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Distributed Anomaly Detection using Minimum
Volume Elliptical Principal Component Analysis

Colin O’Reilly, Member, IEEE, Alexander Gluhak and Muhammad Ali Imran, Senior Member, IEEE

Abstract—Principal component analysis and the residual error is an effective anomaly detection technique. In an environment where
anomalies are present in the training set, the derived principal components can be skewed by the anomalies. A further aspect of anomaly
detection is that data might be distributed across different nodes in a network and their communication to a centralized processing unit
is prohibited due to communication cost. Current solutions to distributed anomaly detection rely on a hierarchical network infrastructure
to aggregate data or models, however, in this environment links close to the root of the tree become critical and congested. In this
paper, an algorithm is proposed that is more robust in its derivation of the principal components of a training set containing anomalies. A
distributed form of the algorithm is then derived where each node in a network can iterate towards the centralized solution by exchanging
small matrices with neighbouring nodes. Experimental evaluations on both synthetic and real-world data sets demonstrate the superior
performance of the proposed approach in comparison to principal component analysis and alternative anomaly detection techniques. In
addition, it is shown that in a variety of network infrastructures, the distributed form of the anomaly detection model is able to derive a
close approximation of the centralized model.

Index Terms—anomaly detection, outlier detection, principal component analysis, distributed learning

F

1 I N T R O D U C T I O N

Centralized learning, where the data set is available in its
entirety to one classifier, is a well-studied area. However,
if the data set is distributed over more than one physical
location, a different approach needs to be taken. For the
centralized approach, this requires the communication of
all data to a central node, which can be prohibitive if the
data set is large. Robustness is also reduced as links close
to the central node become critical. A local learning ap-
proach uses the data set in the local location to construct a
classifier, this has the advantage that no communication
between nodes is required. However, insufficient data
might mean that the classifier is not representative of the
whole data set, and different nodes will form different
models. An alternative approach, distributed learning,
aims to allow communication between nodes in order
for nodes to construct a classifier that tends towards
the centralized model. Nodes communicate summarized
information about the local data set, with this being used
to construct a global classifier on each local node.

1.1 Motivation

Anomaly detection, also known as outlier detection, is
a machine learning problem. An anomaly is defined by
Barnett et al. as “an observation (or subset of observations)
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which appears to be inconsistent with the remainder of
the data” [1]. Anomaly detection aims to identify data
that do not conform to the patterns exhibited by the
data set [2]. Methods often use an unsupervised one-
class classification approach. The problem thus has two
important characteristics, the data are not labelled and
there is a class imbalance in the training set where the
number of normal data significantly exceeds the number
of anomaly data.

The nature of sensor, peer-to-peer and ad hoc wireless
networks requires a distributed learning approach, as
it is infeasible to communicate all data to a centralized
node for computation. There are several reasons why
data might be in different physical locations.

• The data set is too large to transfer to one physical
location. Examples include domains where there are
large high-resolution images such as medicine and
astronomy.

• It is too costly to transfer the data to one physical
location. Examples include limited energy resources,
such as in Wireless Sensor Network (WSN)s, and
limited time resources, such as in network intrusion.

• The owners of the distributed data sets are unwilling
to share the data, but require knowledge from the
whole data set i.e. there are data ownership and
control issues. Examples include data sets containing
sensitive information such as medical data sets. It
also includes different organizations in areas such
as insurance and banking where the data are com-
mercially sensitive, but knowledge is required from
the whole data set.
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1.2 Contribution
In this paper, a distributed anomaly detection scheme
based on the principal component analysis (PCA) and the
soft-margin minimum volume ellipse is proposed. The
approach addresses the challenge of performing anomaly
detection in a network where the only assumption is that
it is strongly connected, whereas previous research has
focused on hierarchical networks, for example [3], [4].
In addition, a modified version of PCA based on the
soft-margin minimum volume ellipse is derived, which
is robust to anomalies in the training set. Previous ap-
proaches have also used the minimum volume ellipse [5].
The proposed approach requires the solution of a convex
optimization problem, which allows the distributed form
of the algorithm to be derived.

State of the art is extended in the following way:
• A robust version of PCA based upon the soft-margin

minimum volume ellipse is introduced. This im-
proves on the performance of classical PCA when
there are anomalies in the training set.

• A distributed version of the robust PCA algorithm
is introduced. The algorithm operates in a fully
distributed manner that does not require learning
on a centralized node and only assumes that the
network is strongly connected.

• A detailed evaluation of anomaly detection in a
distributed environment is provided. The proposed
technique is evaluated with synthetic and real-world
data and compared with other state-of-the-art meth-
ods.

1.3 Related Work
There are two approaches to learning in a distributed en-
vironment. The first assumes a structure to the network,
i.e. assumptions are made concerning the connectivity
graph G and this is exploited during learning. We term
this partially distributed learning. An alternative approach
is to make no assumptions concerning the structure of
the network. An algorithm is fully distributed with respect
to a network connectivity graph G if each node operates
without using any information other than knowledge of
its local neighbourhood in G [6].

Partially distributed learning algorithms often use a
hierarchical tree-structure where data or models from
child nodes are aggregated or merged at parent nodes. At
the root, the global model is constructed, and this is then
propagated through the network by communicating the
global model to child nodes. There are many examples
of partially distributed learning using various anomaly
detection methods in a one-tier hierarchical network [7],
[8] and a multi-tier hierarchical network [3], [4]. However,
the use of the hierarchical tree-structure has several
drawbacks. The hierarchical tree-structure means that
the links further up the tree become critical and possible
bottlenecks. In addition, although the hierarchical tree-
structure assumes that it is one-hop between nodes in the
network, this may not be the case in the physical network.

If a routing protocol is required to form the hierarchical
tree-structure, there may be a multi-hop path between
nodes in the network which will increase communication
cost. Finally, as the centralized classifier is constructed
at the top of the tree, there is a need to transmit the
classifier back down the tree. This further consumes time
and resources.

PCA [9] is a spectral decomposition technique that
has been shown to perform well as an anomaly detector
(e.g, [10], [11]). There are several methods that have
been used to construct the principal components (PC)s in
a partially distributed environment, for example fusing
data [10], and constructing PCs at a cluster head [12].
Huang et al. [13] propose a distributed anomaly detec-
tion method that focuses on volume anomalies, unusual
traffic load levels caused by worms, distributed denial
of service attacks and so on. A distributed form of
a PCA method [11] is derived where anomalies are
detected by projecting the data instances onto the minor
components, as opposed to the principal components.
Local filters are used at the child nodes which reduces the
amount of data sent to the coordinator which achieves
low communication overhead while maintaining high
detection accuracy.

