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Abstract—With the rapid development of mobile devices and
crowdsourcing platforms, the spatial crowdsourcing has attracted
much attention from the database community. Specifically, the
spatial crowdsourcing refers to sending location-based requests
to workers, based on their current positions. In this paper,
we consider a spatial crowdsourcing scenario, in which each
worker has a set of qualified skills, whereas each spatial task
(e.g., repairing a house, decorating a room, and performing
entertainment shows for a ceremony) is time-constrained, under
the budget constraint, and required a set of skills. Under this
scenario, we will study an important problem, namelymulti-skill
spatial crowdsourcing (MS-SC), which finds an optimal worker-
and-task assignment strategy, such that skills between workers
and tasks match with each other, and workers’ benefits are
maximized under the budget constraint. We prove that the MS-
SC problem is NP-hard and intractable. Therefore, we propose
three effective heuristic approaches, including greedy,g-divide-
and-conquer and cost-model-based adaptive algorithms to get
worker-and-task assignments. Through extensive experiments,
we demonstrate the efficiency and effectiveness of our MS-SC
processing approaches on both real and synthetic data sets.

I. I NTRODUCTION
With the popularity of GPS-equipped smart devices and

wireless mobile networks [12], [16], nowadays people can
easily identify and participate in some location-based tasks
that are close to their current positions, such as taking pho-
tos/videos, repairing houses, and/or preparing for parties at
some spatial locations. Recently, a new framework, namely
spatial crowdsourcing[16], for employing workers to conduct
spatial tasks, has emerged in both academia (e.g., the database
community [8]) and industry (e.g., TaskRabbit [3]). A typical
spatial crowdsourcing platform (e.g., gMission [8] and MediaQ
[17]) assigns a number of movingworkersto do spatial tasks
nearby, which requires workers to physically move to some
specified locations and accomplish these tasks.

Note that, not all spatial tasks are as simple as taking a
photo or video clip (e.g., street view of Google Maps [2]),
monitoring traffic conditions (e.g., Waze [4]), or reporting
local hot spots (e.g., Foursquare [1]), which can be easily
completed by providing answers via camera, sensing devices
in smart phones, or naked eyes, respectively. In contrast, some
spatial tasks can be rather complex, such as repairing a house,
preparing for a party, and performing entertainment shows for a
ceremony, which may consist of several steps/phases/aspects,
and require demanding professional skills from workers. In
other words, these complex tasks cannot be simply accom-

Fig. 1: An Example of Repairing a House in the Multi-Skill Spatial
Crowdsourcing System.

TABLE I: Worker/Task Skills
worker/task skill key set

w1, w4 w8 {a1, a4, a6}
w2 {a5}
w3, w7 {a2, a3}
w5, w6 {a1, a5}
t1, t2, t3 {a1 ∼ a6}

TABLE II: Descriptions of Skills
skill key skill description

a1 painting walls
a2 repairing roofs
a3 repairing floors
a4 installing pipe systems
a5 installing electronic components
a6 cleaning

plished by normal workers, but require the skilled workers with
specific expertise (e.g., fixing roofs or setting up the stage).

Inspired by the phenomenon of complex spatial tasks,
in this paper, we will consider an important problem in
the spatial crowdsourcing system, namelymulti-skill spatial
crowdsourcing(MS-SC), which assigns multi-skilled workers
to those complex tasks, with the matching skill sets and high
scores of the worker-and-task assignments.

In the sequel, we will illustrate the MS-SC problem by a
motivation example of repairing a house.
Example 1 (Repairing a House).Consider a scenario of the
spatial crowdsourcing in Figure 1, where a user wants to re-
pair a house he/she just bought, in order to have a good living
environment for his/her family. However, it is not an easy task
to repair the house, which requires many challenging works
(skills), such as repairing roofs/floors, replacing/installing pipe
systems and electronic components, painting walls, and finally
cleaning rooms. There are many skilled workers that can
accomplish one or some of these skill types. In this case, the
user can post a spatial taskt1, as shown in Figure 1, in the
spatial crowdsourcing system, which specifies a set of required
skills (given in Tables I and II) for the house-repairing task,
a valid time period to repair, and the maximum budget that
he/she would like to pay.

In Figure 1, around the spatial location of taskt1, there
are 8 workers,w1 ∼ w8, each of whom has a different set of
skills as given in Table I. For example, workerw1 has the skill
set{painting walls, installing pipe systems, cleaning}.

To accomplish the spatial taskt1 (i.e., repair the house), the
spatial crowdsourcing platform needs to select a best subset
of workerswi (1 ≤ i ≤ 8), such that the union of their skill

http://arxiv.org/abs/1510.03149v3


sets can cover the required skill set of taskt1, and, moreover,
workers can travel to the location oft1 with the maximum
net payment under the constraints of arrival times, workers’
moving ranges, and budgets. For example, we can assign task
t1 with 3 workersw2, w7, andw8, who are close tot1, and
whose skills can cover all the required skills oft1.

Motivated by the example above, in this paper, we will
formalize the MS-SC problem, which aims to efficiently assign
workers to complex spatial tasks, under the task constraints
of valid time periods and maximum budgets, such that the
required skill sets of tasks are fully covered by those assigned
workers, and the total score of the assignment (defined as the
total profit of workers) is maximized.

Note that, existing works on spatial crowdsourcing focused
on assigning workers to tasks to maximize the total number
of completed tasks [16], the number of performed tasks for
a worker with an optimal schedule [12], or the reliability-
and-diversity score of assignments [10]. However, they did
not take into account multi-skill covering of complex spatial
tasks, time/distance constraints, and the assignment score with
respect to task budgets and workers’ salaries (excluding the
traveling cost). Thus, we cannot directly apply prior solutions
to solve our MS-SC problem.

In this paper, we first prove that our MS-SC problem in
the spatial crowdsourcing system is NP-hard, by reducing it
from the Set Cover Problem(SCP) [15]. As a result, the
MS-SC problem is not tractable, and thus very challenging
to achieve the optimal solution. Therefore, in this paper, we
will tackle the MS-SC problem by proposing three effective
approximation approaches, greedy,g-divide-and-conquer(g-
D&C), and cost-model-based adaptive algorithms, which can
efficiently compute worker-and-task assignment pairs withthe
constraints/goals of skills, time, distance, and budgets.

Specifically, we make the following contributions.
• We formally define themulti-skill spatial crowdsourcing

(MS-SC) problem in Section II, under the constraints of
multi-skill covering, time, distance, and budget for spatial
workers/tasks in the spatial crowdsourcing system.

• We prove that the MS-SC problem is NP-hard, and thus
intractable in Section II-D.

• We propose efficient approximation approaches, namely
greedy,g-divide-and-conquer, and cost-model-based adap-
tive algorithms to tackle the MS-SC problem in Sections
IV, V, and VI, respectively.

• We conduct extensive experiments on real and synthetic data
sets, and show the efficiency and effectiveness of our MS-
SC approaches in Section VII.
Section III introduces a general framework for our MS-

SC problem in spatial crowdsourcing systems. Section VIII
reviews previous works on spatial crowdsourcing. Finally,
Section IX concludes this paper.

II. PROBLEM DEFINITION
In this section, we present the formal definition of the

multi-skill spatial crowdsourcing, in which we assign multi-
skilled workers with time-constrained complex spatial tasks.

A. Multi-Skilled Workers
We first define the multi-skilled workers in spatial crowd-

sourcing applications. Assume thatΨ = {a1, a2, ..., ak} is a
universe ofk abilities/skills. Each worker has one or multiple
skills in Ψ, and can provide services for spatial tasks that
require some skills inΨ.

Definition 1: (Multi-Skilled Workers) Let Wp = {w1, w2,
..., wn} be a set ofn multi-skilled workers at timestampp.
Each workerwi (1 ≤ i ≤ n) has a set,Xi (⊆ Ψ), of skills,
is located at positionli(p) at timestampp, can move with
velocity vi, and has a maximum moving distancedi. �

In Definition 1, the multi-skilled workerswi can move
dynamically with speedvi in any direction, and at each
timestampp, they are located at spatial placesli(p), and prefer
to move at mostdi distance fromli(p). They can freely join or
leave the spatial crowdsourcing system. Moreover, each worker
wi is associated with a set,Xi, of skills, such as taking photos,
cooking, and decorating rooms.

B. Time-Constrained Complex Spatial Tasks
Next, we define complex spatial tasks in the spatial

crowdsourcing system, which are constrained by deadlines of
arriving at task locations and budgets.

Definition 2: (Time-Constrained Complex Spatial Tasks)
Let Tp = {t1, t2, ..., tm} be a set of time-constrained complex
spatial tasks at timestampp. Each tasktj (1 ≤ j ≤ m) is
located at a specific locationlj, and workers are expected to
reach the location of tasktj before the arrival deadlineej.
Moreover, to complete the tasktj , a set,Yj (⊆ Ψ), of skills is
required for those assigned workers. Furthermore, each task tj
is associated with a budget,Bj , of salaries for workers. �

As given in Definition 2, usually, a task requester creates
a time-constrained spatial tasktj , which requires workers
physically moving to a specific locationlj, and arriving atlj
before the arrival deadlineej . Meanwhile, the task requester
also specifies a budget,Bj , of salaries, that is, the maximum
allowance that he/she is willing to pay for workers. This
budget,Bj , can be either the reward cash or bonus points
in the spatial crowdsourcing system.

Moreover, the spatial tasktj is often complex, in the
sense that it might require several distinct skills (inYj) to
be conducted. For example, a spatial task of repairing a house
may require several skills, such as repairing floors, painting
walls and cleaning.

C. The Multi-Skill Spatial Crowdsourcing Problem
In this subsection, we will formally define the multi-skill

spatial crowdsourcing (MS-SC) problem, which assigns spatial
tasks to workers such that workers can cover the skills required
by tasks and the assignment strategy can achieve high scores.
Task Assignment Instance Set.Before we present the MS-
SC problem, we first introduce the concept of task assignment
instance set.

Definition 3: (Task Assignment Instance Set) At times-
tamp p, given a worker setWp and a task setTp, a task
assignment instance set, denoted byIp, is a set of worker-and-
task assignment pairs in the form〈wi, tj〉, where each worker
wi ∈ Wp is assigned to at most one spatial tasktj ∈ Tp.

Moreover, we denoteCTp as the set of completed tasks
tj that can be reached before the arrival deadlinesej , and
accomplished by those assigned workers inIp. �

Intuitively, the task assignment instance setIp is one
possible (valid) worker-and-task assignment between worker
set Wp and task setTp. Each pair〈wi, tj〉 is in Ip, if and
only if this assignment satisfies the constraints of tasktj , with
respect to distance (i.e.,di), time (i.e.,ej), budget (i.e.,Bj),
and skills (i.e.,Yj).



