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Stochastic Gradient Made Stable:
A Manifold Propagation Approach for

Large-Scale Optimization
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Abstract—Stochastic gradient descent (SGD) holds as a classical method to build large scale machine learning models over big data.
A stochastic gradient is typically calculated from a limited number of samples (known as mini-batch), which potentially incurs a high
variance and causes the estimated parameters bounce around the optimal solution. To improve the stability of stochastic gradient,
recent years have witnessed the proposal of several semi-stochastic gradient descent algorithms, which distinguish themselves from
standard SGD by incorporating global information into gradient computation. In this paper we contribute a novel stratified
semi-stochastic gradient descent (S3GD) algorithm to this nascent research area, accelerating the optimization of a large family of
composite convex functions. Though theoretically converging faster, prior semi-stochastic algorithms are found to suffer from high
iteration complexity, which makes them even slower than SGD in practice on many datasets. In our proposed S3GD, the
semi-stochastic gradient is calculated based on efficient manifold propagation, which can be numerically accomplished by sparse
matrix multiplications. This way S3GD is able to generate a highly-accurate estimate of the exact gradient from each mini-batch with
largely-reduced computational complexity. Theoretic analysis reveals that the proposed S3GD elegantly balances the geometric
algorithmic convergence rate against the space and time complexities during the optimization. The efficacy of S3GD is also
experimentally corroborated on several large-scale benchmark datasets.

Index Terms—Large-scale optimization, semi-stochastic gradient descent, manifold propagation.
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1 INTRODUCTION

Regularized risk minimization [19] is a fundamental subject
in machine learning and statistics, whose formulations typ-
ically admit a combination of a loss function and a reg-
ularization term. This paper addresses a general class of
convex regularized risk minimization problems which can
be expressed as a composition:

w∗ = arg min
w
{F (w) := P (w>x) +R(w)}, (1)

in which w,x denote the parameter vector and data vector
respectively. Both P (w>x) and R(w) are assumed to be
convex functions. Moreover, let P (w>x) be a weighted
addition of many atomic loss functions, each of which is
differentiable. We simply define each atomic function on an
input data pair (xi, yi), where xi ∈ Rd represents a feature
vector and yi denotes its associated label. Popular choices
of the loss functions include the square loss (w>xi − yi)2,
the logistic loss log(1 + exp(−yiw>xi)), and the hinge
loss (1 − yiw

>xi)+. In the above cases yi ∈ {±1}, yet
in others yi can be real-valued in regression problems or
missing in an unsupervised learning setting. R(w) defines a
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proper regularization function. It imposes some structural
preference on the parameters (e.g., structural sparsity or
matrix low-rankness).R(w) can be non-smooth with respect
to w, such as the sparsity-encouraging 1-norm ‖w‖1.

When facing a large volume of training data, the space
and time complexities become critical limiting factors in
building a machine learning model. In such scenarios,
stochastic (sub)gradient descent (SGD) [1], [5], [8], [12], [14],
[17], [24] is a favored method used by many theorist and
practitioners. The most attractive trait of SGD is the light-
weight computation at each iteration of update. Its single-
sample or mini-batch [4], [17] updating scheme is a general
remedy for the O(n) complexity in exact gradient descent
(GD) methods (n represents the number of training sam-
ples). Therefore, SGD algorithms are particularly promising
when there is a limited budget of resources. Given properly-
specified step size parameters at each iteration, SGD algo-
rithms often enjoy provably fast rates of convergence.

The major downside of SGD in practical implementa-
tions is caused by large variance of stochastic gradients.
Statistically, the mathematical expectation of stochastic gra-
dients is exactly the full gradient. However, the randomness
in constructing mini-batch brings large variance to stochas-
tic gradients, particularly for complex data set. Moving
along the direction of a stochastic gradient does not always
guarantee a decrease of the entire training loss. Under large
stochastic gradient variance, the estimated parameters often
drastically bounce around the global optimal solution.

Recent years have witnessed the emerging efforts of de-
veloping sophisticated algorithms which reduce the stochas-
tic gradient variance in SGD. The shared idea underly-
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Fig. 1. Illustration of residual-minimizing gradient correction.
Stochastic gradient calculated from a single random sample
often significantly deviates from the exact gradient. A simple so-
lution is to compensate the stochastic gradient with the residual
between the noisy stochastic gradient and full gradient (plotted
as red dotted arrow in this figure). Exact residual is computation-
ally expensive. Instead, semi-stochastic gradient descent ap-
proximately estimates the residue (plotted as blue dotted arrow
in this figure), and amends the stochastic gradient accordingly.
Best viewing in color mode.

ing these works is incorporating an additional gradient-
correcting operation when computing the stochastic gra-
dient. The corrected stochastic gradient becomes a more
accurate approximation of the full gradient. Statistically, it
enjoys a reduced level of variance. For example, the work
in [28] explicitly expresses the stochastic gradient variance
and proves that constructing mini-batch using special non-
uniform sampling strategy is able to reduce the stochastic
gradient variance. The sampling probability is essentially
based on the contextual importance of a sample. Another
method named stochastic average gradient (SAG) [16] keeps
a record of historic stochastic gradients and adaptively
averages them for the use in the current iteration. The rate
of convergence is thereby improved to O(1/k) for general
convex functions, and O(pk) with p < 1 for strongly convex
functions, respectively (k is the count of iterations). For
atomic functions in special forms (e.g., linear function of the
data vectors as in linear regression and logistic regression),
the storage of historic gradients in SAG can be reduced from
O(nd) to O(n) (n, d represent the sample count and feature
dimension respectively). However, generally storing historic
gradients in SAG entails a heavy burden for machine learn-
ing models with many parameters.

This paper advocates an efficient manifold propagation
approach for reducing the stochastic gradient variance in
large-scale machine learning. It aims to improve the stability
of the stochastic gradient, such that large descending step
sizes can be used for faster convergence. We adopt the
computational framework of residual-minimizing gradient cor-
rection which was originally proposed in stochastic variance-
reduced gradient (SVRG) [9] by Johnson and Zhang. The
computational framework is comprised of two steps: 1)
estimate the residual between a stochastic gradient and the
full gradient using global information, and 2) compensate
the stochastic gradient such that the residual is largely
minimized.

Since the optimization proceeds in rounds, we can thus
describe it with an update rule. For simplicity, consider the
case that each mini-batch only contains a single random

sample. Assume wk is the latest estimation for the problem
minw F (w) at the k-th iteration, standard SGD and full
(sub)gradient descend (GD) will seek for a new estimation
wk+1 according to1

(SGD) : wk+1 = wk − ηk∇Fi(wk), (2)
(GD) : wk+1 = wk − ηk∇F (wk), (3)

where ηk is a delicately-chosen step size. The term Fi(w
k) in

SGD denotes the atomic function conditioned on a random
sample xi and the latest parameters wk. F (wk) is computed
using all training set.

In contrast, semi-stochastic gradient is obtained by the
rule below:

wk+1 = wk − ηk
(
∇Fi(wk)− (∇Fi(w̃)−∇F (w̃))

)
︸ ︷︷ ︸

semi−stochastic gradient

, (4)

where w̃ represents some historic memory of recent parame-
ter estimation. w̃ is supposed to be proximal to wk. The term
∇Fi(w̃)−∇F (w̃) approximately estimates the residual be-
tween the stochastic gradient of sample xi and full gradient.
By subtracting the residual term from ∇Fi(wk), it naturally
aligns the stochastic gradient with the full gradient. As an
extreme case, letting w̃ = wk will immediately get the full
gradient in (4). The idea is intuitively explained in Figure 1.

