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ABSTRACT
Fault-tolerance techniques for stream processing engines can
be categorized into passive and active approaches. A typical
passive approach periodically checkpoints a processing task’s
runtime states and can recover a failed task by restoring
its runtime state using its latest checkpoint. On the other
hand, an active approach usually employs backup nodes to
run replicated tasks. Upon failure, the active replica can
take over the processing of the failed task with minimal la-
tency. However, both approaches have their own inadequa-
cies in Massively Parallel Stream Processing Engines (MP-
SPE). The passive approach incurs a long recovery latency
especially when a number of correlated nodes fail simulta-
neously, while the active approach requires extra replication
resources. In this paper, we propose a new fault-tolerance
framework, which is Passive and Partially Active (PPA).
In a PPA scheme, the passive approach is applied to all
tasks while only a selected set of tasks will be actively repli-
cated. The number of actively replicated tasks depends on
the available resources. If tasks without active replicas fail,
tentative outputs will be generated before the completion of
the recovery process. We also propose effective and efficient
algorithms to optimize a partially active replication plan to
maximize the quality of tentative outputs. We implemented
PPA on top of Storm, an open-source MPSPE and con-
ducted extensive experiments using both real and synthetic
datasets to verify the effectiveness of our approach.

1. INTRODUCTION
There is a recently emerging interest in building Mas-

sively Parallel Stream Processing Engines (MPSPE), such as
Storm [2] and Infosphere[6], which make use of large-scale
computing clusters to process continuous queries over fast
data streams. Such continuous queries often run for a very
long time and would unavoidably experience various system
failures, especially in a large-scale cluster. As it is criti-
cal to provide continuous query results without significant
downtime in many data stream applications, fault-tolerance
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techniques in Stream Processing Engines (SPEs) [4, 7, 25]
have attracted a lot of attention.

Existing fault-tolerance techniques for SPEs can be gener-
ally categorized as passive and active approaches [13]. In a
typical passive approach, the runtime states of tasks will be
periodically extracted as checkpoints and stored at different
locations. Upon failure, the state of a failed task can be re-
stored from its latest checkpoint. While one can in general
tune the checkpoint frequency to achieve trade-offs between
the cost of checkpoint and the recovery latency, the check-
point frequency should be limited to avoid high checkpoint
overhead, which affects the system performance. Hence re-
covery latency is usually significant in a passive approach.
When one wants to minimize the recovery latency as much
as possible, it is often more efficient to use an active ap-
proach, which typically uses one backup node to replicate
the tasks running on each processing node. When a node
fails, its backup node can quickly take over with minimal
latency.

Even though there are abundant fault-tolerance techniques
in SPEs, developing an MPSPE [2, 6] poses great challenges
to the problem. First of all, in a large cluster, there are of-
ten two different types of failures: independent failure and
correlated failure [11, 20]. Previous studies mostly focused
on independent failure that happens at a single node. Cor-
related failures are usually caused by failures of switches,
routers and power facilities, and will involve a number of
nodes failing simultaneously. With such failures, one has
to recover a large number of failed tasks and temporally
run them on an additional set of standby nodes before the
failed ones are recovered. Using a passive fault tolerance
approach, one has to keep the standby nodes running even
their utilization is low most of the time in order to avoid the
unacceptable overhead of starting them at recovery time.
Furthermore, as checkpoints of different nodes are often cre-
ated asynchronously, massive synchronizations have to be
performed during recovery. Therefore it could be difficult to
meet the user requirements on recovery latency even with a
relatively high checkpoint frequency.

On the other hand, while an active fault-tolerance ap-
proach can achieve a lower recovery latency, it could be too
costly for a large-scale computation. Consider a large-scale
stream computation that is parallelized onto 100 nodes, one
may not be able to afford another 100 backup nodes for
active replication.

Another challenge is that there exist some time-critical
applications which prefer query outputs being generated in
good time even if the outputs are computed based on in-
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complete inputs. This kind of applications usually require
continuous query output for real-time opportune decision-
making or visualization. Consider a community-based navi-
gation service, which collects and aggregates user-contributed
traffic data in a real-time fashion and then continuously pro-
vides navigation suggestions to the users. Failure of some
processing nodes could result in losing some user-contributed
data. The system, while waiting for the failed nodes to re-
cover, can continue to help drivers plan their routes based
on the incomplete inputs. Other examples of such appli-
cations are like intrusion detections, online visualization of
real-time data streams etc. Alerts of events matching the
intrusion attack patterns or infographics generated over in-
complete inputs are still meaningful to the users and should
be generated without any major delay. Consider the long re-
covery latency for a large-scale correlated failure, the lack of
trade-offs between recovery latency and result quality would
not be able to fulfill the requirements of these applications.

To address the aforementioned challenges, we propose a
new fault-tolerance scheme for MPSPEs, which is Passive
and Partially Active (PPA). In a PPA scheme, a number of
standby nodes will be used to prepare for recoveries from
both independent and correlated failures. Checkpoints of
the processing nodes will be stored at the standby nodes
periodically. Rather than keeping them mostly idled as in a
purely passive approach, we opportunistically employ them
for active replications for a selected subset of the running
tasks. In this way, we can provide very fast recovery for
the tasks with active replicas. Furthermore, when the failed
tasks contain those without active replicas, PPA provides
tentative outputs with quality as high as possible. The re-
sults can then be rectified after the passive recovery process
has been finished using similar techniques proposed in [4]. In
general, PPA is more flexible in making use of the available
resources than a purely active approach, and in the mean-
time can provide tentative outputs with a higher quality
than a purely passive one.

In this paper, we focus on optimizing utilizing available
resources for active replication in PPA, i.e. deciding which
tasks should be included for active replication. In summary,
we have made the following contributions in this paper:

(1) We present PPA, a passive but partially active fault-
tolerance scheme for a MPSPE.

(2) As existing MPSPEs often involve user defined func-
tions whose semantics are not easily available to the system,
we propose a simple yet effective metric to estimate the qual-
ity of the tentative outputs.

(3) We propose an optimal dynamic programming algo-
rithms and several heuristic algorithms to optimize the repli-
cation plan for a given query topology.

(4) We implement our approach in an open-source MP-
SPE, namely Storm [2] and perform an extensive experi-
mental study on an Amazon EC2 cluster using both real
and synthetic datasets. The results suggest that by adopt-
ing PPA, the accuracy of tentative outputs are significantly
improved with limited amount of replication resources.

2. RELATED WORK
Fault-tolerance in SPE. Traditional fault-tolerance tech-

niques for SPEs could be categorized as passive [13, 24, 18]
and active approaches [13, 4, 12]. The technique of delta
checkpoint [14] is used to reduce the size of checkpoints. The
authors in [10] proposed techniques to reduce the checkpoint

overhead by minimizing the sizes of queues between opera-
tors, which are part of the checkpoints. The work in [19]
proposed to utilize the idle period of the processing nodes
for active replication. Such optimizations are compatible to
our PPA scheme and can be employed in our system.

For other large-scale computing systems, such like Map-
Reduce [9] and Dryad [15], the overall job execution time
is a critical metric. However, for MPSPEs, it is the end-to-
end latency of tuple processing that matters, which makes
the low-latency failure recovery an important feature in the
context of MPSPEs. To reduce recovery latency, authors
in [7, 25] proposed to use parallel recovery and/or integrat-
ing fault tolerance with scale-out operations. In parallel
recovery, multiple tasks can be launched to recover a failed
task and each of them is recovering a partition of the failed
one to shorten the process of passive recovery. However,
with a correlated failure, a large number of failed tasks need
to be recovered simultaneously. Then the possibilities of
fast scaling out and the degrees of parallel recovery would
be constrained.

