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Abstract

Privacy concern in data sharing especially for health data gains particularly increasing attention 

nowadays. Now some patients agree to open their information for research use, which gives rise to 

a new question of how to effectively use the public information to better understand the private 

dataset without breaching privacy. In this paper, we specialize this question as selecting an optimal 

subset of the public dataset for M-estimators in the framework of differential privacy (DP) in [1]. 

From a perspective of non-interactive learning, we first construct the weighted private density 

estimation from the hybrid datasets under DP. Along the same line as [2], we analyze the accuracy 

of the DP M-estimators based on the hybrid datasets. Our main contributions are (i) we find that 

the bias-variance tradeoff in the performance of our M-estimators can be characterized in the 

sample size of the released dataset; (2) based on this finding, we develop an algorithm to select the 

optimal subset of the public dataset to release under DP. Our simulation studies and application to 

the real datasets confirm our findings and set a guideline in the real application.

Index Terms

differential privacy; M-estimators; hybrid datasets

1 Introduction

A common challenge in clinical studies is accessing sufficient amount of data of the subjects 

with a condition of interest. This becomes even more challenging when the study is set in a 

limited setting of a single institution and targets a rare disease. Hence, data sharing is of 
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great interest to biomedical research for accelerating scientific discovery which can be 

translated into novel treatment methods. However, revealing sensitive information about 

patients or individuals is an important privacy concern in sharing healthcare data. This 

concern is gaining particularly increasing attention in healthcare as shown in [3–8]. 

Nowadays, to protect private information to some extent, accessing raw data from multiple 

institutions requires not only Institutional Review Boards (IRBs) approval but also 

conforming to the institutional Data Use Agreement (DUA) conditions, which becomes a 

time-consuming and laborious process. It would be ideal to have a mechanism to support 

healthcare data analysis in a privacy-preserving manner by maximizing the utility of 

available dataset while reducing the burden of undergoing the complex process around IRB 

and DUA.

In the literature of protecting private information from synthetic data, Rubin first proposed 

the idea of fully synthetic data to represent “no actual individual” [9], which attracted a lot 

of attentions. Later, Reiter provided guidance on specifying the number and size of Rubin’s 

synthetic data generation model to ensure valid statistical procedures [10]. But Abowd and 

Vilhuber discussed potential “disclosure risk” of such method through inference disclosure 

[11]. In the imputation model. [12] described partial synthesis of survey data collected by 

the Cancer Care OutcomesResearch and Surveillance (CanCORS) project and discussed the 

key steps of selecting variables for synthesis, specification of imputation models, 

measurements of data utility, and disclosure risk.

Due to the risk concerns that were previously identified, modern synthetic data generation 

methods mostly driven by differential privacy. Differential privacy (DP) [1] uses 

perturbation techniques giving a mathematically rigorous privacy guarantee even if an 

attacker has arbitrarily auxiliary information. There are many and an increasing number of 

research fields in applying the concept of DP and DP mechanisms to machine learning [13], 

statistics [14; 15] and medicine application [6; 16–18]. Under the framework of DP, 

Mohammed et al. developed decide-tree based synthetic data release using a top down 

model that dynamically specifies sibling nodes and perturbs counts satisfying differential 

privacy [19]. Machanavajjhala et al. introduced another synthetic data generation model for 

commuting patterns of the population of the United States [20], which are very sparse in 

nature. Hall et al. developed yet another method to release differentially private functional 

data in the reproducing kernel Hilbert space (RKHS) by introducing an appropriate Gaussian 

process to the function of interest in [21]. These methods only retain utility for special 

classes of functions, which are not generalizable to medical data at large.

In reality, some patients are willing to sign the open consents to make their information 

freely available, which gives rise to a new problem of integrating the public information to 

infer from the private information. Several works show that hybridizing public and private 

information can significantly improve the utility of the DP mechanisms in specific learning 

goals. In logistic regression, Ji et al. [22] developed DP algorithm based on importance 

sampling for the hybrid datasets. A recent work [23] modified the update step in Newton-

Raphson method in logistic regression under DP based on public data and private data 

together. Another similar work [24] developed a hybrid DP support vector machine (SVM) 
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model that also takes advantage of aforementioned hybrid datasets. These models are still 

specific to certain machine learning models.

Different from existing task-specific models, we propose a new algorithm to publish data 

under DP using public and private datasets. It is not designed for a special task but the 

algorithm works for a general task such as estimation, regression and classification. To 

achieve this goal, we construct a weighted private density from the hybrid datasets under DP 

(in Section 3). We focus on protecting privacy in M-estimators, which are well studied in 

statistics [25] without privacy concerns. Under some regularities, M-estimators are robust to 

the outliers. This property makes it possible for M-estimators to maintain high utility under 

DP as discussed in [14].