In particular, for each pair〈wi, tj〉, workerwi must arrive
at locationlj of the assigned tasktj before its arrival deadline
ej , and can support the skills required by tasktj , that is,
Xi

⋂
Yj 6= ∅. The distance betweenli(p) and lj should be

less thandi. Moreover, for all pairs inIp that contain tasktj ,
the required skills of tasktj should be fully covered by skills
of its assigned workers, that is,Yj ⊆ ∪∀〈wi,tj〉∈IpXi.

To assign a workerwi to a tasktj , we need to pay him/her
salary, cij , which is related to the traveling cost from the
location,li(p), of workerwi to that,lj , of tasktj . The traveling
cost,cij , for vehicles can be calculated by the unit gas price
per gallon times the number of gallons needed for the traveling.
For the public transportation, the costcij can be computed by
the fees per mile times the traveling distance. For walking,we
can also provide the compensation fee for the worker with the
costcij proportional to his/her traveling distance.

Without loss of generality, we assume that the cost,cij , is
proportional to the traveling distance,dist(li(p), lj), between
li(p) and lj, wheredist(x, y) is a distance function between
locationsx andy. Formally, we have:cij = Ci ·dist(li(p), lj),
whereCi is a constant (e.g., gas/transportation fee per mile).

Note that, for simplicity, in this paper, we use Euclidean
distance as our distance function (i.e.,dist(x, y)). We can
easily extend our proposed approaches in this paper by con-
sidering other distance function (e.g., road-network distance),
under the framework of the spatial crowdsourcing system, and
would like to leave the topics of using other distance metics
as our future work.
The MS-SC Problem.In the sequel, we give the definition of
our multi-skill spatial crowdsourcing(MS-SC) problem.

Definition 4: (Multi-Skill Spatial Crowdsourcing Problem)
Given a time intervalP , the problem ofmulti-skill spatial
crowdsourcing(MS-SC) is to assign the available workers
wi ∈ Wp to spatial taskstj ∈ Tp, and to obtain a task
assignment instance set,Ip, at each timestampp ∈ P , such
that:

1) any workerwi ∈ Wp is assigned to only one spatial task
tj ∈ Tp such that his/her arrival time at locationlj before
the arrival deadlineej, the moving distance is less than the
worker’s maximum moving distancedi, and all workers
assigned totj have skill sets fully coveringYj ;

2) the total traveling cost of all the assigned workers to
task tj does not exceed the budget of the task, that is,∑

∀〈wi,tj〉∈Ip
cij ≤ Bj ; and

3) the total score,
∑

p∈P Sp, of the task assignment instance
setsIp within the time intervalP is maximized,

where it holds that:
Sp =

∑

tj∈CTp

B′
j , and (1)

B′
j = Bj −

∑

〈wi ,tj〉∈Ip

cij . (2)

In Definition 4, our MS-SC problem aims to assign workers
wi to taskstj such that: (1) workerswi are able to reach
locations, lj , of tasks tj on time and cover the required
skill set Yj , and the moving distance is less thandi; (2) the
total traveling cost of all the assigned workers should not
exceed budgetBj ; and (3) the total score,

∑
p∈P Sp, of the

task-and-worker assignment within time intervalP should be
maximized.

After the server-side assignment at a timestampp, those
assigned workers would change their status to unavailable,and

move to the locations of spatial tasks. Next, these workers will
become available again, only if they finish/reject the assigned
tasks.
Discussions on the ScoreSp. Eq. (1) calculates the score,
Sp, of a task-and-worker assignment by summing upflexible
budgets, B′

j (given by Eq. (2)), of all the completed tasks
tj ∈ CTp, where theflexible budgetof tasktj is the remaining
budget of tasktj after paying workers’ traveling costs. Maxi-
mizing scores means maximizing the number of accomplished
tasks while minimizing the traveling cost of workers.

Intuitively, each tasktj has a maximum budgetBj , which
consists of two parts, the traveling cost of the assigned workers
and the flexible budget. The former cost is related to the
total traveling distance of workers, whereas the latter one
can be freely and flexibly used for rewarding workers for
their contributions to the task. Here, the distribution of the
flexible budget among workers can follow existing incentive
mechanisms in crowdsourcing [20], [24], which stimulate
workers who did the task better (i.e., with more rewards).

Note that, in Eq. (1), the score,Sp, of the task assignment
instance setIp only takes into account those tasks that can
be completed by the assigned workers (i.e., tasks in setCTp).
Here, a task can be completed, if the assigned workers can
reach the task location before the deadline and finish the task
with the required skills.

Since the spatial crowdsourcing system is quite dynamic,
new tasks/workers may arrive at next timestamps. Thus, if
we cannot find enough/proper workers to do the task at the
current timestampp, the task is still expected to be successfully
assigned with workers and completed in future timestamps.
Meanwhile, the task requester can be also informed by the
spatial crowdsourcing system to increase the budget (i.e.,with
higher budgetBj , we can find more skilled candidate workers
that satisfy the budget constraint). Therefore, in our definition
of scoreSp, we would only consider those tasks inCTp that
can be completed by the assigned workers at timestampp, and
maximize this scoreSp.

D. Hardness of Multi-Skill Spatial Crowdsourcing Problem
With m time-constrained complex spatial tasks andn

multi-skilled workers, in the worst case, there are an exponen-
tial number of possible task-and-worker assignment strategies,
which leads to high time complexity,O((m + 1)n). In this
subsection, we prove that our MS-SC problem is NP-hard, by
reducing a well-known NP-hard problem,set cover problem
(SCP) [23], to the MS-SC problem.

Lemma 1:(Hardness of the MS-SC Problem) The problem
of the Multi-Skill Spatial Crowdsourcing (MS-SC) is NP-hard.

Proof: Please refer to Appendix A.
Since the MS-SC problem involves multiple spatial tasks

whose skill sets should be covered, we thus cannot directly use
existing approximation algorithms for SCP (or its variants) to
solve the MS-SC problem. What is more, we also need to
find an assignment strategy such that workers and tasks match
with each other (in terms of traveling time/cost, and budge
constraints), which is more challenging.

Thus, due to the NP-hardness of our MS-SC problem, in
subsequent sections, we will present a general framework for
MS-SC processing and design 3 heuristic algorithms, namely
greedy,k-divide-and-conquer, and cost-model-based adaptive
approaches, to efficiently retrieve MS-SC answers.



TABLE III: Symbols and Descriptions.

Symbol Description

Tp a set ofm time-constrained spatial taskstj at timestampp
Wp a set ofn dynamically moving workerswi at timestampp
ej the deadline of arriving at the location of tasktj
li(p) the position of workerwi at timestampp
lj the position of tasktj
Xi a set of skills that workerwi has
Yj a set of the required skills for tasktj
di the maximum moving distance of workerwi

Bj the maximum budget of tasktj
Ip the task assignment instance set at timestampp
CTp a set of tasks that are assigned with workers at timestampp and

can be completed by these assigned workers
Ci the unit price of the traveling cost of workerwi

cij the traveling cost from the location of workerwi to that of tasktj
Sp the score of the task assignment instance setIp
∆Sp the score increase when changing the pair assignment

Table III summarizes the commonly used symbols.

III. F RAMEWORK OF SOLVING MS-SC PROBLEMS
In this section, we present a general framework, namely

MS-SC Framework, in Figure 2 for solving the MS-SC
problem, which greedily assigns workers with spatial tasks
for multiple rounds. For each round, at timestampp, we first
retrieve a set,Tp, of all the available spatial tasks, and a
set,Wp, of available workers (lines 2-3). Here, the available
task setTp contains existing spatial tasks that have not been
assigned with workers in the last round, and the ones that
newly arrive at the system after the last round. Moreover,
set Wp includes those workers who have accomplished (or
rejected) the previously assigned tasks, and thus are available
to receive new tasks in the current round.

In our spatial crowdsourcing system, we organize both sets
Tp andWp in a cost-model-based grid index. For the sake of
space limitations, details about the index construction can be
found in Appendix E. Due to dynamic changes of setsTp and
Wp, we also update the grid index accordingly (line 4). Next,
we utilize the grid index to efficiently retrieve a set,S, of valid
worker-and-task candidate pairs (line 5). That is, we obtain
those pairs of workers and tasks,〈wi, tj〉, such that workerswi

can reach the locations of taskstj and satisfy the constraints of
skill matching, time, and budgets for taskstj . With valid pairs
in setS, we can apply our proposed algorithms, that is,greedy,
g-divide-and-conquer, or adaptive cost-model-basedapproach,
over setS, and obtain a good worker-and-task assignment
strategy in an assignment instance setIp, which is a subset
of S (line 6).

Finally, for each pair〈wi, tj〉 in the selected worker-and-
task assignment setIp, we will notify workerwi to do tasktj
(lines 7-8).

Procedure MS-SC Framework {
Input: a time intervalP
Output: a worker-and-task assignment strategy within the time interval P
(1) for each timestampp in P
(2) retrieve all the available spatial tasks toTp

(3) retrieve all the available workers toWp

(4) update the grid index for currentTp andWp

(5) obtain a set,S, of valid worker-and-task pairs from the index
(6) use ourgreedy, g-divide-and-conqueror adaptive cost-model-basedapproach

to obtain a good assignment instance set,Ip ⊆ S
(7) for each pair〈wi, tj〉 in Ip
(8) inform workerwi to conduct tasktj

}

Fig. 2: Framework for Solving the MS-SC Problem.

IV. T HE GREEDY APPROACH
In this section, we will propose a greedy algorithm, which

greedily selects one worker-and-task assignment,〈wi, tj〉, at

a time that can maximize the increase of the assignment
score (i.e.,

∑
∀p∈P Sp as given in Definition 4). This greedy

algorithm can be applied in line 6 of the framework,MS-
SC Framework, in Fig. 2.

A. The Score Increase
Before we present the greedy algorithm, we first define

the increase,∆Sp, of scoreSp (given in Eq. (1)), in the
case where we assign a newly available workerwi to task
tj . Specifically, from Eqs. (1) and (2), we define the score
increase after assigning workerwi to tasktj as follows:

∆Sp = Sp − Sp−1 = ∆B′
j =

|Xi ∩ (Yj − Ỹj)|

|Yj |
·Bj − cij , (3)

whereỸj is the set of skills that have been covered by those
assigned workers (excluding the new workerwi) for task tj .