Theoretic analysis in [9], [10], [21] reveals that semi-
stochastic algorithms achieve a geometric rate of conver-
gence. Though such a convergence rate is generally re-
garded as the synonym of satisfactory efficiency, it is im-
portant to emphasize that this rate is achieved at the cost
of higher iteration complexity compared to standard SGD.
In our experiments, we are surprised to find that SGD still
dominates in many cases, since its light-weight iteration cost
compensates its slow theoretic convergence rate. In other
words, the promising geometric convergence rate of existing
semi-stochastic algorithms is probably Pyrrhic victories at
excessive costs of maintaining high-accuracy estimation of
gradient residual.

We find that a comprehensive quantitative comparison
between semi-stochastic algorithms and SGD is still missing
in the literature. In fact, most existing semi-stochastic algo-
rithms either rely on periodic full gradient computation [9]
or use Hessian-like covariance matrix operations [20], which
account for their high iteration complexities. In this paper
we expose a novel way of efficiently computing semi-
stochastic gradient and evaluate it on a variety of massive
data sets. We term the new method as stratified semi-stochastic
gradient descent (S3GD) hereafter. Our major contributions
are described below:

• As a crucial component of the proposed S3GD, we
devise an efficient manifold propagation approach
for computing semi-stochastic gradient. First, a fixed
number of anchors are drawn in a stratified man-
ner. After that, each sample in the training set is
connected to its adjacent anchors, forming a graph-
defined manifold. At each iteration, the gradient
information computed on the anchors diffuses over

1. When F (w) is non-smooth, sub-differential (rather than
gradient) will be used. However, we here abuse the notation
∇ for statement conciseness.
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the manifold, obtaining an approximate estimation
of the full gradient. The idea empirically proves to
be a strong competitor to the existing expensive,
albeit accurate, gradient-correcting operations such
as SVRG.

• We provide theoretic analysis about S3GD. Under
standard assumptions imposed on the objective func-
tions (i.e., strong convexity and Lipschitz continuity)
and with a constant step size, the objective value
obtained by S3GD converges to F (w∗) + ∆ at a
geometric rate, where F (w∗) is the global minimum
of F (w) and ∆ is some quantity determined by the
quality of anchor-based function approximation.

• Last but not least, we conduct quantitative investi-
gation over 9 different benchmarks, covering a large
spectrum of real-world problems. The experimental
evaluations fully validate the efficiency and effective-
ness that S3GD brings. Moreover, the comparisons
between various semi-stochastic algorithms and clas-
sic SGD is so far the most comprehensive and sup-
posed to be very useful for re-calibrate the research
direction of semi-stochastic algorithms.

The remainder of this paper is organized as follows:
We start in Section 2 by describing preliminary knowledge
and algorithmic details of S3GD. Specifically, Section 2.4 is
devoted to applying the generic idea of S3GD to several
representative machine learning problems. We then give
the theoretic analysis in Section 3, where the major obser-
vation is found in Theorem 3.1. In Section 4 we present
the quantitative investigation of S3GD on several large-
scale benchmark datasets widely used in machine learning
and statistics. Finally, in Section 5 we draw the concluding
remarks and discuss the future perspective.

2 THE PROPOSED ALGORITHM

2.1 Notations and Assumptions

Notations: We will denote vectors and matrices by bold-face
letters. Let ‖x‖2, ‖x‖1 be the Euclidean norm and 1-norm
(summation of all absolute elements) of a vector respec-
tively. (x)+ = max(x, 0) is the zero-thresholding operation.
Denote the training data set as X = {(xi, yi)}, where i =
1, . . . , n. Each sample is described by a tuple (xi, yi), where
xi ∈ Rd is the feature vector and yi corresponds to either la-
bels in supervised learning or response values in regression
problems. The smooth part in Problem (1) is premised in
an additive form, namely P (w) = (1/n)

∑n
i=1 ψ(xi, yi,w)2.

The regularization term R(w) is convex yet not mandatorily
differentiable. Whenever not incurring confusion, we use
the notation ψi(w) for simplifying ψ(xi, yi,w). Throughout
this paper, by default we use ‖x‖ to represent the Euclidean
norm unless otherwise clarified.

Our theoretic observations are based on the following
assumptions, similar to previous semi-stochastic gradient
descent methods [21], [27]:

2. P (w>x) and P (w) will be interchangeably used in this
paper. P (w>x) will be used when we highlight the interplay
between w and x. Likewise ψi(w) and ψ(w>xi) are also
equivalently used.

Algorithm 1 The S3GD Algorithm
1: Parameters: maximal number of inner iterations kin, the

number of samples in a mini-batch p and the step-size
parameter η;

2: Output: optimal parameter vector w∗;
3: Initialize w̃ = 0;
4: while not converged do
5: w0 = w̃;
6: Calculate the approximate full gradient ∇H(w̃) over the

manifold according to Eqn. (22);
7: for k = 1 to kin do
8: Construct a mini-batch by random sampling. Denote

the index set as I = {k1, . . . , kp}.
9: Calculate the stochastic gradient for the mini-batch,

obtaining ∇PI(wk−1) = (1/p)
∑p

i=1∇ψki(w
k−1);

10: Calculate approximate stochastic gradient for the
mini-batch on the manifold by Eqn. (19), obtaining
∇hI(w̃) = (1/p)

∑p
i=1∇hki(w̃);

11: Calculate the semi-stochastic gradient g(wk−1) accord-
ing to Eqn. (8);

12: Solve the following sub-problem:

wk = argmin
w

1

2
‖w − (wk−1 − η · g(wk−1))‖22 + ηR(w).

13: end for
14: w̃← wkin ;
15: end while
16: w∗ ← w̃;

Assumption 2.1. (strong convexity): We say that a function
f : Rd 7→ R is strongly convex, if there exists µ > 0 such that
for all u,v ∈ Rd,

f(u) ≥ f(v) + ξ>(u− v) + µ
2 ‖u− v‖2, ∀ξ ∈ ∂f(v), (5)

where ∂f(v) is the sub-differential (set of sub-gradients) at
point v. The convexity parameter is defined to be the largest
µ that satisfies the above condition. Let P (w), R(w) and their
composition F (w) have non-negative convexity parameters µP ,
µR and µ respectively. It is easily verified that µ ≥ µp + µR by
definition of strong convexity and function composition.

Assumption 2.2. (smoothness): A function f : Rd 7→ R is
L-smooth if it is differential and there exists a smallest L > 0
such that it satisfies

f(u) ≤ f(v) +∇f(u)(u− v) + L
2 ‖u− v‖2, (6)

for all u,v ∈ Rd. Or equivalently, its gradient is L-Lipschitz
continuous, namely we have

‖∇f(u)−∇f(v)‖ ≤ L‖u− v‖. (7)

Let the Lipschitz parameter for each atomic function ψi(w) be
Li respectively. The Lipschitz parameter for their composition
P (w) is LP ≤ (1/n)

∑n
i=1 Li. The regularization term R(w) is

mostly assumed to be non-differentiable and thus has no Lipschitz
parameter.