It is well-known that PCA is extremely fragile in
the presence of anomalies in the training data set and
even a small number of anomalies can significantly alter
the subspace generated [14], [15]. Various techniques
have been proposed in order to overcome this issue.
Multivariate trimming [16], [17] aims to remove the
outliers before deriving the PCs from the clean training
data set. Rousseeuw et al. [5] use the Minimum Volume
Ellipse (MVE) to provide robust estimates of the mean
and covariance matrix. This technique was examined in
detail by Jackson and Chen [18] and was shown to be
more robust to outliers in the training data set when used
in conjunction with the Mahalanobis distance.

A recent advance is the use of convex optimization
problems to recover a dense, low-rank component and
a sparse component of the data matrix [14], [15], [19].
The aim is to extract a low-dimensional subspace on
which the data samples lie while removing corrupted
data observations which are assumed to have occurred to
a small uniformly random number of observations within
multiple data samples. This can be illustrated in the appli-
cation it is often applied to, video processing, where the
aim is to identify observations within each data sample
(or video frame) that are anomalous. An example is to
identify the static background (the low-rank component)
from occasional moving objects. This problem contrasts
with that of this publication where data samples are either
entirely correct (the normal data) or entirely incorrect
(the anomalies) and the aim is to reduce the influence of
the anomalous data samples during model construction.
Kong et al. [20] examine using the Schatten-p Norm to
solve the problem of rank minimization with the aim of
removing noise from data. The Schatten-p Norm replaces
the trace norm which can suppress the singular values.
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Applied as a data preprocessing stage, the method is
shown to improve the classification accuracy of support
vector machine (SVM)s and k-Nearest Neighbour (k-NN)
in the application domain of facial recognition.

An algorithm is fully distributed with respect to a
network connectivity graph G if each node operates
without using any information other than knowledge
of its local neighbourhood in G [6]. Branch et al. [21]
propose a distributed anomaly detection approach for
WSNs which only assumes that the network is strongly
connected. Each node has a local data set with the aim
of computing the set of the global top-k anomalies, the
scheme is generic in that it is suitable for all density-based
methods, except Local Outlier Factor (LOF).

A fully-distributed consensus-based approach for PCA
is proposed by Macua et al. [22]. The network-wide
covariance matrix is estimated through the use of a
consensus averaging (CA) algorithm and an exchange
of p× p matrices. PCA is then performed on each node.
The algorithm is shown to have guaranteed convergence
using only communication with neighbouring nodes.
Li et al. [23] propose a distributed principal subspace
tracking algorithm based on Oja’s update rule [24] that
operates in conjunction with a nested CA algorithm. The
inner loop performs CA and requires communication
of data between nodes, therefore the amount of data
transmission required can be significant. In addition,
communication cost and convergence time increase with
network size. Aduroja et al. [25] use Alternating Direction
Method of Multipliers (ADMM) to determine the PCs in a
distributed environment. The estimation of the PCs of the
covariance matrix is performed by rewriting centralized
PCA in a separable manner and then employing ADMM
to divide the optimization problem between the nodes
in the network. As discussed previously, a shortcoming
of PCA in its application to anomaly detection is that the
derived PCs are susceptible to perturbation by anomalies
in the training data set.

1.4 Organization

The paper is organized as follows. In Section 2, the
preliminaries and problem statement are defined. In Sec-
tion 3, the Minimum Volume Elliptical PCA (MVE-PCA)
algorithm in both centralized and distributed form is
derived. Section 4 evaluates the algorithm using a broad
range of data sets and network environments. Section 5
provides the conclusion.

2 P R E L I M I N A R I E S A N D P R O B L E M
S TAT E M E N T

Consider a network of J nodes connected in an undi-
rected graph G(J,E) where J represents the nodes and
E represents the edges. The edges represent the com-
munication links between the nodes with the restriction
that a node j ∈ J is only able to communicate with its
one-hop neighbours, Bj ⊆ J . The graph is assumed to

be connected in that any two nodes in G are able to
communicate over a multi-hop path. It is assumed that
all links are symmetrical.

Each node has a data set of unlabelled data. Define
Sj := {(xjn) : n = 1...Nj} , where xjn ∈ Rp. The whole
data set is S =

⋃
j=1,··· ,j Sj . The data at the nodes are

drawn from the same unknown distribution and are
stored locally at nodes.

An assumption is made that it is infeasible to transmit
all data to a central node for processing and there is
a requirement to minimize the number and length of
transmissions in order to conserve energy. Communica-
tion between nodes using links is limited and local com-
putation is preferred to communication. A synchronous
time model is assumed where time is slotted across all
nodes. In any time slot, a node may communicate with
a neighbouring node as required.

The aim of this research is to identify the data samples
that are considered anomalous in the data set distributed
amongst all the nodes in the network. These are termed
the global anomalies. A global anomaly is a data sample
that is considered an anomaly in the global data set S =⋃

j=1,··· ,j Sj rather than just the local data set Sj . In order
to detect global anomalies on a local node, a classifier
is constructed on a local node that, within some error
bounds, is the classifier that would have been constructed
had all the data been available to the local instance of
the algorithm. The approach taken to construct the global
classifier on local nodes is described in detail below.

3 D I S T R I B U T E D M I N I M U M VO L U M E E L -
L I P T I C A L P C A
In order to detect global anomalies in a local data set, it
is a requirement to construct a classifier on a local node
that has been constructed using information concerning
the data on a local node and the remaining nodes in
the network. In order to perform this, in this section our
two contributions are introduced. The first contribution
is an approach to anomaly detection termed MVE-PCA.
The technique is shown to have superior performance to
PCA in the presence of anomalies in the training set. The
advantage of using this approach is that it requires the
solution of a convex optimization problem, which allows
a reformulation of the convex optimization problem
using ADMM. This is our second contribution, where
a distributed form of MVE-PCA is derived which allows
a node to construct a classifier that approximates the
global classifier but only requires limited communication
with its one-hop neighbours.

3.1 Minimum Volume Elliptical PCA

In order to overcome the limitations of PCA in deter-
mining the PCs for a data set, we propose MVE-PCA.
First, we note that it is possible to determine a minimum
volume ellipse surrounding a data set. The hard-margin
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minimum volume ellipse is defined as [26]

min
{A,b}

− log detA

subject to ‖Axi + b‖2 6 1, i = 1, . . . ,m. (1)
− 2 � A � 2

LetB = {x ∈ Rn : ‖x‖ 6 1} be the unit ball, and f : Rn →
Rm be an affine map. Then E = f(B) is an ellipsoid. An
affine map is a transformation in an affine space that
preserves straight lines. The case is restricted to a square
matrix where the affine map, f , is invertible. Therefore
f(x) = Ax+ b where A is a square, non-singular matrix.
The representation of the ellipse can be rewritten as

E(A, b) = {x ∈ R : (x− b)>A−1>A−1 (x− b) 6 1} (2)

This notation is shortened to

E(M , b) = {x ∈ R : (x− b)>M(x− b) 6 1} (3)

for the positive definite matrix M = (AA>)−1 and the
vector b.