In Eq. (3), |Xi∩(Yj−Ỹj)|
|Yj|

is the ratio of skills for tasktj
that have not been covered by (existing) assigned workers, but
can be covered by the new workerwi. Intuitively, the first
term in Eq. (3) is the pre-allocated maximum budget based on
the number of covered skills by the new workerwi, whereas
the second term,cij , is the traveling cost from location ofwi

to that of tj . Thus, the score increase,∆Sp, in Eq. (3) is to
measure the change of score (i.e., flexible budget)Sp, due to
the assignment of workerwi to tasktj .

B. Pruning Strategies
The score increase can be used as a measure to evaluate

and decide which worker-and-task assignment pair should be
added to the task assignment instance setIp. That is, each
time our greedy algorithm aims to choose one worker-and-task
assignment pair inS with the highest score increase, which
will be added toIp (i.e., line 6 ofMS-SC Framework in Fig.
2). However, it is not efficient to enumerate all valid worker-
and-task assignment pairs inS, and compute score increases.
That is, in the worst case, the time complexity is as high
as O(m · n), wherem is the number of tasks andn is the
number of workers. Therefore, in this subsection, we present
three effective pruning methods (two for pruning workers and
one for pruning tasks) to quickly filter out false alarms of
worker-and-task pairs in setS.
The Worker-Pruning Strategy. When assigning available
workers to spatial tasks, we can rule out those valid worker-
and-task pairs inS, which contain eitherdominatedor high-
wage workers, as given in Lemmas 2 and 3, respectively,
below.

We say that a workerwa is dominated bya workerwb

w.r.t. tasktj (denoted aswa ≻tj wb), if it holds thatXa ⊆ Xb

andcaj ≥ cbj , whereXa andXb are skill sets of workerswa

andwb, andcaj andcbj are the traveling costs from locations
of workerswa andwb to tasktj , respectively.

Lemma 2:(Pruning Dominated Workers) Given two
worker-and-task pairs〈wa, tj〉 and 〈wb, tj〉 in valid pair set
S, if it holds thatwa ≻tj wb, then we can safely prune the
worker-and-task pair〈wa, tj〉.

Proof: Please refer to Appendix B.
Lemma 2 indicates that if there exists a better workerwb

than workerwa to do tasktj (in terms of both the skill set and
the traveling cost), then we can safely filter out the assignment
of workerwa to tasktj .

Lemma 3:(Pruning High-Wage Workers) Let̃c·j be the
total traveling cost for those workers that have already been



assigned to tasktj . If the traveling costcij of assigning a
workerwi to tasktj is greater than the remaining budget(Bj−
c̃·j) of task tj , then we will not assign workerwi to tasktj .

Proof: Please refer to Appendix C.
Intuitively, Lemma 3 shows that, if the wage of a workerwi

(including the traveling costcij) exceeds the maximum budget
Bj of task tj (i.e., cij > Bj − c̃·j), then we can safely prune
the worker-and-task assignment pair〈wi, tj〉.
The Task-Pruning Strategy. Let W (tj) be a set of valid

workers that can be assigned to tasktj , andW̃ (tj) be a set
of valid workers that have already been assigned to tasktj .
We give the lemma of pruning those tasks with insufficient
budgets below.

Lemma 4: (Pruning Tasks with Insufficient Budgets) If an

unassigned workerwi ∈ (W (tj) − W̃ (tj)) has the highest
value of ∆Sp

|Xi∩(Yj−Ỹj)|
, and the traveling cost,cij , of worker

wi exceeds the remaining budget(Bj − c̃·j) of task tj , then
we can safely prune tasktj .

Proof: Please refer to Appendix D.
Intuitively, Lemma 4 provides the conditions of pruning

tasks. That is, if any unassigned worker subset of(W (tj) −

W̃ (tj)) either cannot fully cover the required skill setYj , or
exceeds the remaining budget of tasktj , then we can directly
prune all assignment pairs that contain tasktj .

To summarize, by utilizing Lemmas 2, 3 and 4, we do not
have to check all worker-and-task assignments iterativelyin
our greedy algorithm. Instead, we can now apply our proposed
three pruning methods, and effectively filter out those false
alarms of assignment pairs, which can significantly reduce the
number of times to compute the score increases.

C. The Greedy Algorithm
According to the definition of the score increase∆Sp (as

mentioned in Section IV-A), we propose a greedy algorithm,
which iteratively assigns a worker to a spatial task that can
always achieve the highest score increase.

Procedure MS-SC Greedy {
Input: n workers inWp andm time-constrained spatial tasks inTp

Output: a worker-and-task assignment instance set,Ip
(1) Ip = ∅;
(2) compute all valid worker-and-task pairs〈wi, tj〉 from Wp andTp

(3) while Wp 6= ∅ andTp 6= ∅
(4) Scand = ∅;
(5) for each tasktj ∈ Tp

(6) for each workerwi in the valid pair〈wi, tj〉
(7) if we cannot prune dominated workerwi by Lemma 2
(8) if we cannot prune high-wage workerwi by Lemma 3
(9) add〈wi, tj〉 to Scand

(10) if we cannot prune tasktj w.r.t. workers inScand by Lemma 4
(11) for each pair〈wi, tj〉 w.r.t. tasktj in Scand

(12) compute the score increase,∆Sp(wi, tj)
(13) else
(14) Tp = Tp − {tj}
(15) obtain a pair,〈wr , tj〉 ∈ Scand, with the highest score increase,

∆Sp(wr , tj), and add this pair toIp
(16) Wp = Wp − {wr}
(17) returnIp

}
Fig. 3: The MS-SC Greedy Algorithm.

Figure 3 shows the pseudo code of our MS-SC greedy al-
gorithm, namelyMS-SC Greedy, which obtains one worker-
and-task pair with the highest score increase each time, and
returns a task assignment instance setIp with high score.

Initially, we set Ip to be empty, since no workers are
assigned to any tasks (line 1). Next, we find out all valid
worker-and-task pairs〈wi, tj〉 in the crowdsourcing system at
timestampp (line 2). Here, the validity of pair〈wi, tj〉 satisfies

4 conditions: (1) the distance between the current location,
li(p), of worker wi and the location,lj of task tj is less
than the maximum moving distance,di of workerwi, that is,
dist(li(p), lj) ≤ di; (2) workerwi can arrive at the location,
lj , of tasktj before the arrival deadlineej; (3) workerwi have
skills that tasktj requires; and (4) the traveling cost,cij , of
workerwi should not exceed the budgetBj of task tj .

Then, for each round, we would select one valid worker-
and-task assignment pair with the highest score increase, and
add it to setIp (lines 3-16). Specifically, in each round, we
check every tasktj that is involved in valid pairs〈wi, tj〉,
and then prune those dominated and high-wage workerswi,
via Lemmas 2 and 3, respectively (lines 7-8). If workerwi

cannot be pruned by both pruning methods, then we add it
to a candidate setScand for further checking (line 9). After
obtaining all workers that match with tasktj , we apply Lemma
4 to filter out task tj (if workers cannot be successfully
assigned totj). If task tj cannot be pruned, we will calculate
the score increase,∆Sp(wi, tj), for each pair〈wi, tj〉 in Scand;
otherwise, we remove tasktj from task setTp (lines 10-14).

After we scan all tasks inTp, we can retrieve one worker-
and-task assignment pair,〈wr, tj〉, from the candidate set
Scand, which has the highest score increase, and insert this
pair to Ip (line 15). Since workerwr has been assigned, we
remove it from the worker setWp (line 16). The process above
repeats, until all workers have been assigned (i.e.,Wp = ∅) or
there are no tasks left (i.e.,Tp = ∅) (line 3).

Figure 4(a) illustrates an example of valid pairs, wheren
available workers andm spatial tasks are denoted by triangular
and circular nodes, respectively, and valid worker-and-task
pairs are represented by dashed lines. Figure 4(b) depicts the
result of one assignment with high score, where the bold lines
indicate assignment pairs inIp.

(a) Valid Pairs (b) Assignment Instance

Fig. 4: Illustration of the Worker-and-Task Assignment.

The Time Complexity. We next present the time complex-
ity of the greedy algorithm,MS-SC Greedy (in Figure 3).
Specifically, the time cost of computing valid worker-and-task
assignment pairs (line 2) is given byO(m·n) in the worst case,
where any ofn workers can be assigned to any ofm tasks (i.e.,
m ·n valid worker-and-task pairs). Then, for each round (lines
3-16), we apply pruning methods tom ·n pairs, and select the
pair with the highest score increase. In the worst case, pairs
cannot be pruned, and thus the time complexity of computing
score increases for these pairs is given byO(m ·n). Moreover,
since each ofn workers can only be assigned to one spatial
task, the number of iterations is at mostn times. Therefore,
the total time complexity of our greedy algorithm can be given
by O(m · n2).

V. THE g-DIVIDE -AND-CONQUERAPPROACH
Although the greedy algorithm incrementally finds one

worker-and-task assignment (with the highest score increase)
at a time, it may incur the problem of only achieving local



optimality. Therefore, in this section, we propose an efficient
g-divide-and-conquer algorithm(g-D&C), which first divides
the entire MS-SC problem intog subproblems, such that each
subproblem involves a smaller subgroup of⌈m/g⌉ spatial
tasks, and then conquers the subproblems recursively (until
the final group size becomes 1). Since different numbers,g,
of the divided subproblems may incur different time costs, in
this paper, we will propose a novel cost-model-based method
to estimate the bestg value to divide the problem.

Specifically, for each subproblem/subgroup (containing
⌈m/g⌉ tasks), we will tackle the worker-and-task assignment
problem via recursion (note: the base case with the group
size equal to 1 can be solved by the greedy algorithm [23],
which has an approximation ratio ofln(N), whereN is the
total number of skills). During the recursive process, we will
combine/merge assignment results from subgroups, and obtain
the assignment strategy for the merged groups, by resolvingthe
assignment conflict among subgroups. Finally, we can return
the task assignment instance setIp, with respect to the entire
worker and tasks sets.

In the sequel, we first discuss how to decompose the
MS-SC problem into subproblems in Section V-A. Then, we
will illustrate our g-divide-and-conquer approach in Section
V-B, which utilizes the decomposition and merge (as will be
discussed in Section V-C) algorithms. Finally, we will provide
a cost model in Section V-D to determine the best numberg
of subproblems during theg-D&C process.

(a) Original MS-SC Problem (b) Decomposed Subproblems

Fig. 5: Illustration of Decomposing the MS-SC Problem.

