
, (6)

Using F and D, a symmetric Laplacian matrix Ls is computed

Ls = I −D−1/2FD−1/2. (7)

The eigenvectors of Ls embed a graph vertices into the Euclidean
space where linear approaches can be used for clustering. The
second least significant eigenvector of Ls is known as the Fiedler
vector and divides the network into two partitions based on the
NCut criterion [47]. Thus Fiedler vector is useful to discover hi-
erarchical structure of the network. On the resulting two partitions
of the network, again same process is repeated to divide each
part into two new partitions. Alternatively one may select k least
significant eigenvectors of Ls and directly compute k clusters.
Let Es be the matrix of k least significant eigenvectors of Ls.
Rows of Es are normalized to unit magnitude and clustered using
Euclidean distance based linear clustering algorithm.

4.2 Information Fusion
For the case of well structured sparse networks the sub-spaces
spanned by different communities remain more independent while
for the case of poorly structured complex networks, these sub-
spaces become more overlapped causing the community detection
a challenging task. It is due to the small world phenomenon in
complex networks [53], [52] the average difference between the
geodesic distances between nodes in the same community and
nodes in different communities reduces particularly as the number
of across community edges increases. Moreover, while performing
the sparse linear coding, the sparsity of the linear coefficients
corresponding to the communities other than the actual community
of the current node reduces. Both of these phenomena result
in an increase in the overlap of the sub-spaces spanned by
different communities. Therefore to enhance the performance of
community detection, information from other sources need to be
augmented with the subspace based community detection.

In the proposed subspace based community detection algo-
rithm, the input is the matrix of geodesic distances which encode
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Algorithm 1 Sparse Subspace Communities with Fusion (SSCF)
Require: A ∈ Rn×n {Network Adjacency Matrix}
Ensure: ` ∈ Rn×1 {Community Labels}, εe {Clustering Error}
P ⇐Find-Geodesic-Distances(A)
S ⇐ exp(−(P ⊙ P )/(2σ2

s)) {Eq. (1)}
for i ≤ n do
si ⇐ S(∶, i) {i-th column of S}
Ŝ = [s1⋯si−1 0 si+1⋯sn]
α∗i ⇐Find-Linear-Sparse-Code(si, Ŝ) {Eq. (4)}
α∗i ⇐ α∗i /max(α∗i )
F ⇐ [F α∗i ]

end for
F ⇐ 1/2(F + F⊺) {Eq. (5)}
Ds ⇐Find-Degree-Matrix(F) {Eq. (6)}
Da ⇐Find-Degree-Matrix(A) {Eq. (6)}
Ls ⇐ I −D−1/2s FD−1/2s {Eq. (7)}
La ⇐ I −D−1/2a AD−1/2a {Eq. (7)}
Es ⇐Find-Eigen-Vectors(Ls)
Ea ⇐Find-Eigen-Vectors(La)
Ex ⇐ [Es Ea] {Eq. (8)}
(`, εe) ⇐Find-Low-Error-Clusters(Ex) {Eq. (10)}

the minimum number of links between any two nodes in a given
network. Since the geodesic distance computation algorithms
take the adjacency matrix as input, the information contained in
the geodesic distance matrix is essentially another form of the
information in the adjacency matrix.

We observe that a combination of both forms of information
improves the accuracy of community boundaries. Therefore we
also compute a matrix of eigenvectors, Ea, by using the adjacency
matrix as the proximity matrix in the spectral clustering algorithm.
We append the node representation obtained in Es with the Ea to
get an extended node vector:

Ex = [Ea Es]. (8)

Linear clustering algorithm is then applied on the Ex to find
community labels in the network. The resulting algorithm is
named as Sparse Subspace Communities with Fusion (SSCF) and
is outlined as Algorithm 1.

4.3 Quality of a Community Scheme
Traditionally modularity maximization has been considered to be a
measure of quality or goodness of a community scheme. Although
modularity maximization can also be integrated with the proposed
subspace based community detection algorithm, we observe that
such approach may fail to resolve communities of smaller sizes in
networks with communities of significant size variations.

