
1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

1

Cluster-Driven Navigation of the Query Space
Thibault Sellam Member, IEEE and Martin Kersten

Abstract—How can users who know neither programming nor statistics explore large databases? We present a novel interface,
designed to guide explorers through their data: Blaeu. Blaeu is a database front-end, “boosted” with unsupervised learning primitives.
Thanks to these primitives, it can summarize and recommend queries. Our first contribution is Blaeu’s interaction model. With Blaeu,
users explore the data through data maps. A data map is an interactive set of clusters, which users navigate with zooms and
projections. Our second contribution is Blaeu’s engine. We present three mapping algorithms, for three different settings. The first
algorithm deals with small to medium databases, the second one targets high dimensional spaces and the last one focuses on speed
and interaction. We then present an optimization strategy based on sampling. Our experiments reveal that Blaeu can cluster millions of
tuples with hundreds of columns in a few seconds on commodity hardware.

Index Terms—Interactive data exploration and discovery, query languages, clustering

F

1 INTRODUCTION

THE volume of data available to businesses and scientists
has exploded. Unfortunately, so have the skills required

to exploit this data. The question we are looking into is the
following: How can users who know neither programming nor
statistics explore large databases ?

Query By Example [27] and Tableau [25] are popular
examples of database interfaces for non-programmers. With
these tools, users can quickly write queries such as “give me
the age of customer X” or “show me which products sell bet-
ter in the Netherlands”. When the users know exactly what
they want, these systems can hardly be beaten. Yet, what if
they are exploring the data? In exploration, the questions are
vague (“who are my young customers?”), or general (“what
is in my data?”). By definition, explorers do not know what
to ask because they do not know their data. Typically, they
must resort to trial and error. They start with a candidate
query, and tweak it until something interesting pops up [1].
With complex databases, manual trial and error is a tedious
process. The data mining community has developed much
faster methods for decades. Unfortunately, most data min-
ing packages (R, SPSS, Weka) target statistics-savvy users.
Their first-class citizens are control and accuracy. Simplicity
is far behind.

This paper presents an attempt to reconcile both worlds.
Blaeu is a database interface “boosted” with cluster analysis
primitives. With them, the interface can recommend queries
and create visual summaries. As a result, Blaeu lets users
explore their data with little prior knowledge and high speed. Fig-
ure 1 displays a screenshot of Blaeu’s interface. A screencast
of the working system is available online1.

Our first contribution is Blaeu’s novel exploration
method. Instead of writing queries, the users proceed in a
step-by-step, interactive manner. At each step, the system
generates a set of clusters called a data map. The users can
zoom into one of these clusters, project it on another subspace

Thibault Selam and Martin Kersten are with CWI, 123 Science Park, 1098XG,
the Netherlands. E-mail: {thibault.sellam, martin.kersten}@cwi.nl

1. http://homepages.cwi.nl/∼sellam/blaeu.html

Fig. 1. Screenshot of Blaeu’ s interface

or rollback. Thus, they navigate the data, without worrying
about the nuts and bolts of processing.

Our second contribution is Blaeu’s mapping engine. To
create data maps, Blaeu must find clusters in the database.
Yet, it must be fast enough to support interaction, and it
must rely on few parameters. We present three clustering
algorithms which address these requirements. The first al-
gorithm, SimpleMap, targets small to medium data sets. The
second algorithm, MultiMap, supports high dimensional
datasets with a multi-view approach. The last algorithm,
LightMap, focuses on speed and interaction. Additionally,
we present an aggressive sampling strategy to accelerate
mapping. Thus, Blaeu can cluster millions of tuples in
dozens of subspaces within seconds on a commodity laptop.
To summarize, here are our contributions:

• We expose the link between query recommendation
and cluster analysis

• We present a novel interactive data exploration sys-
tem based on these results

• We introduce three algorithms to create data maps
• We report an extensive range of use cases and expe-

riments

http://homepages.cwi.nl/~sellam/blaeu.html

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

2

Zoom

Project

Rollback

Salary: >50k Salary: >50k

Salary: <50k Salary: <50k

Map 1

Map 2Map 3

Education: 'BSc' Education: 'MSc'

Salary : [60k, 120k]

Salary : >120kSalary : <25k

Salary : [25k, 60k]

Sex: 'Female'

Sex: 'Male'

Fig. 2. “Surfing” the data maps

The rest of this paper is organized as follows. In Sec-
tions 3, 4 and 5 present our three algorithms. Section 6
discusses how sampling and recycling accelerate Blaeu’s
mapping engine. We present use cases and a experiments
in Sections 7 and 8. Finally we compare Blaeu to related
works in Section 9 and conclude in Section 10.

2 DATA CARTOGRAPHY

In this section, we present the most important concept be-
hind Blaeu: the data map. Through this simple abstraction,
users can visualize and query their data. We introduce our
terminology and our system.

2.1 Overview
Our users are confronted with an unknown database. This
database contains a few special, interesting tuples. However,
these tuples are hidden among thousands of others. How
can we help?

With Blaeu, users write queries in a top-down fashion.
They start with a wide Select-Project-Join query. Then, they
refine it, step by step. At each step, they visualize the
current selection, identify the interesting tuples, and narrow
their query. Thus, they drill in iteratively, as they discover
the database. In principle, users could carry out top-down
exploration through any database front-end. However, raw
tables are often difficult to read and the number of potential
refinements can be huge. Our idea is to guide the users with
cluster analysis. At each step, Blaeu decomposes the current
selection into clusters. If the users are interested in one of
them, they can click on it. Then, Blaeu updates the selection
and creates new clusters. The process is repeated until the
users reach the interesting tuples.

Cluster analysis is a classic data mining technique. Its
aim is to partition a data set, such that similar items are
grouped, and distinct objects are separated [12]. The liter-
ature contains dozens of different ways to define a cluster,
we will instantiate the definition later in the paper. In our
case, this method is helpful in two ways. First, it lets Blaeu
summarize the users’ selection: instead of showing long list
of tuples, it displays a few clusters. Second, our system uses
clustering to suggest refinements. If a tuple is interesting, then
its neighborhood probably contains other interesting tuples.
Oppositely, if a tuple is irrelevant, its neighbors are likely to

Blaeu

DBMS

Input

Data map

Region

Data map

Region

Data map

Region

Data map

Cluster

MapQL query Maps

SQL query Sample

GUI

Context
Zoom

Projection
Rollback

Mapping engine

User

Fig. 3. High level view of Blaeu’s architecture.

be irrelevant too. Therefore, grouping similar tuples helps
users separate the interesting tuples from the noise. We will
refine these arguments in the following section. First, let’s
show how Blaeu works in practice.

With Blaeu, users explore their data through data maps.
A data map is an interactive representation of the clusters
in a data set. Figure 2 illustrates how to work with data
maps. Suppose that we explore a database which describes
the alumni of a fictional university. To seed the process,
we provide a wide query. We select the whole database,
projected on the columns Salary and Education. Blaeu
clusters the data, and it returns a data map, titled Map 1.
The map describes four types of individuals: alumni with
a Bachelor’s and a low salary, alumni with a Bachelor’s
and high salary, alumni with a Master’s and a low salary,
alumni with a Master’s and a high salary. The size of the
slices represent the count of the clusters. We see that the map
summarizes our selection. Furthermore, it gives us options:
to refine our selection, we can simply click on one of the
regions. Then, Blaeu returns a new map. For instance, if
we select the region MSc, we obtain Map 2. We call this
operation a zoom.

Blaeu offers two additional primitives: the projection
and the rollback. The projection does not affect the selection
of tuples, but it changes the columns used by the map. If we
project Map 2 on Sex, we obtain Map 3. With a rollback,
we go back to a previous state of the system. Thanks to
zooms, projections and rollbacks, we can “surf” from one
map to another. Figure 3 gives an overview of the system’s
components. Users interact with a graphical interface. They
specify the seed query with an input menu. They zoom with
clicks, and project with drags. Internally, all the user actions
are translated into a proprietary language, MapQL.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

3

2.2 Formalization
We introduced the data map, and presented how to interact
with it. We now define these concepts formally.
Definition 1. Let Q ⊂ DB represent a set of tuples

in a database DB. We obtain a partitioning C =
{C1, . . . , Cn} over Q with cluster analysis. A data map is
a representation of C which supports zooms, projections
and rollbacks.