A. MS-SC Problem Decompositions
In this subsection, we discuss how to decompose a MS-SC

problem into subproblems. In order to illustrate the decom-
position, we first convert our original MS-SC problem into a
representation of a bipartite graph.
Bipartite Graph Representation of the MS-SC Problem.
Specifically, given a worker setWp and a spatial task setTp,
we denote each worker/task (i.e.,wi or tj) as a vertex in the
bipartite graph, where worker and task vertices have distinct
vertex types. There exists an edge between a worker vertex
wi and a task vertextj , if and only if workerwi can reach
spatial tasktj under the constraints of skills (i.e.,Xi ∩ Yj 6=
∅), time (i.e., arrival time is before deadlineej of arrival),
distance (i.e., the traveling distance is belowdi), and budget
(i.e., the traveling cost is below task budgetBj). We say that
the worker-and-task assignment pair〈wi, tj〉 is valid, if there
is an edge between verticeswi and tj in the graph.

As an example in Figure 5(a), we have a worker setWp =
{wi|1 ≤ i ≤ 5}, and a spatial task setTp = {tj |1 ≤ j ≤ 3},
which are denoted by two types of vertices (i.e., represented
by triangle and circle shapes, respectively) in a bipartitegraph.
Any edge connects two types of verticeswi andtj , if worker
wi can reach the location of tasktj and do tasks with the
required skills fromtj . For example, there exists an edge
betweenw1 andt1, which indicates that workerw1 can move

to the location oft1 before the arrival deadlinee1, with the
traveling distance underd1, with the traveling cost below
budgetB1, and moreover with some skill(s) in the required
skill set Y1 of task t1.

Note that, one or multiple worker vertices (e.g.,w1, w3,
andw4) may be connected to the same task vertex (e.g.,t1).
Furthermore, multiple task vertices, sayt1 and t2, may also
share some conflicting workers (e.g.,w3 or w4), where the
conflicting workerw3 (or w4) can be assigned to either task
t1 or taskt2 mutual exclusively.

Procedure MS-SC Decomposition {
Input: n workers inWp, m time-constrained spatial tasks inTp, and the number

of groupsg
Output: decomposed MS-SC subproblems,Ps (1 ≤ s ≤ g)
(1) for s = 1 to g
(2) Ps = ∅
(3) compute all valid worker-and-task pairs〈wi, tj〉 from Wp andTp ,

and obtain a bipartite graphG
(4) for s = 1 to g

(5) let setT (j)
p contain the next anchor tasktj and its top-(⌈m/g⌉ − 1)

nearest tasks // the task,tj , whose longitude is the smallest
(6) for each task vertextj ∈ T (j)

p in graphG
(7) obtain all worker verticeswi that connect with task vertextj
(8) add all pairs〈wi, tj〉 to Ps

(9) returnPs (for 1 ≤ s ≤ g)
}

Fig. 6: The MS-SC Problem Decomposition Algorithm.

Decomposing the MS-SC Problem.Next, we will illustrate
how to decompose the MS-SC problem, with respect to task
vertices in the bipartite graph. Figure 5 shows an example of
decomposing the MS-SC problem (as shown in Figure 5(a))
into 3 subproblems (as depicted in Figure 5(b)), where each
subproblem contains a subgroup of one single spatial task (i.e.,
group size = 1), associated with its connected worker vertices.
For example, the first subgroup in Figure 5(b)) contains task
vertext1, as well as its connecting worker verticesw1, w3, and
w4. Different task vertices may have conflicting workers, for
example, taskst1 and t2 share the same (conflicting) worker
verticesw3 andw4.

In a general case, givenn workers andm spatial tasks, we
partition the bipartite graph intog subgroups, each of which
contains⌈m/g⌉ spatial tasks, as well as their connecting work-
ers. Figure 6 presents the pseudo code of our MS-SC problem
decomposition algorithm, namelyMS-SC Decomposition,
which returnsg MS-SC subproblems (each corresponding to
a subgroup with⌈m/g⌉ tasks),Ps, after decomposing the
original MS-SC problem.

Specifically, we first initializeg empty subproblems,Ps,
where 1 ≤ s ≤ g (lines 1-2). Then, we find out all valid
worker-and-task pairs〈wi, tj〉 in the crowdsourcing system at
timestampp, which can can form a bipartite graphG, where
valid pairs satisfy the constraints of skills, times, distances,
and budgets (line 3).

Next, we want to obtain one subproblemPs at a time (lines
4-8). In particular, for each round, we retrieve an anchor task
tj and its top-(⌈m/g⌉−1) nearest tasks, which form a task set
T

(j)
p of size⌈m/g⌉ (line 5). Here, we choose anchor tasks with

a sweeping style, that is, we always choose the task whose
longitude is smallest (in the case where multiple tasks have
the same longitude, we choose the one with smallest latitude).
Then, for each tasktj ∈ T

(j)
p , we obtain its corresponding

vertex inG and all of its connecting worker verticeswi, and
add pairs〈wi, tj〉 to subproblemPs (lines 6-8). Finally, we
return all theg decomposed subproblemsPs.



Procedure MS-SC gD&C {
Input: n workers inWp, andm time-constrained spatial tasks inTp

Output: a worker-and-task assignment instance set,Ip
(1) Ip = ∅
(2) estimate the best number of groups,g, for Wp andTp

(3) invoke MS-SC Decomposition(Wp , Tp, g), and obtain subproblemsPs

(4) for s = 1 to g
(5) if the number of tasks in subproblemPs (group size) is greater than 1
(6) I(s)

p = MS-SC gD&C(Wp(Ps), Tp(Ps))
(7) else
(8) invoke classical greedy set cover algorithm to solve subproblemPs,

and obtain assignment resultsI(s)
p

(9) for i = 1 to g
(10) find the next subproblem,Ps

(11) Ip = MS-SC Conflict Reconcile (Ip, I(s)
p )

(12) returnIp
}

Fig. 7: The g-Divide-and-Conquer Algorithm.

B. Theg-D&C Algorithm
In this subsection, we propose an efficientg-divide-and-

conquer(g-D&C) algorithm, namelyMS-SC gD&C, which
recursively partitions the original MS-SC problem into sub-
problems, solves each subproblem (via recursion), and merges
assignment results of subproblems by resolving the conflicts.

Specifically, in AlgorithmMS-SC gD&C, we first esti-
mate the best number of groups,g, to partition, with respect
to Wp and Tp, which is based on the cost model proposed
later in Section V-D (line 2). Then, we will call theMS-
SC Decomposition algorithm (as mentioned in Figure 6)
to obtain subproblemsPs (line 3). For each subproblemPs,
if Ps involves more than 1 task, then we can recursively
call Algorithm MS-SC gD&C itself, by further dividing the
subproblemPs (lines 5-6). Otherwise, when subproblemPs

contains only one single task, we apply the greedy algorithmof
the classical set cover problem for task setTp(Ps) and worker
setWp(Ps) (lines 7-8).

After that, we can obtain an assignment instance setI
(s)
p for

each subproblemPs, and merge them into one single worker-
and-task assignment instance setIp, by reconciling the conflict
(lines 9-11). In particular,Ip is initially empty (line 1), and
each time merged with an assignment setI

(s)
p from subproblem

Ps (lines 10-11). Due to the confliction among subproblems,
we call functionMS-SC Conflict Reconcile (·, ·) (discussed
later in Section V-C) to resolve the confliction issue duringthe
merging process. Finally, we can return the merged assignment
instance setIp (line 12).

C. Merging Conflict Reconciliation
In this subsection, we introduce the merging conflict

reconciliation procedure, which resolves the conflicts while
merging assignment results of subproblems (i.e., line 11 of
ProcedureMS-SC gD&C). Assume thatIp is the current
assignment instance set we have merged so far. Given a new
subproblemPs with assignment setI(s)p , Figure 8 shows
the merging algorithm, namelyMS-SC Conflict Reconcile,
which combines two assignment setsIp andI(s)p by resolving
conflicts.

In particular, two distinct tasks from two subproblems may
be assigned with the same (conflicting) workerwi. Since each
worker can only be assigned to one spatial task at a time, we
thus need to avoid such a scenario when merging assignment
instance sets of two subproblems (e.g.,Ip and I

(s)
p ). Our

algorithm in Figure 8 first obtain a set,Wc, of all conflicting
workers betweenIp and I

(s)
p (line 1). Then, each time we

greedily solve the conflicts for workerswi in an non-decreasing
order of the traveling cost (i.e.,cij) in I

(s)
p (line 3). Next, in

Procedure MS-SC Conflict Reconcile {
Input: the current assignment instance set,Ip, of subproblemP we have merged,

and the assignment instance set,I(s)
p , of subproblemPs

Output: a merged worker-and-task assignment instance set,Ip
(1) let Wc be a set of all conflicting workers betweenIp andI(s)

p

(2) while Wc 6= ∅

(3) choose a workerwi ∈ Wc with the highest traveling cost inI(s)
p

(4) if we substitutewi with w′

i in Ps having the highest scoreS(s)
p

(5) compute the reduction of the assignment score,∆S(s)
p

(6) if we substitutewi with w′′

i in P having the highest scoreSp

(7) compute the reduction of the assignment score,∆Sp

(8) if ∆Sp > ∆S(s)
p

(9) substitute workerwi with w′

i in I(s)
p

(10) else
(11) substitute workerwi with w′′

i in Ip
(12) Wc = Wc − {wi}

(13) Ip = Ip ∪ I(s)
p

(14) returnIp
}

Fig. 8: The Merging Conflict Reconciliation Algorithm.

order to resolve the conflicts, we try to replace workerwi with
another workerw′

i (or w′′
i ) in Ps (or P ) with the highest score

S
(s)
p (or Sp), and compute possible reduction of the assignment

score,∆S
(s)
p (or ∆Sp) (lines 4-7). Note that, here we replace

workerwi with other available workers. If no other workers are
available for replacingwi, we may need to sacrifice tasktj that
worker wi is assigned to. For example, when we cannot find
another worker to replacewi in Ps, the substitute ofwi will be
set as an empty worker, which means the assigned tasktj for
wi in I

(s)
p will be sacrificed and∆S

(s)
p = B′

j (as calculated

in Equation 2). In the case that∆Sp > ∆S
(s)
p , we substitute

worker wi with w′
i in I

(s)
p (since the replacement ofwi in

subproblemS(s)
p leads to lower score reduction); otherwise, we

resolve conflicts by replacingwi with w′′
i in Ip (lines 8-12).

After resolving all conflicts, we merge assignment instanceset
Ip with I

(s)
p (line 13), and return the merged resultIp.

D. Cost-Model-Based Estimation of the Best Number of
Groups

In this subsection, we discuss how to estimate the best
number of groups,g, such that the total cost of solving the MS-
SC problem ing-divide-and-conquer approach is minimized.
Specifically, the cost of theg-divide-and-conquer approach
consists of 3 parts: the cost,FD, of decomposing subproblems,
that,FC , of conquering subproblems recursively, and that,FM ,
of merging subproblems by resolving conflicts.