Our workflow to infer the M-estimators under DP is summarized in Figure 1. Consider a 

situation that the researcher (the data user) would like to conduct exploratory data analysis to 

get M-estimators (for example, the coefficients of the covariates in the logistic regression) 

over a private dataset before making the formal IRB application. The researcher asks for a 

best model under DP from a trusted third party (TTP), which can access both public and 

private datasets. One way is to directly infer the M-estimators from a private dataset under 

DP. [2] provides a good framework for low dimensional data by perturbing the private 

histogram but this method could become useless for high dimensional data. Noticing the 

related public information, the TTP could take the result from the public dataset to represent 

that for the private dataset. However, we need to be extra careful here. If the distribution of 

the public dataset is the same as that of the private dataset, it will be perfect to directly infer 

from the public dataset without costing any privacy budget. But in most cases, the open-

consent population itself could have bias, such as the young and high educated people are 

probably more willing to make their information open for research so that some covariate in 

the open-consent population has smaller variation than that in the private population. Hence 

if we directly learn from the data from consented population, the results could not fully 

represent the private data.

Due to the possible bias from public dataset, how to effectively use the public information to 

better understand the private information without releasing privacy is a challenging question. 

Our main contributions (in Section 4) are (i) we provide a theoretical support that there 

could exist an optimal subset of the public dataset, not always the whole public dataset, 

giving the highly accurate and privacy protected M-estimators and (ii) we further develop a 

DP selection procedure to obtain this optimal subset. Given the private data of interest, our 

method generates a DP hybrid cohort by referencing the public data to pick the most 

representative samples to facilitate the study, which ensures the valid statistical procedures 

and prevents against inference disclosure problem in Rubin’s case [9]. The simulation 

studies and an application in real datasets in logistic regression (in Section 5) show that the 

optimal public subset from our selection procedure performs better than the perturbed 

histogram method in [2] and promisingly our procedure can be applied in high dimensional 

data. We discuss future directions and limitations and finally make a conclusion in Section 6.
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2 Preliminary

2.1 Setting of the problem

Let D = {x1, …, xnD} be the private dataset and E = {y1, …, ynE} the public dataset where 

y’s are distinct. Each data point xi ∈ D is a realization of a random variable X from a density 

function fD and yi ∈ E a realization of Y from fE. We generally call the density function for 

the probability mass function of a discrete variable. We assume Xi ∼iid f D, Y i ∼iid f E and X’s 

and Y’s are independent. Due to the bias from open-consent preselection, we consider 

generally fD ≠ fE. Denote the sample space of X by D and Y by E.

Notation—The symbol | · | of a set means the cardinality of the set. For a, b ∈ ℝ, denote 

a∨b = max{a, b}. For two sequences of reals (an) and (bn): an ~ bn when an/bn → 1; an = 

o(bn) when an/bn → 0; an = O(bn) when an/bn is bounded. For two real random sequences 

(an), (bn), an = Op(bn) if an/bn is bounded in probability, i.e., supn ℙ(|an/bn| > x) → 0 as x → 
∞. For a random variable X and density function f, X ~ f means X has density F. X ~ 

Laplace(λ) means X has density 1
2λ exp ( − ∣ x ∣ /λ).

2.2 Differential Privacy

Differential privacy proposed by [1] provides guarantees on the privacy of the dataset against 

any arbitrary external attacks. The concept of differential privacy (DP) is designed to protect 

the worst case that the attacker knows the information of all the patients except one. To 

protect this case, DP considers two neighbor datasets D and D′ which differ in only one 

patient. The rigorous definition of ε-differential privacy is in Definition 1. The definition of 

DP is symmetric in D and D′. By the comparability property of DP in Definition 4, it is 

easily applied to the case where D and D′ differ in more than one patients.

Laplace mechanism [1] in Definition 3 is one of mechanisms that achieve ε-differential 

privacy by adding Laplace noise on private information, which is the mechanism we use in 

this paper. The amount of noise added is determined by the privacy parameter ε, and the 

sensitivity of the statistics in Definition 2 which characterizes the worst case among all 

neighbor datasets.

Definition 1. (Differential Privacy [1])—A randomized mechanism ℳ is ε-differentially 
private if, for all datasets D and D′ which differ on at most one individual and for any 
measurable subset S of the range of ℳ,

log ℙ(ℳ(D) ∈ S)
ℙ(ℳ(D′) ∈ S) ≤ ε, ∀S ⊆ range(ℳ) .

In Definition 1, D and D′ are called neighbor datasets with Hamming distance H(D, D′) = |

D\D′| = |D′ \D| = 1. ε is the privacy parameter. Small ε tells the distribution of ℳ(D) and 

ℳ(D′) is not easily distinguishable so that in some sense this protects the information of the 

patients that D and D′ are different in. Note here the randomness of ℳ is in the perturbation 

added to protect privacy not in the data itself.
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Definition 2. (Sensitivity for Laplace Mechanism [1])—The sensitivity of a statistic 
T in the Laplace Mechanism is the smallest number S(T) such that

‖T(D) − T(D′)‖1 ≤ S(T),

for all D, D′ with H(D, D′) = 1.

Definition 3. (Laplace Mechanism [1])—Releasing (T(D) + noise) where noise has 
Laplace(S(T)/ε) distribution is an ε-differentially private mechanism satisfying Definition 1, 
where S(T) is the sensitivity of T in Definition 2.

Definition 4. (Sequential Composition [1])—If we apply k independent statistics T1, 
…, Tk with corresponding privacy parameters ε1, …, εk, then any function g(T1, …, Tk) is 

∑i = 1
k εi-differentially private.