Our definition contains two degrees of freedom: it is obli-
vious to our choice of clustering method, and it does not
specify how to represent the clusters. These choices depend
on practical considerations, discussed in further sections.

Each data map is based on a set of tuples Q. We call this
set the context of the map. To start an exploration session,
the user provides a first context Q0 explicitly. We name
it the seed context. The subsequent contexts are obtained
iteratively, with zooms, rollbacks and projections. At each
step i, these operations transform a context Qi into a new,
refined context Qi+1. Let us define the possible transforma-
tions with relational algebra:
Definition 2. Let Qi describe a set of tuples with primary

key k, i ≥ 0. A data map over Qi supports three types
of operations:

• Zoom in cluster Cj : Qi+1 = σt∈Cj
(Qi) pour

• Projection on a set of variables Vp: Qi+1 =
πVp∪{k}(Qi ./ Q0)

• Rollback: Qi+1 = Qi−1, undefined if i < 1

As we defined the operators in a declarative way, imple-
mentation details may vary. For instance, we described
the projection with an inner join Qi ./ Q0, to fetch the
columns missing from Qi. In practice, we can bypass this
join: we maintain all the columns of Q0 during the whole
session, and perform the projections lazily, when we build
the maps. This method speeds up the exploration and lets
Blaeu operate without any primary key.

Thanks to these definitions, we can formalize Blaeu’s
expressivity.
Lemma 1. Let QSPJ describe the set of all possible Select-

Project-Join queries over a database DB. If clus de-
scribes all the clusters in the database and col describes
all the columns in the database, the set of queries that
users can express with zooms, projections and rollbacks
is the following:

QBlaeu = {πP (σR(Q)) | P ⊂ col, R ∈ clus,Q ∈ QSPJ}

Proof: The first query of the session Q0 is a SPJ query.
The property can be derived recursively with definition 2.

This lemma leads to QBlaeu ⊂ QSPJ : Blaeu’s primitives
yield SPJ queries. Yet, not all SPJ queries may be expressed.
Blaeu quantizes QSPJ , transforming this large, continuous
space into a small and finite set of options.

Blaeu trades control for accessibility. This approach is
useful in two cases. First, it helps users with fuzzy, high level
queries. Suppose that our users are seeking “young, well
paid individuals” in the alumni database. A classic query
language requires that they set precise thresholds on the age
and the salary; for instance, less than 35 years old and more

than $100,000 per year. Thus, they need some preliminary
knowledge, or some investigation time. In contrast, Blaeu
automatically partitions the columns age and salary into
semantic groups, such that the users can reach the target
tuples with a few zooms. Second, Blaeu supports users with
no query. These users are browsing; they seek interesting
tuples but they ignore where to find them. With a classic
SQL-based system, they must make guesses. These guesses
can lead to empty or overwhelmingly large result sets. With
Blaeu, the users obtain a few query suggestions. Thus, they
can assess each option in turn, and pick one according to
their preferences.

2.3 Properties
According to Definition 1, a data map serves both as output
and input. It serves as output because it summarizes the
user’s current selection. It serves as input because users
can refine their queries by clicking on the clusters. The
idea to summarize data with clusters has been studied for
decades [12]. However, it is less clear how clustering can
generate interesting query refinements. In this section, we
create a user model, and show under which conditions this
property holds.

We model a user by an utility function u : DB → {−1, 1}.
The function takes a tuple t as input, and returns u(t) = +1
if t is interesting, u(t) = −1 otherwise. To deal with sets,
we sum the utility of each tuple. Formally, for a set of tuples
Q ⊂ DB, the aggregated utility is U(Q) =

∑
t∈Q u(t). Our

aim is to suggest interesting subsets of the data. For a given
partitioning, if at least one of the partitions is interesting,
then we reached our goal. We formalize this objective as
follows:
Definition 3. Let set Q ⊂ DB describe a set of tuples, and

let C represent a partitioning {C1, . . . , Cn} of Q. We say
that C is informative if and only if there exists a Cj ∈ C
such that U(Cj) > U(Q).

Generating informative partitions would be trivial if we
knew our user’s utility function. This is not the case, we
know almost nothing. However, we can prove the following
property: if the interesting tuples are sufficiently close to
each other, then recommending clusters is a safe bet.

Consider a partitioning of C over Q, obtained by cluster-
ing. From C we infer a separation threshold θ(C). This function
measures how well separated the clusters are. It returns a
high value if C’s clusters are tight and far apart. It returns a
low value if C’s clusters have a large overlap. We define this
threshold as follows:
Definition 4. The separation threshold θ(C) of a partitioning
C is the largest distance such that for any tuple t, for any
partition Cj ∈ C: if at least half of Cj ’s tuples are within
a distance θ(C) of t, then t ∈ Cj .

We illustrate this property with Fig. 4. Thanks to this notion,
we can identify scenarios in which clusters always form
interesting recommendations.
Lemma 2. Consider a set of tuples Q with at least one

interesting tuple. Let φ represent the largest possible
distance between two interesting tuples of Q (φ = 0 if
there is only one interesting tuple). Any partitioning C of
Q such that θ(C) > φ is informative.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

4

+

++
+

-
-
-

- -- -
--

-
-

-

- -
-

-
-

-

-

- -
-

-
+

Partition 1 Partition 2

Partition 3

-

-
- -

Separation
threshold θ(M)

Attribute 1

Attribute 2

t

+
-
+

φ

Fig. 4. Example of informative map. Each point represents a tuple in a
two dimensional space, the symbols + and - represent the utility, the blue
dashed lines represent clusters. The grey area around tuple t represents
the separation threshold θ(C). Most of Partition 3’s tuples are within θ(C)
of tuple t. Therefore, t belongs to Partition 3. Conversely, as t does not
belong to Partition 2, the majority Partition 2’s tuples are beyond θ(C).

Proof: Let T represent the set of all the interesting
tuples. There is at least one tuple t∗ in the database such
that u(t∗) = +1. We note C∗ its cluster in C. Now con-
sider a cluster C 6= C∗. For the majority of C’s tuples t
we have d(t, t∗) > θ(C). If θ(C) > φ, then the majority
of C’s tuples are outside T . Therefore, U(C) < 0. Note
that U(Q) = U(C∗) +

∑
C∈C\{C∗} U(C). We derive the

following: U(C∗) = U(Q) −
∑
C∈C\{C∗} U(C) > U(Q). In

conclusion, the map C is informative.
Intuitively, this lemma states that data maps work when

the user is consistent (i.e., the interesting tuples are similar to
each other) and the data is clustered. If these conditions are
met, then the interesting tuples end up in the same cluster,
as in Figure 4. Therefore, at least one partition in the map is
interesting. Oppositely, if the interesting tuples are far from
each other, they may spread over several clusters. In this
case, we have no guarantee about the map’s interestingness.

To avoid confusion, we insist that Blaeu also works when
the users are seeking outliers. According to Blaeu, a subset
is interesting if its tuples are close to each other. This does
not mean that the tuples must be close to the rest of the data.
Therefore, outliers can very well appear in data maps. For
Blaeu, an outlier is simply a small, isolated cluster.

2.4 Representation

We now discuss how to represent clusters. Which infor-
mation about the clusters should we convey? And which
visualization method should we use?

A data map should at least provide one identifier for
each cluster. Additionally, it should reflect the structure of
the partitions: if we use hierarchical clustering, the map
should show the inclusions; if we use flat partitions, it
should present the clusters side-by-side. Our implemen-
tation describes the clusters with bounding boxes (e.g.,
Education: ’MSc’, Age < 30), and it organizes them
in a tree (we justify these choices in Section 3). Thus, we
instantiate the maps with sunburst charts, known to be effi-
cient in this case [26]. Note that several other visualization
methods could qualify, based on trees or even raw text.