2.2 Algorithmic Framework
The composite optimization problem in (1) is of broad in-

terests in machine learning and data mining fields. Nonethe-
less, solving it at optimal convergence speed is non-trivial.
If we simply treat F (w) as a black-box oracle which only re-
turns the first-order (sub)gradient, there are several off-the-
shelf tools, including SGD and full (sub)gradient descent.
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Since full (sub)gradient estimation is extremely expensive
when huge volume of data is available, recent work has
focused on stochastic optimization.

SVRG [9], as introduced in preceding section, obeys the
update rule in (4). Procedurally, it utilizes two nested loops.
At each iteration of the outer loop, it memorizes a recent
estimation w̃ and calculates the full gradient ∇F (w̃) at w̃.
In the inner loops, it calculates ∇Fi(wk) and ∇Fi(w̃) for
mini-batches, and afterwards amends the stochastic gradi-
ent∇Fi(wk) by the rule in (4). Note that the same w̃ is used
for all updates within an outer loop. The SVRG method,
though simple, profoundly reduces the amortized time com-
plexity at iterations and theoretically achieves geometric
convergence rate for strongly-convex smooth functions.

Another semi-stochastic algorithm, stochastic control vari-
ate (SCV) [20], represents a general approach of using control
variate for reducing the variance of stochastic gradients.
The update rule of SCV is similar to (4) yet the last two
(sub)gradients in (4) are replaced by control variate. Data
statistics such as low-order moments (vector mean and
covariance matrix) can be used to form the control variate.
The authors apply SCV to solve logistic regression and latent
Dirichlet allocation.

However, existing semi-stochastic methods like SVRG
and SCV are not guaranteed to beat standard SGD in prac-
tice, since computing ∇F (w̃) in SVRG or control variate
in SCV significantly increases the iteration complexity. To
overcome the key limitations that dramatically restrict their
capability in large scale data analysis, we propose S3GD.
Algorithm 1 sketches the pseudo-code of S3GD.

Before diving into algorithmic details, we want to high-
light two defining traits of S3GD:

Manifold-oriented gradient approximation: Given the
composite function F (w), S3GD only computes the gradient
on the smooth part P (w). For accelerating the computation
of semi-stochastic gradient in (4), we argue that the key is to
find a function H(w), whose design principals are:

1) ∇H(w) is a good surrogate to the full gradient of the
smooth component ∇P (w), namely ∇H(w) ≈ ∇P (w);

2) ∇H(w) can be efficiently computed;
3)∇H(w) = 1

n

∑n
i=1∇hi(w) is additive, where∇hi(w)

approximates the stochastic gradient of an atomic function.
Namely, ∇hi(w) ≈ ∇ψi(w).

We defer the construction of function H(w) in Sec-
tion 2.3, focusing on the algorithmic pipeline here. At spe-
cific iteration, an index set I ⊂ {1, . . . , n} is randomly gen-
erated for constructing a mini-batch. Conditioned on current
parameter estimation wk and a recent historical estimation
w̃, the semi-stochastic gradient in S3GD is computed by the
following formula:

gI(wk, w̃) = ∇ψI(wk)− [∇hI(w̃)−∇H(w̃)] , (8)

where ∇ψI(wk) =
∑
i∈I ∇ψi(wk)/|I|, ∇hI(w̃) =∑

i∈I ∇hi(w̃)/|I| are the averaged original / approximate
stochastic gradients over the index set I respectively. Here-
after we use gI(wk) for brevity since the parameter vector
w̃ can be mostly inferred from the context.

In fact, gI(wk) provides an unbiased estimate of
∇P (wk) when I is randomly drawn from [1, . . . , n] with-
out replacement. Its soundness is naturally fulfilled by the

additive construction of functions P (w) and H(w). Conse-
quently, the variance of gI(wk) becomes

V ar
[
gI(wk)

]
= E

∥∥∥∇ψI(wk)−∇hI(w̃)
∥∥∥2

−
(
E
∥∥∥∇P (wk)−∇H(w̃)

∥∥∥)2
≤ E

∥∥∥∇ψI(wk)−∇hI(w̃)
∥∥∥2 . (9)

In comparison, the variance of noisy stochastic gradient
∇ψI(wk) in standard SGD is

V ar
[
∇ψI(wk)

]
= E

∥∥∥∇ψI(wk)−∇P (wk)
∥∥∥2 . (10)

For V ar[gI(wk)] and V ar[∇ψI(wk)], the smaller one
is more favorable. As shown later, to reduce V ar

[
gI(wk)

]
,

we designate ∇hI(w̃) to be a localized approximation of
∇ψI(wk). It is supposedly closer to ∇ψI(wk) in compari-
son with the global average ∇P (wk), particularly when the
input data set is with rich variety.

Proximity-regularized linear approximation: After the
semi-stochastic gradient gI(wk) is computed, we further
solve the following sub-problem:

wk+1 = arg min
w

P (wk) + 〈gI(wk),w −wk〉
1
2η

∥∥w −wk
∥∥2 +R(w), (11)

where the first three terms define a proximal regularization
of the linearized approximation of P (w) around point wk.
R(w) is presumably in a good shape such that solving (11) is
trivial. If R(w) is itself composition of several non-smooth
functions, one can resort to the modern proximal average
techniques [23]. Moreover, it is verified that Problem (11)
can be compactly abstracted by the operation prox() below:

proxηR(u) = arg minw
1
2‖w − u‖2 + ηR(w), (12)

where u = wk − η · gI(wk).

2.3 Gradient Approximation by Manifold Propagation
This section elaborates on a manifold-oriented method

for approximating the stochastic gradient ∇ψi(w). Our key
argument is that a universal gradient-approximating func-
tion is either infeasible or inaccurate in general. Our pro-
posed solution is anchor-based gradient approximation over
non-linear data manifold. The idea has ever been explored
in other context (such as feature dimension reduction) yet
not in stochastic optimization before.

Yu et al. showed in [22] that any Lipschitz-continuous
function f(x) residing on lower-dimensional manifolds can
be approximated by a linear combination of function values,
namely

f(x) ≈
∑
z∈Z

γz(x)f(z), (15)

where Z is a collection of pre-specified anchors. γz(x) ≥ 0
is the combination coefficient depending on both the data
vector x and anchor z. The idea is later generalized in
the work of locally-linear support vector machine [7], [11],
where each anchor determines a function (rather than a
fixed value), namely f(z) in (15) is replaced by an x-varying
function fz(x).
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Algorithm 2 Manifold Based Gradient Approximation
1: Parameters: anchor number m and k-NN parameter k.