A hybrid fault-tolerance framework is proposed in [24]
where operators can use different passive fault-tolerance tech-
niques, including upstream buffering, local checkpoint and
remote checkpoint. The authors propose an approach to
minimize the total cost by choosing a fault-tolerance strat-
egy for each operator. The work in [26] considers the “tran-
sient” failure caused by temporary workload spikes. Upon a
transient failure is detected on a node, its active replica will
be used to replace it and generate low-latency output until
the transient failure is over. Different from these approaches,
the trade-off of our work is between resource consumption
and result accuracy with correlated failures.

Tentative Outputs. Borealis [4] uses active replication
for fault tolerance and allows users to trade result latency
for accuracy while the system is recovering from a failure.
More specifically, if a failed node has no alive replica, Bore-
alis will produce tentative outputs if the recovery cannot be
finished within a user-defined interval. PPA adopts the simi-
lar mechanism for generating tentative outputs but explores
more on optimizing the accuracy of tentative results.

Previous work [5] attempts to dynamically assign com-
putation resources between primary computation and ac-
tive replicas to achieve trade-offs between system through-
put and fault-tolerance guarantee. In this work, tentative
outputs will be produced if the failed tasks have no active
replica. The optimization objective is to maximize the total
number of tuples processed by the entire query topology with
limited resources and an expensive brute-force algorithm is
proposed to solve the problem. While PPA maximizes the
effective input ratio which is roughly equal to the ratio of
source data that can contribute to tentative outputs.

The work in [16] presented a fault injection-based ap-
proach to evaluate the importance of the computation units
to the output accuracy, which only considered the indepen-
dent failure. Zen [21] is another effort on optimizing op-
erator placement within clusters under a correlated failure
model, which specifies the probability that which nodes tend
to fail together. The objective is to maximize the accuracy
of tentative outputs after failures. As operator placement
is orthogonal to the planning of active replications, their
techniques can also be employed as a supplement to PPA.

Failure in Clusters. Previous studies have found that
failure rates vary among different clusters and the number



of failures is in general proportional to the size of the clus-
ter [22]. Correlated failures do exist and their scopes could
be quite large [11, 20]. Therefore, considering correlated fail-
ure is inevitable for a MPSPE that is required to support
low latency and nonstop computation.

3. SYSTEM MODEL

Figure 1: A topology that consists of 4 operators
(O1, O2, O3, O4) with different numbers of tasks.

3.1 Data and Query Model
As in existing MPSPEs [2], we assume that a data item is

modeled as a key-value pair. Without loss of generality, the
key of a data item is assumed to be a string and the value
is a blob in an arbitrary form that is opaque to the system.

A query execution plan in MPSPEs typically consists of
multiple operators, each being parallelized onto multiple
processing nodes based on the key of input data. Each op-
erator is assumed to be a user-defined function. We model
such query plan as a topology of the parallel tasks of all
the query operators. By modeling each task as a vertex
and the data flow between each pair of tasks as a directed
edge, the query topology can be represented as a Directed
Acyclic Graph (DAG). Figure 1 shows an example query
topology. Each task represents the workload of an operator
that is assigned to a processing node in the cluster and all
the tasks that belong to the same operator will conduct the
same computation.

An operator can subscribe to the outputs from multiple
operators except for itself. The output stream of every task
will be partitioned into a set of substreams using a particu-
lar partitioning function, which divides the keys of a stream
into multiple key partitions and splits the stream into sub-
streams based on these key partitions. For each task, the
input substreams received from the tasks belonging to the
same upstream neighboring operator will constitute an input
stream. Therefore, the number of input streams of a task is
up to the number of its upstream neighboring operators.

Similar to [27], we consider the following four common
partitioning situations between two neighboring operators
in a MPSPE. In the following descriptions, we consider an
upstream operator containing N1 tasks and a downstream
operator containing N2 tasks.
• One-to-one: each upstream task only sends data to a

single downstream task and a downstream task only
receives data from a single upstream task.
• Split : each upstream task sends data to M2, 2 ≤M2 <

N2, downstream tasks and each downstream task only
receives data from a single upstream task.
• Merge: each upstream task sends data to only one

downstream task and each downstream task receives
data from M1, 2 ≤M1 < N1, upstream tasks.
• Full : each upstream task sends data to all N2 down-

stream tasks.

3.2 PPA Replication Plan

Given a topology T and its whole set of tasksM, a PPA
replication plan for T consists of two parts: a passive repli-
cation plan that covers all the tasks in M and a partially
active replication plan which covers a subset ofM, denoted
as P. With the passive replication plan, checkpoints will
be periodically created for all the tasks and stored at the
standby nodes. For a task ti, its checkpoint consists of ti’s
computation state and output buffer. After a checkpoint
is extracted from ti, its upstream neighboring tasks will be
notified to prune the unnecessary data from their output
buffers. The buffer trimming should guarantee that, if ti
fails, its computation state can be recovered by loading its
latest checkpoint and replaying the output buffers in its up-
stream tasks. On the other hand, for each ti ∈ P, an active
replica will be created, which will receive the same input
data and perform the same processing as ti’s primary copy.

Upon failures, the actively replicated tasks will be recov-
ered immediately using their active replicas, meanwhile the
tasks that are only passively replicated will be restored from
their latest checkpoints. When there are some failed tasks
belonging toM−P, tentative outputs will be produced be-
fore they are fully recovered. Such tentative outputs have
a degraded quality due to the lost of input data that oth-
erwise should be processed by the failed tasks belonging to
M− P. We present how to optimize the partially active
replication plan to maximize the quality of tentative out-
puts and the details of the system implementation in the
following sections.

4. PROBLEM FORMULATION

4.1 Quality of Tentative Outputs
Previous works on load shedding [3, 17] have studied how

to evaluate the quality of query outputs in case of the lost of
input data. Their models assume full knowledge of the se-
mantics of individual operators and hence can estimate the
output quality in a relatively precise way. However, in exist-
ing MPSPEs, such as Storm, operators are often opaque to
the system and may contain complex user-defined functions
written in imperative programming languages. The exist-
ing models therefore cannot be easily applied. In our first
attempt, we have tried to derive output accuracy models
composed by some generic functions, which should be cho-
sen or provided by the users according to the semantics of
the operators. We found that this approach is not very user
friendly and it may be very difficult for a user to provide
such functions for a complicated operator.

Therefore, we strive to design a model that requires users
to provide minimum information of an operator’s semantic,
but yet is effective in estimating the quality of tentative out-
puts. More specifically, we propose a metric, called Effec-

tive Input Ratio(EIR), which is roughly equal to the ratio of
source data that can contribute to the production of tenta-
tive outputs of a topology. This is based on the assumption
that the accuracy of tentative outputs increases with more
complete input and a PPA plan with a higher EIR value
would incur a higher accuracy of tentative output. In the
rest of this section, we will present a model to estimate the
input loss of an operator, and then present the precise defi-
nition for EIR and the approach to estimate it.

4.1.1 Operator Input Loss Model



Suppose task t42 in Figure 1 fails, all its input streams
cannot contribute to query outputs and hence we consider
them effectively lost. To estimate the effective loss of input
of the source operators (i.e. O1 and O2 in this example)
caused by this failure, we have to propagate the input loss
of t42 back to the source operators.