In practice, identifiers such as bounding boxes may
not provide enough information to assess the content of

Year_Graduation: [1980, 1995]

Year_Graduation: [1995, 2010]

Salary

%

Salary

%

Fig. 5. Example of map, augmented with additional statistics. For each
region, we show a histogram of the variable Salary.

the clusters. For each partition, Blaeu’s front-end provides
additional statistics and a few sample tuples. In this paper,
we annotate each cluster with a count, conveyed by the
size of the slices. Our prototype provides more options:
users can request an aggregate or a histogram over any
variable in the database. As an illustration, Figure 5 shows
how Blaeu displays the distribution of Salary for different
generations of alumni. In effect, this feature enriches Blaeu’s
expressivity: it allows grouping and aggregating on top
of the queries in QBlaeu. Thus, users can quickly perform
side-by-side comparisons. More generally, this function lets
Blaeu emulate traditional OLAP front-ends: the highlighted
variable is equivalent to a measure, and the context vari-
ables are equivalent to dimensions. In the interface, users
request aggregates with mouse-overs, as demonstrated in
our screencast2.

3 ALGORITHM 1: BUILDING MAPS

In the previous sections, we discussed cluster analysis as
an abstract task, we were indifferent to how it was imple-
mented. In this section, we discuss how to make it work in
practice. We present a first algorithm, SimpleMap, based
on existing machine learning methods. We will use this
procedure as building block for the following sections.

Blaeu is subject to two contradictory requirements. On
one hand, the mapping engine should be accurate, and
it should be flexible enough to handle any kind of data,
including missing values and categorical attributes. On the
other hand, the output should be simple. The descriptions
of the clusters must be interpretable by non technicians,
and they must be translatable into SQL to express zooms.
To avoid setting a fixed number of clusters, Blaeu should
return a hierarchy of clusters rather than a flat partitioning.
When the clusters are organized in nested sets, users can see
several levels of resolution simultaneously. They can exper-
iment with different settings without running the algorithm
several times.

The idea behind SimpleMap is to separate cluster detec-
tion from cluster description. We pipeline two algorithms: one
to detect the clusters, and another one to generate simpler,
hierarchical descriptions. For both steps, we exploit existing
work from the data mining literature. First, we cluster the
data with a well established algorithm, such as k-means or
PAM (Partitioning Around Medoids) [12]. Then we build
a classification tree, using the cluster assignments as class
labels. We illustrate the procedure with Figure 6.

2. http://homepages.cwi.nl/∼sellam/blaeu.html

http://homepages.cwi.nl/~sellam/blaeu.html

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

5

Cluster 4Cluster 3Cluster 2Cluster 1

Decision Tree
Inference Display

Cluster
Analysis

Fig. 6. The SimpleMap algorithm combines cluster analysis and decision tree inference.

1: function SIMPLEMAP(DB, MAXc, MAXt)
2: DB′ ← preprocess(DB)
3: labels← PAM(DB′,MAXc)
4: tree← CART(DB, labels,MAXt)
5: return tree
6: end function

Fig. 7. Detail of SimpleMap for mixed datasets. SimpleMap relies on a
preprocessor (preprocess), an unsupervised learning algorithm (PAM),
and a tree inference algorithm (CART). The preprocessor transforms
categorical variables into dummy binary variables. PAM takes a dataset
DB and a number of clusters MAXc as input, and returns a cluster
assignment for each tuple. CART’s input is a dataset DB, an array
of class labels clusters and a maximum number of leaves MAXt; it
returns a classification tree.

Thanks to SimpleMap, we can use sophisticated clus-
tering methods without sacrificing interpretability of the
results. Another advantage is that we can run the clustering
step and the decision tree step on two different versions of
the data. This is useful when the data contains categorical
variables. During the cluster analysis, we transform these
variables into dummy binary variables, such that each bi-
nary variable represents one category. Then, we build the
decision tree on the original dataset. The cost of SimpleMap
is that of chaining two heuristic algorithms: each procedure
induces a latency and some inaccuracies.

We present the detail of Simple Map in Figure 7. In our
implementation, we use k-means if the data contains only
numerical data, and PAM otherwise. PAM is a k-medoid
algorithm: for each cluster, it seeks to minimize the distance
between all the data points and a central, representative
point called medoid. PAM can use any metric, therefore
it can cope with a wide range of input data [12]. For the
decision tree, we used CART (Classification and Regression
Trees). CART operates by splitting the database recursively,
minimizing an impurity criterion. This method is well estab-
lished, it copes with both numerical and categorical data [6].

Our algorithm relies on two parameters: the initial num-
ber of clusters to generate MAXc, and the maximum num-
ber of leaves in the decision tree MAXt. The first parameter
can take any value, as long as we generate more clusters
than leaves in the tree (MAXc > MAXt). A higher value
leads to more precision, but also longer runtimes. By default,
we setMAXc = 2MAXt. For the second parameterMAXt,
we generate as many leaves as the users’ screen can display
(by default, 8). If the users wish to work with less partitions,
they can use intermediate nodes from the tree.

The total time complexity of SimpleMap depends on
the choice of underlying algorithms. Let N represent the
number of tuples in the database, and D the number of
columns. The complexity of k-means is O(DNMAXc). The

complexity of the original PAM algorithm is quadratic in
N , but we used CLARA [12], a randomized variant which
also runs in O(NDMAXc). The CART algorithm runs in
O(DNMAXt). Therefore, the total time complexity of Sim-
pleMap is O

(
DN(MAXc +MAXt)

)
.

4 ALGORITHM 2: MAPPING HIGH-DIMENSION
DATA

Previously, we presented a first mapping algorithm, Simple-
Map. In this section, we extend our model to support
datasets with many columns. We show that such large
tables cannot be summarized with one map. We introduce
Multimap, an algorithm to generate sets of maps, in which
each map uses a different subset of columns.

4.1 Problem Formulation

Mapping large tables is challenging for two reasons. First,
we must deal with the curse of dimensionality. In high
dimensional spaces, all items tend to be equidistant. There-
fore, clustering does not make sense. Experimental studies
showed that problems start to appear with as little as 10-
15 columns [4]. Second, we must consider the diversity
of the data. Nothing stops a user from using completely
unrelated variables. Clustering a survey on eye color,
job and tupleID is irrelevant. Yet, this could very well
happen in an exploration scenario. Our solution is to use a
multi-view approach: we generate several maps instead of
a large one. We operate in two steps. First, we partition the
data vertically. Then, we create one map for each partition.

The aim of the vertical partitioning is to detect groups of
columns which describe the same aspect of the data. To form
the groups, we use statistical dependency. If two variables
are perfectly independent, there is little chance that they are
related in real life. Oppositely, a perfect correlation means
that they measure the same property. To partition the data,
we identify sets of columns which are mutually dependent.

A flexible and robust way to quantify the depen-
dency between two variables is the Variation of Informa-
tion (VI) [16]. The VI measures the distance between two
variables - it is in fact a true metric. It has a low value if
the variables are similar, and a high value if the variables
are independent. We compute it as follows: if X and Y
are two variables, H denotes the entropy and I the mutual
information, V I(X,Y) = H(X) + H(Y) − 2I(X,Y). As
the VI can only cope with two variables, we introduce the
diameter. The diameter of a set of variables is the largest VI
observed among every pair:

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

6

Job

Size Education

Salary

Sex

(a) VI graph

Job

Size Education

Salary

Sex

(b) Sub-optimal set

Job

Size Education

Salary

Sex

A B2
B1

(c) Comprehensive sets

Job

Size Education

Salary

Sex

(d) Max-simple sets

Fig. 8. The VI graph describes the dependencies between the variables.
The vertices represent the variables, the thickness of the edges depicts
their weight, i.e., VI.

Definition 5. For a set of variables V = {v1, . . . , vd}, we
define the diameter as follows:

diameter(V) =

 max
vi,vj∈V

VI(vi, vj) if d ≥ 2

0 otherwise

To make coherent maps, we need to identify sets of vari-
ables with low diameters. We represent this problem with
a graph in Figure 8a. In this weighted, undirected graph,
the vertices represent the variables, and the edges represent
the distances. We want to find partitions inside which the
heaviest edge is as light as possible.

Unfortunately, the diameter alone cannot tell us which
partitions are the best. If we create one partition per variable,
we obtain low diameters but the maps are not satisfying. We
want a few sets with many columns but minimal diameters.
We must strike a balance between dependency and cardinality.
Formally, we can express this statement as a multi-objective
optimization problem. Let the set VDB contain all the vari-
ables of the database, and the set of sets V describe a
partitioning of VDB . We want to solve the following system:

minimize
∑
V ∈V

diameter(V)

minimize |V|
subject to

⋃
V ∈V

V = VDB

V ∩ V ′ = ∅ for every distinct V , V ′ in V

These two objectives are conflicting: less partitions lead
to higher diameters, and lower diameters lead to more
partitions.