Without loss of generality, as illustrated in Figure 9, during
the g-divide-and-conquer process, on levelk, we recursively
divide the original MS-SC problem intogk subproblems,P (k)

1 ,
P

(k)
2 , ..., andP (k)

gk , where each subproblem involvesm/gk

spatial tasks.

Fig. 9: Illustration of the Cost Model Estimation.
The Cost, FD, of Decomposing Subproblems.From Algo-
rithm MS-SC Decomposition (in Figure 6), we first need



to retrieve all valid worker-and-task assignment pairs (line 3),
whose cost isO(m·n). Then, we will divide each problem into
g subproblems, whose cost is given byO(m · g+m) on each
level. For levelk, we havem/gk tasks in each subproblem
P

(k)
i . We will further divide it into g more subproblems,

P
(k+1)
j , and each one will havem/gk+1 tasks. To obtain

m/gk+1 tasks in each subproblemP (k+1)
j , we first need

to find the anchor task, which needsO(m/gk) cost, and
further retrieve the rest tasks, which needsO(m/gk+1) cost.
Moreover, since we will havegk+1 subproblems on level
k + 1, the cost of decomposing tasks on levelk is given by
O(m · g +m).

Since there are totallylogg(m) levels, the total cost of
decomposing the MS-SC problem is given by:

FD = m · n+ (m · g +m) · logg(m).

The Cost,FC , of Recursively Conquering Subproblems.Let
functionFC(x) be the total cost of conquering a subproblem
which containsx spatial tasks. Then, we have the following
recursive function:

FC(m) = g · FC(

⌈
m

g

⌉
).

Assume thatdegt is the average degree of task nodes in
the bipartite groupG. Then, the base case of functionFC(x)
is the case thatx = 1, in which we apply the greedy algorithm
on just one single task anddegt workers. Thus, by the analysis
of the time complexity in Section IV-C, we have:

FC(1) = costgreedy(degt, 1) = deg2t .

From the recursive functionFC(x) and its base case, we
can obtain the total cost of the recursive invocation on levels
from 1 to logg(m) below:

logg(m)∑

k=1

Fc(m/gk) =
1−m

1− g
deg2t

The Cost,FM , of Merging Subproblems.Next, we provide
the cost,FM , of merging subproblems by resolving conflicts.
Assume that we havens workers who could be assigned to
more than one spatial task (i.e., conflicting workers). Moreover,
each worker node has an average degreedegw in the bipartite
graph. During the subproblem merging processing, we can
estimate the worst-case cost of resolving conflicts for these
ns workers, and we may resolve conflicts for each worker at
most (degw − 1) times.

Therefore, the worst-case cost of merging subproblems can
be given by:

FM = ns · (degw − 1).

The Total Cost of the g-D&C Approach. The total cost,
costgD&C , of theg-D&C algorithm can be given by summing
up three costs,FD, FC , andFM . That is, we have

costgD&C = FD +

logg(m)∑

k=1

Fc(m/gk) + FM (4)

= (mg +m) logg(m) +
1−m

1− g
deg2t + ns(degw − 1)

We take the derivation ofcostgD&C (given in Eq. (4)) over
g, and let it be 0. In particular, we have:

∂costgD&C

∂g

=
m log(m)(g log(g)− g − 1)

g log(2g)
+

1−m

(1− g)2
deg2t = 0 (5)

We notice that wheng = 2, ∂costgD&C

∂g is much smaller
than 0 but increases quickly wheng grows. In addition,g can
only be an integer. Then we can try the integers, (2, 3, 4... ),
until ∂costgD&C

∂g is above 0.

VI. T HE COST-MODEL-BASED ADAPTIVE ALGORITHM
In this section, we introduce acost-model-based adaptive

approach, which adaptively decides the strategies to apply
our proposed greedy andg-divide-and-conquer (g-D&C) al-
gorithms. The basic idea is as follows. Unlike theg-D&C
algorithm, we do not divide the MS-SC problem into sub-
problems recursively until task group sizes become1 (which
can be solved by the greedy algorithm of set cover problems).
Instead, based on our proposed cost model, we will partition
the problem into subproblems, and adaptively determine when
to stop in some partitioning round (i.e., the total cost of solving
subproblems with the greedy algorithm is smaller than that of
continuing dividing subproblems).

Procedure MS-SC Adaptive {
Input: n workers inWp, andm time-constrained spatial tasks inTp

Output: a worker-and-task assignment instance set,Ip
(1) Ip = ∅
(2) estimate the cost,costgreedy , of the greedy algorithm
(3) estimate the best number of groups,g, and obtain the cost,costgdc,

of the g-D&C approach
(4) if costgreedy < costgdc
(5) Ip = MS-SC Greedy(Wp , Tp)
(6) else // g-D&C algorithm
(7) invokeMS-SC Decomposition(Wp , Tp, g), and obtain subproblemsPs

(8) for each subproblem,Ps,
(9) I(s)

p = MS-SC Adaptive(Wp(Ps), Tp(Ps))
(10) for i = 1 to g
(11) find the next subproblem,Ps

(12) Ip = MS-SC Conflict Reconcile (Ip , I(s)
p )

(13) returnIp
}

Fig. 10: The MS-SC Cost-Model-Based Adaptive Algorithm.

A. Algorithm of the Cost-Model-Based Adaptive Approach
Figure 10 shows the pseudo-code of our cost-model-based

adaptive algorithm, namelyMS-SC Adaptive. Initially, we
estimate the cost,costgreedy , of applying the greedy approach
over worker/task setsWp andTp (line 2). Similarly, we also
estimate the best group size,g, and compute the cost,costgd&c

of using theg-D&C algorithm (line 3). If it holds that the cost
of the greedy algorithm is smaller than that of theg-D&C
approach (i.e.,costgreedy < costgdc), then we will use the
greedy algorithm by invoking functionMS-SC Greedy(·, ·)
(due to its lower cost; lines 4-5). Otherwise, we will apply
the g-D&C algorithm, and further partition the problem into
subproblemsPs (lines 6-7). Then, for each subproblemPs, we
recursively call the cost-model-based adaptive algorithm, and
retrieve the assignment instance setI

(s)
p (line 9). After that, we

merge all the assignment instance sets from subproblems by
invoking functionMS-SC Conflict Reconcile(·, ·) (lines 10-
12). Finally, we return the worker-and-task assignment instance
set Ip (line 13).

B. Cost Model for the Stoping Condition
Next, we discuss how to determine the stopping level, when

using our cost-model-based adaptive approach to recursively
solve the MS-SC problem. Intuitively, at the current level
k, we need to estimate the costs,costgreedy and costgdc, of
using greedy andg-D&C algorithms, respectively, to solve the
remaining MS-SC problem. If the greedy algorithm has lower
cost, then we will stop the divide-and-conquer, and apply the
greedy algorithm for each subproblems.



In the sequel, we discuss how to obtain the formulae of
costscostgreedy andcostgdc.

The Cost,costgreedy, of the Greedy Algorithm.Given a
set, Wp, of n workers and a set,Tp, of m tasks, the cost,
costgreedy , of our greedy approach (as given in Figure 3) has
been discussed in Section IV-C.

In the bipartite graph of valid worker-and-task pairs, denote
the average degree of workers asdegw, and that of tasks as
degt. In Figure 3, the computation of valid worker-and-task
pairs in line 2 needsO(m · n) cost. Since there are at mostn
iterations, for each round (lines 3-16), we apply two worker-
pruning methods to at most(2m · degt) pairs, and select pairs
with the highest score increases, which needO(3m · n · degt)
cost in total. For the cost of task-pruning, there are totally
n rounds (lines 3-16; i.e., removing one out ofn workers
in each round in line 16). In each round, there are at most
degw out of m tasks (line 5) that may be potentially pruned
by Lemma 4 (line10). To check each ofdegw tasks, we need
O(degt) cost. Therefore, the total cost of task-pruning is given
by O(n · degt · degw). If we cannot prune a task that was
assigned with a worker in the last round (lines 3-16), then we
need to update score increases ofdegt workers for that task.
Each task will be assigned with workers fordegt times. Thus,
the total update cost for one task is given byO(deg2t ) (line
12). Therefore,costgreedy(n,m) can be given by:

costgreedy(n,m)

= Cgreedy · (m · n+ n · degt · (3m+ degw) +m · deg2t ), (6)

where parameterCgreedy is a constant factor, which can be
inferred from cost statistics of the greedy algorithm.

The Cost,costgdc, of theg-D&C Algorithm. Assume that
the currentg-divide-and-conquer level isk. We can modify the
cost analysis in Section V-D, by considering the cost,costgdc,
of the remaining divide-and-conquer levels. Specifically,we
have the cost,F ′

D, of the decomposition algorithm, that is:
F ′
D = m · n+ (m · g +m) · k.

Moreover, when the current level isk, the cost of conquer-
ing the remaining subproblems is given by:

logg(m)∑

i=k

Fc(m/gi).

Finally, the cost of merging subproblems is given byFM .
As a result, the total cost,costgdc, of solving the MS-

SC problem with ourg-D&C approach for the remaining
partitioning levels (from levelk to logg(m)) can be given by:

costgdc = Cgdc · (F
′
D +

logg(m)∑

i=k

Fc(m/gi) + FM ),

where parameterCgdc is a constant factor, which can be
inferred from time cost statistics of theg-D&C algorithm.

This way, we comparecostgreedy with costgdc (as men-
tioned in line 4 ofMS-SC Adaptive Algorithm). If costgreedy
is smaller thancostgdc, we stop at the current levelk, and
apply the greedy algorithm to tackle the MS-SC problem
directly; otherwise, we keep dividing the original MS-SC
problem into subproblems (i.e.,g-D&C).

VII. E XPERIMENTAL STUDY
A. Experimental Methodology
Data Sets.We use both real and synthetic data to test our
proposed MS-SC approaches. Specifically, for real data, we
use Meetup data set from [18], which was crawled from
meetup.combetween Oct. 2011 and Jan. 2012. There are

5,153,886 users, 5,183,840 events, and 97,587 groups in
Meetup, where each user is associated with a location and
a set of tags, each group is associated with a set of tags,
and each event is associated with a location and a group who
created the event. For an event, we use the tags of the group
who creates the event as its tags. To conduct the experiments
on our approaches, we use the locations and tags of users in
Meetup to initialize the locations and the practiced skillsof
workers in our MS-SC problem. In addition, we utilize the
locations and tags of events to initialize the locations andthe
required skills of tasks in our experiments. Since workers are
unlikely to move between two distant cities to conduct one
spatial task, and the constraints of time (i.e.,ej), budget (i.e.,
Bj) and distance (i.e.,di) also prevent workers from moving
too far, we only consider those user-and-event pairs located in
the same city. Specifically, we select one famous and popular
city, Hong Kong, and extract Meetup records from the area
of Hong Kong (with latitude from22.209◦ to 113.843◦ and
longitude from22.609◦ to 114.283◦), in which we obtain 1,282
tasks and 3,525 workers.