Average reconstruction error over all communities may also be
used as the measure of goodness of a community scheme. Let Uk
be the subspace bases of k-th community Ck. Reconstruction error
of all nodes vi ∈ Ck is given by∑i∶vi∈Ck ∣∣si−Ukαi∣∣1. Summation
over all communities yields the overall reconstruction error:

εs =
1

K

K

∑
k=1

∑
i∶vi∈Ck

∣∣si − Ukαi∣∣1, (9)

where K are the total number of communities. We observe that
εs can more efficiently compare two community schemes having
the same number of communities. While in case of two schemes
with different number of communities, εs may actually yield less

value for the smaller number of communities. It is because of the
fact that if two communities are contained in one as in the case
of hierarchical schemes, εs will yield less error for the combined
community compared to the separate communities. Also in (9)
it is assumed that one node is member of only one community.
Therefore the projection of a node in subspaces other than its
main community is considered as error. In case of overlapped
communities, it would be necessary to exclude the projection of a
node on a shared subspace from the error computations.

Alternatively, we can also use average error in the Euclidean
space spanned by the columns ei of the extended node vectors Ex,
as the measure to decide appropriate number of clusters

εe =
1

K

¿
ÁÁÁÀ

K

∑
k=1

∑
i∶vi∈Ck

(ei −mk)2, (10)

where mk is the center of cluster Ck. As the value of K is
increased, εe initially decreases at a significant rate, however after
a specific value of K , the error reduction rate converges to almost
constant rate yielding the efficient number of clusters.

In our implementation of the function Find-Low-Error
-Clusters() in Algorithm 1, clustering is started from a
minimum value (mostly 2 in our experiments) and increased in
increments of 1 cluster each time. The slope of the clustering
error is computed and correct number of clusters are assumed
to be found when the error slope converges to a constant value.
To elaborate this, the clustering error slopes are plotted for three
real world networks in Figures 8, 10, and 14. These plots are
shown for Euclidean error (10) because we observe that this
criterion produces more accurate cluster boundaries than (9). We
also observe that (10) is able to find small as well as large clusters
with quite good accuracy (Figures 9, 15 and 11).

5 EXPERIMENTS AND RESULTS

The two versions of the proposed algorithm including
Geodesic Sparse Subspace Communities (GSSC) using Es (8) as
the node representation and Sparse Subspace Communities with
Fusion (SSCF) using Ex as the node representation (Algorithm 1)
are tested on real and synthetic network datasets. The sparse linear
coding (4) is solved using the implementation of [15] which is
based on ADMM [5]. Alternating Direction Method of Multipliers
(ADMM) solves convex optimization problems by breaking them
into smaller and easy to solve problems. Alternatively (4) can also
be solved using SPArse Modeling Software (SPAMS) [34] library.

The proposed algorithms are compared with the existing state
of the art methods on two standard benchmark networks imple-
mented by Lancichinetti et. al. [29]. Each node in the benchmark
network has a ground truth community label. The networks are
divided into communities in unsupervised fashion, without using
the ground truth labels. The communities found are compared
with the ground truth communities using Normalized Mutual
Information (NMI) proposed by Danon et. al. [10] and also used
by Lancichinetti et. al. [28]. In each of the benchmark network,
three different mixing parameter values are used corresponding
to the gradually increasing ratio of the out-degree to the in-
degree. To normalize the effect of randomness, in each setting,
100 realizations of the benchmark are used and average NMI is
reported.

The accuracy performance of the proposed algorithms is
compared with ten existing algorithms including fast modularity
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Fig. 4. GN Benchmark Network: Comparison of average Normalized
Mutual Information (NMI) over 100 realizations of network with each
value of µ = {7/16,7.5/16,8/16}.
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Fig. 5. GN Benchmark Network: Comparison of overall average Nor-
malized Mutual Information (NMI) over 300 realizations of the network.
Average accuracy improvement of the proposed SSCF algorithm is
8.00% over the existing best performing algorithm of Donetti and Munoz
(DM).