4.2 Enumerating Candidates

We defined variable grouping as a multi-objective optimiza-
tion problem: we want a large groups of strongly related
variables. As our objectives are conflicting, there is no
unique partitioning which satisfies them both. However,

Number of Clusters

Diameter

+

+

+

+

+

+

+ + +

+ +

+
++

+

Pareto Front

+

+

+

+

+

+

+

Fig. 9. The Pareto front contains the set of acceptable partitionings.

there exists a set of solutions for which we cannot im-
prove one objective without degrading the other, the Pareto
front [9]. The solutions in this set are called Pareto-efficient,
we depict them in Figure 9. In this section, we discuss how
to compute this Pareto front. We show that the problem can
be solved by finding cliques in the VI graph.

First, we introduce a useful property. A set of variables
is comprehensive if we cannot add any variable without
increasing its diameter. To illustrate this notion, we use
a counter-example. Consider the partition highlighted in
Figure 8b. We could add the vertex Sex without degrading
its diameter, because no edge from Sex is heavier than
Size-Salary. Therefore, the set is not comprehensive.
Definition 6. Let VDB describe the columns of the database

and VC ⊂ VDB a set of columns.
VC is comprehensive iff.

∀vi ∈ VDB \ VC ,diameter(VC ∪ {vi}) > diameter(VC)

The relation between comprehensive sets and our optimiza-
tion problem is straightforward.
Lemma 3. The set of partitions V = {V1, . . . , VM} is Pareto-

efficient if and only if its elements V1, . . . , VM are com-
prehensive.

Proof: Suppose that we wish to decrease the total
diameter. To achieve this, we must split a partition, which
increases the count. Suppose we wish to decrease the count.
To achieve this, we must merge partitions. If the sets are
comprehensive, this will increase the sum of diameters.
Thus, we cannot ameliorate one objective without degrad-
ing the other, the set V is Pareto-efficient.

Figure 8c shows the comprehensive sets in the example
graph, and Figure 8d gives an example of Pareto-efficient
partitioning based on this set. Note that any other partition-
ing based on the comprehensive sets would be valid. We
postpone the discussion about the final choice to the end of
this Section.

How do we detect comprehensive sets? In fact, there is a
tight connection between this problem and maximal cliques.
Recall that a clique is a tight subset of vertices. In a clique,
every pair of vertices is connected with an edge. The clique
is maximal if there is no larger clique which contains it.
To understand the relationship between comprehensive sets
and cliques, we introduce the threshold function tσ . This
function takes a weighted graph as input, and eliminates all
the edges with a weight larger than σ.
Lemma 4. Consider a weighted, undirected graph G =

(V,E). A set of vertices U ⊂ V is comprehensive iff.
there is a σ such that U is a maximal clique in tσ(G).

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

7

Size Sex JobSalary Education

Low Diameter

Cut point
MAXp = 2

Low Cardinality

Fig. 10. Dendrogram produced by the complete link algorithm. A node
at height σ represents a clique in the graph tσ(G).

1: function COMPREHENSIVESETS(columns, MAXp)
2: G← generateVIGraph(columns)
3: dendrogram← {}
4: while nVertices(G) > 1 do
5: (vi, vj)← Argminvi,vj edgeWeight(vi, vj)
6: dendrogram← dendrogram ∪ {(vi, vj)}
7: G← mergeNodes(vi, vj , G)
8: end while
9: return dendrogram

10: end function

Fig. 11. Detecting cliques in subsets of dissimilarity graph.

Proof: Let U describe a comprehensive set of vertices
with diameter p. Consider the graph tp(G). The edges
between the vertices of U weigh at most p. Therefore U is a
clique in tp(G). Also, one cannot add a vertex of tp(G) \ U
without degrading the diameter. Thus, U is a maximal
clique. Oppositely, consider a graph tσ(G), and the maximal
clique W . Every edge in tσ(G) weighs at most σ. Also, for
every vertex in tσ(G) \ W , there is an edge to W which
weighs more than σ. W’s diameter is at most σ, and it is
comprehensive.
Thanks to this connection, we can obtain the complexity of
our problem.
Lemma 5. Enumerating all the comprehensive sets of a

weighted undirected graph is NP-hard.

Proof: Enumerating maximal cliques in a non-
weighted, undirected graph is NP-hard [12]. We can reduce
this problem to enumerating comprehensive sets. Therefore,
enumerating comprehensive sets is NP-hard. To perform the
reduction, we map a non weighted graph H to a weighted
graph G. For any pair of vertices, we create an edge of
weight 0 in G if there is an edge in H . Otherwise, we create
an edge with weight 1. If we know the comprehensive sets
of G, we can infer the maximal cliques of H in polynomial
time.

Enumerating comprehensive sets is hard. Our solution is
to relax our requirements. Consider a set of vertices U in a
graph G. If we can find a threshold graph tσ(G) in which
U is a clique (not necessarily maximal), then U is “good
enough”. Finding cliques in threshold graphs is precisely
what the Complete Link algorithm does [12]. The Com-
plete Link algorithm is a standard hierarchical clustering
algorithm, which operates as follows. First, it creates one
partition for each vertex. Then, it finds the two “closest”
partitions, and it merges them. The distance between two

1: function MULTIMAP(DB, MAXc, MAXt, MAXp)
2: columns← extractColumns(DB)
3: colGroups← comprehensiveSets(columns,MAXp)
4: atlas← {}
5: for colGroup ∈ colGroups do
6: db← pasteColumns(colGroup)
7: map← SimpleMap(db,MAXc,MAXt)
8: atlas← atlas ∪ {map}
9: end for

10: return atlas
11: end function

Fig. 12. Detail of MultiMap. The function extractColumns takes a table
as input and decomposes it into a set of arrays, where each array
represents a column. The function pasteColumn does the opposite: it
forms a table from a set of arrays.

partitions is the diameter of their union. The procedure is
repeated until all the partitions are merged. We present the
algorithm in Figure 11.

The output of the Complete Link algorithm is a tree of
nested partitions called dendrogram. Figure 10 displays the
dendrogram of our example. A node is drawn at height σ if
the partitions it represents forms a clique in the graph tσ(G).
To obtain near-Pareto efficient partitionings, we “cut” the
tree: we let the user choose a maximum number of partitions
MAXp, and keep the solution which is just under this
threshold. The threshold encodes the user’s preference for
one objective function over the other: a lowMAXp will lead
to large partitions, a high value will yield many tight sets.
In practice, setting this parameter can be difficult for novice
users. We help them with two mechanisms. First, we present
the dendrogram explicitly in the interface. This provides
visual feedback. Second, we propose default values. Sev-
eral dendrogram-cutting heuristics were introduced in the
clustering literature, such as the Silhouette method [12] or
DynamicTreeCut [15]. Although they provide no accuracy
guarantee, they form excellent starting points for explo-
ration. We used DynamicTreeCut in our implementation.

4.3 Summary and Complexity

Previously, we presented the algorithm SimpleMap. We can
now enrich it to deal with high dimensional spaces. Here is
our new framework, MultiMap:

1) Partition the columns of the context into compre-
hensive sets

2) Create one map for each partition with SimpleMap

In essence we process the columns first, then the rows: we
decouple subspace search and clustering [19]. Figure 12
details the algorithm. Recall that N and D describe the
number of rows and columns respectively. The complex-
ity of the column partitioning is O(ND2), because we
need to compute the dependency between every couple
of columns and run the Complete Link algorithm. If the
procedure generates P partitions, the second step will run in
O
(
PND(MAXc+MAXt)/P

)
= O

(
ND(MAXc+MAXt)

)
,

using the results from Section 3. Thus the total time com-
plexity of MultiMap is O

(
ND2 +ND(MAXc +MAXt)

)
≈

O(ND2). The quadratic term in D indicates a potential

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

8

age, income, edu.

Map 1

Map 2

size, weight

Layers

Context
query

education

income

age

size

weight

Fig. 13. Overview of LightMap

Layer Sex

Fem.Male

Map 2

Fem. Male

Layer Age

Map 1

[55, 90]

[20, 55]

[55, 90]

[20, 55]

Overlay table: Sex ⊗ Age

Male

MaleFemale
Female

[20, 55]

[20, 55]
[55, 90]

[55, 90]

0.25
Male 0.20

0.30
0.25

[55, 90]
[20, 55]Male Fem.