For synthetic data, we generate locations of workers and
tasks in a 2D data space[0, 1]2, following either Uniform
(UNIFORM) or Skewed (SKEWED) distribution. For Uni-
form distribution, we uniformly generate the locations of
tasks/workers in the 2D data space. Similarly, we also generate
tasks/workers with the Skewed distribution by locating 90%of
them into a Gaussian cluster (centered at (0.5, 0.5) with vari-
ance =0.22), and distribute the rest workers/tasks uniformly.
Then, for skills of each worker, we randomly associate one
user in Meetup data set to this worker, and use tags of the
user as his/her skills in our MS-SC system. For the required
skills of each task, we randomly select an event, and use its
tags as the required skills of the task.

For both real and synthetic data sets, we simulate the
velocity of each worker with Gaussian distribution within
range [v−, v+], for v−, v+ ∈ (0, 1). For the unit price,Ci,
w.r.t. the traveling distance of each worker, we generate it
following the Uniform distribution within the range[C−, C+].
Furthermore, we produce the maximum moving distance of
each worker, following the Uniform distribution within the
range[d−, d+] (for d−, d+ ∈ (0, 1)). For temporal constraints
of tasks, we also generate the arrival deadlines of tasks,e,
within range[rt−, rt+] with Gaussian distribution. Finally, we
set the budgets of tasks with Gaussian distribution within the
range[B−, B+]. Here, for Gaussian distributions, we linearly
map data samples within[−1, 1] of a Gaussian distribution
N (0, 0.22) to the target ranges.
MS-SC Approaches and Measures.We conduct experi-
ments to compare our three approaches, GREEDY,g-D&C
and ADAPTIVE, with a random method, namely RANDOM,
which randomly assigns workers to tasks.

In particular, GREEDY selects a “best” worker-and-task
assignment with the highest score increase each time, which
is a local optimal approach. Theg-D&C algorithm keeps
dividing the problem intog subproblems on each level, until
finally the number of tasks in each subproblem is 1 (which
can be solved by the greedy algorithm on each one-task
subproblem). Here, the parameterg can be estimated by a cost
model to minimize the computing cost. The cost-model-base
adaptive algorithm (ADAPTIVE) makes the trade-off between
GREEDY andg-D&C, in terms of efficiency and accuracy,
which adaptively decides the stopping level of the divide-and-



TABLE IV: Experiments Settings.

Parameters Values

the number of tasksm 1K, 2K, 5K, 8K, 10K
the number of workersn 1K, 2K, 5K, 8K, 10K
the task budget range[B−, B+] [1, 5], [5, 10], [10, 15], [15, 20], [20, 25]
the velocity range[v−, v+] [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]
the unit price w.r.t. distance[C−, C+] [10, 20], [20, 30], [30, 40], [40, 50]
the moving distance range[d−, d+] [0.1, 0.2], [0.2, 0.3],[0.3, 0.4], [0.4, 0.5]
the expiration time range[rt−, rt+] [0.25, 0.5], [0.5, 1],[1, 2], [2, 3], [3, 4]

conquer. To evaluate our three proposed approaches, we need
to compare the results with ground truth. However, as proved
in Section II-D, the MS-SC problem is NP-hard, and thus
infeasible to calculate the real optimal result as the ground
truth. Alternatively, we will compare the effectiveness ofour
three approaches with that of a random (RANDOM) method,
which randomly chooses a task then randomly assigns worker
to the task. For each MS-SC instance, we run RANDOM for
10 times, and report the result with the highest score.

Table IV depicts our experimental settings, where the
default values of parameters are in bold font. In each set
of experiments, we vary one parameter, while setting other
parameters to their default values. For each experiment, we
report the running time and the assignment score of our tested
approaches. All our experiments were run on an Intel Xeon
X5675 CPU @3.07 GHZ with 32 GB RAM in Java.

B. Experiments on Real Data
In this subsection, we show the effects of the range of task

budgets[B−, B+], the range of workers’ velocities[v−, v+],
and the range of unit prices w.r.t. distance[C−, C+].
Effect of the Range of Task Budgets[B−, B+]. Figure
11 illustrates the experimental results on different ranges,
[B−, B+], of task budgetsBj from [1, 5] to [20, 25]. In
Figure 11(a), the assignment scores of all the four approaches
increase, when the value range of task budgets gets larger.
When the average budgets of tasks increase, the flexible budget
B′ of each task will also increase.g-D&C and ADAPTIVE can
achieve higher score than GREEDY. In contrast, RANDOM
has the lowest score, which shows that our proposed three
approaches are more effective. As shown in Figure 11(b),
the running times of our three approaches increase, when the
range of task budgets becomes larger. The reason is that, when
Bj ∈ [B−, B+] increases, each task has more valid workers,
which thus leads to higher complexity of the MS-SC problem
and the increase of the running time. The RANDOM approach
is the fastest (however, with the lowest assignment score),since
it does not even need to find local optimal assignment. The
ADAPTIVE algorithm achieves much lower running time than
g-D&C (a bit higher time cost than GREEDY), but has compa-
rable score withg-D&C (much higher score than GREEDY),
which shows the good performance of ADAPTIVE, compared
with GREEDY andg-D&C.
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Fig. 11:Effect of the Range of Task Budgets[B−, B+] (Real Data).

Effect of the Workers’ Velocity Range [v−, v+]. Figure 12
reports the effect of the range of velocities,[v−, v+], of work-

ers over real data. As shown in Figure 12(a), when the range
of velocities increases from[0.1, 0.2] to [0.2, 0.3], the scores of
all the approaches first increase; then, they stop growing for
the velocity range varying from [0.2, 0.3] to [0.4, 0.5]. The
reason is that, at the beginning, with the increase of velocities,
workers can reach more tasks before their arrival deadlines.
Nevertheless, workers are also constrained by their maximum
moving distances, which prevents them from reaching more
tasks. ADAPTIVE can achieve a bit higher scores thang-D&C,
and much better assignment scores than GREEDY.

In Figure 12(b), when the range of velocity[v−, v+]
increases, the running times of our tested approaches also
increase, due to the cost of more valid worker-and-task pairs
to be handled. Similar to previous results, RANDOM is the
fastest, andg-D&C is the slowest. ADAPTIVE requires about
0.5-1.5 seconds, and has lower time cost thang-D&C, which
shows the efficiency of our proposed approaches.
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Fig. 12: Effect of the Range of Velocities[v−, v+] (Real Data).

Effect of the Range of Unit Prices w.r.t. Traveling Dis-
tance [C−, C+]. In Figure 13(a), when the unit prices w.r.t.
traveling distanceCi ∈ [C−, C+] increase, the scores of
all the approaches decrease. The reason is that, when the
range of unit prices[C−, C+] increases, we need to pay more
wages containing the traveling costs of workers (to do spatial
tasks), which in turn decreases the flexible budget of each
task. However, ADAPTIVE can still achieve the highest score
among all four approaches; scores ofg-D&C are close to the
scores of ADAPTIVE and higher than GREEDY.

In Figure 13(b), when the range of unit prices,[C−, C+],
of the traveling cost increases, the number of valid worker-
and-task pairs decreases, and thus the running time of all the
approaches also decreases. Our ADAPTIVE algorithm is faster
thang-D&C, and slower than GREEDY.
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Fig. 13:Effect of the Range of Unit Prices w.r.t. Traveling Distance
[C−, C+] (Real Data).

In addition, we also tested the effects of the range,[d−, d+],
of maximum moving distances for workers, and the expiration
time range,[rt−, rt+], of tasks over the real data set, Meetup.
Due to space limitations, please refer to experimental results
with respect to other parameters (e.g.,[d−, d+] and[rt−, rt+])
in Appendix F.

From experimental results on the real data above, ADAP-
TIVE can achieve higher scores than Greedy andg-D&C, and



it is faster thang-D&C and slower than GREEDY. Although
g-D&C can achieve good scores close to ADAPTIVE, it is the
slowest among all the 4 approaches.

C. Experiments on Synthetic Data
In this subsection, we test the effectiveness and robust-

ness of our three MS-SC approaches, GREEDY,g-D&C,
and ADAPTIVE, compared with RANDOM, by varying pa-
rameters (e.g., the number of tasksm and the number of
workersn) on synthetic data sets. Due to space limitations,
we present the experimental results for tasks/workers with
Uniform distributions. For similar results with tasks/workers
following skewed distributions, please refer to Appendix G.
Effect of the Number of Tasksm. Figure 14 illustrates the
effect of the number,m, of spatial tasks, by varyingm from
1K to 10K, over synthetic data sets, where other parameters
are set to default values. For assignment scores in Figure 14(a),
g-D&C obtains results with the highest scores among all the
four approaches. ADAPTIVE performs similar tog-D&C, and
achieves good results similar tog-D&C. GREEDY is not as
good asg-D&C and ADAPTIVE, but is still much better than
RANDOM. When the number,m, of spatial tasks becomes
larger, all our approaches can achieve higher scores.

In Figure 14(b), whenm increases, the running time also
increases. This is because, we need to deal with more worker-
and-task assignment pairs for largem. The ADAPTIVE al-
gorithm is slower than GREEDY, and faster thang-D&C. In
addition, we find that the running time of GREEDY performs,
with the same trend as that estimated in our cost model (as
given in Eq. (6)).
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Fig. 14: Effect of the Number of Tasksm (Synthetic Data).
Effect of the Number of Workers n. Figure 15 shows the
experimental results with different numbers of workers,n,
from 1K to 10K over synthetic data, where other parameters
are set to their default values. Similar to previous resultsabout
the effect ofm, in Figure 15(a), our proposed three approaches
can obtain good results with high assignment scores, compared
with RANDOM. Moreover, when the number,n, of workers
increases, the scores of all our approaches also increase. The
reason is that, whenn increases, we have more potential
workers, who can be assigned to nearby tasks, which may
lead to even larger scores.

In Figure 15(b), the running time of our approaches in-
creases, with the increase of the number of workers . This is
due to higher cost to process more workers (i.e., largern).
Similarly, ADAPTIVE has higher time cost than GREEDY,
and lower time cost thang-D&C.