optimization by Blondel et al. [4], Markov Cluster algorithm
(MCL) [50], Infomap [45], Cfinder [40], fast greedy modularity
optimization by Clauset et al. [8], Radicchi et al. [42], algorithm
of Girvan and Newman (GN) [20], [37], spectral algorithm by
Donetti and Munoz (DM) [13], Expectation-Maximization (EM)
algorithm by Newman and Leicht (EM) [38] and Potts model
approach by Ronhovde and Nussinov (RN) [44]. For most of
the algorithms results are reported from the original authors or
from the comparative studies performed by [10], [26]. For the
EM algorithm, results are reported for random initial community
boundaries. DM algorithm is an improved version of spectral
clustering algorithm using laplacian of the adjacency matrix and
Ea (8) as the node representation. We have implemented DM
algorithm using complete link hierarchical clustering with angular
distance which yields better performance than the Euclidean
distance. The proposed algorithms are also compared with the
existing algorithms on three real-world networks by using both
NMI and the reconstruction error as the quality of the resulting
community schemes. The proposed algorithms have exhibited
better performance in all cases.

5.1 GN Benchmark

The Girvan-Newman (GN) benchmark [20] has 128 nodes and
4 implanted communities each of 32 nodes. Each node has
probability pin of being connected to the nodes of the same cluster
and pout of being connected to the nodes of different clusters.
Total degree of each node is fixed to 16. A mixing parameter µ
is defined as the ratio of the external degree of a node to the total
degree. For example, µ = 7/16 means for each node out of 16
links, 7 links are to the outside world. For small values of µ the
structure is well defined, while for µ ≥ 0.50, pout ≥ pin, the graph
becomes random with subtle structure.

Experiments are repeated by varying µ = {7/16, 7.5/16, 8/16}.
This range of µ is significant because for µ ≤ 6/16, most
algorithms have 100% accuracy due to well defined communities;
while for µ ≥ 9/16, community structure is subtle and most
algorithm cannot find any meaningful communities. For each
value of µ, average NMI over 100 network realizations is shown in
Fig. 4. For values µ < 7/16 the proposed algorithms obtained NMI
≈ 1.00. For µ = {7/16,7.5/16} the Geodesic Sparse Subspace
Communities (GSSC) algorithm has exhibited lower performance
than DM and Infomod (Fig. 4). It is because of the fact that
the GN network has only 128 nodes each connected to 16 other
nodes. Due to the small world phenomenon, GSSC has shown
lower performance than DM. The STD of GSSC algorithm is
{11.37%, 18%, 8.75%} and SSCF algorithm {3.68%, 15.70%,
14.77%} over the three versions of the GN network.

The SSCF algorithm has exhibited better performance than
all algorithms including DM. It is because of the fact that the
information captured by Es and Ea node representations in (8)
compliment each other. Which also shows that the proposed sparse
subspace community detection using geodesic vectors is inher-
ently different from the traditional spectral clustering approach
and can improve the accuracy of community detection in complex
networks. As the mixing parameter is further increased, µ = 8/16,
performance of all algorithms significantly decreased (Fig. 4).
Infomod suffered more, while both DM and GSSC performed
similar. The proposed SSCF exhibited better performance than
both DM and GSSC algorithms. Average performance comparison
of all algorithms is shown in Fig. 5. On the average, the proposed
SSCF algorithm was able to achieve NMI of 0.67 which is better
than all other algorithms.

5.2 LFR Benchmark

The LFR network has power law degree distribution and variable
sized communities. The number of nodes in the network is 1000,
the average degree is 20 and the maximum degree is 50. Minimum
planted community size is 30 and maximum is 100. The mixing
parameter is varied as µ = {0.60,0.65,0.70}. For µ ≤ 0.55 most
algorithms are able to obtain 100% accuracy while for µ ≥ 0.75
community structure is not well defined therefore no algorithm
can find any meaningful communities. Due to variable degree,
communities of different sizes and increased mixing parameter, the
performance of most algorithms has remained lower than the GN
benchmark network. An NMI comparison for different algorithms
is shown in Fig. 6. The value of σs in (1) is fixed to 8.