The quadratic form Q(x) = x>Mx is positive definite
wheneverM is. The basis of E(M , b) is derived from the
eigen structure of M . As M is positive definite, it has
real positive eigenvalues 1 6 λ1 6 λ2 6 · · · 6 λp with
corresponding orthonormal eigenvectors {v1,v2, · · · ,vp}
where Mvk = λkvk, 1 6 k 6 p. The orthogonal matrix
P = [v1v2 · · ·vp] provides the spectral decomposition;
M = PΛP−1 = PΛP> where P−1 = P> and Λ is the
diagonal matrix of eigenvalues. Therefore

A = PAΛAP
>
A (4)

M = (AA>)−1 = PAΛ
2
AP
>
A (5)

λM =
1

λ2A
(6)

Thus, an eigen decomposition of A will determine the
eigenvectors and eigenvalues of M . The kth axis of the
ellipse E(M ,B) is the linear span vk and the semiaxial
length is λ

− 1
2

k . The ellipse acts as a new basis for the
space and this is derived from the eigen decomposition
of M , with the basis vectors ordered by the decreasing
magnitude of the eigenvalues.

The residual error is selected as the distance measure
in order to discern normal from anomalous data [27]. By
projecting a mean-centred data instance xt onto the PCs,
the data vector is decomposed into two vectors, x̂t and et.
Parallel to the PCs is x̂t, and et is orthogonal to the PCs.
The original vector can be reconstructed from the parallel
and orthogonal component, xt = x̂t + et. The residual
error et is determined using et = xt − x̂t. The squared
sum of the residual, called the squared prediction error
(SPE) or Q statistic, is the distance from the data sample
to its projection onto the PCs.

SPE = ‖xt − x̂t‖2 = ‖(I − PP T )xt‖2 6 ε (7)

where ε is the predetermined error threshold.

As mentioned previously, anomalies in the training
data set can skew the axis of the basis derived via PCA.
An advantage of using the MVE to derive the axis of
the new basis is that slack variables can be introduced
in order to exclude some samples from the derivation of
the orthogonal axis of the ellipse.

In the presence of anomalies it can be appropriate to
introduce slack variables, ξ, and add a corresponding
penalty term to the objective function. The use of slack
variables to allow some data vectors to lie outside
the boundary does not always produce the minimum
volume. Although the data vectors are guaranteed to lie
outside the boundary, they still affect the boundary of
the model [28]. Several techniques have been proposed
to circumvent this problem. Pauwels and Ambekar [29]
reformulate the cost function for the one-class SVM
(OCSVM) so that the centre of the sphere is a weighted
median of the support vectors, rather than the weighted
mean of the support vectors. Dolia et al. [30] use kernel
ellipsoidal trimming where the outliers are removed from
the training set and the algorithm rerun. Both OCSVM
and kernel ellipsoidal trimming use the boundary for
anomaly detection. Therefore only the data samples
that are considered anomalies can be excluded. How-
ever, MVE-PCA aims not to determine the boundary,
but rather the PCs. Therefore, the penalty for the slack
variable can be reduced so that more data lie outside the
boundary, and it has less influence on the PCs. This will
reduce the effect that the anomalies will have on the PCs.

Adding slack variables to (1) the following is obtained

min
{A,b,ξ}

− log detA+
1

νm

m∑
i=1

ξi

subject to ‖Axi + b‖2 6 1 + ξi, i = 1, . . . ,m. (8)
− 2 � A � 2

where

ξn =

{
‖Axi + b‖2 − 1, if ‖Axi + b‖2 > 1

0, otherwise
(9)

The parameter ν represents the cost for allowing data
instances to lie outside of the MVE where ν > 0. The
range and value of ν varies according to the training
set. Using (2) and (3) the basis is derived from the eigen
decomposition of M .

3.2 Distributed Minimum Volume Elliptical PCA

In this section, MVE-PCA is reformulated as a distributed
optimization problem. This allows local nodes to obtain
the global solution by solving sub-problems of the convex
optimization problem and passing information about the
solution to one-hop neighbours.

To reformulate (8) as a distributed convex optimization
problem, ADMM is used (see, for example, [31]). Prob-
lem (8) can be rewritten as a global consensus problem
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with local variables Aj ∈ Rn×n and bj ∈ Rn and the
augmented vector vj := [A11,A12, · · · ,Ann, bj ]

T .

min
{Aj ,bj ,ξj}

J∑
j=1

−log detAj +
1

νm

J∑
j=1

Nj∑
n=1

ξjn

subject to ‖Ajxjn + bj‖2 6 1, ∀j ∈ J, n = 1, . . . , Nj

ξjn 6 0 ∀j ∈ J, n = 1, . . . , Nj (10)
Aj = Ai, bj = bi∀j ∈ J, i ∈ Bj

− 2 � Aj � 2

In order to solve the global consensus problem,
ADMM [31] is used where

vk+1
j := argmin

(
fj(vi) + ykT

j

(
vj − vk

)
+
ρ

2
‖vj − vk‖22

)
(11)

yk+1
j := yk

j + ρ
(
vk+1
j − vk+1

j

)
(12)

Convergence is achieved when ‖vj −vj‖2 6 ε for a local
node vj .

Thus (10) can be rewritten using (11) and (12) as

min
{Aj ,bj ,ξj}

− log detAj +
1

νNj

Nj∑
n=1

ξjn

+
(
yj

)> (
vj − vik

)
+
(ρ

2

)∑(
vj − vik

)2
subject to ‖Ajxjn + bj‖2 6 1, ∀j ∈ J, n = 1, . . . , Nj

ξjn > 0 ∀j ∈ J, n = 1, . . . , Nj (13)
− 2 � Aj � 2

where yj = yj + ρ (vj − vi) ∀j ∈ J, i ∈ Bj (14)

vi =
1

I

I∑
i=i

vi ∀j ∈ J, i ∈ Bj (15)

.
Each node j optimizes the j-dependent terms of the

cost function, while meeting the consensus constraints
Aj = Ai, bj = bi by exchanging messages with nodes i
in the neighbourhood Bj . The ξjn are local to each node.
After each iteration the vector vj is broadcast to the i
neighbours in Bj . Once a node j has received vi from
all nodes in Bj , vi is calculated in preparation for the
next iteration. For the initial iteration vi is set to the zero
vector.

In this reformulation of the problem, the objectives and
constraints are distributed across the network on local
nodes. Each node manages its own objective and con-
straint term. A quadratic term is updated each iteration
and this forces the variables to converge to a common
value which is the solution to the centralized problem.