Anchor Selection
2: Perform data clustering to obtain m centers ci, i = 1 . . .m;
3: for i = 1 to m do
4: Find anchor zi by solving

zi = argminx ‖x− ci‖2, (13)

where x is from the training data set.
5: end for

Sparse Anchor-Sample Graph (ASG) Construction
6: for i = 1 to n do
7: For sample xi, find k-nearest anchors zi1 , . . . , zik ;
8: Learn the Gaussian kernel parameter by

σ = max

(
ε, inf

j∈{i1,...,ik}

√
‖xi − zj‖

)
, (14)

where ε is set to be 10−4 to avoid the trivial case σ = 0.
9: for each k-nearest anchor z do

10: Calculate γz(xi) = exp(−‖xi − z‖2/σ2);
11: end for
12: Normalize γz(xi) to ensure that they sum to 1;
13: end for

Gradient Approximation over ASG
14: Pre-compute the product matrix XM in Eqn. (22);

15: // for ∇hI(w) on a mini-batch
16: for each xi in the mini-batch I do
17: Calculate ∇hi(w) by Eqn. (19);
18: end for
19: ∇hI(w) =

∑
i∈I ∇hi(w)/|I|;

20: // for approximate full gradient ∇H(w)
21: Calculate ∇H(w) by Eqn. (22);

In Problem (1), we assume that each atomic loss function
ψ(w>xi) is linear with respect to xi. Letting ψ′(u) be the
derivative with respect to a scalar u, the stochastic gradient
of xi with respect to w can be factorized as below:

∇ψi(w) = ψ′(w>xi) · xi. (16)

Inspired by the factorization in (16), we propose to
establish a manifold over the training data, such that the
derivative term ψ′(w>xi) in (16) can be efficiently calcu-
lated via sparse information propagation on the manifold.
Algorithm 2 shows the pseudo-code for the major steps. The
proposed scheme consists of the following components:

1) Constructing anchor set: Compared to universal
gradient approximation, anchor set [13] has a stronger
representation power by establishing local approximation
around each anchor point. Let m be the number of anchor
points, whose optimal value of is mostly dataset-specific. Let
Z = {z1, . . . , zm} be the anchor set. We employ a k-means
clustering procedure to obtain m centers in a stratified
manner. The anchor points are chosen as the nearest samples
to these centers, since these centers per se are not necessarily
corresponding to meaningful features.

2) Anchor-Sample Graph (ASG) Construction: We
follow the local approximation scheme as described in
Eqn. (15). Specifically, we propose to approximate the term

ψ′(w>xi) in (16) by

ψ′(w>xi) ≈
∑
z∈Z

γz(xi) · ψ′(w>z). (17)

Each anchor z uniquely determines a localized function
ψ′(w>z), whose value varies with respect to different w.
The coefficient γz(xi) controls the contribution of specific
anchor point in computing ψ′(w>xi). Geometrically, an-
chors and all training samples naturally form an anchor-
sample graph (ASG), where the connectivity strengths are
controlled by {γz(x)}. In graph-based propagation meth-
ods, it is known that connecting sample with remote anchors
potentially does harm to the performance [13]. Therefore,
each sample is enforced to only connect to its k-nearest
anchors. State differently, most γz(x) is zero so that the ASG
is highly sparse. The computation of γz(x) is detailed in
Algorithm 2.

3) Gradient Approximation over ASG: Combining
Eqns. (16) and (17) obtains

∇ψi(w) = ψ′(w>xi) · xi
≈

(∑
z∈Z γz(xi) · ψ′(w>z)

)
· xi, (18)

where the right hand side in (18) serves as our proposed
manifold-oriented approximate gradient. Formally, we des-
ignate a surrogate function hi(w) such that

∇hi(w) =

(∑
z∈Z

γz(xi) · ψ′(w>z)

)
xi. (19)

Likewise, the approximate full gradient ∇H(w) in (8)
can be computed by:

∇H(w) =
1

n

∑
i=1...n

∇hi(w)

=
1

n

∑
i=1...n

[(∑
z∈Z

γz(xi) · ψ′(w>z)

)
· xi

]

=
1

n

∑
z∈Z

[ ∑
i=1...n

γz(xi) · xi

]
· ψ′(w>z). (20)

Importantly, computing (19) and (20) is highly efficient
owing to the sparsity of ASG. It only involves executing the
derivative function for all anchors in addition to another
O(m + d) algorithmic operations per sample. In fact, the
computation in (20) can be further accelerated by per-
computing the terms irrelevant to w. Let M ∈ Rn×m be
the matrix by compiling all coefficients in ASG. Specifically,
M(i, j) = γzj (xi). Moreover, let

dZ(w) =
(
ψ′(w>z1), . . . , ψ′(w>zm)

)>
∈ Rm, (21)

be the vector of anchor derivatives conditioned on param-
eter w. X = (x1, . . . ,xn) ∈ Rd×n is the feature matrix.
Eqn. (20) can be compactly expressed as

∇H(w) =
1

n
· (XM)× dZ(w), (22)

The product XM ∈ Rd×m is not varying with respect
to w and thus can be pre-computed for avoiding redundant
computation at different outer loops in Algorithm 1.
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2.4 Instances of Applications
This section instantiates our proposed algorithm by several
representative loss functions and regularizations.

Logistic Loss: It is applicable to either real or binary re-
sponses. We focus on the binary case, where the label
y = ±1. For any data vector x, the conditional probability
of the class label is:3

p(y|x;w) = σ(yw>x) := 1/(1 + exp(−y(w>x))). (23)

The log-likelihood function is then expressed as P (w) =∑n
i=1 ψ(w>xi) =

∑n
i=1 log p(yi|xi;w). According to the

calculus rule of sigmoid function, the gradient of ψ(w>xi)
is:

∇ψ(w>xi) = σ(−yiw>xi)︸ ︷︷ ︸
derivative ψ′(w>xi)

·yixi (24)

Applying the idea of anchor-based approximation in
Eqn. (19), we have

∇ψ(w>xi) = σ(−yiw>xi) · yixi

≈
(∑

z∈Z
γz(xi) · σ(−yiw>z)

)
· yixi,

which indicates that the approximate stochastic gradient is

∇hi(w) =

(∑
z∈Z

γz(xi) · σ(−yiw>z)

)
· yixi. (25)

The label yi and feature vector z are tightly coupled
in Eqn. (25), which prohibits the matrix multiplication in
Eqn. (22). To decouple them, the stochastic gradients of
different samples can be handled according to their labels.
More formally, let us consider the following two cases:

Case-1: yi = 1. We have ∇ψ(w>xi) = σ(−w>xi) ·
xi, where σ(−w>xi) can be efficiently approximated by∑

z γz(xi) · σ(−w>z).
Case-2: yi = −1. Now there is ∇ψ(w>xi) = σ(w>xi) ·

(−xi) = (1 − σ(−w>xi)) · (−xi) = −xi + σ(−w>xi) · xi.
Note that we use the property of sigmoid function σ(u) =
1 − σ(−u). It turns out that we can still apply the tricks
in Case-1 by amending the result with an additional term
−xi. In practice, to estimate ∇H(w), we can pre-compute
(1/n)

∑
i : yi=−1 xi and use it to compensate the quantity

calculated from Eqn. (22). This way the computation still
enjoys the high efficacy of matrix-based operations.

Hinge Loss and Squared Hinge Loss: The loss function
popularized by SVM is known to be hinge loss (1−yw>x)+.
It is non-differentiable due to the irregularity at yw>x =
1. However, as discovered in [25], [26], hinge loss can be
smoothed by the loss of “modified logistic regression”:

(1− yw>x)+ ≈
1

β
log
(

1 + exp(−β(yw>x− 1))
)
. (26)

The approximation residual asymptotically becomes
zero when β → +∞, therefore we can cast hinge loss into
the the framework of logistic loss with properly-chosen β.