The performance of the both versions of the proposed algo-
rithm, GSSC and SSCF is on the average better than all other
algorithms on LFR network (Fig. 7). It may be due to the larger
number of nodes, 1000 compared to 128 in GN network, the
small world phenomenon has less effect. Therefore the geodesic
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Fig. 6. LFR Benchmark Network: Normalized Mutual Information (NMI)
obtained by different algorithms averaged over 100 realizations for each
value of the Mixing Parameter µ = {0.60,0.65,0.70}.
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Fig. 7. LFR benchmark network: Average Normalized Mutual Infor-
mation (NMI) over 300 realizations of the network. Average accuracy
improvement of the proposed SSCF algorithm is 7% over the existing
best performing algorithm of Blondel et al.

vectors are more discriminating resulting in better performance of
GSSC algorithm. The performance of DM [13] algorithm using
Ea as node representation in (8) has significantly deteriorated
due to more challenges in the LFR benchmark. Other algorithms
including Infomap and RN performed better for µ = 0.60 while
for µ = 0.65 only the algorithm of Blondal et al. has shown
comparatively good performance. For µ = 0.70 all existing
algorithms have shown almost zero performance (Fig. 6). This
may be because the modularity based methods perform poor when
the community size reduces and the network size increases [17].
Also for zero or negative detectability thresholds, the performance
of these methods deteriorates. Also a comparative improvement
in performance of the proposed GSSC and SSCF algorithms for
µ = {0.65,0.70} demonstrates the ability of this approach to
accurately detect communities in more challenging situations. The
STD of GSSC algorithm is {5.02%, 8.43%, 3.78%} and for SSCF
algorithm {4.45, 8.82, 4.30} over the three versions of the LFR
network.

The proposed GSSC algorithm with Es node representation
in (8) has obtained average improvement of 17.0 % over the DM

TABLE 1
Experiments on the real-world networks, n,m the number of nodes and

edges, σs as in (1), Rext is dimensions of the Eext, kgt number of
ground truth communities, ksc number of found communities, εe

Euclidean space clustering error as percentage of the error over 2
communities.

Network n,m σs Rext kgt ksc εe

Karat [55] 34, 78 1 6×34 2 7 1.66%
Football [20] 115, 631 10 24× 115 12 12 0.83%

Polblog [1] 1220, 16717 5 14× 1220 2 9 1.44%
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Fig. 8. Zachary Karate Club Network: variation of the normalized sum of
squared Euclidean error (SSE or εe in (10)) with the number of communi-
ties (k). Error εe for the case of two communities is considered to be 1.00
and the remaining values are scaled accordingly. As the communities
are increased from 2 to 3, εe reduced by 46.22%. However this reduction
slowed down with further increase in the number of communities and
converged to 1.66% for 7 communities or more.

algorithm which is an improved version of the traditional spectral
clustering algorithm. The GSSC has also obtained an average
improvement of 1.00% while the proposed SSCF algorithm has
obtained an average improvement of 7% over the best performing
algorithm of Blondal et al. Improvement in performance due to
information fusion demonstrates that the node representations Ea

and Es complement each other. Therefore the proposed geodesic
distance based spectral clustering algorithm captures different type
of information compared to the traditional spectral clustering al-
gorithm. The STD of GSSC algorithm is {5.02%, 8.43%, 3.78%}
and for SSCF algorithm {4.45, 8.82, 4.30} over the three versions
of the LFR network.

5.3 Real-World Networks

In most of the real-world networks, there is no ground truth
node labeling therefore comparison between different algorithms
becomes difficult. Most of the comparisons have been made by the
maximum modularity achieved by a particular algorithm. However
it has been found that modularity may not be an appropriate mea-
sure for the goodness of the partitions, especially when the size of
the communities vary significantly. To avoid this issue, we perform
experiments on the real world networks with known ground truth
communities. The performance comparisons are made by using
the Normalized Mutual Information (NMI) between the found and
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Fig. 9. Zachary Karate Club Network, in 3D space spanned by the three
principal components. The network is divided into seven communities
using the proposed algorithm. All communities except {9, 31} have
consistent labels. Node 9 has label 0 while node 31 has label 1.

the ground truth communities. Experimental settings are given in
Table 1.