The communication exchange is detailed in Fig. 1. Sce-
narios in which the algorithm is applicable are detailed
in Section 1.1. For example, in the scenario of a WSN, the
nodes represent WSN nodes that are aiming to determine
the global outliers contained in the whole data set of local
sensor measurements.

Problem (13) aims to minimize the barrier function
log det which is a convex programming problem that can

be solved efficiently. It has been shown that it can be cast
as a semidefinite program [32] which can be solved using
interior-point methods. In the evaluations in this paper,
the problem is solved by using standard semidefinite
programming software, CVX [33], [34].

3.3 Convergence
In practice, ADMM has been shown to converge quickly
in many applications [25], [31], [35], [36]. There are proofs
of the convergence of ADMM when applied to the sum of
two convex functions [31]. However, the convergence of
ADMM for minimizing the sum of N(N > 3) convex
functions (the case in this research) is currently not
well-understood [37], [38]. The practical convergence
behaviour of MVE-PCA is examined in Sections 4.3 and
4.4.

In order to determine when convergence has occurred,
ADMM has two convergence properties that are applica-
ble. The first is that convergence is achieved when the
mean of the objective value of the iterates, approaches
the optimal value of the centralized version (p∗). The
mean of the objective value is

1

J

J∑
j=1

fj
(
vkj
)
→ p∗ as k →∞ (16)

where fj(vkj ) is the objective value of the kth iteration on
node j and p∗ is the objective value on the centralized
version.

The second convergence property is that the squared
norm of the residual tends to zero, i.e.

rk → 0 as k →∞ (17)

The primal residual of the distributed problem is rk =
(vk1 − vk, . . . ,vkJ − vk). The squared norm of the primal
residual is

‖rk‖22 =

J∑
j=1

‖vkj − vk‖22 (18)

Distributed MVE-PCA requires the parameter ρ to be
determined. The parameter ρ > 0 is called the penalty
parameter and determines the step size as the algorithm
iterates towards the solution.

Once convergence has been achieved, the PCs can
be extracted as detailed previously. The operation of
distributed MVE-PCA is detailed in Algorithm 1.

3.4 Complexity Analysis
An important aspect of a distributed algorithm is com-
plexity. A centralized detection approach requires the
communication of the whole data set to a central node.
In addition, the classifier constructed at the central node
needs to be communicated to downstream nodes. If the
network is fully connected (see later), then the commu-
nication complexity per node is O(mp) where p is the
dimension of the data vector. The communication com-
plexity of the whole network is O(Jmp). If a hierarchical
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Sj

Sj3

Sj1 Sj2

One-Hop Neighbours of Sj

Figure 1: Visualization of the exchange of data between nodes.
Node Sj communicates vki to nodes i ∈ Bj . Nodes i ∈ Bj , the
one-hop neighbours of node Sj communicate vki to the Sj .

Algorithm 1: Distributed MVE-PCA
1 for k=1,2,. . . do
2 forall the j ∈ J do
3 Compute Aj and bj via (13)

4 forall the j ∈ J do
5 Broadcast vk

j to all neighbours i ∈ Bj

6 forall the j ∈ J do
7 Compute yk+1

j via (14)
8 Compute vk+1

i via (15)

9 Determine subspace using (4) and (6)
10 Determine SPE for a test data instance using (7)

network is in place, then each link at the lowest level
has a communication complexity of O(mp). Each link
at the next level has a communication complexity of
O(mp+tmp) where t is the number of links at the lowest
level into the node. If a hierarchical network of L layers
is used, then the total communication complexity is;

communication =

No. Layers∑
L=1

(L− 1)Lration (19)

where Lratio is the ratio of nodes in layer L.
The distributed anomaly detection algorithm requires

that a node j broadcasts Aj ∈ Rp×p and bj ∈ Rp to its
neighbours Bj for each iteration. However, Aj is sym-
metric and therefore has a size R

p2+p
2 . Communication

complexity is therefore O(p2+3p
2 ) per link per iteration. If

s iterations are required for convergence, the communica-
tion complexity for a node is O(s(p2+3p

2 )). If the network
is a wireless network, due to the broadcast nature of
communication, the complexity is O(p2+3p

2 ) per node per
iteration. Communication complexity is dependent on
the dimension of data sets and the number of iterations
required to converge. However, it is independent of the
number of observations on the local node, which can be
very large.

MVE-PCA requires a convex optimization problem to

Table 1: Comparison of the complexities for the centralized and
distributed schemes.

Complexity

Scheme Communication (Total) Memory (per Node) Computation (per Node)

Centralized O(
∑No. Layers

L=1 (L− 1)Lration) O
(

p2+3p
2

)
O
(
(Jm)3 + p3

)
Distributed O

(
Js
(

m2+3m
2

))
O
(

p2+3p
2

)
O
(
sm3 + p3

)
J = no. of nodes, n = total no. data, m = no. data instances at node,p = data dimension

s = no. iterations to converge, L = no. of layers, Lratio = ratio of nodes in Layer L

be solved on each node for each iteration. The compu-
tational complexity of solving the convex optimization
problem is O(m3) per node per iteration. For the cen-
tralized version, all the data are available on one node
and only one iteration is required. Therefore the compu-
tational complexity is O((Jm)3). Distributed MVE-PCA
has reduced the computational complexity; as the data
are distributed amongst a number of nodes, the solution
of the convex optimization problem on each node is
smaller as the number of data instances in the training
set is smaller. The total computational complexity for the
whole network is O(Jm3). The algorithm requires that
the convex optimization is performed multiple times as
the algorithm iterates towards the solution. Therefore
the total computational complexity is O(Jsm3) where
s is the number of iteration to converge. Once the A
matrix has been determined, an eigen decomposition of
the matrix is required in order to determine the PCs.
This has a computational complexity of O(p3) for both
the centralized and distributed approaches.

At each node, the storing of the A matrix and the b vec-
tor is required. The memory complexity of the distributed
algorithm is O(p2+3p

2 ), as the A matrix is symmetric.
Centralized MVE-PCA also requires the storage ofA and
b and therefore has the same memory complexity. Com-
munication and computational complexity are detailed
in Table 1 and further examined in Section 4.5.

4 E VA L UAT I O N

In this section, evaluations on synthetic and real-world
data are presented to illustrate the performance of
MVE-PCA and distributed MVE-PCA. The evaluation
environment is varied in order to examine the behaviour
of the proposed algorithm in a broad range of settings.
All algorithms are implemented in Matlab.