In summary, over synthetic data sets, our ADAPTIVE
algorithm trades the accuracy for efficiency, and thus has the
trade-off of scores/times between GREEDY andg-D&C.

VIII. R ELATED WORK
Recently, with the popularity of GPS-equipped smart de-

vices and wireless networks (e.g., Wi-Fi and 4G), the spa-
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Fig. 15: Effect of the Number of Workersn (Synthetic Data).

tial crowdsourcing [12], [16] that performs location-based
tasks has emerged and become increasingly important in both
academia and industry. In this section, we review the related
work on spatial crowdsourcing, as well as the set cover
problem (and its variants).
Spatial Crowdsourcing. Prior works on crowdsourcing [5],
[7] usually studied crowdsourcing problems, which treat the
location information as a parameter and distribute tasks to
workers. In these problems, workers are not required to ac-
complish tasks on sites.

In contrast, the spatial crowdsourcing platform [16] re-
quires workers to physically move to some specific locations
of tasks, and perform the requested services, such as taking
photos/videos, waiting in line at shopping malls, and deco-
rating a room. As an example, some previous works [11],
[14] studied the small-scale or specified campaigns benefiting
from participatory sensingtechniques, which utilize smart
devices (equipped by workers) to sense/collect data for real
applications.

Kazemi and Shahabi [16] classified the spatial crowdsourc-
ing systems from two perspectives: people’s motivation and
publishing models. From the perspective of people’s motiva-
tion, the spatial crowdsourcing can be categorized into two
groups: reward-based, in which workers can receive rewards
according to the services they supplied, and self-incentivised,
in which workers conduct tasks voluntarily. In our work, we
study our MS-SC problem based on the reward-based model,
where workers are paid for doing tasks. However, with a
different goal, our MS-SC problem targets at assigning workers
to tasks by using our proposed algorithms, such that the
required skills of tasks can be covered, and the total reward
budget (i.e., flexible budgetB′

j in Eq. (2)) can be maximized.
Note that, we can embed incentive mechanisms from existing
works [20], [24] into our MS-SC framework to distribute
rewards (flexible budgets) among workers, which is however
not the focus of our problem.

According to the publishing modes of spatial tasks, the
spatial crowdsourcing can be also classified into two cate-
gories:worker selected tasks(WST) andserver assigned tasks
(SAT) [16]. In particular, for the WST mode, spatial tasks
are broadcast to all workers, and workers can select any tasks
by themselves. In contrast, for the SAT mode, the spatial
crowdsourcing server will directly assign tasks to workers,
based on location information of tasks/workers.

Some prior works [5], [12] on the WST mode allowed
workers to select available tasks, based on their personal
preferences. However, for the SAT mode, previous works
focused on assigning available workers to tasks in the system,
such that the number of assigned tasks on the server side [16],
the number of worker’s self-selected tasks on the client side
[12], or the reliability-and-diversity score of assignments [10]



is maximized. For example, Peng et al. [10] aims to obtain a
worker-and-task assignment strategy such that the assignment
score (w.r.t. spatial/temporal diversity and reliabilityof tasks)
is maximized.

In contrast, our MS-SC problem has a different, yet more
general, goal, which maximizes the total assignment score (i.e.,
flexible budget, given by the total budget of the completed
tasks minus the total traveling cost of workers). Most impor-
tantly, in our MS-SC problem, we need to consider several
constraints, such as skill-covering, budget, time, and distance
constraints. That is, the required skill sets of spatial tasks
should be fully covered by skills of those assigned workers,
which is NP-hard and intractable. Thus, previous techniques
[10], [12], [16] on different spatial crowdsourcing problems
cannot be directly applied to our MS-SC problem.

Some research communities studied the theory of SAT
problems and developed some SAT (Satisfiability) solvers.
However, standard SAT solvers can only solve decision prob-
lems (i.e., NP-complete problems), but not optimization prob-
lems (i.e., NP-hard problems, like our MS-SC problem). Thus,
we need to design specific heuristic algorithms for tacklingthe
MS-SC problem.

Moreover, some previous works [19], [22] utilizeddifferen-
tial privacy techniques [13] to protect the location information,
which is used to do the assignment, but may release some
sensitive location/trajectory data (leading to maliciousattacks).
Nevertheless, this privacy issue is out of the scope of this paper.
Set Cover Problem.As mentioned in Lemma 1, theset cover
problem(SCP) is a classical NP-hard problem, which targets at
choosing a set of subsets to cover a universe set, such that the
number of the selected subsets is minimized. SCP is actually
a special case of our MS-SC problem, in which there exists
only one spatial task. However, in most situations, we have
more than one spatial task in the spatial crowdsourcing system,
which is more complex, and thus more challenging, to tackle.

A direct variant of SCP is theweighted set cover problem,
which associates each subset with a weight. The well-known
greedy algorithm [23] can achieve an approximation ratio of
ln(N)(≈ H(N) hereH(N) =

∑N
i=1 1/i), whereN is the

size of the universe set. Other SCP variants, such as theset
multicover problem(SMC) andmultiset multicover problem
(MSMC), focused on covering each element of the universe set
for at least specified times using sets (in SMC, each element
in subsets has just one copy) or multisets (in MSMC, each
element in subsets has a specified number of copies). Sun and
Li [21] studiedset cover games problem, which covers multiple
sets. However, they focused on designing a good mechanism
to enable each single task to obtain a local optimal result. In
contrast, our work aims to obtain a global optimal solution to
maximize the score of assignment.

Different from SCP and its variants that cover only one
universe set, our MS-SC problem is targeting to cover multiple
sets, such that the assignment score is maximized. Further-
more, our MS-SC problem is also constrained by budget, time,
and distance, which is much more challenging than SCP. To the
best of our knowledge, no prior works on SCP (and its variants)
have studied the MS-SC problem, and existing techniques
cannot be used directly to tackle the MS-SC problem.

IX. CONCLUSION
In this paper, we propose the problem of themulti-skill

oriented spatial crowdsourcing(MS-SC), which assigns the

time-constrained and multi-skill-required spatial taskswith
dynamically moving workers, such that the required skills of
tasks can be covered by skills of workers and the assignment
score is maximized. We prove that the processing of the MS-
SC problem is NP-hard, and thus we propose three approxi-
mation approaches (i.e., greedy,g-D&C, and cost-model-based
adaptive algorithms), which can efficiently retrieve MS-SC
answers. Extensive experiments have shown the efficiency and
effectiveness of our proposed MS-SC approaches on both real
and synthetic data sets.
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APPENDIX
A. Proof of Lemma 1

Proof: We prove the lemma by a reduction from the set
cover problem (SCP). A set cover problem can be described
as follows: Given a universe setU = {a1, a2, ..., an} and
m subsetsZ1, Z2, ..., Zm ⊆ U . For each subsetZi, it is
associated with a costci. The set cover problem is to find
a setK ⊆ {1, 2, ...,m} that minimizes

∑
i∈K ci, such that

∪i∈KZi = U .
For a given set cover problem, we can transform it to an

instance of MS-SC as follows: at timestampp, we give only
one tasktj with required skills setYj ⊆ Ψ andYj = U , whose
budget value,Bj =

∑
wi∈W cij , is big enough to hire workers

to satisfy the required skills. In addition, the arrival deadline of
the task is late enough for any worker to arrive in time. Form
workers, each workerwi has a skills setXi, such thatXi =
Zi, and a costcij = ci. In addition, the maximum moving
distancedi is larger thandist(li(p), lj). Then, for this MS-
SC instance, we want to selectK ′ ⊆ {1, 2, ...,m} workers to
support tasktj that maximizes the score,Sp = Bj−

∑
i∈K′ cij

andYj ⊆ ∪i∈K′Xi.
The answer of this MS-SC is:

maximize

(
Bj −

∑

i∈I′

cij

)

=⇒ minimize
∑

i∈K′

cij =⇒ minimize
∑

i∈K

ci

As Bj is a constant, to maximize the scoreSp is same as
to minimize the total cost,

∑
i∈K′ cij , of the assigned workers,

which is identical to
∑

i∈K ci. Given this mapping it is easy
to show that the set cover problem instance can be solved if
and only if the transformed MS-SC problem can be solved.

This way, we can reduce SCP to the MS-SC problem. Since
SCP is known to be NP-hard [23], MS-SC is also NP-hard,
which completes our proof.

B. Proof of Lemma 2
Proof: We want to prove that, if workerwa is assigned

to task tj , then any skillka ∈ Xa ∩ Yj can be also covered
by workerwb. From the lemma assumption, since workerwa

is dominated bywb, we haveXa ⊆ Xb and caj ≥ cbj . Thus,

from the condition thatXa ⊆ Xb, we have |Xa∩(Yj−Ỹj)|
|Yj |

≤
|Xb∩(Yj−Ỹj)|

|Yj|
. Moreover, sincecaj ≥ cbj , from Eq. (3), we

have∆Sp(wa) ≤ ∆Sp(wb). Therefore, workerwa is not better
than workerwb, in terms of the score increase. Hence, we can
safely prune the worker-and-task pair〈wa, tj〉.

C. Proof of Lemma 3
Proof: From Definition 4, we have the budget constraint

that
∑

∀〈wi,tj〉∈Ip
cij ≤ Bj . From the lemma assumption, if it

holds thatcij > Bj− c̃·j, then we havecij+ c̃·j) > Bj , which
violates the constraint that the total traveling cost should not
exceed the maximum budgetBj. Thus, we should not assign
workerwi to tasktj .

Due to the non-increasing property of the remaining budget
(Bj − c̃·j), for the rest of assignment rounds, we still cannot
assign workerwi to tj (since the task cannot afford the
traveling cost of the workerwi). Hence, we can safely prune
workerwi.

D. Proof of Lemma 4
Proof: Since the traveling cost,cij , of workerwi is greater

than the remaining budget,(Bj − c̃·j), according to Lemma 3,
workerwi should not be assigned to tasktj .

Therefore, we only need to prove that, for any set of the

remaining unassigned workerswr ∈ (W (tj) − W̃ (tj)) who
can cover the required skill setYj , their total traveling cost is
always greater than the remaining budget(Bj − c̃·j).