Zachary Karate Club [55] has been considered as a benchmark
social network of friendships in a karate club. It has 34 nodes
and 78 links. After a dispute, the club split into two new groups
named Mr. Hi and John A. For two partitions of the network,
the proposed SSCF algorithm achieved NMI of 0.785. Only the
individual 9 is incorrectly classified which is in accordance with
other algorithms. Person 9 was a weak supporter of John A but
he joined the club of Mr. Hi after the split due to technical
reasons rather than his friendships in the club. Our results are
better than many existing algorithms including CliquePerc [43],
Conclude [11], Demon [9], Ganix [54], Infomap [45], InfomapS-
ingle [46], LinkCommunities [2] and Louvain [4] as reported in
a recent study by Hric et al. [23]. The sparse reconstruction error
εs in (9) for the two ground truth communities is 221.82 while
for the two found communities is 220.11 which also demonstrates
that the found communities represent slightly better structure of
the network. Fig. 8 shows the variation of clustering error εe in
(10) as the communities are increased from 2 to 10. The clustering
error reduction rate is initially 46.22% and gradually reduced to
1.66% from 7 or more communities. This shows that the actual
number of communities in this network is 7 (Fig. 9).

Since NMI is a measure of similarity between the marked and
the found communities, as the number of found communities is
increased to more than two, NMI decreases accordingly. There-
fore, variation of NMI with increasing number of communities
is not shown for this network. However we observe that the
marked communities in this network are not compact, rather each
of the marked community has a group of smaller communities.
Our algorithm has identified these smaller communities, without
violating the boundaries of the two coarser communities (Fig.
9). Therefore the network structure predicted by the proposed
algorithm matches the natural structure of the network.

American college football dataset [20] is a network of football
games between Division IA colleges during the regular season
in Fall 2000. It has 115 nodes (teams) and 631 links. If two
teams played a game a link was marked and the teams were
divided into 12 conferences. Variation of accumulative error in
the Euclidean space εe in (10) and the NMI between the detected
partitions and the ground truth labels is plotted in Fig. 10. As the
number of communities is increased, clustering error decreases
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Fig. 10. American college football dataset: variation of accumulated error
in the Euclidean space εe in (10) and normalized mutual information
(NMI) with the varying number of communities. Error for the two com-
munities is considered to be 100 % and the rest of the errors are scaled
accordingly. Maximum error reduction occurs at 12 communities that
matches with the known number of marked communities.

at a constant rate of 8.635% as shown by the dotted line from
2 to 10 communities. At 11 communities the error rate reduced
significantly and after 12 communities the error rate again became
stable at 0.828% which is 10 times less than the initial rate of
reduction. Both of the rates are shown by the dotted lines in
Fig. 10. Thus based on the error analysis, the proposed SSCF
algorithm was able to find 12 communities in this network.

Normalized Mutual Information is measured between the
found communities and the ground truth as shown in Fig. 10. NMI
increases as the number of communities is increased and achieves
a maximum value of 0.793 for 12 communities. We observe that
two communities in this network {37, 43, 81, 83, 91} and {12, 25,
51, 60, 64, 70, 98} have a weak structure, therefore cause most of
the error. Once these two communities are removed, our algorithm
achieves NMI of 0.945. Compared to the existing algorithms, our
results are similar or better than the results of Conclude [11],
Copra [22], Demon [9] and Ganix [54] as reported by Hric et
al. [23]. In the original network, for the 12 found communities,
the reconstruction error given by Eq. (9) is 20.860 which is again
less than 20.979, the error for the ground truth. This fact also
shows that the ground truth labels are relatively less dependent
on the network structure. The 12 found communities are shown
in Fig. 11. Community level comparison reveals the individual
detection accuracy in percentage as {100, 100, 100, 100, 90, 20,
100, 100, 100, 100, 57.14, 80}. That is, eight communities are
found with full accuracy while two communities {6, 11} with non
compact structure caused most of the error.

Political blogs network (polblog) consists of 1490 nodes which
are weblogs on U. S. politics, recorded in 2005 by Adamic and
Glance [1]. It is a directed network of 16716 front-page hyperlinks
between weblogs at the time of the crawl. The network is divided
into two groups. Each weblog is assigned a label by either blog
directories or by self-evaluation. For the case of two communities,
NMI between the found and the ground truth communities is
0.764. The sparse reconstruction error εs in (9) for the two found
communities is 10727 while for the ground truth communities
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Fig. 11. American college football Network projected on three PCs
and divided into 12 communities using the proposed algorithm. Edges
across communities are shown as dotted while edges within the com-
munities are shown as solid lines.
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Fig. 12. Political blogs network (polblog): Marked community labels.
Some blue labels well within the red community and some red labels
within the blue community can be seen which contradict the network
structure. Such labels are not possible to be recovered by using network
structure alone.

is 10835. Compared to the existing algorithms, our results are
better than Conclude [11], Demon [9], Infomap [45], InfomapS-
ingle [46], LinkCommunities [2], Louvain [4], Oslom [30] as
reported by Hric et al. [23].