2.3 M-estimator

In our case, the parameter we are interest in is the one for the private distribution,

θ∗(𝒳D) = arg min
θ ∈ Θ

M𝒳D
(θ),

where M𝒳D
(θ) = ∫

𝒳D
m(x, θ) f D(x)dx,

(1)

and Θ is the parameter space of θ and m(x, θ) is called contrast function. Given the private 

dataset D = {x1, …, xnD} and under the independence assumption of X’s, the M-estimator 

for θ*( D) is the minima of the sum of contrast functions,

θ (D) = arg min
θ ∈ Θ

MD(θ),

where MD(θ) = ∑
xi ∈ D

1
nD

m(xi, θ) .

(2)

For example, taking m(x, θ) as absolute loss function |x − θ|, θ̂ is the sample median; taking 

m(x, θ) as squared loss function (x − θ)2, θ̂ is the sample mean; taking m(x, θ) as the 

negative log-likelihood function, θ̂ is maximum likelihood estimator. More examples and 

properties of M-estimators can be found in [25].

Since D is private, we can not release θ̂(D) in (2) without any privacy protection. We take 

θ̂(D) as a baseline to evaluate the performance of the privacy protected M-estimator. Our 
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goal is to develop a M-estimate under DP integrating public information to achieve high 

utility.

3 DP M-estimator from Hybrid Datasets

3.1 Our DP M-estimator

In a non-interactive fashion, a direct way to release a DP version of the M-estimator is to 

perturb the density function. Once we get a privacy protected density, based on the synthetic 

data points, we can not only ask for the mean, the median of the private dataset, but also 

learn the private dataset form linear regression, logistic regression, in a series of estimating 

M-estimators.

Only based on the private dataset D, Lei in [2] proposed a method to get DP M-estimator 

from perturbed histogram. The key is to perturb the private density function under DP. His 

strategy is as follows. We first partition the sample space (assuming bounded) into cubic 

cells with equal bandwidth in each dimension, next add Laplace noise to the counts of the 

points in D lying in each cell under DP, then generate the synthetic data by replicating the 

center point in each cell in the number of the DP perturbed count, finally obtain the DP M-

estimator from the synthetic points. But this model does not scale well if the dimensionality 

is high since adding noise to all high dimensional cells may render the estimated density 

useless. In our setting, this problem can be alleviated if we carefully make use of the public 

dataset. We compare their performances in the simulation studies in Section 5.

At the presence of the related public dataset, we would like to take use of the public data 

points to represent the private data points in a privacy-preserving manner and construct a DP 

hybrid weighted density function. Our idea is to assign a weight to each distinct public point, 

where the weight in one public point is proportional to the count of the private points such 

that they are closer to this point rather than any other public points. In statistics, the hybrid 

weighted density is formulated in

f D
hyb(x) = ∑

i = 1

nE
wi 𝟙{x = yi}

, (3)

where

wi =
∣ Dyi

∣

nD
, yi ∈ E,

Dyi ={x ∈ D: ||x − yi|| ≤ ||x − yj||, for all j ≠ i}.

By the definition of Dyi, we can see if a point in E surrounded by more points in D, it gains 

large weight and otherwise it gains small weight. In this way, it relieves the bias of 

estimating from E to some extent.
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In (3) to estimate the private density, we relate its empirical probability to that of the public 

empirical probability by the weight wi. Without privacy concerns, there are several ways in 

density estimation. The book [26] summarizes several approaches, such as moment 

matching, probabilistic classification, and density-ratio fitting with kernel smoothing. In this 

paper, our contribution is not to find an optimal way to estimate private density under DP but 

instead under the constructed hybrid weighted density to establish a procedure to better use 

the public information to reduce unnecessary privacy budget allocation and therefore 

improve the utility.

Definition 5. (DP M-estimator from hybrid datasets.)—Under the notation in Section 

2, the DP M-estimator from hybrid datasets is

θ (E, w∼) = arg min
θ ∈ Θ

M(E, w∼)(θ), (4)

where

M(E, w∼)(θ) = ∑
i = 1

nE
w∼im(yi, θ), yi ∈ E,

wĩ = wi + Zi/nD, wi =
∣ Dyi

∣

nD
,

Dyi = {x ∈ D: ||x − yi|| ≤ ||x − yj|| for all j ≠ i}

Zi ∼iid Laplace(2/ε), i = 1,…,nE.

Proposition 1— {w∼i}i = 1
nE  in Definition 5 satisfies ε-differential privacy.

Proof: To better understand the concept of DP, we give the proof for Proposition 1. Suppose 

D′ and D are neighbor datasets, and xi0 ∈ D\D′ and xi0′
∈ D′\D. Let T(D) = (|Dy1|, …, |

DynE|) and T(D′) = ( ∣ Dy1
′ ∣ , …, ∣ DynE

′ ∣ ). Since we add independent Laplace noise to T, it 

suffices to show that the sensitivity of T is 2. In the case that xi0 and xi0′
 have the same 

representative point in E, then T(D) = T(D′). In the other case that they have different 

representatives, denote xi0 ∈ Dyj and xi0′
∈ Dy j′

′ , where y j ≠ y j′. Then ∣ Dy j
∣ = ∣ Dy j

′ ∣ + 1 and 

∣ Dy j′
∣ = ∣ Dy j′

′ ∣ − 1 and T(D) and T(D′) are the same in other elements. Hence, ||T(D)−T(D

′)||1 ≤ 2 for all neighbor datasets D and D′, which gives S(T) = 2 by Definition 2.