4.1 Evaluation Environment
The elements considered in the evaluation are network
topology, network size and data sets.

4.1.1 Network Topology
Two network topologies are considered in the evalua-
tion, fully connected networks and strongly connected
networks. In a fully connected network, each node is
connected to every other node. In a strongly connected
network, there is a directed path from a vertex u to
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Table 2: Real-World data sets

Data Set Each Fold

No. Data (Normal + Anomaly) (Normal + Anomaly)
Data Set Application Domain Instances Classes Dimension Training Testing

Liver Disorder [39] Medical Diagnosis 345 2 6 100(90 + 10) 220(110 + 110)
Australian Credit Approval [39] Financial 690 2 14 180(162 + 18) 290(145 + 145)

Letter Recognition [39] Image 20000 26 16 200(180 + 20) 1188(594 + 594)
Abalone [39] Biology 4177 29 8 200(180 + 20) 2454(1227 + 1227)

Non-Coding RNA [40] Biology 59535 2 8 400(360 + 40) 4000(2000 + 2000)
Shuttle [39] Sensor Monitoring 38621 7 9 400(360 + 40) 4000(2000 + 2000)

a vertex v, for every pair of vertices u, v. Therefore, a
specific node is reachable from every other node in the
network, however, the path between two nodes might
be a multi-hop path via the other nodes.

Several metrics define a strongly connected network.
The connections between nodes, N , are defined as edges
(E), where an edge is undirected (one-way). The density
of a strongly connected network, d, is defined as

d =
E

N(N − 1)
(20)

A random strongly connected network will vary in den-
sity with the bounds defined as

1

L− 1
6 d 6 1 (21)

The lower and upper bounds of the density are achieved
by the ring network and the fully connected network,
respectively. The number of connections a node has also
illustrates how connected a network is. Therefore the
mean degree per node (MDPN) is also used.

4.1.2 Data Sets
A 2-dimensional synthetic data set is used to examine the
operation of the distributed anomaly detection algorithm.
The normal data are formed from a Gaussian distribution
N (Σ, µ) where

Σ =

(
0.0278 0.0204

0.0204 0.0233

)
, µ =

(
0

0

)
(22)

In order to examine the perturbation of the PCs by
the anomalies, uniformly distributed anomalies are intro-
duced above, below, and above and below the normal
data. Anomalies form 10% of the training set. The data
set is standardized by subtracting the mean and dividing
by the standard deviation.

In addition to synthetic data, real-world data sets have
been used to examine the performance of the distributed
learning approach. In order to be employed in the
evaluation of the performance of anomaly detectors, the
data sets are reorganized. For the two-class data sets,
the class containing more data samples is used as the
normal class, while the other class is considered to be
the anomaly class. For a multi-class data set, one class
is considered normal, while the others are combined to
form the anomaly class [41]. If the data set had a train

and validation or test set, these were concatenated. Six
data sets are used from different application domains
including medical diagnosis, image recognition and sen-
sor measurements. The data sets exhibit a broad range of
characteristics and therefore provide varied data in order
to examine performance. All data sets are standardized
by subtracting the mean and dividing by the standard
deviation. Information regarding the real-world data sets
is shown in Table 2.

The selected data sets are randomly partitioned into 10
independent folds for cross-validation. For each fold, a
training and a testing set are formed. For the training set,
the required number of normal and anomaly data sam-
ples are randomly chosen without replacement from the
appropriate class of the data set. The testing set consists
of an equal number of normal and anomaly samples. To
form the data sets in a distributed environment, an equal
number of data instances is randomly distributed across
the nodes.

4.1.3 Performance Assessment
To examine performance, the area under ROC Curve
(AUC) is used. The false positive rate (FPR) is the ratio of
false positives to normal measurements and the true pos-
itive rate (TPR) is the ratio of true positives to anomalous
measurements. To compare schemes, receiver operating
characteristic (ROC) curves are generated by varying the
anomaly ratio used to determine the threshold distance
for the residual error. Conceptually, the threshold was
varied from −∞ to +∞ and the resulting FPR and
TPR form the ROC curve. The AUC [42] is used to
summarize the performance achieved. An AUC value
of 1 represents 100% accuracy and an AUC value of 0.5
or lower indicates performance worse than the random
assignment of labels.

In addition, the convergence of the algorithm is ex-
amined. It is required that the algorithm converges to
the affine transformation of the centralized version. This
equates to the algorithm being able to correctly learn the
scaling and rotation matrix A and the transformation
vector b. To measure convergence, the relative error is
used [43].

Erel =
‖[A b]− [Ã b̃]‖F
‖[A b]‖F

(23)

where [Ã b̃] denote the rotation matrix and the transfor-
mation vector and ‖ · ‖F denotes the Frobenius norm.



8

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Attribute 1

A
ttr

ib
ut

e 
2

(a) Anomalies in upper and lower region.
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(b) Anomalies in upper region.
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(c) Anomalies in lower region.

Figure 2: Comparison of the PCs derived from PCA and MVE-PCA.

In addition, the relative error is used to show how
distributed MVE-PCA is able to iterate towards the
objective value of the centralized version. The relative
error is defined as

εobjV al =

∣∣∣∣∣p∗ −
1
J

∑J
j=1 fj(x

k)

p∗

∣∣∣∣∣ (24)

The benchmark methods were chosen due to their proven
performance as anomaly detectors on a wide variety of
data sets. For example, in a recent performance evalu-
ation by Janssens et al. [41] of five anomaly detection
techniques from the fields of machine learning and
knowledge discovery, the OCSVM [44] and LOF [45]
outperformed other anomaly detection techniques. In
another evaluation of current anomaly detection meth-
ods [46], k-NN is shown to be the optimal performer for
the data sets used. The Mean Centred Ellipse (MCE) [47]
has also been used in a distributed environment.

4.2 MVE-PCA Evaluation
In this section, the performance of MVE-PCA is examined
and compared with PCA and other benchmark anomaly
detection methods. First, the 2-dimensional synthetic
data set introduced in Section 4.1.2 is used to visualize
the operation of MVE-PCA. Next, real-world data sets
are used to examine performance. For all algorithms,
parameter selection is used to determine the optimal
value of the required parameters. For PCA, the subspace
dimension is required. MVE-PCA requires the subspace
dimension and the ν parameter.

4.2.1 Visualization on a Synthetic Data Set
Fig. 2 depicts the operation of MVE-PCA on the synthetic
data set. The three figures depict the axis of the two
PCs determined by MVE-PCA and PCA. The PCs of
PCA performed on the normal data act as a benchmark.
In Fig. 2a the anomalies lie either side of the first
PC, however, the PCs of PCA are still skewed by the
anomalies from the actual PC obtained using only the
normal data. MVE-PCA is able to determine PCs close to
the actual PCs. Fig. 2b and 2c show how the anomalies
that lie on one side of the normal data skew the PCs by

pulling the first PC towards them. Again, although there
is skewing of the PCs of MVE-PCA, it is less pronounced
than PCA. Through the use of slack variables, the effect
of the anomalies on the PCs is reduced, therefore the
PCs determined are closer to those derived only from
the normal data.