Variation of accumulated clustering error εe in (10) with the
number of communities k is shown in Fig. 14. We observe that the
rate of error reduction beyond 9 communities is almost the same,
1.44%. These nine communities are shown in Fig. 15. Number
of nodes in different communities in the increasing order are {24
25 31 46 56 120 165 330 425}. Most of the communities are
very compact except the one shown in brown color which is also
the smallest community and not a compact one. The community
shown in red is in the middle of the network. By increasing the
number of communities beyond 9 will only divide the nodes close
to the brown or red communities therefore the error reduction is
quite small beyond nine communities.

Similar to the Karate network, in the Polblog network the
marked communities are quite coarse and contain groups of
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Fig. 13. Political blogs network (polblog): The two communities found by
the proposed SSCF algorithm. NMI of this partitioning scheme with the
two marked communities is 0.764.
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Fig. 14. Political blogs network (polblog): variation of accumulated error
εe in (10) with the number of communities k as percentage of error at
two communities. The rate of error reduction from 2 to 3 communities is
21.64 and it reduces to 1.44% from 9 to 10 communities. Beyond that
the rate of error reduction remains almost the same.

smaller communities. Our algorithm was able to find these smaller
communities successfully without violating the coarser boundaries
(Fig. 15). However as the number of communities is increased,
NMI between the two marked communities and more than two
found communities decreases. Thus the proposed SSCF algorithm
has correctly identified the hierarchical structure of the network.

Execution time of the proposed community detection algo-
rithm has been compared for different networks on Intel 2.7GHz
quad-core i5 processor machine with 16GB RAM as shown in
Fig. 16. For smaller networks such as Karate and Football, the
algorithm is quite fast. For the synthetic LFR network having 1000
nodes, the execution time increases with the increasing value of
the mixing parameter µ. It is because of the fact that as µ is
increased, the community structure reduces and sparsity in the
linear coefficient matrix α corresponding to other communities
also reduces accordingly. We observe that for well structured
sparse networks the optimization given by (4) converges quite
fast as compared to the poorly structured dense networks. For the
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Fig. 15. Political blogs network (polblog) in the 3D space spanned by
three principal components of the feature vectors Ex. The nine commu-
nities found by the proposed algorithm are shown in different colors. For
clarity, inter-community edges are not displayed.
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Fig. 16. Execution time of the proposed algorithm on real networks
(Karate (nodes=34, edges=78), Football(nodes=115, edges=631), Pol-
blog(nodes=1490, edges=16716)) and synthetic network (LFR µ =
{0.60,0.65,0.70} (nodes=1000, edges=9774)). As µ increases across
community edges also increase causing lack of sparsity in coefficients
corresponding to other communities resulting in increased execution
time.

case of polblog network having 1490 nodes the execution time is
almost double than that of the LFR network. It is partially because
of increased number of nodes and partially due to reduced sparsity
in the network. The ratio of the number of edges to the number
of nodes in this network is 11.22 while for the LFR network
with µ = 0.70 the same ratio is 9.77 which shows that polblog
is more dense network. Both of these factors has contributed to
increase the execution time for the polblog network. For networks
with larger number of nodes the execution time can be reduced
by implementing the proposed algorithm on parallel processing
machines. Particularly, the optimization given by (4) has been
independently applied for each node, which facilitates parallel
implementation of the algorithm.