As we can see in Definition 5, adding Laplace noise can lead some weights wĩ’s negative. 

Many negative weights can cause non-convexity of M(E, w̃)(θ). Hence, it is necessary to 

define a truncated version of the weights. Parallel to the perturbed histogram with 
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nonnegative counts in [2], we define the truncated perturbed weights and obtain the DP M-

estimator from hybrid datasets with nonnegative weights in Definition 6.

Definition 6. (DP M-estimator from hybrid datasets with nonnegative weights.)
—In the same notation in Definition 5, replacing w̃i’s by

w∼i
+ = w∼i ∨ 0,

the DP M-estimator from hybrid datasets with nonnegative weights is

θ (E, w∼+) = arg min
θ ∈ Θ

M
(E, w∼+)

(θ),

where M
(E, w∼+)

(θ) = ∑
i = 1

nE
w∼i

+m(yi, θ), yi ∈ E .

Proposition 2— {w∼i
+}

i = 1

nE
 in Definition 6 satisfies ε-differential privacy.

Proof: By Definition 6, w∼i
+ is a measurable function of wĩ. From Proposition 1, {w∼i}i = 1

nE

satisfies DP so does {w∼i
+}

i = 1

nE
 by Definition 1.

3.2 Algorithm to Get Our DP M-estimator

To obtain the DP M-estimator from hybrid datasets in practice, we summarize the steps in 

the Algorithm 1. We first rescale both the public dataset and the private dataset to [0, 1]p 

where p is the data dimension; next calculate the weights in Definition 5 from the rescales 

datasets to establish the hybrid density; then add Laplace noise to the weights under DP; 

finally we obtain the DP M-estimator for the user assigned contrast function. To obtain the 

DP M-estimator with nonnegative weights, the steps follow from Algorithm 1 except 

replacing w̃ by w̃+ in Definition 6.

Before constructing the hybrid density, we add a preprocessing step to rescale the datasets in 

Step 1. We claim that it is a necessary step from two aspects. In one aspect, rescaling the 

data in each dimension to [0, 1] makes the scales of all dimensions comparable. For a 

categorical variable, suppose it has k categories. We first transform the labels to k-

dimensional dummy variables, (1, 0, …, 0) for label 1, (0, 1, 0, …, 0) for label 2, …, (0, …, 

0, 1) for label k. Hence, the l2 distance between two different labels is 2. We further divide 

the transformed labels by 2 so that the l2 distance between any two categories inside [0, 1]. 

In another aspect, we need to guarantee privacy protection in each step involving the private 

dataset. Hence we rescale the private dataset according to the range of the public dataset in 

case that the private data point outside the range of public dataset could expose privacy.
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To see the effect of rescaling, we first illustrate the original datasets and rescaled ones from a 

simulation in Figure 2. In the simulated data, we consider the private dataset D containing 

nD = 104 points has a two-dimensional covariate XD generated from MVN((0, 0)T, diag(1, 

1)) where diag(·) denotes a diagonal matrix and a 0–1 response variable generated from a 

logistic regression model based on XD and coefficient βD = (0.2, 0.4), where MVN is the 

abbreviation for multivariate normal distribution. Similarly for the public dataset E, nE = 

104, XE is generated from MVN((0, 0)T, diag(0.5, 1)) and βE = (0.5,−0.1). We simulate the 

case that D and E have different distributions due to open-consent bias. The lower panels in 

Figure 2 show the rescaled private and public datasets. We can see since the covariate-1 has 

less variation in original E than that in original D, after rescaling D according to the range of 

E, several points in D in large deviation in covariate-1 are compressed to the boundaries in 

the rescaled D̃. Rescaling step changes the relative positions of two data points. However, 

what really matters is how much it changes the density weights because the change in the 

weights will more or less affect the accuracy of the M-estimator. To illustrate this idea, we 

compare the weights calculated from original D and E to those from rescaled D̃ and Ẽ and 

highligt the points with different weights from two ways of calculation in rescaled Ẽ in 

Figure 3. We can see the points with large different weights mainly lie in the boundaries of 

covariate-1. (Note that 0–1 response variable also contribute to the calculation of the 

weights.) From this simulation, we get an idea that the step of rescaling could add more 

variation on the weights especially on the points compressed to the boundaries. This is 

another cost of protecting privacy, besides adding Laplace noise on the weights. If the public 

dataset and the private are not quite different like in this simulation, the number of the points 

that have more than 2 counts different in weights is only 42 out of 104 points. If the model is 

not extremely sensitive to the outliers, we think a few points with large deviated weights 

could not make a large difference to the final result. On the other hand, this indicates that if 

the public dataset and the private are extremely different such that in some dimension they 

have quite different distributions, rescaling step may deteriorate the accuracy in the final 

estimation. In this case, we suggest finding a more comparable public dataset in order to 

apply the privacy-protection procedures. More discussion is in Section 6

Algorithm 1

To obtain DP M-estimator from hybrid datasets.