3. For the sake of simplifying notations, we remove the inter-
cept variable by appending an additional dimension of constant
1 to any feature vector x.

Another solution of smoothing hinge loss is using
squared hinge loss as adopted by L2-SVM [3], namely
(1/2)((1 − yw>x)+)2, which naturally removes the irreg-
ular point at the risk of over-penalizing large response. Its
gradient at a sample (xi, yi) is

∇ψ(w>xi) = (1− yiw>xi)+︸ ︷︷ ︸
derivative ψ′(w>xi)

·(−yixi). (27)

Regularization: The regularization function R(w) can be
either smooth (e.g., Tikhonov regularization) or non-smooth
(e.g., 1-norm regularization). Below we list a few regulariza-
tion functions widely-used in machine learning:

(Tikhonov) : R(w) = λ‖w‖22.
(1-norm) : R(w) = λ‖w‖1.

(Elastic net) : R(w) = λ(1− α)‖w‖1 + λα‖w‖2.

When parameters w constitute a matrix rather than a
vector, regularization terms such as matrix nuclear norm [2]
can be applied. However, optimizing with all above reg-
ularization under the proximal operator in (12) has been
maturely developed. We thus omit more discussion.

2.5 Algorithmic Complexity
The iteration complexity of the proposed S3GD depends
on several parameters: the mini-batch size p, the number
of anchors m, the k-NN parameter in constructing ASG,
the maximal inner loop count kin and the feature dimen-
sionality d. In the pre-computation, obtaining the matrix
product XM requiresO(dkn) time complexity. And finding
the k nearest anchors has a time complexity of O(nmd).
At the run-time, the complexity of computing ∇H(w̃) is
comprised of O(dm) for evaluating anchor gradients in
Eqn. (21) andO(dm) for multiplying the pre-computed XM
with a vector dZ(w). Note that ∇H(w̃) is only calculated
once at the beginning of each outer loop in Algorithm 1.
Computing∇ψI(wk) and∇hI(w̃) in Eqn. (8) admits a time
complexity of O(pd) or O(p(k + d)) respectively.

Most of existing semi-stochastic algorithms rely on two
nested loop, of which the outer loop incurs exact full gradi-
ent computation or covariance matrix estimation. For large
data, it entails a tremendous O(nd) or O(d2) complexity.
For other sophisticated algorithms that target at improved
mini-batch construction (such as SSGD [27]), the iteration
complexity is generally better than ours. However, the lack
of global information makes these algorithms more sensitive
to noise in stochastic gradients.

Regarding the space requirement, the major costs for
S3GD include O(dm) for storing the product matrix in
Eqn. (22) andO(nk) for recording k nearest anchors for each
sample. Akin to SVRG and SCV, S3GD does not memorize
historic gradients. We summarize the space and time com-
plexities for all interested algorithms in Table 1.

3 CONVERGENCE ANALYSIS

We need two lemmas as below to advance the convergence
analysis. The first lemma states

Lemma 3.1. Consider the composite function F (w) as defined
in Eqn. (1). It satisfies both Assumptions 2.1 and 2.2. Let w∗ =
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SGD SSGD SVRG SCV S3GD
Iteration Time Complexity: O(p× d) O(p× d) O

(
p× d+ n

kin
× d

)
O

(
p× d+ d2

)
O

(
p× d+ m

kin
× d+ p× (k + d)

)
Preprocessing Time Complexity: – O(n×m× d) – – O(n×m× d)

Space Complexity: O(d) O(dm) +O(n) O(d) O(d2) O(dm) +O(nk)
TABLE 1

Time/space iteration complexity for all algorithms involved in the quantitative study. p,m, n, d denote the size of a mini-batch, the
number of anchors in S3GD (or the number of clusters in SSGD), the number of training samples, and the feature dimensionality

respectively. k denotes the anchor k-NN parameter. Note that for SVRG and S3GD, they both adopt nested loop during the
optimization. kin denotes the maximal iteration count of the inner loop. The mark “–” implies the absence of any pre-processing.

arg minw F (w) be the optimal solution and L = maxi Li be the
maximal Lipschitz-continuous constant of ψi(w), i = 1, . . . , n.
Then we have

1

n

n∑
i=1

‖∇ψi(w)−∇ψi(w∗)‖2 ≤ 2L [F (w)− F (w∗)] . (28)

The key tricks in the proof of Lemma 3.1 were originally
developed in [9] and a complete proof is found in Lemma
3.4 of [21]. The other lemma is an extension of above lemma
with anchor-based gradient approximation.

Lemma 3.2. Consider the same problem setting as in Lemma 3.1.
The gradient of ψi(w) is approximated by ∇hi(w) according to
Eqn. (19). Then

1

n

n∑
i=1

‖∇hi(w)−∇ψi(w∗)‖2

≤ 2L(F (w)− F (w∗)) + 4Lmax
w
|H(w)− P (w)| ,

where H(w) = 1
n

∑n
i=1 hi(w).

Proof. Let us construct an auxiliary function as below,

ai(w) = hi(w)− ψi(w∗)−∇ψi(w∗)>(w −w∗), (29)

where i ∈ {1, . . . , n}. It is easily verified that ∇ai(w) =
∇hi(w)−∇ψi(w∗). From the construction of hi(w), ai(w)
is Lipschitz continuous with constant L = maxi Li. Based
on an argument in Theorem 2.1.5 in [15], we have

1

2L
‖∇ai(w)‖2 ≤ ai(w)−min

w
ai(w). (30)

Averaging over i = 1, . . . , n, we obtain

1

n

n∑
i=1

‖∇hi(w)−∇ψi(w∗)‖2

≤ 2L

[
1

n

n∑
i=1

ai(w)− 1

n

n∑
i=1

min
w

ai(w)

]
. (31)

From the definition of ai(w), we have

1

n

n∑
i=1

ai(w) = H(w)− P (w∗)−∇P (w∗)>(w −w∗).

By the optimality of w∗, a sub-gradient ξ∗ ∈ ∂R(w∗)
exists such that ∇P (w∗) + ξ∗ = 0. Therefore

1

n

n∑
i=1

ai(w)

= H(w)− P (w∗) + (ξ∗)>(w −w∗)

≤ H(w)− P (w∗) +R(w)−R(w∗)

= H(w)− P (w) + F (w)− F (w∗)

≤ max
w
|H(w)− P (w)|+ F (w)− F (w∗), (32)

where the first inequality follows from the definition of sub-
gradient.

The second term on the right hand side of (31) can be
bounded as below:

1

n

n∑
i=1

min
w

ai(w)

≥ min
w

1

n

n∑
i=1

ai(w)

= min
w

1

n

n∑
i=1

[
hi(w)− ψi(w∗)−∇ψi(w∗)>(w −w∗)

]
≥ min

w

1

n

n∑
i=1

[hi(w)− ψi(w)] (33)

= min
w

[H(w)− P (w)]

≥ −max
w
|H(w)− P (w)| . (34)

Combining (32) and (34) completes the proof.