6 CONCLUSION

In this paper a subspace based algorithm is proposed for the
task of network community detection. The algorithm is based on

the fact that each network community spans a different subspace
in the geodesic space spanned by the geodesic vectors representing
each node. A geodesic vector represents the shortest distance
between a given node and all other nodes in the network in terms
of number of links. Each node can only be efficiently represented
as a linear combination of nodes spanning the same subspace.
To make the process of community detection more robust, sparse
linear coding with `1 norm constraint was proposed to be used
instead of simple least squares estimation. To find the community
labels for each node, spectral clustering was applied on the
normalized symmetric linear coefficients. For the goodness of a
community scheme, two different criteria were proposed. The pro-
posed community detection algorithm was compared with more
than ten state of the art methods on two benchmark networks and
three real world networks with known ground truth communities
using Normalized Mutual Information. The proposed algorithm
consistently outperformed most of the existing algorithms with a
significant margin.
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Regan, and M. Ercsey-Ravasz. Community detection by graph voronoi
diagrams. New Journal of Physics, 16(6):063007, 2014.

[13] L. Donetti and M. A. Munoz. Detecting network communities: a new
systematic and efficient algorithm. Journal of Statistical Mechanics:
Theory and Experiment, 2004(10):P10012, 2004.

[14] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al. Least angle
regression. The Annals of statistics, 32(2):407–499, 2004.

[15] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory,
and applications. TPAMI, 35(11):2765–2781, 2013.

[16] S. Fortunato. Community detection in graphs. Physics Reports,
486(3):75–174, 2010.

[17] S. Fortunato and M. Barthlemy. Resolution limit in community detection.
Proc. Natl. Acad. Sci. USA, 104:36–41, 2007.

Arif
Highlight

Arif
Highlight



11

[18] M. V. Fragkiskos D. Malliaros. Clustering and community detection in
directed networks: A survey. Physics Reports, 533(4):95–142, 2013.

[19] M. Girvan and M. E. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[20] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[21] M. Gong, J. Liu, L. Ma, Q. Cai, and L. Jiao. Novel heuristic density-based
method for community detection in networks. Physica A: Statistical
Mechanics and its Applications, 403:71–84, 2014.

[22] S. Gregory. Finding overlapping communities in networks by label
propagation. New Journal of Physics, 12(10):103018, 2010.

[23] D. Hric, R. K. Darst, and S. Fortunato. Community detection in
networks: Structural communities versus ground truth. Physical Review
E, 90(6):062805, 2014.

[24] X. Jiang, H. Wang, S. Tang, L. Ma, Z. Zhang, and Z. Zheng. A new
approach to shortest paths on networks based on the quantum bosonic
mechanism. New Journal of Physics, 13:013022, 2013.

[25] H. Jin, S. Wang, and C. Li. Community detection in complex networks
by density-based clustering. Physica A: Statistical Mechanics and its
Applications, 392(19):4606–4618, 2013.

[26] A. Lancichinetti and S. Fortunato. Community detection algorithms: a
comparative analysis. Physical review E, 80(5):056117, 2009.

[27] A. Lancichinetti and S. Fortunato. Limits of modularity maximization in
community detection. Physical Review E, 84(6):066122, 2011.

[28] A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the overlapping
and hierarchical community structure in complex networks. New Journal
of Physics, 11(3):033015, 2009.

[29] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for
testing community detection algorithms. Phys. Rev. E, 78(4):046110,
2008.

[30] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato. Finding
statistically significant communities in networks. PloS one, 6(4):e18961,
2011.

[31] C. Leberknight, H. Inaltekin, M. Chiang, and H. Poor. The evolution of
online social networks: A tutorial survey. Signal Processing Magazine,
IEEE, 29(2):41–52, March 2012.

[32] Y. Liu, J. Moser, and S. Aviyente. Network community structure
detection for directional neural networks inferred from multichannel
multisubject eeg data. Biomedical Engineering, IEEE Transactions on,
61(7):1919–1930, July 2014.

[33] A. Mahmood, A. Mian, and R. Owens. Semi-supervised spectral
clustering for image set classification. CVPR, 2014.

[34] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning
for sparse coding. In ICML, 2009.

[35] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon. Network motifs: Simple building blocks of complex networks.
Science, 298(5594):824–827, 2002.

[36] M. Newman. Networks: an introduction. Oxford University Press, 2010.
[37] M. E. Newman and M. Girvan. Finding and evaluating community

structure in networks. Physical review E, 69(2):026113, 2004.
[38] M. E. J. Newman and E. A. Leicht. Mixture models and and exploratory

analysis in networks proc. Natl. Acad. Sci. USA, 104:9564–9569, 2007.
[39] G. A. Pagani and M. Aiello. The power grid as a complex network: a

survey. arXiv preprint arXiv:1105.3338, 2011.
[40] G. Palla, I. Dernyi, I. Farkas, and T. Vicsek. Uncovering the overlapping

community structure of complex networks in nature and society. Nature
(London), 435:814–818, 2005.