Male

Female [55, 90]

[20, 55]

Fig. 14. Two layers, their combination

bottleneck. To bypass it, we compute the VI graph offline,
and reuse the vertical partitions across zooms (cf. recycling,
discussed in Section 6). Also, our experiments nuance the
complexity analysis: as long the the data does not contain
more than several hundred columns, the execution time is
completely dominated by the map creation step, linear in N
and D (as shown in Section 8).

5 ALGORITHM 3: LIGHTWEIGHT DATA MAPPING

We now present our third algorithm LightMap. LightMap
is more flexible than its predecessors: the maps it generates
can be modified by the users at little cost. Also, it is very
fast. We will see that this comes at a price: the algorithm
is less accurate than MultiMap. LightMap operates in three
phases. First it creates layers. A layer is a map, based on one
column only. LightMap creates one layer for each column
of the database. Then, it forms groups of similar layers, e.g.,
layers which describe the same aspect of the data. Finally,
it combines the layers of each group into larger maps. This
process is illustrated in Figure 13.

The first two steps of LightMap use the primitives we
presented earlier. We create the layers with SimpleMap.

+
+

Attribute 1

Attribute 2

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+

++
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
++
+
+
+
+
+

+
+
+
+
++

+

+

Prop. %

Prop. %

Attribute 2
Attribute 1

Layer 1

Map

Layer 2

Fig. 15. Limit case of the LightMap algorithm. The data contains four
clusters, which full two-dimension structure is lost in the projections.

To group similar layers, we exploit the notion of compre-
hensive sets discussed in Section 4. However, this time
we cluster maps, not columns - in fact, we form clusters
of clusterings. During the last step, LightMap forms com-
plex maps by combining layers. To combine two layers,
LightMap intersects every partition of one map with the
partitions of the other. We call the resulting structure overlay
table. From this table, LightMap can generate hierarchical
partitionings for any permutation of the variables. Consider
for instance Figure 14. We present two layers, one based
on Sex, the other on Age. The Figure presents the overlay
table in the center. This table lets us compute two maps: one
based on Sex then Age, the other on Age then Sex. If we
keep the overlay table in memory, the users can switch from
one representation to the other at little cost, in order to chose
the variable ordering which suits them most. By default, we
order the layers by clustering quality (obtained during the
layer creation phase).

We now summarize the full LightMap procedure:

1) Create one layer for each column in the context
2) Create comprehensive groups of layers
3) Overlay the layers in each group

The detail of the algorithm is given in Figure 16. Note
that LightMap’s partitions are not real clusters. They ap-
proximate what the full MultiMap algorithm would have
found. We suppose that this approximation is good enough
for exploration. Formally, we can justify our scheme with
the downward closure property of density. If an area has
a high density in d dimensions, its projections on any
d − 1 dimensional subspace is dense. In other words, the
clusters do not “disappear” when they are projected to
single dimensional spaces, and therefore they appear on
the layers [13]. However, the projection incurs a loss of
information, because the clusters may be stacked onto each
other. Therefore, LightMap can incur mispredictions, as
shown in Figure 15. This accuracy penalty is the counterpart
for significant speedups.

The respective time complexities of map creation, layer
grouping and layer combination are O

(
ND(MAXc +

MAXt)
)
, O(ND2) and O(ND), using the results from

Sections 3 and 4. Here again, we bypass the layer grouping
step by recycling (presented in Section 6). Furthermore, our
experiments nuance the complexity analysis: in our imple-
mentation, the first phase totally dominates the total run-
time, even with several hundred columns (cf. Section 8.2).

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

9

1: function LIGHTMAP(DB, MAXc, MAXt, MAXp)
2: /* Generate Layers */
3: columns← extractColumns(DB)
4: layers← {}
5: for column ∈ columns do
6: lay ← SimpleMap(column,MAXc,MAXt)
7: layers← layers ∪ {lay}
8: end for
9: /* Form groups of layers */

10: layerGroups← comprehensiveSets(layers,MAXp)
11: /* Aggregate the layers of each group */
12: atlas← {}
13: for layerGroup ∈ layerGroups do
14: oTable← overlayTable(layerGroup)
15: map← makeMapFromTable(oTable,MAXt)
16: atlas← atlas ∪ {map}
17: end for
18: return atlas
19: end function

Fig. 16. Detail of LightMap. The function extractColumns splits a table
into a set of arrays, one for each column. The function pasteColumn
forms a table from a set of arrays. The function makeMapFromTable
generates a map from an overlay table, with at most MAXt leaves (if
necessary, it truncates the overlay table).

1,000 2,500 10,000

.1
1.

0
10

10
0

10

25

50

#rows (log scale)

#c
ol

um
ns

 (l
og

 s
ca

le
)

tim
e

(s
, l

og
 s

ca
le

)

●
●

●
● ●

●
●

●

●
●

●

●

●
●●

●

Fig. 17. To calibrate our system, we run Blaeu on synthetic data,
measure the runtime and fit a multiplicative model. The points represent
the observations, the plane our fitted model. We obtain a correlation
coefficient of 0.98, which indicates an almost perfect correlation.

6 OPTIMIZATION

We improve the latency of Blaeu with two optimizations.
First, we recycle. We compute the VI graph offline. During
the exploration, we do not recluster the variables after each
zoom. We run the full procedure for the first query, and
reuse the comprehensive sets until the user changes the
variables in the context.

Second, we sample. For each user action, we only take a
few tuples from the context. As we have no preliminary
knowledge about the data and we wish to estimate the
relative proportions of each group, we use use random
sampling with replacement. To pick an optimal sample size,
we run a calibration phase when Blaeu starts up. During this
phase, we create synthetic data sets with different sizes, run
Blaeu and measure the time spent. From these observations,
we generate a cost model. Thanks to this model, we can
pick a maximum sample size given a time objective and a
number of columns.

To build our cost model, we fit a multiplicative model
on the observed runtime. If #rows represents the number

of tuples, and #columns the number of columns, our model
can be expressed as follows:

runtime ≈ α×#rowsβ ×#columnsγ

If we compute the logarithm of each operand, the model
becomes linear: log(runtime) ≈ log(α) + β.log(#rows) +
γ.log(#columns). Thanks to this transformation, we can
obtain the coefficients with linear regression. Figure 17
pictures an example of calibration session. We used the same
hardware as in our Experiments section. We observe that the
model fits the observed values almost perfectly.

7 SAMPLE SESSIONS

We are currently developing Blaeu as a commercial product.
A screencast of a working prototype is available online3.

We now illustrate the system with two “real-life” sce-
narios. The datasets are available on our website. First, we
use a sample of the On-Time database, provided by the US
Bureau of Transportation Statistics. The dataset describes
delays of US internal flights during January 2010. It contains
about 521,000 rows and 91 columns. Our users want to
understand the causes of delays. For now, we assume that
they know where to begin: they seed the exploration with
the columns Distance and ArrDelay. The first variable
Distance refers to the distance covered by the flight (in
Miles). ArrDelay is the delay of the flight (in minutes). We
reproduce Blaeu’s map in the top-left corner of the figure.
Four categories of flights appear: short flights (up to 1167
miles), or longer ones, with or without long delays. Our
users decide to zoom in the short delays on short flights, and
project to highlight the causes. About a quarter of delays
come from the carrier. Another quarter is caused by a late
aircraft. They rollback to the first map and zoom into the
long delays on short flights. A slightly higher proportion
of delays come from weather conditions. Also, the carriers
are responsible for more than a quarter of the late flights.
They zoom in the longest carrier delays, and project on the
name of the companies. They observe that roughly half the
delays come from only five carriers. Do they have more
delays because they operate more flights? Or should they
be suspicious next time they book a flight?