4.2.2 Evaluation on Real-World Data Sets
A performance evaluation to compare MVE-PCA with
PCA and other state-of-the-art anomaly detection algo-
rithms is performed. The results are displayed in Table 3.
Both the centralized and local learning approaches are
evaluated. In the centralized approach, all the data are
available to one instance of the classifier. The experimen-
tal results are averaged over 10 folds for each tuning,
and then the highest AUC corresponding to the specific
tuned parameter is reported. Therefore, the value of the
specific tuned parameter varies across different data sets.
For the centralized classifiers, the mean and standard
deviation over the 10 folds are given and the bold-faced
AUC values indicate the best method for the particular
data set. The ROC curves for three of the real-world data
sets and the four best classifiers are illustrated in Fig. 3.

In the local approach, the data are randomly dis-
tributed between the nodes in the network. Each node
constructs a classifier from the data available on the node.
The same test data set is used across all nodes. Parameter
tuning is performed on each node as for the centralized
version. The mean of the local classifiers is noted and
then the mean and standard deviation of the performance
over the 10 folds are recorded in Table 3.

For most classifiers and data sets, the centralized ap-
proach is significantly better than local learning. For
example, with the MVE-PCA classifier and a network
of 20 nodes, the Non-Coding RNA data set has an AUC
of 78.44± 0.32 whereas the centralized performance has
86.26 ± 0.51. This trend continues across all data sets.
Clearly, an increase in the number of data instances
improves the classifier of the centralized version. The
increased performance of the centralized classifier shows
the necessity for a distributed approach where informa-
tion is exchanged between nodes in order to construct a
classifier that approaches that of the centralized classifier.
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Table 3: UCI data sets - Comparison of centralized and local learning approaches on real-world data sets. The data are randomly
distributed across the nodes. For the local learning approach the number of nodes is noted. Mean and standard deviation of 10
simulations.

Liver Disorder Australian Credit Approval Letter Recognition

Local Centralized Local Centralized Local Centralized

No. Nodes 10 5 1 10 5 1 10 5 1

MVE-PCA 58.92± 1.42 59.47± 1.40 64.34± 1.87 73.98± 1.22 74.48± 1.22 80.77± 5.28 94.96± 0.21 96.12± 0.19 97.59± 0.60
PCA 56.51± 1.63 56.85± 1.94 60.05± 2.20 70.12± 1.30 72.29± 1.32 78.41± 6.56 94.29± 0.24 94.82± 0.19 96.51± 0.76
LOF 53.28± 1.62 52.75± 1.50 54.07± 2.54 64.41± 2.28 65.84± 2.43 65.29± 2.53 93.39± 0.32 94.94± 0.29 94.85± 0.80
MCE 51.95± 2.00 53.09± 2.25 50.50± 2.79 60.55± 0.98 66.07± 1.45 69.79± 3.26 90.82± 0.30 94.01± 0.33 96.66± 0.71
k-NN 51.64± 1.95 51.90± 1.66 52.89± 2.99 69.07± 2.14 69.92± 2.16 77.12± 3.22 94.84± 0.27 96.25± 0.25 97.85± 0.47

ABOD 47.96± 2.01 47.64± 1.98 47.28± 2.15 64.29± 1.87 64.87± 1.95 64.85± 2.88 93.00± 0.34 93.86± 0.33 94.58± 0.74
OC-SVM 53.70± 1.01 55.46± 1.22 56.85± 1.59 71.26± 1.60 70.13± 1.70 80.03± 2.58 94.45± 0.28 95.87± 0.24 98.44± 0.37

Abalone Non-Coding RNA Shuttle

Local Centralized Local Centralized Local Centralized

No. Nodes 40 20 1 40 20 1 40 20 1

MVE-PCA 82.19± 0.51 82.73± 0.48 83.28± 0.98 73.01± 0.33 78.44± 0.32 86.26± 0.51 93.71± 0.21 94.68± 0.21 98.41± 0.29
PCA 81.06± 0.43 81.68± 0.45 82.77± 1.03 71.47± 0.35 76.19± 0.35 85.86± 0.68 87.52± 0.22 76.08± 0.54 85.87± 3.32
LOF 78.99± 0.45 80.05± 0.47 82.79± 0.56 64.20± 0.45 70.77± 0.57 66.23± 1.23 82.07± 0.21 70.14± 0.66 95.57± 2.64
MCE 77.40± 0.53 81.16± 0.69 83.46± 0.84 58.06± 0.37 60.05± 0.34 75.03± 1.18 89.93± 0.30 60.83± 0.57 82.68± 1.43
k-NN 81.60± 0.56 83.17± 0.67 86.25± 0.51 61.52± 0.68 63.65± 0.75 70.20± 1.84 90.84± 0.32 65.22± 0.62 90.77± 0.80

ABOD 80.01± 0.53 82.65± 0.56 87.30± 0.59 59.39± 0.74 61.61± 0.80 65.30± 1.20 88.58± 0.34 62.64± 0.59 91.33± 0.59
OC-SVM 82.57± 0.55 82.49± 0.58 84.73± 1.06 62.97± 0.60 65.00± 0.71 71.47± 1.75 88.85± 0.31 66.72± 0.55 89.33± 1.15
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Figure 3: ROC curves for three of the data sets. The ROC curves of the four best performing classifiers on the data set are shown.

The empirical results show that MVE-PCA is able to
outperform the other anomaly detection methods on
the evaluation data sets for both the local and cen-
tralized learning approach. For some data sets, such
as Australian Credit Approval and Shuttle, there is a
significant improvement in performance, for others such
as Abalone and Non-Coding RNA the performance is
similar. The other spectral method, PCA, and the kernel
method OCSVM, also perform well.

In all the data sets, the spectral decomposition is able
to identify a low-dimensional subspace on which the
data lies, and therefore identify data samples which do
not lie on this subspace (the anomalies). MVE-PCA is
able to improve on the performance by reducing the
influence of the anomalous data samples in the training
data set, therefore improving the model of normal data
and performance on the testing data set. Both the MCE
and OCSVM aim to construct a model of normal data
using a boundary, however the anomalies in the training

data set will influence the model constructed, therefore
reducing performance on the testing data set.

The same is true for the similarity-based methods of
LOF, k-NN and Angle-Based Outlier Detection (ABOD),
where anomalies in the training data set will influence
the classification model. An example with k-NN, if there
exists a cluster of k anomalies, an anomaly in the testing
data set which has these k anomalies as the k nearest
neighbours will have a low distance metric. Therefore,
it is difficult to differentiate between this anomalous
sample and the normal data. It is the ability of MVE-PCA
to remove the influence of the anomalies in the training
data set that improves performance.