[41] F. Radicchi. A paradox in community detection. EPL, 106:38001, 2014.
[42] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining

and identifying communities in networks proc. Natl. Acad. Sci. USA,
101:2658–2663, 2004.

[43] F. Reid, A. McDaid, and N. Hurley. Percolation computation in complex
networks. In Proceedings of the 2012 International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2012),
pages 274–281. IEEE Computer Society, 2012.

[44] P. Ronhovde and Z. Nussinov. Multiresolution community detection for
megascale networks by information based replica correlations. Phys. Rev.
E, 80:016109, 2009.

[45] M. Rosvall and C. T. Bergstrom. An information-theoretic framework for
resolving community structure in complex networks proc. Natl. Acad.
Sci. USA, 104:7327–7331, 2007.

[46] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex
networks reveal community structure. Proceedings of the National
Academy of Sciences, 105(4):1118–1123, 2008.

[47] J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–
905, 2000.

[48] L. Tang, H. Liu, and J. Zhang. Identifying evolving groups in dynamic
multimode networks. Knowledge and Data Engineering, IEEE Transac-

tions on, 24(1):72–85, Jan 2012.
[49] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society. Series B (Methodological), pages 267–
288, 1996.

[50] S. van Dongen. Graph clustering by flow simulation. Ph.D. Thesis, Dutch
National Research Institute for Mathematics and Computer Science,
University of Utrecht, Netherlands, 2000.

[51] C.-D. Wang, J.-H. Lai, and P. Yu. Neiwalk: Community discovery in
dynamic content-based networks. Knowledge and Data Engineering,
IEEE Transactions on, 26(7):1734–1748, July 2014.

[52] X. F. Wang and G. Chen. Complex networks: small-world, scale-free and
beyond. Circuits and Systems Magazine, IEEE, 3(1):6–20, 2003.

[53] D. J. Watts. Networks, dynamics, and the small-world phenomenon 1.
American Journal of sociology, 105(2):493–527, 1999.

[54] J. Xie and B. K. Szymanski. Towards linear time overlapping community
detection in social networks. In Advances in Knowledge Discovery and
Data Mining, pages 25–36. Springer, 2012.

[55] W. Zachary. An information flow modelfor conflict and fission in small
groups1. Journal of anthropological research, 33(4):452–473, 1977.

Arif Mahmood Arif received his Masters and
the Ph.D degrees in Computer Science from the
Lahore University of Management Sciences in
2003 and 2011 respectively. Currently he is a
Research Assistant Professor with the School
of Mathematics and Statistics, the University of
the Western Australia. His major research in-
terests are in Machine Learning and Pattern
Recognition. More specifically he has performed
research in data clustering, classification, action
and object recognition using image sets. Pre-

viously he has worked on the computation elimination algorithms for
fast template matching, video compression, object removal and image
mosaicing. Currently he is interested in exploring the applications of
Machine Learning techniques for the complex network structure char-
acterization.

Michael Small Michael is an Australian Re-
search Council (ARC) Future Fellow and
Winthrop Professor in Applied Mathematics in
the School of Mathematics and Statistics at the
University of Western Australia (UWA). His aca-
demic career began with undergraduate and
doctoral degrees in Pure and Applied Mathemat-
ics at UWA, after a string of post-doc appoint-
ments he joined the faculty of the Department
of Electronic and Information Engineering of the
Hong Kong Polytechnic University (2001-2011).

In 2012 he moved back to UWA. He is a Senior Member of IEEE and
on the editorial board of several international journals including IEEE
Circuits and Systems Magazine and Newsletters. His research inter-
ests are in: complex systems, complex network, chaos and nonlinear
dynamics, nonlinear time series analysis and computational modelling.
Applications of his research include: phenomics, genomics, physiology,
biomedical signal processing, financial analysis, granular mechanics,
animal movement and behaviour, epidemiology and mechanical sys-
tems.