Our second example describes a somewhat more glam-
orous domain: Hollywood films. Our database describes a
few economic indicators for 785 movies released between
2007 and 2012. Our users’ focus is abstract and subjec-
tive: they are looking for disappointing movies, also called
“flops”. This time, they do not even know where to begin.
Therefore, they run Blaeu on the whole database. Blaeu
replies with a set of maps, listed in the top part of Figure 19.
Two maps seem like good candidates: the first one, which
shows the number of theater for each movie, and the third
one, which describes the public and critic’s response. Our
users pick the first map, and zoom on the movies shown in
many cinemas. Then, they switch map, and select those for
which the critiques were bad. After three clicks, they already
have a list of candidates. With a few more, they could dig
further: did these movies generate any income? Did they fail
similarly everywhere? Were they expensive? We see Blaeu
lets our users “dive” in the data with only a few clicks.

3. http://homepages.cwi.nl/∼sellam/blaeu.html

http://homepages.cwi.nl/~sellam/blaeu.html

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

10

25

50

75

0/100

Distributions (%)

distance
31, 1167
1171, 4962

arrdelay
16, 49
50, 74
75, 105
106, 1170

carrierdelay
0, 13
14, 49

weatherdelay
0, 12

13, 49

lateaircraftdelay
0, 13

14, 49

carrierdelay
0, 93
94, 1147

weatherdelay
0, 86
87, 1184

lateaircraftdelay
0, 77
78, 1134

carrier
US,FL,UA ... [7 values]
AA,OH
9E,YV
EV,B6
MQ,XE
DL
WN
OO

Zoom in

Zoom in
16, 49
31, 1167

31, 1167
106, 1170

Zoom in 94, 1147

25

50

75

0/100

Distributions (%)

25

50

75

0/100

Distributions (%)

25

50

75

0/100

Distributions (%)

+ Project

+ Project

+ Project

Rollback

Fig. 18. Running Blaeu on the Ontime database

Variables Used In Each Map

number_of_theaters
opening_weekend

domestic_gross

foreign_gross
worldwide_gross

audience_score
critics_score

year_release
budget

profitability film_name

Zoom in [34, 67]
[1 952, 4 468]

A Good Day to Die Hard
Cats & Dogs Galore
Little Fockers

Yogi Bear
Land of the Lost

The Mummy
Day the Earth Stood Still

...

Zoom in

[8, 56]

number_of_theaters
[10, 1 936]
[1 952, 4 468]

opening_weekend_(m$)
[1, 47]
[48, 207]

domestic_gross_(m$)
[1, 141]
[142, 760]

25

50

75

0/100

Distributions (%)

audience_score_%

[68, 96]

critics_score_%
[8, 56]
[57, 99]

[34, 67]

25

50

75

0/100

Distributions (%)

Switch map View table

Fig. 19. Running Blaeu on the Hollywood database

8 VALIDATION AND EVALUATION

Blaeu’s suggestions only make sense if they reflect the struc-
ture of the data, and it they are computed at interaction time.
In this section evaluate the runtime and accuracy of our
algorithms. In what follows, we will abbreviate SimpleMap,
MultiMap and LightMap as S-Map, M-Map and L-Map
respectively.

We confront Blaeu to state-of-the-art algorithms from the
clustering literature. We used two families of algorithms:
subspace search and subspace clustering. Methods from the
first family return only subspaces, the user is responsible
for the actual clustering. Typically, they seek “high contrast”
subspaces, that is, subspaces with clusters and outliers. To
do so, they enumerate different combinations of variables
with level-wise search, and return the top k best candidates.
Algorithms from the second family seek clusters and sub-
spaces simultaneously. For each cluster, they return a set of
tuples and a set of variables.

To represent the subspace search family, we used
CMI [20]. CMI is theoretically well founded, and it resem-
bles Blaeu: like DM, CMI maximizes a mutual information
criterion (the Cumulative Mutual Information). To get the
actual clusters, we use SimpleMap. For the subspace clus-
tering family, we chose PROCLUS [2] and FIRES [13]. These

algorithms have been shown to be fast and accurate [18].
Also, they are close to our approach: like LightMap, FIRES
combines one-dimension clusterings.

Contrary to our system, CMI, PROCLUS and FIRES
target data miners. They value exhaustivity, while we seek
simplicity and speed. Consequently, they rely on a broad
range of parameters (up to 9 for FIRES), while we need
just one (the maximum tree size). Also, their search space
is larger. With these algorithms, a variable can appear in
several subspaces, or not at all. With Blaeu, each variable
appears exactly once in the whole result set. Our approach
may miss some interesting subspaces, but it has two advan-
tages. First, it completely eliminates redundancy in the re-
sult set (Blaeu’s competitors often return dozens, sometimes
hundreds of highly redundant subspaces on small datasets).
Second, it reduces latency.

Our code, settings and datasets are available online4.
We used Open Subspace’s implementation of PROCLUS
and FIRES [18] (written in Java). For CMI, we used the
author’s Java implementation5. We implemented S-Map, M-
Map and L-Map in R 3.0.1, but some of the critical parts are
either native C primitives or our own C function. We use

4. http://homepages.cwi.nl/˜sellam/blaeu.html
5. http://www.ipd.kit.edu/˜muellere/CMI/

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

11

●

●
● ●

●

0

1

20 40 60 80

Tuples (* 1,000)

E
4S

C
●

●
● ● ● ●

0

1

20 40 60 80 100 120

Dimensions

E
4S

C ●
●

● ●

0

1

4 8 12 16

Subspace Dim.

E
4S

C

● MultiMap
CMI
FIRES
PROCLUS

Fig. 20. Accuracy of MultiMap, CMI, PROCLUS and FIRES on synthetic datasets.

●
●

● ● ●

1

10

100

1000

10000

20 40 60 80

Tuples (* 1,000)

T
im

e
(s

)

●
● ● ● ● ●

1

10

100

1000

10000

20 40 60 80 100 120

Dimensions

T
im

e
(s

)
● ● ● ●

1

10

100

1000

10000

4 8 12 16

Subspace Dim.

T
im

e
(s

)

● MultiMap
CMI
FIRES
PROCLUS

Fig. 21. Execution time of MultiMap, CMI, PROCLUS and FIRES on synthetic datasets.

TABLE 1
Parameters of the Data Generator

Parameter Distribution Value
Tuples Constant 20,000

Columns Constant 40
Columns per subspace Uniform [2,10]
Clusters per subspace Constant 5

Centroid position Uniform [1,100]
Cluster radius Uniform [2,10]

TABLE 2
Characteristics of the datasets

Name Rows Col.
breast 198 33
diabetes 768 8
communities 1,994 127
internet 7,390 70
pendigits 7,494 16
adult 32,561 14
covertype 581,012 54
gisette 7,000 2,500
mutant1 16,592 4,000

three functions from the R repository: CLARA for the cluster
analysis, DynamicTreeCut to chose a number of subspaces
and rpart for detection tree inference. The function CLARA
is a randomized variant of PAM, and rpart is an imple-
mentation of CART. Our test system is based on a 3.40 GHz
Intel(R) Core(TM) i7-2600 processor. It is equipped with 16
GB RAM, but the Java heap space is limited to 12 GB. The
operating system is Fedora 16. Unless written otherwise, we
disable sampling. The data is stored in MonetDB (release
Feb2013), managed by the MonetDB.R Connector [5][17].

8.1 Synthetic Data

In this section, we report the results of experiments on
synthetic data. We create datasets for which we know the

“truth”, and evaluate Blaeu’s output. We generate columns
by groups, such that the data is clustered differently on each
group of columns. Therefore, each dataset contains several
clustered subspaces. Note that the groups are not over-
lapping. The clusters are based on multinomial Gaussian
distributions, with random parameters. The default options
of the generator are reported in Table 1. The subspaces are
isolated, and the clusters are well separated: this is an “easy”
scenario for Blaeu, but also for its competitors.

We made significant efforts to tune FIRES, PROCLUS
and CMI correctly. As the data is synthetic, we can calculate
the “ideal” parameters. We report them on our website.
Also, recall that S-Map, M-Map and L-Map are hierarchical.
For a meaningful comparison, we altered them so that they
return a fixed number of clusters. For each setup, we run
each algorithm with five different datasets, and report the
average performance. For practical reasons, we interrupt the
experiments which take more more than 10,000 seconds (2
hours and 46 minutes).