The following is our main observation regarding the
convergence property of the proposed S3GD:

Theorem 3.1. For compositional function F (w) = P (w) +
R(w), assume its two components P (w), R(w) have strong
convexity parameter µP ≥ 0, µR ≥ 0 and µP · µR > 0. ψi(w)
has Lipschitz parameter Li, i = 1, . . . , n. Let L = maxi Li be
the maximal Lipschitz-continuous constant of ψi(w). Set the step
size η ∈ (0, 1

8L ) and the iteration count in the inner loop (denote
it as m) sufficiently large, such that

ρ =
1

(µP + µR)η(1− 4Lη)m
+

4Lη(m+ 1)

(1− 4Lη)m
< 1, (35)

and

∆ =
8η2L(µP + µR)m

η(µP + µR)(m− 4ηL(2m+ 1))− 1
·∆H,P > 0, (36)

where ∆H,P = maxw |H(w) − P (w)| denotes the maximal
residual between the smooth component P (w) and its anchor-
based approximation H(w).

Moreover, use s to index the outer loops. The proposed S3GD
algorithm will satisfy the following inequality,

F (ws)− F (w∗)−∆ ≤ ρs [F (w0)− F (w∗)−∆] , (37)

where ρ and ∆ are defined in Eqns. (35)(36) respectively.

Proof. The proof is essentially an adaption of Theorem 3.1
in [21]. Let us consider a single outer loop (indexed by
s) which consist of m inner iterations in total. Use wk to
denote the parameter vector at the k-th inner iteration. w0
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is initialized as ws obtained in previous outer loop. Without
loss of generality, let us consider mini-batches with single
random sample at each inner iteration. Based on Lemma 3.7
in [21], we have

‖wk −w∗‖2

≤ ‖wk−1 −w∗‖2 − ηµP ‖wk−1 −w∗‖2

−ηµR‖wk −w∗‖2 − 2η(F (wk)− F (w∗))

−2η∆>k (wk −w∗)

≤ ‖wk−1 −w∗‖2 − 2η(F (wk)− F (w∗))

−2η∆>k (wk −w∗), (38)

where we use the notations ∆k = vk −∇P (wk−1) and

vk = ∇ψik(wk−1)− [∇hik(ws)−∇H(ws)]. (39)

To further bound (38), we have to investigate the term
∆>k (wk − w∗). To this end, let us define the proximal full
gradient update as

w̃k = proxηR(wk−1 − η∇P (wk−1)). (40)

An argument in Theorem 3.1 of [21] indicates that the
relation below holds:

−∆>k (wk −w∗) ≤ η‖∆k‖2 −∆>k (w̃k −w∗). (41)

Applying (41) to (38) obtains

‖wk −w∗‖2

≤ ‖wk−1 −w∗‖2 − 2η(F (wk)− F (w∗))

+2η2‖∆k‖2 − 2η∆>k (w̃k −w∗), (42)

Now we further take expectation with respect to the
random variable ik in (39). Since both wk,w∗ are irrelevant
to the choice of ik, there is E∆>k (w̃k−w∗) = (E∆k)>(w̃k−
w∗) = 0. The term ‖∆k‖2 can be bounded as below:

E‖∆k‖2

= E‖∇ψik(wk−1)− [∇hik(ws)−∇H(ws)]

−∇P (wk−1)‖2

= E
∥∥∥∇ψik(wk−1)−∇hik(ws)

∥∥∥2
−
∥∥∥∇H(ws)−∇P (wk−1)

∥∥∥2
≤ E

∥∥∥∇ψik(wk−1)−∇hik(ws)
∥∥∥2

≤ 2E
∥∥∥∇ψik(wk−1)−∇ψik(w∗)

∥∥∥2
+2E ‖∇hik(ws)−∇ψik(w∗)‖2

≤ 4L(F (wk−1)− F (w∗) + F (ws)− F (w∗))

+8L∆H,P ,

where we introduce the notation ∆H,P = maxw |H(w) −
P (w)| for the brevity of the presentation.

Therefore (42) can be further transformed as

E‖wk −w∗‖2

≤ ‖wk−1 −w∗‖2 − 2η(EF (wk)− F (w∗))

+8η2L(F (wk−1)− F (w∗) + F (ws)− F (w∗))

+16η2L∆H,P . (43)

After all m iterations have been completed, we set
ws+1 = argwk,k=1,...,m minF (wk). Summing (43) over
k = 1, . . . ,m, we obtain

− 2
µP+µR

[F (ws)− F (w∗)]

≤ E‖wm −w∗‖2 − ‖w0 −w∗‖2

≤ −2η
m∑
k=1

(
EF (wk)− F (w∗)

)
+8η2L

m∑
k=1

(
EF (wk−1)− F (w∗)

)
+8η2Lm(F (ws)− F (w∗) + 16η2Lm∆H,P

≤ −2η(1− 4ηL)
m∑
k=1

(
EF (wk)− F (w∗)

)
+8η2L

(
F (w0)− F (w∗)− (EF (wm)− F (w∗))

)
+8η2Lm(F (ws)− F (w∗) + 16η2Lm∆H,P

≤ −2η(1− 4ηL)m (F (ws+1)− F (w∗))

+8η2L(m+ 1)(F (ws)− F (w∗)

+16η2Lm∆H,P , (44)

where the first inequality follows from the strong convexity
of F (w) and the last inequality is derived from the construc-
tion of ws+1.

Re-arranging (44) and using the notations ρ,∆ in (35)(36)
respectively, we obtain

F (ws+1)− F (w∗)−∆ ≤ ρ [F (ws)− F (w∗)−∆] . (45)

Recursively expanding the right hand side of above
inequality obtains the main theoretic result in (37).

Remarks: Similar to the original SVRG and its variant
Prox-SVRG, our proposed S3GD also enjoys an exponential
rate of convergence. The convergence guarantee S3GD is
comparably weaker, since it is not guaranteed to converge
to the exact globally-optimal solutions. Instead, the theoretic
analysis in Theorem 3.1 essentially states that, when the step
size η is sufficiently small, the function value-descending
process from F (w0) to F (w∗) + ∆ admits a geometric rate.
However, the optimization after reaching F (w∗) + ∆ is
beyond the scope of Theorem 3.1, which we will investigate
through empirical study in the experimental section. In a
word, our proposed S3GD avoids the intensive computation
of full gradient by relaxing the optimality guarantees.

The quantity ∆ is primarily determined by the residual
between the smooth component P (w) of the composite ob-
jective function and its anchor-based approximation H(w).
Note that in Eqn. (36), when η is proportional to 1/L and m
is sufficiently large, the coefficient in front of ∆H,P tends
to be a constant, rather than increasing with respect to
larger m. Moreover, the maximum value of the step size
η is slightly lower than that in Prox-SVRG (η < 1/(8L) in
S3GD and η < 1/(4L) in Prox-SVRG).

To mitigate the effect of ∆, one can either reduce the
value of η or switch to the normal Prox-SVRG procedure
when the estimated parameter vector is close to the global
optimum. In this paper we leave such investigation to the
future work, faithfully reporting the performance of S3GD
using constant step sizes in all experiments.
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Fig. 2. Investigation of the effect of step sizes on the convergence speed and solution stability. We select CIFAR10 as the testbed
and report the training objective values under four different step size parameters. It is seen that large step sizes often indicate faster
convergence yet also bring the risk of bouncing around the optimum. Variance reduction is thus critical for using large step sizes.
Note that the objective values are plotted in logarithmic scale. Better viewing when enlarged and in color mode.