Input: private dataset D, public dataset E with distinct points, privacy parameter ε and objective function M.
Output: DP M-estimator from hybrid datasets θ̂(E, w)̃.

1 To rescale D and E to [0, 1]p where p is the dimension of the data points. Combine D and E by the 
variables in E. Let zij be i-th observation in j-th variable of the combined dataset. If j-variable is 
continuous, rescale zij to

z∼i j =
zi j
trunc − a j
b j − a j

where a j = min
i = 1, …, nD + nE

{zi j ∈ E},

b j = max
i = 1, …, nD + nE

{zi j ∈ E},
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zi j
trunc = a j 𝟙{zi j < a j}

+ b j 𝟙{zi j > b j}
+ zi j 𝟙{a j ≤ zi j ≤ b j}

If j-th variable is categorical with k-labels, write zij in terms of k-dimensional dummy variable then 
rescale it by dividing 2.

2 To find the weights wi’s in Definition 5 based on rescaled hybrid datasets from Step 1. Define x̃’s and ỹ’s 
are the points in the rescaled dataset D̃ and the rescaled Ẽ. The weight associated with ỹi ∈ Ẽ is wi = |{x̃ ∈ 
D̃: ||x̃−ỹi||2 ≤ ||x̃−ỹj||2, i ≠ j}|/nD.

3 Adding Laplace noise to the weights. To each wi obtained in Step 2 adding independent Laplace noise, w̃i 
= wi + Zi/nD where Zi ∼iid Laplace(2/ε), i = 1, …, nE.

4 To obtain DP M-estimator from hybrid datasets. Minimizing the objective function M(E, w̃)(θ) in 
Definition 5 where w̃ is obtained in Step 3, get θ̂(E, w̃) = arg minθM(E, w̃)(θ).

4 Optimal Subset in Releasing Public Dataset under DP

In the previous section, we establish the DP M-estimator from hybrid datasets. In this 

section, we first evaluate its performance from bias and variance decomposition Subsection 

4.1. We find that this bias and variance tradeoff can be characterized in the number of the 

public data points to release. This makes it possible that there may exist an optimal subset of 

public dataset which could give more accurate M-estimators under DP. This is our main 

contribution. In Subsection 4.2, we further develop an algorithm to select the optimal subset 

under DP in practice.

4.1 Bias and Variance Tradeoff

At a first look, one may doubt since we have the public dataset, why only to use part of 

them. It is true with more points in the public dataset, they can be more representative of the 

private dataset. However, under the framework of DP, we need to add Laplace noise to the 

weights of the public data points. More points to release, more noise to add. Hence, there is 

a tradeoff between bias and variance, where the bias is from using public dataset to estimate 

the private dataset and inadequate sample size while the variance from adding noise. We find 

this tradeoff is in the sample size of the public subset. It is analogous to the case where the 

whole dataset is private where the tradeoff is in the bandwidth of the perturbed histogram in 

[2]. However there how to choose the cell bandwidth is a tricky question in practice but in 

our case, selecting the public subset can be optimized.

To analyze the accuracy of our M-estimator, we consider the contrast function is well-

defined in the same conditions as in [2]. Assume the contrast function m(x, θ):  × Θ → ℝ 
where  = D ∪ E is the union of the private and public sample spaces and Θ is the 

parameter space of θ, satisfies condition (A1) − (A3) listed below.

(A1) g(x, θ): = ∂
∂θ m(x, θ) exists and ||g(x, θ) ||2 ≤ C1 on  ×Θ where C1 is a constant;

(A2) g(x, θ) is Lipschitz in x and θ: ||g(x1, θ) − g(x2, θ) ||2 ≤ C2||x1 − x2||2 for all θ ∈ 
Θ and ||g(x, θ1)−g(x, θ2) ||2 ≤ C2||θ1−θ2||2 for all x ∈ , where C2 is a constant;
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(A3) m(x, θ) is convex in θ for all x ∈  and M D(θ) is twice continuously 

differentiable with M𝒳D
″ (θ∗(𝒳D)): = ∫ 𝒳D

f D(x) ∂
∂θ g(x, θ∗(𝒳D))dx positive definite 

where M D(θ) and θ*( D) are defined in (1).

To quantify the bias from using weighed density from hybrid datasets to estimate the private 

density, we take the measurement of the distance between two datasets D and E′ ⊆ E.

d(D, E′) = 1
nD

∑
x ∈ D

min
y ∈ E′ ‖x − y‖2 . (5)

In (5), d(D, E′) takes the average of the distance between a point x in D and E′ (i.e., miny∈E

′ ||x−y||2) over all the points in D. Without considering DP, obviously d(D, E′) ≥ d(D, E) for 

E′ ⊆ E. Hence, increasing the sample size of the released dataset decreases the distance to 

the private dataset D.

Lemma 1—Let g(x, θ) = ∂
∂θ m(x, θ) Under the notation in Section 2 and condition (A2), we 

have

∑
i = 1

nE
wig(yi, θ) − ∑

j = 1

nD 1
nD

g(x j, θ)
2

= O(d(D, E)), (6)

where d(D, E) is defined in (5).