As in the recent subspace clustering literature, we mea-
sure clustering quality with a variant of the F1 measure
called E4SC [18][10]. The traditional F1 score focuses on
tuples only: two clusters are similar if they contain the
same data points. With the E4SC, two clusters are similar
if they contain the same tuples and they appear on the same
dimensions. Therefore, the E4SC considers both the clusters
and the subspaces in which they were found. The measure
varies between 0 and 1; a high value indicates that the found
clusters are similar to the true clusters, a low value shows
discrepancies.

Figure 20 compares MultiMap to CMI, PROCLUS and
FIRES. We observe that MultiMap is accurate. The results are
stable with regards to the number of tuples and columns. In
most cases, FIRES comes second, closely followed by CMI,
and PROCLUS comes last. Figure 21 shows the runtime
of the algorithms. MultiMap and PROCLUS are orders of
magnitudes faster than CMI and FIRES. M-Map is almost
always faster that PROCLUS. Our approach is validated.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

12

●
●

● ● ●

0

1

20 40 60 80 100

Dimensions

E
4S

C ●
●

● ●

0

1

4 8 12 16

Subspace Dim.

E
4S

C

●

●

●

●

●

0

10

20

30

20 40 60 80 100

Dimensions

T
im

e
(s

)

●
●

●

●

●

0

10

20

30

40

20 40 60 80

Tuples (* 1,000)

T
im

e
(s

)

● MultiMap
LightMap
SimpleMap
MultiMap no tree

Fig. 22. Comparison of SimpleMap, MultiMap, and LightMap on synthetic datasets.

0

10

20

30

40

20 40 60 80 100 120

Dimensions

T
im

e
(s

)

Decision Tree
Clustering
Subspace Search

0

10

20

30

40

10 20 40 60 80

Tuples (*1000)

T
im

e
(s

)

(a) MultiMap

0

5

10

15

20

20 40 60 80 100 120

Dimensions

T
im

e
(s

)

Combine Layers
Subspace Search
Layers Creation

0

5

10

15

20

10 20 40 60 80

Tuples (*1000)

T
im

e
(s

)

(b) LightMap

Fig. 23. Execution time breakdown of MultiMap and LightMap.

We compare S-Map, M-Map and L-Map in Figure 22.
As SmallMap cannot detect subspaces, it generates poor
E4SC scores. Its performance is particularly low when the
subspaces have a low dimensionality, and it gets better
when the data contains a few wide subspaces. MultiMap is
the most accurate algorithm, but it is also the slowest. Recall
that MultiMap is based on a combination of cluster analysis
an decision tree classification. To separate the errors of both
components, we introduced a variant in which we removed
the decision tree. We observe very little difference in E4SC,
which indicates that the accuracy penalty incurred by the
decision tree is acceptable. However, the runtime increases
more than twofold. Finally, LightMap is at least twice fast as
MultiMap, but this comes at the price of inaccuracies.

Figure 23 details the time consumption during the exe-
cution of M-Map and L-Map. In MultiMap, more than half
the time is spent building the decision tree. Blaeu spends
comparatively very little time clustering the rows and the
columns. Fortunately, this step can easily be accelerated by
sampling (cf. 8.3). In LightMap, almost all the time is spent
creating layers. The subsequent steps are very fast, except
when the data contains many columns.

8.2 Real Data
We showed that S-Map, M-Map and L-Map perform well
on synthetic data sets. In this section, we run them on
nine databases from the UCI repository [3], described in
Table 2. As we do not have any base truth, we use a “trick”
from the subspace clustering literature: we exploit the class
labels originally designed for classification and regression,
in the hope that they reflect the structure of the data [18].
We report the F1 between these labels and our predictions.
The F1 varies between 0 and 1, higher is better. To tune
the algorithms, we generate different sets of parameters and
report the best results. For instance, we try 50 combinations
for FIRES and 56 for CMI. The details of the experiments are
published on our website. We do not enforce any time limit,

TABLE 3
Accuracy (F1) for SimpleMap, MultiMap, LightMap, CMI, FIRES and

PROCLUS with real datasets

S.Map M.Map L.Map CMI FIRES PROC
breast 0.20 0.60 0.53 0.69 0.39 0.58
diabetes 0.12 0.55 0.40 0.54 0.42 0.37
comm. 0.62 0.60 0.56 0.61 0.89 0.57
internet 0.27 0.39 0.44 0.40 * 0.38
pendigits 0.91 0.47 0.37 0.36 0.22 0.59
adult 0.61 0.59 0.54 0.56 * 0.52
covertype 0.48 0.47 0.44 0.48 * 0.50
gisette 0.34 0.51 0.42 * * *
mutant1 0.43 0.64 0.51 * * *

TABLE 4
Runtimes (seconds) for SimpleMap, MultiMap, LightMap, CMI, FIRES

and PROCLUS with real datasets

S.Map M.Map L.Map CMI FIRES PROC
breast 0.18 0.72 0.08 0.87 1.01 0.25
diabetes 0.16 0.35 0.05 0.45 1.98 0.26
comm. 0.57 4.53 1.22 3.97 150.8 1.65
internet 0.43 2.31 0.54 16.70 * 3.17
pendig. 0.46 5.69 0.90 40.82 94.25 1.00
adult 0.83 6.00 1.32 683.81 * 3.31
covert. 17.88 79.77 47.08 79,069 * 12,139
gisette 154.4 688.2 177.75 * * *
mutant1 960.9 2,155 829.21 * * *

but we discard the algorithms which saturate the 12GB heap
space limit.

Table 3 reports the accuracy of the algorithms. The
highest and lowest values are highlighted. There is no
clear winner: each algorithm can perform very well with
a dataset, and underperform with an other. For instance,
FIRES performs very well with Communities, but comes
last for PenDigits. Similarly, SimpleMap excels with
PenDigits and Adult, but fails with Breast, Diabetes
and Internet. CMI and MultiMap are more consistent,
and they appear to have similar scores. We observe that

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

13

MultiMap does not always outperform SimpleMap: when
the data contains few columns (less than 16 in our case),
MultiMap’s vertical partitioning strategy may be too ag-
gressive. LightMap is slightly over-performed by its com-
petitors. In conclusion, Blaeu does not outperform subspace
search and clustering algorithms, but its performance is
comparable.

Table 4 shows the execution times. Clearly, S-Map and L-
Map are the fastest algorithms. They are up to three orders
of magnitude faster than CMI and FIRES, and up to five
times faster than PROCLUS. In most cases, MultiMap comes
third. Also, all the competitors exceed the memory limit
for the sets gisette and mutant1. Remarkably, LightMap
overperforms SimpleMap for mutant1. We conclude that
out algorithms are more efficient than CMI, FIRES and
PROCLUS.

8.3 Scaling and Sampling

We now show how sampling helps us deal with very large
data sets. For each dataset, we train Blaeu with a small
sample, extract the resulting decision tree and apply it to the
full dataset. We then compare the result to a base truth: if
the labels are similar, then our strategy works. We sampled
the data uniformly, with replacement. For each experiment,
we took 5 different samples and averaged the results.

Figure 24 shows the results of our experiments with
MultiMap on synthetic data. We observe that Blaeu makes
considerable progress with the first thousand tuples. Then,
the sample size has almost no influence on the accuracy
of the results. We conclude that small samples are good
enough: Blaeu can very well infer the structure of the data
from small subsets of the data. Two factors explain this
result. First, Blaeu operates at a very coarse level. It seeks at
most a dozen large clusters. Therefore, it is not sensitive to
noise and micro-clusters. Second, it works mostly with low
dimensional subspaces. Even if the data contains hundreds
of columns, a map rarely contains more than a dozen of
them. This also explains why the number of variables has
such little impact on our results (the top-left and top-right
charts are almost similar).

Figure 25 presents a similar experiment with real data.
We used two public datasets, available through our Web-
site. Here again, we observe an increase of accuracy with
the first few hundred samples. Then, the F1 stays almost
constant : Blaeu makes little to no progress. However, we
do observe that the F1’s variability decreases as the sample
size increases.