Dataset Train/Test Size #Dim #Class
20newsgroups 11,314 / 7,532 26,214 20
IJCNN 49,990 / 91,701 22 2
WebSpam 280,000 / 70,000 254 2
CIFAR10 50,000 / 10,000 800 10
Kaggle-Face 315,799 / 7,200 256 7
MED11 30,000 / 16,904 5,000 25
KDD04 bio 120,000 / 25,751 74 2
KDD04 phy 45,000 / 5,000 65 2
Covtype 500,000 / 81,012 54 2

TABLE 2
Summary of the benchmarks used in the experiments. #Dim
and #Class represent the number of feature dimensions and

unique categories respectively.

4 EXPERIMENTS

This section reports the numerical studies between our
proposed S3GD and other competing algorithms.

4.1 Description of Dataset and Applications

To make the experiments comprehensive, we include nine
benchmarks that cover a variety of heterogeneous tasks
and different data scales: 20-Newsgroups4 which contains
nicely-organized documents from 20 different news topics,
WebSpam5 represents a large collection of annotated spam or
non-spam hosts labeled by a group of volunteers, IJCNN6

for time-series data, KDD04 bio and KDD04 phy7 which
correspond to the protein homology sub-task and quantum
physics sub-task in KDD-Cup 2004 respectively, covtype8

which includes cartographic variables for predicting forest
cover type. We also include three computer vision bench-
marks: CIFAR109 for image categorization, Kaggle-Face10 for
facial expression recognition and MED1111 for video event
detection.

Table 2 summarizes the critical information for above-
mentioned benchmarks. For most datasets, we adopt the

4. http://qwone.com/∼jason/20Newsgroups/
5. http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.

html
6. http://www.geocities.com/ijcnn/nnc ijcnn01.pdf
7. http://osmot.cs.cornell.edu/kddcup/datasets.html
8. https://archive.ics.uci.edu/ml/datasets/Covertype
9. http://www.cs.toronto.edu/∼kriz/cifar.html
10. https://www.kaggle.com/c/challenges-in-representation-

learning-facial-expression-recognition-challenge
11. http://www.nist.gov/itl/iad/mig/med11.cfm

defaulted train/test data split. Regarding the features, we
either use the feature files provided by the benchmark
organizers or extract them by ourselves. They may not
necessarily bring state-of-the-art accuracy since our focus
is investigating the convergence speed of the optimization
methods instead of just driving for higher performance. The
defaulted tasks defined on some benchmarks are multi-class
classification. In these cases, a one-vs-rest scheme is applied
to simplify the evaluations. We pick the category with the
most training samples as the positive class and merge all rest
categories as the negative class, converting it into a binary
classification problem. Whenever the positive/negative data
partitions are heavily unbalanced, we assign samples from
positive/negative classes different weights such that the
weight summarizations of the two classes are equal. More
formally, let Y+,Y− be the index sets of positive/negative
classes respectively. The loss is calculated as

P (w) = 1
|Y+|

∑
i∈Y+

ψi(w) + 1
|Y−|

∑
i∈Y− ψi(w). (46)

In all experiments we stick to using the logistic loss func-
tion and Tikhonov regularization owing to their empirical
popularity and non-linear property.

4.2 Baseline Algorithms

We make comparisons between the proposed S3GD and
other four competitors, including

• Mini-Batch Stochastic Gradient Descent (SGD): it
represents the standard stochastic gradient method.
At each iteration, the SGD algorithm randomly
draws p samples from the training set according to
weight distribution specified in Eqn. (46), calculate
their respective stochastic gradient, and uniformly
average these stochastic gradients.

• Stratified SGD (SSGD) [27]: This method aims to
improve the standard mini-batch SGD using data
clustering and stratified sampling. SSGD ensures
that each iteration will draw at least one sample
from each data cluster (stratum). The inclusion is to
contrast different ways of using global information
about data. For fair comparison we set the number
of clusters to be p.

• Stochastic Variance Reduction Gradient (SVRG):
This original idea work of SVRG is found in [9].
However, it does not handle non-smooth functions.

http://qwone.com/~jason/20Newsgroups/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.geocities.com/ijcnn/nnc_ijcnn01.pdf
http://osmot.cs.cornell.edu/kddcup/datasets.html
https://archive.ics.uci.edu/ml/datasets/Covertype
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.nist.gov/itl/iad/mig/med11.cfm
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Fig. 3. Iteration time complexities in terms of CPU times on all datasets. The time is recorded in seconds. To highlight subtle
difference, we adopt logarithmic scale for the vertical axis. The length of time is visualized by a bar that points to its due value. See
text for more explanations.

In the comparison we adopt the extension proposed
in [21]. Inheriting the two nested loops of SVRG,
one of the key parameters in [21] is the the maxi-
mal iteration number in the inner loop. The authors
suggest this parameter shall be sufficiently large for
achieving better loss bound. We fix this parameter to
be always 50 in all experiments, which empirically
provides a good balance between convergence speed
and heavy complexity caused by exact gradient esti-
mation.

• Stochastic Control Variate (SCV) [20]: This is an-
other semi-stochastic gradient method that reports
state-of-the-art speed and accuracies. The method
relies on the utilization of data statistics such as
low-order moments to define “control variate”. The
authors rigourously prove the reduction in noisy
gradient variance under mild assumptions. Note that
for features in high dimension, the computation of
data statistics can be its computational bottleneck.

4.3 Evaluation Settings
For all experiments, we fix the parameter λ = 10−3 for the
Tikhonov regularization. The maximal iteration parameter
kin in the inner loop of S3GD is fixed to be 20. Each mini-
batch contains p = 10 random samples. For S3GD, m = 100
anchors are generated on all datasets. We implemented all
baseline algorithms and S3GD in optimized C++ programs.
The experiments are conducted on shared servers in an in-
dustrial research lab. Each of the servers is equipped with 48
CPU cores and 400GB physical memory. Five independent
trials are performed for all algorithms and the averaged
results are reported. The entire experiments take about one
day on five servers.

There are two indices which are utterly crucial for evalu-
ating a gradient based optimization scheme: the correlation
(or variance) between (semi)stochastic gradient and exact
gradient, and the maximal step size which ensures the
stability of the optimization. In the literature of stochastic
gradient methods, both decayed and constant step sizes
are widely adopted. We find that tuning the decayed step
sizes is very tricky, which makes a fair comparison among
different algorithms difficult. Therefore we focus on the
results using constant step sizes.

Large step sizes are always favored in practice since they
expect improved convergence speed. To see this point, in

Figure 2 we plot the objective values in each iteration of
the training stage on CIFAR10. For all baseline algorithms
and our proposed S3GD, the convergence curves under four
different constant step sizes η = {0.1, 1, 5, 10} are recorded
and plotted. Obviously SVRG and S3GD are two most stable
algorithms even operating with large step size parameters.
All other three algorithms drastically fluctuate when their
current solutions approach the global optimum, even with
the moderate parameter η = 5. This empirical investigation
highlights the importance of choosing proper step size.

To fairly compare different algorithms, we evaluate them
under the parameter set η ∈ {0.1, 1, 5, 10} and report the
performance with the largest step size that satisfies the
following stability condition:

η∗ = max η s.t. F (w; η) ≤ (1 + ε)F (w∗), (47)

where F (w∗) denotes the objective value at the global
optimum w∗. F (w; η) is the converged point using step size
η. In the experiments we average the last 5,000 optimization
iterations to obtain F (w; η). ε is set to be 0.01 in all cases.
The condition aims to abandon any step size parameter
that drives the solution crazily bounce around the global
optimum.