In the following descriptions, the set of input streams of
task ti, (ti ∈ Ot), are denoted as

{

Sin
i,1, S

in
i,2, ..., S

in
i,p

}

, where

the rate of Sin
i,j is represented as λin

i,j . The rate of ti’s output
stream, Sout

t , is referred to as λout
i , and its loss is denoted

as ∆out
i , where ∆out

i ≤ λout
i . We propagate the loss of ti’s

output stream to each of ti’s input streams, e.g. Sin
i,j , to

calculate its input loss, e.g. ∆in
i,j .

Figure 2 depicts part of the topology in Figure 1 as well
as the rates of the input and output streams of t33. ∆out

33

represents the loss of output stream Sout
33 incurred by the

failure of task t42. We distinguish two situations and use
this example to illustrate the calculation of task input loss.

Figure 2: A part of the topology in Figure 1.

Correlated-Input Operator. Ot performs computa-
tions over the join results of its input streams. For ex-
ample, suppose O3 in Figure 2 is a correlated-input op-
erator. Without further semantic information of O3, we
consider the effective input of t33 as the Cartesian prod-
uct of its input streams, whose size is λin

33,1 · λ
in
33,2. By as-

suming that the losses of t33’s input streams are propor-
tional to their rates, and the loss of its output stream can
be uniformly distributed among its effective inputs, we can
deduce that: (1) the ratio between the losses of t33’s in-
put streams is equal to the ratio between their rates, i.e.
∆in

33,1 : ∆in
33,2 = λin

33,1 : λin
33,1; (2) the relative loss of t33’s

effective input should be equal to the relative loss of its out-

put, i.e. 1 −
(λin

33,1−∆in
33,1)·(λ

in
33,2−∆in

33,2)
λin
33,1·λin

33,2
=

∆out
33

λout
33

. Finally, we

have: ∆in
33,1 = 10 − 10√

3
and ∆in

33,2 = 20 − 20√
3
. In summary,

the losses of ti’s input streams can be calculated as follows:











λin
i,1 : λin

i,2 : ... : λin
i,p = ∆in

i,1 : ∆in
i,2 : ... : ∆in

i,p

1−
∏p

j=1

(λin
i,j−∆in

i,j)
λin
i,j

=
∆out

i

λout
i

If Ot is a correlated-input operator and ti ∈ Ot lost all of
its output, we consider ti as losing all of its effective input,
that is, ∆in

i,j = λin
i,j , for any input stream Sin

i,j of ti.
Independent-Input Operator. Ot does not compute

joins over input streams. If O3 in Figure 2 is an independent-
input operator, we assume that the data losses of t33’s in-
put streams are proportional to their rates, and its total
input loss ratio is equal to its total output loss ratio. Then
we have, in this example, ∆in

33,1 : ∆in
33,2 = λin

33,1 : λin
33,2

and
∆in

33,1+∆in
33,2

λin
33,1+λin

33,2
=

∆out
33

λout
33

. We can get: ∆in
33,1 = 20

3
and

∆in
33,2 = 40

3
. Therefore, the losses of ti’s input streams can

be calculated as follows:











λin
i,1 : λin

i,2 : ... : λin
i,p = ∆in

i,1 : ∆in
i,2 : ... : ∆in

i,p

∑p
j=1 ∆in

i,j
∑p

k=1
λin
i,k

=
∆out

i

λout
i

Recall that one of the design principles is to request as
little information of the operators’ semantics as possible.
We distinguish the aforementioned two types of operators
simply because their characteristics for the calculation of ef-
fective input ratio are very different. With such information,
the metric can be estimated much more precisely.

The output stream of an operator may be shared by mul-
tiple downstream operators. Suppose Dt denotes the set of
downstream neighboring operators of Ot, then the task fail-
ure in any operator belonging to Dt will result in output
loss to tasks in Ot. Denoting ∆d

i as the loss of ti’s output
stream caused by task failure in downstream operator Od,
the final output loss of ti is calculated as:

∆out
i =

∑Od∈Dt

Od
∆d

i

|Dt|
(1)

By denoting the set of tasks of an operator Ot as {t1, t2, ..., tMt}
and the losses of ti’s input streams as ∆in

i,1,∆
in
i,2, ...∆

in
i,p, the

input loss ratio of Ot, ILRt, is defined as:

ILRt =

∑Mt

i=1

∑p

j=1

∆in
i,j

λin
i,j

Mt · p
(2)

Note that input stream Sin
i,j may consist of multiple sub-

streams that are sourced from the tasks of its source oper-
ator. To calculate the output losses for the source tasks of
the substreams in Sin

i,j , ∆
in
i,j will be split and assigned to the

substreams in Sin
i,j proportionally according to their rates.

4.1.2 Effective Input Ratio
In this subsection, we present how to estimate the effective

input ratios of the source operators.

Figure 3: Correlated input operator: O4; Indepen-
dent input operator: O1, O2, O3, O5.

An example topology is depicted in Figure 3. One can see
that the outputs of O1 is shared by O3 and O4. Further-
more, as O4 is assumed to be a correlated-input operator,
the output streams of O1 andO2 are correlated and the tasks
in O4 cannot produce outputs if one of its input streams is
lost. To take the sharing and correlation of output streams
into consideration, the effective input ratio (EIR) of a topol-
ogy T is defined in the form of a recursive function which
starts from each sink operator, traverses through the whole
topology and stops at the source operators.

In the following, Mt denotes the number of tasks in Ot

and Ut refers to the set of upstream operators of Ot in T .
Note that Ut is an empty set if Ot is a source operator. The
EIR function is defined recursively as follows:

EIRT = feir(Os), Os is the sink operator of T.

If Ot is an independent-input operator:






feir (Ot) =
∑Ou∈Ut feir(Ou)

|Ut| , Ut 6= ∅

feir (Ot) = 1− ILRt, Ut ≡ ∅



If Ot is a correlated-input operator:






feir (Ot) =
∏Ou∈Ut feir (Ou) , Ut 6= ∅

feir (Ot) = 1− ILRt, Ut ≡ ∅

Taking the topology in Figure 3 as an example, the EIR
recursive function starts from the sink operator, O5:

feir (O5) =
feir (O3) + feir (O4)

2
=

feir (O1) + feir (O1) · feir (O2)

2

As one can see, the recursion stops at source operators
O1 and O2. The values of feir (O1) and feir (O2) can be
calculated with their input loss ratios (defined in Eqn. 2)
respectively. The shared source operator, O1, appears two
times in the final equation. As O4 is a correlated-input op-
erator, the output streams from O1 and O2 are correlated,
which is expressed as multiplication of the EIR of O1 and
O2 in the above equation.

4.2 Problem Statement
Before presenting the problem definition, we introduce a

concept: Minimal Complete Tree, which is also referred to
as MC-tree for simplicity in the following sections.

Definition 1. Minimal Complete Tree (MC-Tree): A
minimal complete tree is a tree-structured subgraph of the

topology DAG. The source vertices of this subgraph corre-

spond to tasks from the source operators and its sink vertex

is a task from an output operator. A minimal complete tree

can continuously contribute to propagating source input data

if and only if all its tasks are alive.

Taking the topology in Figure 1 for instance, if O3 is an
independent-input operator, tasks in {t11, t31, t41} can con-
stitute an MC-tree and there are in total 16 MC-trees in the
topology. However, if O3 is a correlated-input operator, t31
cannot produce any output if either t11 or t21 fails. Hence
tasks in {t11, t21, t31, t41} can constitute an MC-tree and the
number of MC-trees in the topology is equal to 8.