Proof: To prove Lemma 1, recall that wi = |Dyi |/nD in Definition 5 where Dyi = {x ∈ D: ||x − 

yi||2 ≤ ||x−yj||2, i ≠ j}. Since the points in E are distinct, for each xj ∈ D, there exists a unique 

point ykj ∈ E such that ykj = arg miny∈E ||xj − y||2. Based on the definition of Dyi, |

Dy<sub>i</sub> |g(yi, θ) = Σ{j:x<sub>j</sub>∈D<sub>y<sub>i</sub></sub>} g(yk<sub>j</sub>, θ). 

Since g(x, θ) is Lipschitz in x for all θ by condition (A2), we have

(LHS) in (6) = ∑
j = 1

nD 1
nD

g(yk j, θ) − ∑
j = 1

nD 1
nD

g(x j, θ)

≤ C2 · 1
nD

∑
j = 1

nD
‖yk j

− x j‖2
= C2 · d(D, E),

which completes the proof.

Proposition 3—Under the notation in Section 2 and the contrast function m satisfing 
conditions (A1)–(A3), there exists a local minimizer θ̂(E, w̃) for M(E, w̃)(θ) such that
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‖θ(E, w∼) − θ∗(𝒳D)‖2 = Op
nE log (nE)

nD
∨ d(D, E) ∨ 1

nD
, as nE, nD ∞ ,

where M(E, w̃)(θ) is in Definition 5, the true parameter θ*( D) for M <sub>D</sub>(θ) in (1) 

and d(D, E) is defined in (5). The same result holds for θ̂(E, w̃+) in Definition 6.

The proof for Proposition 3 is a straightforward extension of Theorem 3 in [2], hence we 

only sketch the key ideas here. To get the convergence rate of θ̂(E, w̃), applying Lemma 9 in 

[2], it suffices to show that sup
θ∗(𝒳D) ∈ Θ0

‖M(E, w∼)′ (θ) − M𝒳D
′ (θ)‖

2
 where Θ0 is a compact 

neighbor set around θ*( D), is bounded in the same order as ||θ̂(E, w̃) − θ*( D)||2. Recall 

w̃i = wi + Zi/nD where Zi is the Laplace noise and wi = |Dy<sub>i</sub>|/nD in Definition 6. In 

our case, we get the bias-variance decomposition in

M(E, w∼)′ (θ) − M𝒳D
′ (θ) = ∑

i = 1

nE
w∼ig(yi, θ) − ∫

𝒳D
g(x, θ) f D(x)dx

= ∑
i = 1

nE Zi
nD

g(yi, θ) + ∑
i = 1

nE ∣ Dyi
∣

nD
g(yi, θ) − ∑

i = 1

nD g(xi, θ)
nD

+ ∑
i = 1

nD g(xi, θ)
nD

− 𝔼 f D
g(X, θ) .

(7)

The first term in (7) comes from the variation error by adding Laplace noise; the second 

term in the parenthesis comes from the bias by using the weighted density from hybrid 

datasets; the third term in the parenthesis comes from the sampling error of inadequate 

sample size. The convergence rates in the first and third terms are a direct extension from 

Theorem 3 in [2] and the error bound for the second term is from Lemma 1. The 

convergence rate of θ̂(E, w̃+), by Definition 6 follows in the same fashion as Theorem 5 in 

[2].

From Proposition 3, we can see that there is a clear bias-variance tradeoff in the estimation 

accuracy and it can be characterized by the sample size of the release dataset. The term (nE 

log(nE)/nD) in the convergence rate of θ̂(E, w̃) is increasing in nE while d(D, E) is 

decreasing in nE. This motivates us to find an optimal subset of public dataset to better 

estimate the private dataset especially in practical application.

4.2 Selection Algorithm

To implement the procedure of selecting optimal public subset for M-estimators under DP, 

we summarize the steps in Algorithm 2. We add Laplace noise in all the steps that involve 

private dataset D to make sure the whole process guarantees privacy. Algorithm 2 can be 

implemented for the procedure of selecting the optimal subset from the hybrid density with 

nonnegative weights by replacing w̃ by w̃+ in Definition 6.
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To find the optimal public subset under DP, Algorithm 2 contains three parts. Part I: to get a 

sequence of subset candidates {E∼(i)}i = 1
k . After rescaling the datasets to D̃ and Ẽ in step 1, 

we get the weights for all the points in Ẽ then add Laplace noise to those weights in step 2. 

We order all the points in Ẽ by their DP weights in step 3. We consider if a data point in Ẽ 
gains more weight, this point is more representative to the private points and thus should 

have high priority to be selected. Assigning a sequence of the sample sizes 

{ni}i = 1
k , {E∼(i)}i = 1

k  is a sequence of increasing sets of the ordered points, i.e., Ẽ(1) contains 

the points in the first n1 largest DP weights and Ẽ(2) contains the points in the first n2 largest 

DP weights and so on so forth. Regarding to choose {ni}i = 1
k , we take into the consideration 

of the trend of d(D̃, Ẽ ). From Proposition 3, the upper bound of the estimation error depends 

on d(D̃, Ẽ ), and d(D̃, Ẽ(i)) is increasing in the size of Ẽ(i). Figure 4 shows that d(D̃, Ẽ) 

decreases first then stays flat in both a low dimension case p = 2 and high dimension case p 
= 100 in the simulations of multivariate normal (MVN) variables. From our analysis, the 

estimation error from adding Laplace noise is increasing in ni. Hence, we would expect that 

the turning point for the estimation error can not happen where d(D̃, Ẽ(i)) is flat. Therefore, 

the trend of d(D̃, Ẽ(i)) gives us a sense on the general range of the size of the optimal public 

subset.