Considering Blaeu’s execution times in both experi-
ments, we conclude that Blaeu can produce high precision
maps of million-tuples datasets within two seconds. Note
however that our measurements do not include the actual
sampling: we assume that Blaeu’s back-end can produce
samples quickly enough (our back-end MonetDB generates
samples in less than a second when the data is “hot”)

9 RELATED WORK

Researchers have recently shown much interest in data
exploration. The research effort is multidisciplinary: pro-
posed studies range from core database technology [24] to

Synth. data − 10 million tuples, 50 columns Synth. data − 10 million tuples, 500 columns

0

0.25

0.5

 0.75

10^1 10^2 10^3 10^4 10^5 10^7 10^1 10^2 10^3 10^4 10^5 10^7

Sample size

E
4S

C

Synth. data − 10 million tuples, 50 columns Synth. data − 10 million tuples, 500 columns

1

10

100

1,000

10,000

10^1 10^2 10^3 10^4 10^5 10^7 10^1 10^2 10^3 10^4 10^5 10^7

Sample size

E
xe

cu
tio

n
T

im
e

(s
ec

)

Fig. 24. Accuracy and runtime of MultiMap with sampling on synthetic
data. The error bars represent Normal-based 99% confidence intervals.

PAMAP − 2,872,530 rows, 51 col. USCensus1990 − 2,458,285 rows, 68 col.

0

0.2

0.4

 0.6

10^1 10^2 10^3 10^4 10^5 10^6 10^1 10^2 10^3 10^4 10^5 10^6

Sample Size
F

1

PAMAP − 2,872,530 rows, 51 col. USCensus1990 − 2,458,285 rows, 68 col.

0.1

1

10

100

1,000

10^1 10^2 10^3 10^4 10^5 10^6 10^1 10^2 10^3 10^4 10^5 10^6

Sample Size

E
xe

cu
tio

n
T

im
e

(s
ec

)

Fig. 25. Accuracy and runtime of MultiMap with sampling on real data.
The error bars represent Normal-based 99% confidence intervals.

visualization [21]. A comprehensive overview of the field is
provided by Idreos et al. [11].

OLAP cubes. Drilling and slicing through graphical
tools have been common practice for years in the OLAP
world. The aim of such tools is to expose how a measure
varies along several dimensions. Currently, Tableau is one
of the most popular solutions (based on Polaris [25]). With
Tableau, users pick the dimensions and measures with drag-
and-drops. Then, the system chooses the optimal repre-
sentation according to best practices of visualization. Like
many OLAP front-ends, Blaeu relies on a graphical query
languages. However, it differs on two point. First, it makes
recommendations, while most OLAP tools are passive. Se-
cond, data maps make no distinction between dimensions
and measures. Blaeu can however emulate this behavior, as
shown in Section 2.4.

Query recommendation. Several authors have proposed
query recommendation algorithms. A common approach is
to use the query log of the database [7] Our work does not
use it. Therefore, we can drop the assumption that several
experts have been using the same database for the exact
same purpose. The work of Sarawagi et al. [22] is closer to
ours. It recommends queries with statistics. Nevertheless,

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2515590, IEEE
Transactions on Knowledge and Data Engineering

14

it is restricted to data cubes, and it uses a very specific
notion of “interestingness” based on surprise. Our model
is unsupervised, and we assume that any subset can be
interesting, as long as the tuples are similar to each other.
Other systems resembling Blaeu were suggested recently.
Our system is the direct descendant of the vision system
Charles [23]. Like Blaeu, Charles is based on top-down
exploration. However, it does not use any clustering, it only
considers partitionings based on medians. Query Steering is
related [8], but it models the user rather than the data. Our
method is orthogonal, both approaches could be combined.
Finally, the vision system SeeDB [21] is close to Blaeu
because it choses visualizations automatically. Nevertheless,
it focuses on the presentation of the results, not on the user
input: it relies on traditional SQL queries.

Clustering. Our work relies on subspace clustering. An
exhaustive review of the field was written by Kriegel et
al. [14]. We describe the most relevant approaches in Sec-
tion 8. All the algorithms mentioned in this paper are based
on axis-parallel subspaces. We chose to discard more general
techniques, e.g., based on affine projections or kernel meth-
ods [14], because their results are much harder to interpret,
especially for non statisticians.

10 CONCLUSION

Too often, data exploration tools assume that users know
the data and know what they are after. In this paper, we
challenge this assumption. We introduce a new mode of
interaction, based on data maps. We formalize the problem
of generating maps, study its complexity and present our
algorithms. Experiments on real and synthetic data reveal
that our framework is fast and accurate. But the road for
more intelligent interfaces still lies wide open. In future
work, we will study how to use other machine learning
techniques. We will incorporate data from external sources
(e.g. the Web) to improve the queries. Also, we will attempt
to personalize the sessions to suit the needs of each user.

ACKNOWLEDGMENT

This publication was supported by the Dutch national pro-
gram COMMIT.

REFERENCES

[1] A. Abouzied, J. M. Hellerstein, and A. Silberschatz. Dataplay:
Interactive tweaking and example-driven correction of graphical
database queries. In UIST, 2012.

[2] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park.
Fast algorithms for projected clustering. In SIGMOD, 1999.

[3] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[4] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is

“nearest neighbor” meaningful? In ICDT. 1999.
[5] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture

evolution: Mammals flourished long before dinosaurs became
extinct. Proc. VLDB, 2009.

[6] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification
and regression trees. CRC press, 1984.

[7] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query recom-
mendations for interactive database exploration. In SSDBM, 2009.

[8] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-
example: An automatic query steering framework for interactive
data exploration. In Proc. SIGMOD, 2014.

[9] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for
maximal vector computation. Proc. VLDB, 2007.

[10] S. Günnemann, I. Färber, E. Müller, I. Assent, and T. Seidl. External
evaluation measures for subspace clustering. In CIKM, 2011.

[11] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of data
exploration techniques. In Proc. SIGMOD, pages 277–281, 2015.

[12] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an
introduction to cluster analysis. John Wiley & Sons, 1990.

[13] H.-P. Kriegel, P. Kroger, M. Renz, and S. Wurst. A generic
framework for efficient subspace clustering of high-dimensional
data. In ICDM, 2005.

[14] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-
dimensional data: A survey on subspace clustering, pattern-based
clustering, and correlation clustering. TKDD, 2009.

[15] P. Langfelder, B. Zhang, and S. Horvath. Defining clusters from
a hierarchical cluster tree: the dynamic tree cut package for r.
Bioinformatics, 2008.

[16] M. Meilă. Comparing clusterings – an information based distance.
Journal of Multivariate Analysis, 2007.

[17] H. Mühleisen. MonetDB.R - MonetDB to R Connector, 2013. R
package version 0.7.

[18] E. Müller, S. Günnemann, I. Assent, and T. Seidl. Evaluating
clustering in subspace projections of high dimensional data. Proc.
VLDB, 2009.

[19] E. Muller, S. Gunnemann, I. Farber, and T. Seidl. Discovering
multiple clustering solutions: Grouping objects in different views
of the data. In ICDE, 2012.

[20] E. Müller, H. V. Nguyen, F. Keller, K. Böhm, and J. Vreeken.
Cmi: An information-theoretic contrast measure for enhancing
subspace cluster and outlier detection. In ICDM, 2013.

[21] A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. Seedb:
Visualizing database queries efficiently. Proc. VLDB, 2013.

[22] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven
exploration of olap data cubes. EDBT, 1998.

[23] T. Sellam and M. Kersten. Meet charles, big data query advisor.
CIDR, 2013.

[24] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. Sciborq: Scientific
data management with bounds on runtime and quality. In CIDR,
2011.

[25] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for
query, analysis, and visualization of multidimensional relational
databases. TVCG, 2002.

[26] J. Yang, M. Ward, and E. A. Rundensteiner. Interring: An inter-
active tool for visually navigating and manipulating hierarchical
structures. In InfoVis, 2002.

[27] M. M. Zloof. QBE/OBE: a language for office and business
automation. Computer, 1981.

Thibault Sellam received a MSc in computer
science and artificial intelligence from Paris
Dauphine University, France, in 2010. He has
been studying for his PhD at CWI, the Nether-
lands, since 2011. His research interests include
data exploration, data mining and visualization.

Martin Kersten is a full professsor at the Univer-
sity of Amsterdam (the Netherlands) since 1994,
and a research fellow at CWI (the Netherlands)
since 2011. He is the architect of the MonetDB
system, and the founder of several CWI spin-
offs. He has more than 140 publications to date,
and won a number of awards, including th VLDB
10-year Best Paper Award in 2009 and the ACM
SIGMOD Edgar F. Codd Innovations Award in
2014.