Based on Definition 1, if failures of tasks in an MC-Tree
occur, it will only continue propagating source input data
to final query output if and only if all of its failed tasks are
actively replicated. Suppose Topology T consists of a set of
operators O1, O2, ..., ON and the available resources can be
used to actively replicate R (R ≤ |M|,M is the task set of
T ) tasks, then the problem of optimizing a partially active
replication plan is defined as follows:

Definition 2. Partially Active Plan: Given a query

topology T , choose R tasks for active replication such that,

the EIR of the partial topology that is composed of the ac-

tively replicated MC-trees in T is maximized.

We prove that the above problem is NP-hard. The de-
tailed proof can be found in [23].

5. ACTIVE REPLICATION OPTIMIZATION
Recall that we consider the worst case scenario for a cor-

related failure, i.e. there is at least one failed task in ev-
ery MC-tree. Before the completion of the passive recovery
process, only the MC-trees whose failed tasks are actively
replicated can produce tentative outputs. The optimiza-
tion objective is to maximize the value of EIR with limited
amount of resources used for active replication.

Algorithm 1: Dynamic Programming: PlanCorre-
latedFailure(R)

Input: Amount of available resources R;
Output: Replication plan P;

1 CP0 ← ∅; usage← 0; SC ← {CP0};
/* CP0:initial replication plan; SC:candidate plan

set; */
2 while usage++ < R do
3 foreach candidate plan CPi in SC do

4 dif ← usage− |CPi|;
/* |CPi| is the number of replicated tasks in

CPi and dif is the number of tasks that
can be added to CPi at this step; */

5 UTi ← { MC-tree tr | tr /∈ CPi};
6 ui ← max{nonrep tasks(tr, CPi) | tr ∈ UTi};

/* nonrep_tasks(tr, CPi) returns the number of
non-replicated tasks of MC-tree tr in CPi;
*/

7 if dif ≤ ui then
8 foreach MC-tree trj ∈ {tr | tr /∈

CPi & nonrep tasks(trj , CPi) == dif} do

9 CPj ← CPi ∪ trj ;
10 if CPj /∈ SC then

11 add CPj to SC;
12 else Remove CPi from SC;
13 P← the candidate plan in SC with the maximal EIR value.

Return P;

5.1 Dynamic Programming
We first present a dynamic programming algorithm that

can generate an optimal replication plan for correlated fail-
ure. As has been introduced in section 4.2, we take MC-tree
as the basic unit for replication candidates in the algorithm.
Details of this algorithm are presented in Algorithm 1. It
is essentially a bottom-up dynamic programming algorithm.
We incrementally increase the number of resources to be
used for active replication and enumerate the possible expan-
sions of the plans produced in the previous step. Assuming
the minimum size of MC-trees is r, one can obtain the first
set of replication plans, referred to as SC, by replicating r
tasks. At this step, each plan in SC contains exactly one
MC-tree. Note that the MC-trees that have not been added
to a candidate plan CPi may also have replicated tasks if
they share some tasks with another MC-tree within CPi.

At the next iteration of the while loop starting at line
2, we increase the resource usage by 1. We scan through
each candidate plan CPi ∈ SC to see if there is an MC-tree
trj /∈ CPi that contains a number of non-replicated tasks
which is equal to usage− |CPi|, where |CPi| is the number
of replicated tasks in CPi. For each MC-tree satisfying this
condition, we create a new candidate plan CPj (line 9) such
that CPj ← CPi ∪ trj . If CPj has no duplicate in SC, then
it will be inserted into SC. The algorithm will continue until
usage is equal to the limit R.

The cost of scanning through SC can be reduced by re-
moving a candidate plan CPi from SC if all its possible ex-
pansions have been considered. More precisely, remove CPi

from SC if the maximum number of non-replicated tasks of
the MC-trees not included in CPi is less than the difference
between the available resource at the current iteration, i.e.
usage, and the current number of replicated tasks in CPi

(lines 7 and 12). After the while loop is finished, the candi-
date plan with the maximal EIR in SC will be returned.

The upper bound of the complexity of this algorithm is



Algorithm 2: Greedy(R)

Input: The amount of available resources R;
Output: Replication plan P

1 Initialize: AS ← ∅;
2 foreach Task ti /∈ P do

3 Ai ← the value of EIR if only ti fails;
4 AS ← AS ∪ {Ai};
5 Sort AS in ascending order;
6 TS ← set of tasks whose corresponding EIR values are

among top-R in AS;
7 P← P ∪ TS;
8 return P

O
(

2T
)

, where T is the number of MC-trees in the query
topology, which varies with the topology structures and has
an upper bound of O(MN ), where N is the number of op-
erators and M is the average degree of parallelization of
operators in T .

The following theorem states the optimality of this dy-
namic programing algorithm, which is proven in [23].

Theorem 1. Let P be the replication plan with EIR E pro-

duced by Algorithm 1 and Pt be a different replication plan

with EIR Et ≥ E. The resource usage of P is always equal

to or smaller than that of Pt.

5.2 Greedy Algorithm
We present a greedy algorithm. For each task in the topol-

ogy, the greedy algorithm will calculate the EIR of the topol-
ogy by only failing this task. A task whose failure would lead
to a smaller EIR will be assigned a higher priority for repli-
cation. We present the details of this greedy algorithm in
Algorithm 2, which will first rank all the tasks in ascending
order based on the EIR calculated by their respective fail-
ures. Then it will iterate to choose the corresponding task
that would cause the minimal EIR among all the remaining
non-replicated tasks in the set AS.

The complexity complexity of the greedy algorithm is equal
to O(N ·M). where the notations have been explained in
Section 5.1. Although this complexity is much lower than
that of the dynamic programming algorithm, it fails to con-
sider whether the tasks in the replication plan could form
complete MC-trees, which will damage its performance es-
pecially when the number of active replicated tasks is small.
The experimental results in section 7.2 can verify this defect
of the greedy algorithm.

5.3 Structure-Aware Algorithm
The dynamic programming algorithm searches for the op-

timal plan by selecting a subset of MC-trees for replication
under the resource constraint to maximize the value of EIR.
Inspired by this, we design a structure-aware algorithm that,
at each step, rather than enumerating all the possible expan-
sions of a candidate plan, only expands it with an MC-tree
that can incur the greatest increase in EIR per resource unit.

Unfortunately, even such a greedy approach may fall short
under the following situation. Consider a topology T that
consists of a sequence of k operators and all the operators use
Full partitioning, the number of MC-trees within T is equal
to

∏k

i=1 Mi, where Mi is the number of tasks of operator Oi.
In such a topology, the number of MC-trees will grow very
fast with increasing number of operators. Therefore, even a

Algorithm 3: PlanStructuredTopology(P, R, T )

Input: An initial plan P; The amount of available
resources R; Topology T ;

Output: Replication plan P;
1 usage = 0; Su ← Set of the units split from topology T ;
2 foreach Unit Ui ∈ Su do

3 Build segment set Gi;
4 while usage ≤ R do
5 Candidates ← ∅ ;
6 foreach Unit Ui ∈ Su do

7 foreach non-replicated segment gi ∈ Ui do

8 CGi ← {gi};
9 if EIRP = EIRP∪CGi

then

10 Conduct a BFS from Ui to traverse all the
units:

11 foreach visited unit Uj during the BFS do
12 Segment gj ←max eir (Uj) ;

/* max_eir (Uj) returns the segment
in Uj, which is connected with
segment in CGi and has the
maximal EIR with Uj treated as
an independent topology; */

13 if |CGi|+ |gj | ≤ usage then
14 CGi = CGi ∪ gj ;
15 else Stop the BFS;
16 Candidates ← Candidates ∪ CGi;
17 Find CGopt from Candidates such that the following

value is maximized: (EIRP∪CGopt −EIRP)/|CGopt|;

18 P = P ∩ CGopt; usage = usage+ |CGopt|;
19 if CGopt 6= ∅ then return P;
20 Remove the completely replicated units from Su;
21 Return P;

greedy search among the possible combinations of MC-trees
would not perform well.