Another spectral method that is robust to anomalies,
Robust PCA, would not perform well in this situation.
Robust PCA aims to recover a low-rank matrix, L0, and
a noise component, S0 such that M = L0 + S0. An
assumption is made that S0 is sparse and therefore there
are possible corruptions of individual observations in the
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n-dimensional data sample. The modelling of corrupted
observations is common in visual and bioinformatic
data [14]. This is contrary to the anomaly detection
problem here, the aim is to detect data samples where
every observation of the anomalous data sample is either
corrupted or generated from a different process.

4.3 Distributed Anomaly Detection - Synthetic Data
Set
In this section, the performance of the distributed
anomaly detection algorithm is examined with a syn-
thetic data set. A strongly connected network of 20
nodes is considered with the data randomly distributed
across all nodes. The network has a density of 0.179. The
number of iterations is chosen in order that convergence
occurs.

Fig. 4 shows the evolution of the PCs determined by
MVE-PCA and the convergence measures. In Fig. 4a the
first PC derived by the nodes are shown along with
the first PC derived by centralized PCA. The local PCs
differ significantly across each node and differ from the
centralized PC. At iteration 10, Fig. 4b, the local PCs
are now closer to that of the centralized PCs. As the
iterations continue, the difference between the local and
centralized PCs decreases until 200 iterations have been
completed, Fig. 4c, convergence has occured and there is
minimal difference between the PCs on local nodes and
the centralized PC.

Fig. 4e, 4f and 4g depict the evolution of the conver-
gence measures. Both Erel and ‖rk‖22 decrease asymptoti-
cally towards zero, illustrating convergence. The objective
value of the distributed approach converges to that of the
centralized approach in about 100 iterations and remains
constant after, further illustrating that convergence has
occurred.

4.4 Distributed Anomaly Detection - Real-World Data
Sets
In this section, distributed MVE-PCA is examined in
environments with differing network topologies. Two
types of topologies are used; a fully connected network
and random strongly connected networks with differing
network densities. The data sets with a training set of
200 data instances or less were distributed over five and
ten nodes, and the data sets with 400 data instances
were distributed over twenty and forty nodes. The real-
world data sets from the centralized approach are now
used in a distributed setting. 10 Monte Carlo runs are
performed to reduce the effect of random elements in the
simulation. As the distributed learning approach should
yield a classifier that is very close to that of the centralized
approach, the optimal parameters for the centralized
classifier are used for the distributed classifiers. The value
of ρ was chosen using parameter selection, selecting the
value that allowed convergence to occur quickly and
accurately. The number of iterations was chosen so that
convergence occurred.

Table 4 details the results of the performance evalua-
tion. The network parameters, convergence information
and results are displayed. The convergence information
shows that MVE-PCA is able to converge on a solution
that is close to the centralized solution. The relative error
for the rotation matrix A and transformation matrix b is
driven to a small value during the iterations, showing
that the distributed version is able to learn A and b of
the centralized version. The squared norm of the primal
residual, ‖r‖22, and the relative error of the objective func-
tion, εobjV al, are also driven to zero, further illustrating
the convergence of the algorithm.

Although the distributed algorithm has access to the
same data sets on the nodes as the local version, it
is able to produce anomaly detection results that are
significantly better than local learning and are similar to
that of the centralized version. This is achieved by solving
the distributed convex optimization problem, allowing it
to iterate to the solution of the centralized version.

Distributed MVE-PCA is able to converge to perfor-
mance approaching that of the centralized classifier in
all cases. However, there is a difference in the accuracy
amongst the data sets. Although the Australian Credit
Approval and Letter Recognition data sets both use the
same network sizes, the Letter Recognition data set has
superior convergence, with an AUC differing from the
centralized version by less than 1.0% compared to up to
3.0% for the Australian Credit Approval. Network size
and topology also influence the accuracy of distributed
MVE-PCA. A fully connected network (density 1.0) has
the best performance for all data sets. For the strongly
connected networks (density < 1.0), the best performance
occurs with the higher density networks.

Fig. 5 illustrates the evolution of the mean of the per-
formance metrics for the nodes over the iterations with
different network densities. The Non-Coding RNA data
set is used with 20 nodes. The AUC value, Erel, ‖r‖22 and
objective value are shown. Convergence occurs with all
network densities, and the converged values approach or
equal that of the centralized classifier. However, network
density has an influence on convergence. It can be seen
that the fully connected network converges faster and
more accurately for the AUC Erel, ‖r‖22 and objective
value. The least dense network, with a MDPN of 2.80,
converges more slowly and is less accurate. An important
aspect of the distributed algorithm is the time taken for
convergence to be achieved. As noted by Boyd, it can take
only 10s of iterations to obtain a reasonable estimate [31].
This can be seen for the Non-Coding RNA data set in
Fig. 5a where an excellent AUC value is achieved in
under 20 iterations.

Fig. 6 illustrates the ROC for the centralized, dis-
tributed and local classifiers for three data sets. It can
be seen that distributed MVE-PCA is able to obtain a
similar ROC curve as centralized MVE-PCA. The local
classifiers exhibit poorer performance due to the limited
number of data instances in the training set.
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Figure 4: Snapshots of the PCs derived for a synthetic training set evolving with time. The parameters are ρ = 0.07 and 200
iterations. A network of 20 nodes with a network density of 0.179 is used.

Table 4: UCI data sets - Comparison of centralized and distributed learning approaches on real-world data sets. The data are
randomly distributed across the nodes. Mean and standard deviation of 10 simulations.

Network Convergence Performance - AUC

Nodes Density MDPN ρ Iteration Erel ‖r‖2
2 εobjV al Distributed Centralized

5 1.000 4.00 1.0 80 1.94× 10−2 4.46× 10−2 2.46× 10−3 64.34± 1.97
5 0.600 2.40 1.0 80 5.56× 10−2 5.12× 10−2 8.28× 10−3 63.87± 4.75
5 0.400 1.60 1.0 80 8.16× 10−2 2.71× 10−3 3.45× 10−3 64.24± 2.28
10 1.000 9.00 1.0 80 6.35× 10−2 4.90× 10−3 1.74× 10−3 64.14± 1.97
10 0.422 3.80 1.0 80 9.07× 10−2 4.67× 10−3 3.96× 10−3 63.87± 2.02

Liver Disorder

10 0.311 2.80 1.0 80 1.15× 10−1 3.34× 10−2 7.44× 10−3 63.56± 2.14

64.34± 1.87

5 1.00 4.00 0.1 50 1.72× 10−2 8.28× 10−3 5.01× 10−5 80.76± 5.29
5 0.600 2.40 0.1 50 8.45× 10−2 1.16× 10−3 1.32× 10−3 79.00± 8.26
5 0.400 1.60 0.1 50 3.91× 10−1 9.96× 10−3 1.70× 10−2 77.97± 4.59
10 1.00 9.00 0.1 50 1.58× 10−2 1.98× 10−2 1.00× 10−4 80.76± 5.25
10 0.422 3.80 0.1 50 3.40× 10−2 3.47× 10−2 4.77× 10−3 80.13± 6.23