Most of prior works [9], [20] report the performance with
respect to iteration counts. We here argue that the evaluation
shall take the iteration complexity into account. Recall that
Table 1 summarizes the time and space iteration complex-
ities for all algorithms. Importantly, the complexities of
SVRG and SCV are dominated by the exact gradient compu-
tation and class-specific covariance matrix estimation. Both
of them are expected to take longer time for accomplishing
each iteration. Figure 3 reports the time for performing 50
gradient descent iterations for all datasets and algorithms.
The computing time is obtained by averaging all trials.
It is observed that on most datasets, the standard SGD
consumes the least time. SSGD and our proposed S3GD
use slightly more time compared to SGD. The CPU time of
SVRG and SCV are significantly larger. Specifically, SVRG
is especially slow in comparison when facing large scale
data set (such as Kaggle-face and covtype) and high feature
dimensions (e.g., 5,000-dimensional features for MED11 and
26,214-dimensional features for 20newsgroups). Likewise,
SCV is particularly slow when handling high-dimensional
features. On the 20newsgroups, SCV requires 594 seconds
for every 50 iterations, which is beyond the scope of most
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Fig. 4. Training objective values for all referred algorithms in this paper on 9 datasets. The horizontal axis correspond to CPU times
(in seconds) in the logarithmic scale. Note that we do not report the performance of SCV on 20newsgroups since it takes five days
for accomplishing all 40,000 iterations. Better viewing in color.

practitioners. In contrast, SGD and S3GD only need 0.21 and
0.30 seconds respectively. Therefore for fairness in compari-
son, we will majorly concern the performance with respect
to CPU times.

4.4 Quantitative Investigations

Convergence Speed: Figure 4 shows the training objective
values with respect to the CPU times. For all algorithms, the
step-size parameters are chosen according to the criterion
in (47). Interestingly, though semi-stochastic gradient meth-
ods are proved to enjoy faster asymptotical convergence
speed, most of them are not as “economic” as standard
SGD due to significantly higher iteration complexity. Our
proposed S3GD exceptionally outperforms all other algo-
rithms on 6 out of 9 datasets. SVRG only dominates the
small-scale 22-dimensional dataset IJCNN, and SGD yields
the best performance on other two datasets KDD04 bio and
20newsgroups. SSGD is found to be sensitive about imbal-
anced data partition, such as MED11 and 20newsgroups,
where the positive/negative data ratios are 1:25 and 1:20
respectively.

It is also important to investigate the generalization abil-
ity of the learned machine learning models. To this end, we
also periodically record the objective values on the testing
set. The results are displayed in Fig. 5, from which it is easy
to visually rule out the possibility that the generalization
error and training objective value are inconsistent.

It is surprising that the standard SGD is among the best
performers on nearly all of 9 datasets despite its simplicity.
Based on the experiments we argue that the research of
semi-stochastic algorithms shall investigate the balance of
larger step size and increased iteration complexity, particu-
lary in the era of large data and high dimension.

Corrleation of Gradients: We further study the Pearson
correlation of (semi)stochastic gradient and the exact gra-
dient. For a semi-stochastic algorithm, the correlation score
is favored to approach the value of 1, since it indicates a
better approximation scheme for gradient computation.

It is clearly observed that SVRG and the proposed
S3GD exhibit the most favorable correlation scores. More-
over, most methods enjoy relatively larger correlation scores
when the optimization just begins. The correlation scores
gradually drop when the optimization proceeds. The reason
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Fig. 5. Testing objective values for all referred algorithms in this paper on 9 datasets.

may be that the exact (sub)gradient tends to zero around the
optimum, which makes accurate gradient approximation
more challenging. The only exception is SVRG. In all cases
its correlation scores quickly rise and stay at 1. It may be
caused by the fact that ‖wk+1 − wk‖ tends to zero when
approaching the global optimum. Therefore, w̃ ≈ wk in
Eqn. (4), which implies that the semi-stochastic gradient
becomes increasingly close to the full gradient.

Effect of Anchor: Recall that we use 100 anchors obtained
through clustering in all experiments. One may concern how
different choices of anchor number affect the performance
and running time. Figure 7 presents the evolution of cor-
relations scores under different anchor settings on MED11
and CIFAR10 (step size is fixed to be 1 for all cases).

Interestingly, we observe that enlarging anchor set does
not entail boosted correlation scores. In fact, the scores
will reach its peak around data-specific anchor number
(100 for MED11 and 20 for CIFAR10) though other choices
bring alike performances. This implies that the algorithm is
largely robust to the anchor number though empirical tun-
ing does further help. Figure 8 plots the averaged iteration
times for different anchor parameters. More anchors entail
longer CPU time. Yet the time only increases sub-linearly
owing to other kinds of computational overhead at each

iteration.

Effect of inner iteration count kin: Both SVRG and our
proposed S3GD adopt two-level loops for optimizing the
objective function. The parameter kin refers to the maximal
iteration count in the inner loops. Note that we use different
kin for SVRG and S3GD (50 for SVRG and 20 for S3GD).
Intuitively, smaller kin accelerates the convergence speed for
both S3GD and SVRG with respect to the iterations, since it
indicates more frequent update of the historical parameter
vector at the outer loop. However, as shown in Table 1,
SVRG requires the computation of exact gradient at the
beginning of each outer loop, which implies a complexity of
O(nd). In contrast, S3GD only has a complexity of O(dm)
using the pre-computation trick as in Eqn. (22). Therefore, to
balance the amortized iteration complexity and convergence
speed, SVRG tends to prefer larger kin than S3GD.

To validate this point, Fig. 9 plots the objective values on
the testing data of the CIFAR10 benchmark under kin = 20
or kin = 50. Both S3GD and SVRG exhibit similar con-
vergence curves under different choices of kin. Intuitively,
though large kin implies more frequent historical parameter
update, the significantly increased iteration complexity of
SVRG actually slows down its convergence.
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Fig. 6. Pearson correlation scores of (semi)stochastic gradient and the exact gradient on 9 datasets under the parameter η = 0.1.
See text for more explanation. Best viewing in color.
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Fig. 7. Investigation of how the anchors affect gradient correlation
scores on MED11 and CIFAR10.

5 CONCLUDING REMARKS

In this paper we addressed the scalability issue pertaining
to semi-stochastic gradient descent methods by proposing a
novel approach S3GD. The motivation of S3GD is to reduce

0.0474
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0.0768

m=20 m=50 m=100 m=200

MED11

0.0115 0.0116

0.012

0.0128
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Fig. 8. Average CPU time for every 50 optimization iterations (in
seconds) for S3GD.

the high iteration complexity in existing semi-stochastic
algorithms. It exploits stratified manifold-based gradient
approximation as a good cure for the time-consuming exact
gradient calculation. Our work significantly advances the
original idea of residual-minimizing gradient correction.
The current paper did not discuss the application in a dis-
tributed computing environment, since it is out of the main
scope. However, we will explore the distributed variants of
the proposed S3GD like [18] in the future. Moreover, exten-
sion to non-convex formulations such as deep networks [6]
is also a meaningful future direction.
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