To solve this problem, we will firstly decompose a gen-
eral topology into two specific types of topologies, namely
full topologies and structured topologies, and then opti-
mize them separately. The definitions of these two types
of topologies are as follows:
• Structured topology is defined as a topology where

only the operators, that produce outputs of this topol-
ogy, can have a Full partitioning function and the oth-
ers have other types of partitioning functions.
• Full topology is defined as a topology that all of its

operators have a Full partitioning function.
The rest of this section is organized as follows: firstly, we

present a structure-aware algorithm for structured topolo-
gies and full topologies respectively. Then we will explain
how to generate a partially active replication plan by decom-
posing a general topology into several sub-topologies, each
being either a structured topology or a full topology.

5.3.1 Algorithm for Structured Topology
Although we define structured topology such that Full

partitioning only exists in the output operators, the num-
ber of MC-trees in a structured topology could still be very
large. Consider the situation that a task ti receives Nin in-
put streams and produce Nout output streams, there will be
Nin ∗ Nout MC-trees containing ti. In addition, if ti joins
Nk substreams from operator Ok with Nj substreams from
operator Oj , the number of MC-trees containing ti will at
least be equal to Nk ·Nj . To avoid bad performance due to
the large number of MC-trees, we split a structured topol-
ogy into multiple units. The split is done such that, within a



unit, the number of MC-trees is equal to the maximal num-
ber of input substreams among the operators of this unit.
We refer to an MC-tree in a unit as segment to differentiate
it from the concept of a complete MC-tree in the topology.

The situation of multiple input streams and multiple out-
put streams occurs on the task who has an input stream
partitioned with Merge and an output stream partitioned
with Split, a unit boundary will be set between this opera-
tor and its upstream neighboring operator that uses Merge
partitioning. For instance, a unit boundary will be set be-
tween O1 and O3 in the topology in Figure 4. The situation
that a task joins multiple input substreams from one oper-
ator with substreams from other operators happens on the
tasks of join operators that have at least one input stream
partitioned with Merge partitioning. A unit boundary will
be set between the join operator and its upstream neigh-
boring operator whose output stream is partitioned with a
Merge partitioning function. If O3 in Figure 4 is a join op-
erator, there will be a boundary between O3 and each of its
upstream neighboring operators.

Note that, with such a decomposed topology, replicating
a segment is beneficial only if all the other segments within
the same complete MC-tree are also replicated. In other
words, we should avoid enumerating plans that replicate a
set of disconnected segments.

The details of the structure-aware algorithm for struc-
tured topology are presented in Algorithm 3. The algorithm
searches through the units generated from input topology.
Within unit Ui, if the set of non-replicated segments is not
empty, we check whether replicating these segments will in-
crease the final output accuracy (line 9). Note that this will
only be true if this segment can form a complete MC-tree
with the other replicated segments within the current plan.
Each of such segments will be put into a candidate pool (line
16). If the segment gi does not enhance the plan’s EIR, we
conduct a BFS (Breadth-first search) starting from Ui and
traversing through all the units in Topology T. The BFS is
terminated until usage is less then the non-replicated tasks
in CGi. Finally, every unit visited during the BFS con-
tributes a segment to CGi and the segments from neighbor-
ing units are connected (lines 10− 15). Then we put such a
set of segments as one candidate in the candidate pool.

After finishing the scanning of all units, we get a candidate
pool consisting of a number of segment sets, each containing
one or more segments. We use a profit density function to
rank the candidates. The profit density of a candidate CGk

is calculated as (EIRP∪CGk
− EIRP )/|CGk| , where EIRP

is the EIR value of plan P , EIRP∪CGk
is the EIR value after

expanding P by replicating segment in CGk. |CGK | is the
number of non-replicated tasks within CGk. The plan in
the candidate pool with the maximum profit density will be
merged with the input plan P and returned. The complexity
of Algorithm 3 is equal to O(R ·N ·M2 ·E), where R is the
amount of available replication resources, N is the number of
operators, M represents the average degree of parallelization
of operators in T , and E is the number of neighboring unit
pairs.

5.3.2 Algorithm for Full Topology
Each task within a full topology will send input data to

all the tasks that belong to its downstream neighboring op-
erators. We propose an algorithm for full topology as il-
lustrated in Algorithm 4. The basic idea of this algorithm

Algorithm 4: PlanFullTopology(P, R, T )

Input: Initial replication plan P; Amount of available
resources R; Topology T ;

Output: Replication Plan P

1 Initialize: usage← 0;
2 N ← Number of operators;
3 Sort the set of tasks Si of each operator Oi based on the

EIR increase, δij , of tasks;
4 if P = ∅ & N ≤ R then

5 foreach Oi do

6 Let pik be the node in Si that has the largest EIR
increase δik;

7 P← P ∪ {pik}; Si ← Si − {pik};
8 usage = N ;
9 if P = ∅ & N > R then return P;

10 while usage < R do

11 Candidates ← ∅;
12 foreach Oi do
13 Let pik be the node in Si that has the largest EIR

increase δik;
14 Candidates ← Candidates ∪ Pi ∪ {pik};
15 Pj ←max accuracy plan(Candidates);
16 Sj ← Sj − {pjk}; P← Pj ; usage++;
17 Return P;

is that, within any operator, we always prefer to replicate
the task that will bring the maximum increase of EIR un-
der the assumption that all the other tasks that belong to
the same operator are failed and the tasks that belong to
other operators are alive. We denote the increase of EIR by
replicating task tij as δij . If the input plan P is empty, we
first select one task from each operator that has the largest
δij among all the tasks in this operator and put it into P
(lines 4 − 7). If P is not empty, we iterate and select R
tasks that have larger EIR increase, i.e. δik , than other
tasks in the topology and put them into P (lines 11 − 17).
The complexity of this algorithm is O(N · R), where R is
the amount of available replication resources and N is the
number of operators.

Figure 4: Example of splitting a topology

5.3.3 Solution for General Topology
With the above algorithms for specific topology struc-

tures, we divide a general topology into several sub-topologies
and then use the corresponding algorithms according to the
type of each sub-topology to generate the replication plans.
We require that at least one partitioning function between
any two neighboring sub-topologies is Full and the amount of
sub-topologies is minimized. The reason behind this require-
ment is to make the selection of the replication segments in
the sub-topologies independent from each other.