Australian Credit Approval

10 0.311 2.80 0.1 50 2.78× 10−1 2.04× 10−1 5.54× 10−3 81.51± 4.99

80.77± 5.28

5 1.00 4.00 0.1 25 9.73× 10−2 1.87× 10−1 5.83× 10−3 97.46± 0.58
5 0.600 2.40 0.1 25 1.06× 10−1 1.82× 10−1 5.56× 10−3 97.39± 0.55
5 0.400 1.60 0.1 25 1.43× 10−1 1.88× 10−1 9.86× 10−2 97.10± 0.73
10 1.00 9.00 0.5 50 2.50× 10−2 1.76× 10−1 1.30× 10−3 97.56± 0.61
10 0.422 3.80 0.5 50 3.66× 10−2 1.97× 10−1 5.04× 10−3 97.48± 0.70

Letter Recognition

10 0.311 2.80 0.5 50 6.07× 10−2 2.06× 10−1 6.03× 10−3 97.32± 0.70

97.56± 0.48

20 1.00 19.00 0.1 100 3.14× 10−3 1.02× 10−1 8.31× 10−4 83.23± 1.04
20 0.211 4.00 0.1 100 2.06× 10−2 1.23× 10−1 2.10× 10−3 83.18± 1.16
20 0.147 2.80 0.1 100 2.19× 10−2 1.43× 10−1 3.38× 10−3 83.00± 1.27
40 1.00 39.00 0.1 150 3.18× 10−3 1.93× 10−1 1.09× 10−3 83.23± 1.04
40 0.209 8.15 0.1 150 1.81× 10−2 2.21× 10−1 1.55× 10−3 83.09± 1.14

Abalone

40 0.159 6.20 0.1 150 1.79× 10−2 2.15× 10−1 2.48× 10−3 83.10± 1.17

83.28± 0.98

20 1.00 19.00 0.1 50 3.76× 10−3 9.57× 10−2 9.10× 10−5 86.25± 0.52
20 0.211 4.00 0.1 50 6.56× 10−2 7.04× 101 7.65× 10−3 86.10± 0.46
20 0.147 2.80 0.1 50 3.80× 10−2 6.23× 10−1 1.22× 10−2 86.17± 0.83
40 1.00 39.00 0.05 100 3.01× 10−3 1.81× 10−1 1.96× 10−4 86.25± 0.50
40 0.209 8.15 0.05 100 1.99× 10−2 4.84× 10−1 1.42× 10−3 86.15± 0.56

Non-Coding RNA

40 0.159 6.20 0.05 100 2.61× 10−2 5.18× 10−1 3.03× 10−3 86.33± 0.58

86.26± 0.51

20 1.00 19.00 0.1 50 6.18× 10−4 1.68× 10−2 3.64× 10−6 98.41± 0.29
20 0.211 4.00 0.1 50 2.14× 10−2 4.67× 10−2 1.86× 10−3 98.08± 0.89
20 0.147 2.80 0.1 50 1.91× 10−2 9.24× 10−2 1.45× 10−3 98.35± 0.41
40 1.00 39.00 0.1 100 5.20× 10−4 1.59× 10−2 3.10× 10−6 98.41± 0.29
40 0.209 8.15 0.1 100 1.02× 10−2 2.04× 10−2 2.14× 10−4 98.42± 0.29

Shuttle

40 0.159 6.20 0.1 100 1.33× 10−2 3.23× 10−2 2.70× 10−4 98.40± 0.31

98.41± 0.29
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Figure 5: The Non-Coding RNA data set with a network of 20 nodes and different network densities.
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Figure 6: ROC curves for three of the data sets. Centralized and distributed and local learning.

4.5 Complexity Analysis

This section examines the computational and commu-
nication complexity of the centralized and distributed
learning approach for the evaluation networks. For the
centralized approach, a hierarchical network is assumed.
A three layer multi-level hierarchical topology is used
with leaf nodes, intermediate parent nodes and a gateway
node [3], [4]. It is assumed that 3/4 of the nodes are in
layer 3, with the remaining nodes in layer two which
transmit to a central node. The classifier is constructed
on the central node. The computational complexity of
the centralized and distributed approaches are displayed
in Fig. 7a. Computational complexity for the distributed
learning approach is lower than that of the centralized
approach. Although the distributed approach requires
the solution of multiple convex optimization problems
at node level to iterate towards the solution, it has a

much smaller data set on each node. As the solution of
the convex optimization problems is dependent on the
number of data instances in the training set, this reduces
computational complexity. This is the case for the Liver
Disorder data set with 10 nodes and the Non-Coding
RNA data set with 40 nodes.

Communication complexity is displayed in Fig. 7b.
The communication cost for the centralized approach is
calculated using (19). For the centralized approach, com-
munication complexity increases rapidly as the number
of data instances on individual data nodes increases for
both the Liver Disorder and Non-Coding RNA data sets.
Distributed MVE-PCA has a constant communication
complexity regardless of the number of data instances
on a node. Communication complexity depends on the
size of the matrix A and the vector b. These summary
statistics are transmitted by a node to neighbouring
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Figure 7: Complexity analysis with the Liver Disorder and Non-Coding RNA data set.

nodes, and using distributed MVE-PCA the algorithm is
able to iterate towards the centralized classifier without
the transmission of the data set to a central node. A
drawback of the approach is the requirement to transmit
the matrixA and the vector b each round as the algorithm
iterates towards the final solution. However, Fig. 7b
shows that the communication complexity is significantly
lower than that of the centralized version except when
there is a small number of data instances on an individual
node.

5 C O N C L U S I O N
A robust PCA-based anomaly detection algorithm that
operates in a distributed environment was proposed.
Minimum volume elliptical PCA is able to determine
the PCs more robustly in the presence of anomalies
by constructing a soft-margin minimum volume ellipse
around the data that reduces the influences of anomalies
in the training set. Evaluations on real-world data sets
show that the performance of minimum volume PCA
exceeds that of PCA and other state-of-the-art anomaly
detection techniques.

Local and centralized approaches to anomaly detection
were examined. It was shown that a local approach can
lead to poor performance compared to the centralized
approach. A solution to this issue is distributed learning
which can provide performance that approaches that
of the centralized classifier. The proposed anomaly de-
tection technique was reformulated using a distributed
convex optimization problem which splits the problem
across a number of nodes. Communication between
nodes is limited to the exchange of small matrices be-
tween neighbouring nodes where no specific network
infrastructure is assumed. Evaluation of the distributed
minimum volume PCA on synthetic and real-world data
sets shows that the distributed algorithm is able to
approach the performance of the centralized version.
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