Loading [MathJax]/extensions/TeX/ietmacros.js
Spatial-Aware Hierarchical Collaborative Deep Learning for POI Recommendation | IEEE Journals & Magazine | IEEE Xplore

Spatial-Aware Hierarchical Collaborative Deep Learning for POI Recommendation


Abstract:

Point-of-interest (POI) recommendation has become an important way to help people discover attractive and interesting places, especially when they travel out of town. How...Show More

Abstract:

Point-of-interest (POI) recommendation has become an important way to help people discover attractive and interesting places, especially when they travel out of town. However, the extreme sparsity of user-POI matrix and cold-start issues severely hinder the performance of collaborative filtering-based methods. Moreover, user preferences may vary dramatically with respect to the geographical regions due to different urban compositions and cultures. To address these challenges, we stand on recent advances in deep learning and propose a Spatial-Aware Hierarchical Collaborative Deep Learning model (SH-CDL). The model jointly performs deep representation learning for POIs from heterogeneous features and hierarchically additive representation learning for spatial-aware personal preferences. To combat data sparsity in spatial-aware user preference modeling, both the collective preferences of the public in a given target region and the personal preferences of the user in adjacent regions are exploited in the form of social regularization and spatial smoothing. To deal with the multimodal heterogeneous features of the POIs, we introduce a late feature fusion strategy into our SH-CDL model. The extensive experimental analysis shows that our proposed model outperforms the state-of-the-art recommendation models, especially in out-of-town and cold-start recommendation scenarios.
Published in: IEEE Transactions on Knowledge and Data Engineering ( Volume: 29, Issue: 11, 01 November 2017)
Page(s): 2537 - 2551
Date of Publication: 18 August 2017

ISSN Information:

Funding Agency:


References

References is not available for this document.