The split algorithm explores the topology using multiple
depth-first searches (DFS). At the beginning, only the out-
put operator of the given topology is in the start point set
SP . At each iteration, we will pick an operator, Os, from



Algorithm 5: PlanGeneralTopology(R,T )

Input: The amount of available resources R; Topology T ;
Output: Partial replication plan P;

1 Initialize: decompose the complete topology T into
sub-topologies: TS1, TS2, ... ;

2 P← ∅, SA ← ∅, usage← 0;
3 if R < Number of operators in T then
4 Return P ;
5 foreach Sub-Topology TSi do
6 Ni ← Number of operators in TSi;
7 Pi ← PlanSubTopology (∅, Ri, TSi); P← P+ Pi;
8 P ′

i ← PlanSubTopology (Pi, Ri, TSi);

9 Ci ← |P
′
i | − |Pi|; ∆i ←

EIR
P ′
i
−EIRPi

Ci
;

10 Put ∆i into SA in descending order; usage+ = Ni;
11 while usage < R do
12 LastUsage← usage; j ← 1;
13 while j ≤ |SA| do
14 ∆i ← jth value in SA; j ++;
15 if Ci + usage ≤ R then
16 Use P ′

i to replace Pi in P;
17 Calculate new Ci, ∆i. Insert ∆i into SA in

descending order; break;
18 if usage = lastUsage then break;
19 Return P;
Function: PlanSubTopology(P, Ni, T)

20 if T is a full topology then
21 P← PlanFullTopology(P, Ni, T );
22 else P← PlanStructuredTopology(P, Ni, T );

SP and build a sub-topology by performing a DFS start-
ing from Os. If the DFS arrives at an operator Oi whose
partitioning function is incompatible with the type of the
current sub-topology, it will not further traverse Oi’s down-
stream operators and Oi will not be added to the current
sub-topology but instead be put into SP . Finally the algo-
rithm will terminate until SP is empty. Figure 4 presents
an example general topology, which is decomposed into 2
sub-topologies: {O1, O2, O3, O5, O6, O7} and {O4}.

We present details of the correlated-failure optimization
algorithm for a general topology in Algorithm 5. The al-
gorithm first decomposes the topology into sub-topologies
which are either full topologies or structured topologies.
Then the algorithm runs in multiple iterations. Within each
iteration, it will try to get a replication plan from each sub-
topology and select the one with the maximum profit density
(lines 11 − 17). The loop will be terminated when there is
no more resource to replicate a complete MC-tree. The al-
gorithm’s complexity is equal to O(R · N ·M2 · E), where
the notations have been explained in Section 5.3.1.

6. SYSTEM IMPLEMENTATION
In this section, we present the framework and implemen-

tation details of our system.

6.1 Framework

Figure 5: System Framework

We implemented our system on top of Storm. As shown
in Figure 5, the nimbus in the Storm master node is re-
sponsible for assigning tasks to the Storm worker nodes and
monitoring the failures. On receiving a job, the nimbus will
transfer the query topology to the PPA plan manager, which
will generate a PPA recovery plan under the constraint of
resource usage of active replication. The PPA recovery plan
consists of two parts: a completely passive standby plan
and a partially active replication plan. Based on the PPA
recovery plan, the replication manager in the worker nodes
will create checkpoints to passively replicate the whole query
topology. Checkpoints will be stored onto a set of standby
nodes. The replication manager will create active replicas
for the tasks that are included in the partially active repli-
cation plan. The active replicas can support fast failure
recovery and will also be deployed onto the standby nodes.

Once a failure is detected by the nimbus, The recovery
manager in the Storm master node will decide how to recover
the failed tasks based on the PPA replication plan. For the
tasks that are actively replicated, the recovery manager will
notify the nimbus to recover them using their active replicas
such that the tentative results could be produced as soon as
possible. The failed tasks that are passively replicated will
be recovered with their latest checkpoints.

6.2 PPA Fault Tolerance
Passive Replication. In PPA, checkpoints of the pro-

cessing tasks will be periodically created and stored at the
standby nodes. We adopted the batch processing approach [25]
to guarantee the processing ordering of inputs during recov-
ery is identical to that before the failure. With this ap-
proach, input tuples are divided into a consecutive set of
batches. A task will start processing a batch after it re-
ceives all its input tuples belonging the current batch. This
is ensured by waiting a batch-over punctuation from each of
its upstream neighboring tasks. Tuples within a batch will
be processed in a predefined round-robin order. The effect
of batch size on the system performance has been researched
in previous work [8].

A single point failure can be recovered by restarting the
failed task, loading its latest checkpoint and replaying its
upstream tasks’ buffered data. The downstream tasks will
skip the duplicated output from the recovering task until
the end of the recovery phase. While recovering a corre-
lated failure, if a task and its upstream neighboring task are
failed simultaneously and its checkpoint is made later than
its upstream peers’, the recovery of the downstream task can
only be started after its upstream peer has caught up with
the processing progress. In other words, synchronizations
have to be carried out among the neighboring tasks.

Active Replication. If task t has an active replica t′,
the output buffer of t′ will store the output tuples produced
by processing the same input in the same sequence as t does.
The downstream tasks of t will subscribe the outputs from
both t and t′. By default, the output of t′ is turned off. To
reduce the buffer size on t′, its primary, t, will periodically
notify t′ about the latest output progress and the latter can
then trim its output buffer. If t is failed, t′ will start sending
data to the downstream tasks of t. The downstream tasks
will eliminate the duplicated tuples from t′ by recognizing
their sequence numbers. The batch processing strategy can
guarantee an identical processing order between the primary
and active replica of a task.



Tentative Outputs. As checkpoint-based recovery re-
quires replaying the buffered data and synchronizations among
the connected tasks and hence incurs significant recovery la-
tency, PPA has the option to continue producing tentative
results once the actively replicated tasks are recovered. Re-
call that during normal processing, a task will only start
processing a batch after receiving the batch-over punctu-
ations from all of its upstream neighboring tasks. If any
of its upstream neighboring tasks fails, the recovery man-
ager in the Storm master node will generate the necessary
batch-over punctuations for those failed tasks, such that a
batch could be processed without the inputs from the failed
tasks and tentative outputs will be generated with an in-
complete batch. After the failed tasks are recovered, the
recovery manager will stop sending the batch-over messages
for them such that the downstream tasks will wait for the
batch contents from the recovered tasks before processing a
batch. After all the failed tasks are recovered, the topology
will start generating accurate outputs.

In this paper, we assume the adoption of similar tech-
niques proposed in [4] to reconcile the computation state
and correct the tentative outputs and leave the implemen-
tation of these techniques as our future work.

7. EVALUATION
The experiments are run over the Amazon EC2 platform.

We build a cluster consisting of 36 instances, of which 35
m1.medium instances are used as the processing nodes and
one c1.xlarge instance is set as the Storm master node.
Heartbeats are used to detect node failures in a 5-second
interval. The recovery latency is calculated as the time in-
terval between the moment that the failure is detected and
the instant when the failed task is recovered to its process-
ing progress before failure. The processing progress of a
task is defined as a vector. Each field of the progress vector
contains the sequence number of the latest processed tuple
from a specific input stream of the task. A failed task is
marked as recovered if the values of all the fields in its cur-
rent progress vector are larger than or equal to the values of
the corresponding fields of the progress vector before failure.
Additional information of the experiment configuration will
be presented in the following sections.

Figure 6: Topology used in the experiments of re-
covery efficiency in the scale of operator.

7.1 Recovery Efficiency
In the first set of experiments, we study the recovery effi-

ciencies of different fault-tolerance techniques, including ac-
tive replication, checkpoint and the default fault-tolerance
technique in Storm [2]. In Storm, if failure happens, the
source data will be reprocessed from scratch through the
whole topology to rebuild the states of the tasks.