Part II: to get DP M-estimators from candidate subsets {E∼(i)}i = 1
k . In step 4, we apply 

Algorithm 1 to get M-estimators under DP based on each data pair (Ẽ(i), D̃ ). Applying the 

sequential composition rule in Section 2.2 (since we add Laplace noise independently), we 

equally arrange the privacy parameter ε2 to the weights of the weighted density under each 

data pair.

Part III: to release the estimation error from each candidate subsets {E∼(i)}i = 1
k  under DP and 

pick the optimal subset. In step 4, we evaluate the performance of θ̂(Ẽ(i), w̃) by comparing to 

the baseline θ̂(D). One can take criterion as ||θ̂(Ẽ(i), w̃)−θ̂(D)||2. But in order to release the 

criterions, we need to perturb them under DP in step 5. Considering the case that the 

sensitivity of the criterion is large, then selecting the optimal subset based on the noisy 

criterions could be useless. From the prospective of privacy, we consider a transformation 

function h on θ with small sensitivity to guarantee a certain utility. We require the function h 
is Lipschitz then ||h(θ̂(Ẽ(i), w̃)) − h(θ̂(D)) ||2 shares the same convergence rate as ||θ̂(Ẽ(i), w̃)
−θ̂(D)||2 and thus the bias-variation tradeoff could still exist. In step 6, the subset with the 

smallest criterion is the optimal set to release.

Algorithm 2

To obtain optimal subset of public dataset for M-estimators under DP.

Input: private dataset D, public dataset E with distinct points, privacy parameters ε1, ε2, ε3, objective function M and 
transformation function h.
Output: Optimal subset of E with associated weights under DP.

1 To rescale D and E to D̃ and Ẽ according to Step 1 in Algorithm 1.
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2 To get noisy weights w̃i = w̃i(Ẽ, D̃) for the points in Ẽ according to Step 2–3 in Algorithm 1 under privacy 
parameter ε1.

3 To sort the points in Ẽ in the order of w̃(Ẽ, D̃) obtained in Step 2 in decreasing order.

4 Consider a sequence of increasing sets {E∼(i)}i = 1
k

 of ordered points in Ẽ. To apply Algorithm 1 to each 

data pair (Ẽ(i), D ̃) under privacy parameter ε2/k to get its M-estimator θ̂(Ẽ(i), w̃) where w̃ = w̃(Ẽ(i), D̃). To 
evaluate the performance of θ̂(Ẽ(i), w̃) by the criterion ti: = ||h(θ̂(Ẽ(i), w̃)) − h(θ̂(D)) ||2, i = 1, …, k.

5 To add independent Laplace noise to the performance criterion ti’s obtained in Step 4. Releasing t̃i = ti + 

Zi, i = 1, …, k, where Zi ∼iid Laplace(S(ti)/ε3) and S(ti) is the sensitivity of ti.

6 To select the optimal subset Ẽ(i<sup>*</sup>) where i* = arg mini=1,…,k t̃i and release Ẽ(i<sup>*</sup>) and its 
noisy weights.

5 Simulation and Application

In this section, we take logistic regression as an example to implement Algorithm 1–2. Both 

simulation studies and application on the real datasets are coherent to our finding that bias-

variance tradeoff phenomenon can be characterized in the sample size of the released 

dataset. Our example sets a guideline to select optimal subset under DP in practice.

5.1 Simulation Studies

We simulate the private dataset D and public dataset E from logistic regression model. We 

set nD = 104, nE = 104 and consider the covariates in a low dimensional space with p = 2 and 

a high dimensional space with p = 100. In the low dimensional case, to get D, we first 

generate independent covariates ( Xi1
D, Xi2

D) from ((0, 0)⊤, diag(1, 1)), i = 1, …, nD. Given 

( Xi1
D, Xi2

D), we generate Y i
D ∣ (Xi1

D, Xi2
D) Bernoulli(pi

D) and model logit(pi
D) = β1

DXi1
D + β2

DXi2
D

setting β1
D, β2

D ∼iid Unif( − 1, 1) where logit(p) = log ( p
1 − p). Then D is a set of 

nD (Y i
D, Xi1

D, Xi2
D)’s. Similarly, to get E, we first generate independent covariates ( Xi1

E , Xi2
E ) 

from ((0, 0)⊤, diag(0.5, 1)), i = 1, …, nE then generate Y i
E ∣ (Xi1

E , Xi2
E ) Bernoulli(pi

E). Model 

logit(pi
E) = β1

EXi1
E + β2

EXi2
E  setting β1

E, β2
E ∼iid Unif(0, 1/2). Then E is a set of nE (Y i

E, Xi1
E , Xi2

E )’s. In 

the high dimensional case, for D, we consider ( Xi1
D, …, Xi100

D ) from 𝒩((0, …, 0)100
⊤ , I100 × 100)

and βi
D ∼iid Unif( − 1, 1), i = 1, …, nD. For E, we consider ( Xi1

E , …, Xi100
E ) from 

𝒩((0, …, 0)100
⊤ , 0.5I100 × 100) and βi

E ∼iid Unif(0, 1/2), i = 1, …, nE.