Without loss of generality, assume that we have a subset,

R, of unassigned workers,wr, in (W (tj)−W̃ (tj)) that can be
assigned to tasktj , and cover the skill setYj (note: if such a
subset does not exist, then tasktj cannot be fully covered by
workers’ skills and can be safely pruned). Then, we have the
relationship of skill sets between workerwi (with the highest

∆Sp

|Xi∩(Yj−Ỹj)|
value) and workerswr below:

(Xi ∩ (Yj − Ỹj)) ⊆ ∪∀wr∈R(Xr ∩ (Yj − Ỹj)).
Alternative, we can derive the relationship of their set sizes,

that is:

|Xi ∩ (Yj − Ỹj)| ≤ | ∪∀wr∈R (Xr ∩ (Yj − Ỹj))|

≤
∑

∀wr∈R

|Xr ∩ (Yj − Ỹj)|. (7)

On the other hand, according to Eq. (3) and our
lemma assumption (i.e., workerwi has the largest value of

∆Sp

|Xi∩(Yj−Ỹj)|
), for any workerwr ∈ R, we have the following

relationship betweenwi andwr:

∆Sp(wi, tj)

|Xi ∩ (Yj − Ỹj)|
≥

∆Sp(wr , tj)

|Xr ∩ (Yj − Ỹj)|

⇔
Bj

|Yj |
−

cij

|Xi ∩ (Yj − Ỹj)|
≥

Bj

|Yj |
−

crj

|Xr ∩ (Yj − Ỹj)|

⇔ crj ≥ cij ·
|Xr ∩ (Yj − Ỹj)|

|Xi ∩ (Yj − Ỹj)|

As a result, the total traveling cost for allwr ∈ R has the
property below:

∑

∀wr∈R

crj ≥ cij ·

∑
∀wr∈R |Xr ∩ (Yj − Ỹj)|

|Xi ∩ (Yj − Ỹj)|
. (8)

By combining Eq. (7) with Eq. (8), we can apply the
inequality transition, and obtain:

∑

∀wr∈R

crj ≥ cij . (9)

Since it holds thatcij > Bj−c̃·j by the lemma assumption,
we thus have:

∑

∀wr∈R

crj > Bj − c̃·j, (10)

which exactly indicates that any subset,R, of those unassigned
workers has the total traveling cost exceeding the remaining
budget. Hence, we can safely prune tasktj , and the lemma
holds.



E. MS-SC Grid Index
In order to facilitate the processing of the MS-SC problem,

we present an efficient cost-model-based indexing mechanism,
which can maintain workers and tasks and help the retrieval
of MS-SC answers.
Index Structure. We first introduce the index structure,
namely MS-SC-Grid, for the MS-SC system. In particular,
we divide a 2-dimensional data space,[0, 1]2, into 1/τ2 square
cells with side lengthτ , whereτ < 1. Similar to the cost model
of the grid index in [10], by utilizing the power law [6] for the
correlation fractal dimensionD2 of the tasks and workers in
the 2D data space, we can construct a cost model of updating
the grid index after insert or delete a worker with respect to
the side lengthτ . Then we can estimate the best value forτ
to minimize the update cost.

Below, we will illustrate the content of each cell,celli, in
the grid index, which includes worker/task lists, statistics of
workers/tasks, and a cell list.
Worker and Task Lists in Cells. Within the grid index, each
cell, celli, has a unique ID,cid, and is associated with two
lists, which store sets of tasks and workers, respectively,that
reside in the cell. In the worker list, we maintain records, in
the form of sextuple:

〈wid, l, C, d, v,X〉,

where wid is the worker ID, l, C, d, and v represent the
location, constant related to the traveling cost of the distance,
maximum moving distance, and velocity of the worker, respec-
tively, andX is a set of skills that the worker has.

In the task list, we keep records in the form:

〈tid, l, e, B, Y 〉,

wheretid is the task ID,l is the location of the task,e denotes
the arrival deadline of the task,B represents the budget of the
task, andY is the set of skills required by the task.
Statistics/Aggregates in Cells.For each cellcelli, we main-
tain statistics/aggregates for workers and tasks in it, including:
• the minimum constant for the traveling costC

(i)
min;

• the largest maximum moving distanced(i)max;
• the maximum velocity,v(i)max, for all workers in the cell;
• the latest arrival deadlinee(i)max;
• the maximum budget,B(i)

max, for all tasks in the cell;
• the union,X(i)

cell, of sets of workers’ skills; and
• the union,Y (i)

cell, of sets of the required skills by tasks in
the cell.

Synopses for Skill Sets.In order to time- and space-
efficiently organize/manipulate the sets of skills for work-
ers and tasks (i.e.,X(i)

cell and Y
(i)
cell above, respectively), an

alternative is to maintain two bitmap synopses,BMX and
BMY , in which each bit corresponds to a skill. That is, for
any skill in the skill setX(i)

cell (or Y
(i)
cell), its corresponding

bit in bitmapBMX (or BMY ) is set to “1”; the remaining
bits in BMX (or BMY ) are set to “0”. This way, we can
apply bit operations (e.g., bit-AND or bit-OR) between any
two synopses, and check the relationship (e.g., containment or
intersection) between their corresponding skill sets.
Cell List. Furthermore, each cellcelli is also associated with
a cell list, clist(i), which contains all the cell IDs that can be
reachable to at least one worker in cellcelli.
Pruning Strategy on the Cell Level.When calculate the valid
worker-and-task pairs for workerwi in our approaches, we

can use the grid index to accelerate the searching time by just
checking the cells in theclist(j) of the cellcellj and the cell
cellj itself, where workerwi locates in cellcellj. However,
we do not need to check all the tasks in the cells inclist(j).
We propose 4 pruning strategies to further reduce the search
space.

Assuming we are searching the valid worker-and-task pairs
for workerwi located in cellcellj, we now show how to prune
a cell cellk in clist(j) before further checking all the tasks
in cellk. We first calculate the minimum distanceMINDk

between the locationli of workerwi and any points incellk.
Then we have 4 pruning strategies.
• If di < MINDk, all the tasks incellk are out of the

working range of workerwi, that is, workerwi will not
accept any task incellk;

• If MINDk/vi > e
(i)
max, worker cannot arrive any task in

cellk before the arrival deadline of that task;
• If MINDkCi > B

(k)
max, no task incellk can afford the

traveling cost of workerwi;
• If Xi ∩Y

(k)
cell = ∅, workerwi cannot support any skills of

any task incellk.
If any one strategy is met, we can safely prune cellcellk.

After pruning those unreachable or unsupportable cells, we
further check the rest cells one by one to construct the valid
worker-and-task pairs for workerwi.
Dynamic Index Maintenance. Since workers/tasks can join
and leave the spatial crowdsourcing system, our grid index
should be efficient for handling worker/task updates. Specifi-
cally, for each incoming/expired worker/task, we update con-
tents of cells that workers/tasks fall into, as well as the cell list.
Due to space limitations, we will not discuss insertion/detetion
of workers/tasks in detail.
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Fig. 16: Worker-and-Task Pairs Retieval Time

Figure 16 presents theindex retrieval time(i.e., the time
cost of retrieving valid worker-and-task pairs) over UNIFORM
data, wheren = 5m and m varies from 500 to 10K. The
MS-SC grid index can reduce the time of obtaining worker-
and-task pairs dramatically (up to 79%), compared with the
running time of directly enumerating and checking all possible
worker-and-task pairs.

F. Effects of Moving Distance and Expiration Times
In this subsection, we show the effects of the range of

maximum moving distances of workers,d, and the range of
the expiration time of tasks,rt.
Effect of Range of Workers’ Maximum Moving Distances
d. Figure 17 shows the effect of the range[d−, d+] of worker’s
maximum moving distances on the scores of assignments



and the running times, where we vary the range ofd from
[0.1, 0.2] to [0.4, 0.5]. In Figure 17(a), all the 3 approaches can
achieve good scores of assignment. They still has a comparison
sequence on the score of the results: the score of the results
obtained by ADAPTIVE is highest among other approaches in
our experiments. Then,g-D&C can also get a higher score of
assignment than GREEDY. Similar to the discuss of the effect
of the velocities of workers, the increase ofd enlarges the
access range of workers at the beginning. However, when the
constraint ofd is relaxed, the constraints from other parameters
prevent the scores keeping growing.

For the running times, Adaptive is faster thang-D&C,
but slower than Greedy. Random runs fastest, however, least
effectively.
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Fig. 17: Effect of Range of Maximum Moving Distances[d−, d+]
(Real Data).
Effect of Range of Expiration Times of Tasksrt. Figure 18
shows the effect of the range[rt−, rt+] of tasks’ expiration
times on the scores of assignments and the running times,
where we vary the range ofrt from [0.25, 0.5] to [3, 4]. In
Figure 18(a), all the 3 approaches can achieve good scores of
assignment. ADAPTIVE still obtains highest scores compared
with other approaches, andg-D&C is better than Greedy in
scores, however not as good as Adaptive. Random just can
receive lower scores. Similar to the discuss of the effect of
the velocities of workers, the increase ofrt enlarges the
access range of workers at the beginning. However, when
the constraint ofrt is relaxed, the constraints from other
parameters prevent the scores from keeping growing.
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Fig. 18: Effect of Range of Expiration Times of Task[rt−, rt+]
(Real Data).

For the running times, all the approaches use more time
when the range of expiration times increases, which is because

workers can arrive at more tasks before their arrival deadlines
leading to the problem space increases. Comparatively, Adap-
tive is faster thang-D&C, but slower than Greedy. Random
runs fastest, however least effectively.

G. Effect of Number of Task and Workers (SKEWED)
Effect of Number of Tasksm. Figure 19 illustrates the effect
of the number of tasks, whenm changing from 1K to 10K,
and the distribution of the location of workers and tasks are
SKEWED. For the scores of assignments in Figure 19(a),g-
D&C obtains results with highest scores. ADAPTIVE performs
similar tog-D&C and also achieves good results. GREEDY is
not as good asg-D&C and ADAPTIVE, but still much better
than RANDOM. All the approaches can obtain a higher score
when the number of tasks become larger. In Figure 19(b), the
running times increase when the number of tasks increase,
because the problem space increases. The Adaptive is slower
than Greedy and faster thang-D&C.
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Fig. 19: Effect of Number of Tasksm (Synthetic Data).

Effect of Number of Workers n. Figure 20 shows the
experimental results when the number of workers,n, changing
from 1K to 10K, and the distribution of the location of workers
and tasks are SKEWED. Similar to the results in previous
discussion of the effect ofm, our three approaches can obtain
good results with high scores of assignment. In addition, the
scores of all the approaches increase when the number of
workers increases. The reason is that, when the number of
workers increases, we have more workers, who are close to
tasks and cost less, to select, which leads to the score increases.
In Figure 20(b), the running times increase when the number
of workers increases, because the space of problem increases
when there are more workers. The speed of Adaptive is higher
thang-D&C and lower than Greedy.
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Fig. 20: Effect of Number of Workersn (Synthetic Data).
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