We implement a topology that consists of 1 source oper-
ator and 4 synthetic operators. The structure of this topol-
ogy is depicted in Figure 6. The source operator consists of
totally 16 tasks, which are averagely deployed on 4 nodes.
All of the source tasks produce input tuples for their down-
stream neighboring tasks in a specified rate (1000 tuples/s
or 2000 tuples/s). The degree of parallelization of operators

O1, O2, O3 and O4 are set as 8, 4, 2 and 1 respectively. Each
task in O1 receives inputs from two source tasks and each
task in O2, O3 and O4 receives inputs from two upstream
neighboring tasks. The primary replicas of the 15 synthetic
tasks are evenly distributed among the 15 nodes. In addi-
tion, there are another 15 nodes used as the backup nodes
to store the checkpoints and to run the active replicas.

Each of the four synthetic operators maintains a sliding
window whose sliding step is set as 1 second and window
interval varies from 10 seconds to 30 seconds. The state of
each task of a synthetic operator is composed by the input
data within the current window interval. The largest state
size of a task is equal to the result of the input rate multi-
plies the window interval. The selectivity of the synthetic
operator is set as 0.5. Therefore a task produces one tuple
for every two input tuples that it has processed.
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Single Node Failure. Figure 7 presents the recovery la-
tency of single node failures with various input rates and
window intervals using different fault-tolerance techniques.
For active replication, we vary the intervals of trimming the
output buffer of a task replica, which is equivalent to the fre-
quency of synchronizing the replica with its primary task.
One can see that the active approach has much lower recov-
ery latency than the passive approaches and the changes of
window intervals and input rates have little influence. On
the other hand, the recovery latency with both Checkpoint
and Storm increase proportionally with the input rate. This
is because a higher input rate results in more tuples to be
replayed during recovery for both approaches. Furthermore,
one can see that the recovery latency with checkpoints in-
creases with the checkpoint interval. This is because the
number of tuples that need be reprocessed to recover the
task state will increase with the checkpoint interval.

As Storm will have to replay more source data with longer
window intervals, one can see that the recovery latencies of
Storm with 30-second windows are higher than those with
10-second windows. Another factor that influences the re-
covery latency of Storm is the location of the failed task in



the topology, because the replayed tuples will be processed
by all the tasks located between the tasks of the source op-
erator and the failed tasks. Thus the recovery latencies of
Storm are higher than that of the checkpoint approach in
most of the cases in this experiment. Here, we record the
recovery latencies of tasks in different locations within the
topology in Storm and report their average values.

Correlated Failure. We inject a correlated failure by
killing all the nodes on which the primary replicas of the
tasks are deployed. We present the recovery latencies of cor-
related failures in Figure 8. One can see that active replica-
tion has much lower recovery latencies than Checkpoint and
Storm. Compared to active replication with a 30-second syn-
chronization period, setting the synchronization period as 5
seconds leads to faster failure recoveries. This is because,
with a longer synchronization period, an active replica will
send more buffered tuples to its downstream tasks if its pri-
mary fails. The difference is limited though, because the
downstream tasks can eliminate the duplicated inputs in a
relatively efficient way by recognizing the input tuples’ se-
quence numbers. On the other hand, one can see that the
recovery latencies of Checkpoint increase rapidly with the in-
crease of input rates and checkpoint intervals. The recovery
latencies of Storm are lower than that of Checkpoint with
a 30-second checkpoint interval. This is because the win-
dow intervals in this set of experiments are relatively short.
In Storm, to build the window states, all the sources tuples
belonging to the unfinished window instances in the failed
tasks will be replayed, whose number increases linearly with
the window length. While for Checkpoint, the number of
input tuples that should be reprocessed to recover a failed
task is at most equal to the value of the input rate multiplies
the checkpoint interval.

By comparing the recovery latencies presented in Figure 7
and Figure 8, it can be seen that the recovery latencies with
active replication are lower than the passive approaches and
are relatively stable under the scenarios of various input
rates and window intervals. Moreover, the benefits of using
active replication are larger in the case of correlated failure
than in the case of single node failure. This is because check-
points for different nodes are often made asynchronously and
some synchronization operations will be performed during
the recovery of correlated failures.

The latency of failure recovery with checkpoint can be
reduced by setting a short checkpoint interval. But the
resource usage of maintaining checkpoints varies with dif-
ferent checkpoint intervals. Figure 9 presents the ratio of
the CPU usage of maintaining checkpoint to that of normal
computation within a task. We can see that the CPU usage
of maintaining checkpoints increases quickly with shorter
checkpoint intervals and making checkpoint with very short
intervals such as one second is prohibitively expensive. Al-
though active replication consumes more recourses than the
passive approach, the low-latency recovery of active replica-
tion makes it meaningful in the context of MPSPEs.

Recovery with PPA.We conducted experiments to study
the performance of PPA with three active replication plans
denoted as PPA-1.0, PPA-0.5 and PPA-0 respectively. These
PPA plans consume various amount of resources for active
replication. In PPA-1.0, all the tasks in the topology will
be actively replicated. PPA-0.5 is a hybrid replication plan
where only half of the tasks have active replica. The third
plan, PPA-0, is a purely passive replication plan where all
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Figure 10: Recovery latency of a correlated fail-
ure with PPA, window length : 30 seconds. PPA-
0.5-active indicates the recovery latency of actively
replicated tasks in plan PPA-0.5.

the tasks are only replicated with checkpoint. The results
are presented in Figure 10. As the failed tasks with ac-
tive replicas will be recovered faster than those using check-
points, the overall recovery latencies of PPA-0.5 are higher
than that of PPA-1.0 but lower than that of PPA-0. Note
that with PPA-0.5, the recovery latencies of tasks with ac-
tive replicas (denoted as PPA-0.5-active in Figure 10) are
much lower than that of recovering all the failed tasks (de-
noted as PPA-0.5 in Figure 10). One can also see that the
recoveries of PPA-0.5-active consume slightly less time than
PPA-1.0, this is because the number of actively replicated
tasks recovered in PPA-0.5-active is only the half of that in
PPA-1.0. This set of experiments illustrate that the purely
active replication plan outperforms the hybrid and purely
passive plan regarding the recovery latency. With a hybrid
plan, as the recoveries of actively replicated tasks will be
finished earlier than that of the passively replicated ones,
PPA can generate tentative outputs without waiting for the
slow recoveries of passively replicated tasks.

7.2 Tentative Output Quality

Figure 11: Top-k aggregate query(Q1) and incident
detect query(Q2) in the scale of operator.
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query accuracy. Query: top-k aggregate.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

0.2 0.4 0.6 0.8

E
IR

 / 
A

cc
ur

ac
y

Resource Consumption

Greedy-EIR
Greedy-AC

PPA-EIR
PPA-AC

Figure 13: Comparing the values of EIR and the
query accuracy. Query: incident detect.

Validation of the EIR metric. In this set of experi-
ments, we will examine whether the EIR metric can some-
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(c) Full partitioning
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Figure 14: Comparing EIR of PPA and greedy algorithm with random topologies of various specifications,
number of operators is set as a random integer between 5 and 10. (a): The workloads of tasks within an
operator are distributed in uniform or Zipfian distribution (with parameter s = 0.1). (b): The minimal degree
of operator parallelization is set as 1 or 10, the maximal value is 20. (c): Topologies with or without full
partitioning method(d): The fraction of join operators in the topologies is set as 10% or 15%.

how predict the actual quality of the tentative output. We
implement two sliding window queries whose inputs are, re-
spectively, from real and synthetic datasets. For each query,
we define a query accuracy function based on the query se-
mantics. We process the queries with multiple replication
plans of various active replication ratios and compare the
actual output accuracy with the EIR values after correlated
failures. Due to the prohibitive complexity of the dynamic
algorithm, we cannot complete it for our experiments within
a reasonable time so we do not include it here.

The first query is a sliding-window query that calculates
the top-50 hottest entries of the official website of World Cup
1998. The window length is set as 5 minutes and the sliding
step is set as 10 seconds. The input dataset of this query
is the server access log of the official website for the World
Cup 1998 made during the entire day of June 29, 1998 [1].
There are in total 62, 228, 636 access records in this log and
each record has eight fields including the access time stamp,
client id, requested entry id and the server id. In the exper-
iments, we replay the raw input stream in a rate which is 48
times faster than the original data rate. We implement this
query as a topology that conducts the computation of hier-
archical aggregate, which is a common computation in data
stream applications. The topology consists of 3 operators:
O1, O2 and O3, whose degree of parallelization are set as 30,
4 and 1 respectively. All of these operators use the Merge
partitioning method. The structure of this topology is de-
picted as Q1 in Figure 11. Input tuples are partitioned to the
tasks in O1 by their server ids. Tasks in O1 split the input
stream into a set of consecutive 1-second window instances
and calculate their aggregate results. Tasks in O2 merge the
aggregate results of the 1-second window instances from O1

and send the merge results to the single task in O3, which
generates the final query outputs.

By denoting the tentative outputs as ST and the accu-
rate outputs of Q1 as SA, we define the query accuracy of

Q1 as: |ST

⋂
SA|

|SA| . One can see that, in Figure 12, by in-

creasing the ratio of actively replicated tasks in the topol-
ogy, the EIR and accuracy of the tentative outputs increase
at a similar pace. This shows that the typical top-k query
conforms to our assumption that the accuracy of the query
output increases with more complete input. Furthermore,
as the active replicas selected by the greedy algorithm may
not be able to form complete MC-trees within the topology,
PPA consistently outperforms the Greedy algorithm espe-
cially when the active replication ratio is low.

The second query is a sliding-window query that detects
the traffic incidents resulting in traffic jams. The window

interval is 5 minutes and the sliding step is 10 seconds. As
relevant datasets for this query are usually not publicly avail-
able due to privacy considerations, we generate a synthetic
dataset in a community-based navigation application. There
are two streams in this dataset: the user-location stream and
the incident stream. The rate of the user-location stream is
set as 20,000 tuples per second, which consists of location
events containing the time, speed and location of the users.
The incident stream is composed of user-reported incident
events that contains the time stamp of incident, location
and incident type. The time interval between two consecu-
tive incidents is set as 2 seconds. We distribute 100,000 users
among 1000 virtual road segments following the Zipfian dis-
tribution (with parameter s = 0.5). The incident probabil-
ity of a segment is set to be proportional to the number of
users located on it. If an incident occurs on a segment, all
the users on this segment will report an incident event.

The topology of this query is presented as Q2 in Figure 11.
Q2 consists of 6 operators: O1, O2, O3 O4, O5 and O6, whose
degree of parallelization are set as 4, 20, 1, 5, 5 and 1 re-
spectively. Tasks in O1 and O3 generate the user-location
and incident streams by loading the pre-generated dataset.
Tasks in O3 calculate the average speed of each segment
every 1 second. Tasks in O4 combine the user-reported in-
cident events into distinct incident events. O5 is a join op-
erator, which joins the segment-speed stream from O2 and
the distinct-incident stream from O4. The outputs of tasks
in O5 are the incidents that incur traffic jams. There is only
one task in O6, which computes the aggregate of the outputs
from tasks in O5.

The accuracy function of this query is defined as |IT
⋂

IA|
|IA| ,

where IT is the set of tentative incidents generated with cor-
related failure and IA is the set of accurate incidents gener-
ated without failure. Results of this set of experiments are
presented in Figure 13. One can see that, although the accu-
racy values turn out to be larger than the values of EIR, they
both increase in a similar pace with the increase of actively
replication ratio. With a smaller active replication ratio, the
advantages of PPA in terms of both EIR values and actual
accuracies in comparing to the greedy algorithm get larger.
While the active replication ratio is set as 0.2, as the amount
of resources is not enough to actively replicate any MC-tree
completely in this case, the replication plan generated by
the greedy algorithm can not make any tentative outputs.

Random synthetic topology. To conduct a comprehen-
sive performance study of PPA with various types of topolo-
gies, we implement a random topology generator which can
generate topologies with different specifications including



the number of operators, the degree of operator paralleliza-
tion, the distribution of operator partitioning methods, the
fraction of join operators in the topology and the workload
distribution of tasks within an operator. In the experiments,
for each set of topology specifications, we generate 100 syn-
thetic topologies and use them as the inputs of PPA and the
greedy algorithm to compare their performances in terms of
EIR. As we cannot derive the actual output accuracies for
these randomized topologies, we do not use them here.

In Figure 14, one can see that, PPA outperforms the
greedy algorithm in all the combinations of topology speci-
fications and active replication ratios. While the replication
ratios are small, the differences of EIR between PPA and
the greedy algorithm are larger than those with large active
replication ratios as the greedy algorithm is agnostic to the
structure of the query topologies.

Figure 14(a) depicts the effects of workload skewness of
tasks within the operators. We can see that PPA has better
performance for topologies that have higher skewness of task
workloads. This is because, as the skewness of tasks work-
loads increases, the skewness of MC-trees’ contributions to
the value of EIR increases and PPA prioritizes replicating
tasks that are in the MC-trees leading to higher EIR. In
Figure 14(b), we report the results with the minimum par-
allelization degree of an operator as 1 and 10. One can see
that increasing the degree of operator parallelization will
also increase the value of EIR, as increasing the degree of
operator parallelization slightly increases the skewness of the
workload of tasks within operators. In Figure 14(c), the EIR
of topologies without using Full partitioning is higher than
those that have operators with Full partitioning. This is be-
cause within an operator using Full partitioning, the failure
of any task will reduce the input of all the downstream tasks.
Figure 14(d) presents the results with various fractions of
operators being join operators. EIR decreases with more
operators in the topologies are join operators. This is be-
cause with more join operators, MC-trees will contain tasks
from more source operators due to the correlation brought
by the join operators and therefore, the failure of a task
incurs input loss of more source operators.

8. CONCLUSION
In this paper we present a passive and partially active

(PPA) fault-tolerance scheme for MPSPEs. In PPA, pas-
sive checkpoints are used to provide fault-tolerance for all
the tasks, while active replications are only applied to se-
lective ones according to the availability of resources. A
partial active replication plan is optimized to maximize the
accuracy of tentative outputs during failure recovery. The
experimental results indicate that upon a correlated failure,
PPA can start producing tentative outputs up to 10 times
faster than the completion of recovering all the failed tasks.
Hence PPA is suitable for applications that prefer tentative
outputs with minimum delay. The experiments also show
that our structure-aware algorithms can achieve up to one
order of magnitude improvements on the qualities of ten-
tative outputs in comparing the greedy algorithm that is
agnostic to query topology structures, especially when there
is limited resource available for active replications. There-
fore, to optimize PPA, it is critical to take advantage of the
knowledge of the query topology’s structure.
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