Based on the simulated datasets, we investigate how the sample size of released public 

dataset effects the performance of logistic regression under DP. In the simulation, we set (ε1, 
ε2, ε3) = (0.8ε, 0.2ε, ε) where ε = 0.5, 1, 3, so the total privacy parameter is 2ε by the 

sequential composition of DP. Here we put more weight to ε1 than ε2 from our practical 

experience. How to optimize the allocation of the total privacy budget can be further 

investigated. To Implement Algorithm 2, for p = 10, we start our search of optimal subset 

candidates {E∼(i)}i = 1
k  from the size 10 up to 3000 with increment 50, and for p = 100, start 

from the size 100 up to 10000 with increment 200. In the simulations we choose a large 
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range to get the optimal subset but with the information of the decreasing range of d(D̃, Ẽ) in 

Figure 4, we can further narrow down our search to save more privacy budget. For each data 

pair (Ẽ(i), D̃ ), we get DP M-estimators from hybrid datasets with nonnegative weights β̂(Ẽ(i), 
w̃+).

To evaluate the performance on the sequence of subset candidates, we consider the total 

prediction error defined by ti = ||(δh)||2 for candidate Ẽ(i), where (δh) = hD(β̂(Ẽ(i), w̃+)) − 

hD(β̂(D)). Instead of directly measuring difference in β̂ from different datasets, we take the 

transformation function hD(β) = eX
D

β

1 + eXDβ
 where XD is the covariate matrix of D and thus 

hD(β̂) is a vector of nD elements. The prediction error of a candidate public subset measures 

the sum of total differences between the predicted probabilities with β̂ estimated from the 

candidate under DP on the private covariates for dataset D and those with β̂ estimated from 

D and its private covariates across all the observations. As we take β̂(D) as the baseline, 

β̂(D) itself contains private information. To compare the difference to β̂(D), we need to add 

additional perturbation when report this difference. Taking a transformation on measuring 

error ||β̂(Ẽ(i), w̃+) − β̂(D)||., we need the transformation function maintains its tradeoff 

property and has a small sensitivity. It is easy to check that h is Lipschitz in this case that XD 

is bounded (note XD is not random when adding Laplace noise). Hence (δh) captures the 

tradeoff. Define (δh) and (δh)′ as neighbor vectors only differing in j0-th component and 

denote their common components as (δh)−j0. Noticing that (δh)j0, (δh) j0
′ ∈ [0, 1], we have

∣ ti((δh)) − ti((δh)′) ∣ = ∣ ‖(δh)− j0
‖

2
2 + (δh) j0

2 − ‖(δh)− j0
‖

2
2 + (δh) j0

′2 ∣

≤ ∣ (δh) j0
− (δh) j0

′ ∣ ≤ 1,

where for the first inequality, the equality achieves when ||(δh)−j0||2 = 0. Hence the 

sensitivity of ti is 1 and we perturb ti by adding noise Laplace(1/ε3). From the privacy-

protected releasing curve of ti’s, we take the optimal subset as the one with the smallest 

prediction error.

In the simulation study for logistic regression, we compare the performance of the 

estimators for β: (1) β̂(E) naïvely from public dataset, (2) β̂(Ẽ(i), w) from weighted density 

of data pair (Ẽ(i), D̃) without adding noise, and (3) β̂(Ẽ(i), w̃+) from weighted density of data 

pair (Ẽ(i), D̃) under DP, and (4) under the low dimensional case, β̂(perturbed D) from [2]. To 

make it fair to the perturbed histogram method, we estimate β under privacy parameter 

ε1+ε2. We report their average performance in terms of prediction error t from 10 repeats on 

the whole procedure. We can see from Figure 5 and Figure 6 that there is a clear tradeoff in 

the performance of β̂(Ẽ(i), w̃+) in the red curve under DP, i.e. the prediction error decreases 

first then increases with the released sample size, when the privacy parameter ε is not too 

small. Increasing ε, the performance of β̂(Ẽ(i), w̃+) approaches to that of β̂(Ẽ(i), w) as 

expected. The blue line is the performance of β̂(E). Since it does not change with the subset 
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of E, it is a straight line. We can see due to the bias of public dataset, directly estimating 

from public dataset to represent private dataset has large prediction error compared to our 

selecting subset procedure. Figure 5 and Figure 6 indicate that under a small privacy 

parameter, releasing about 10% public points could give a better performance under DP. In 

the case of p = 2, Figure 5 shows the prediction error from the optimal subset of the public 

dataset is smaller than that from the method in [2] only perturbing the private dataset (in 

pink line). Under the high dimensional case, our DP procedure of selecting the optimal 

subset to release shows its priority. When p = 100, adding noise to say 10p cubes where to 

partition 10 bins in each dimension would make the perturbed histogram useless but the 

tradeoff curve could still exist which makes our selection doable.

5.2 Applying to Real Datasets

We have two clinical datasets from different institutes in the diagnosis of acute myocardial 

infarction from [27]. One is from Edinburgh institute with 1253 patients and the other is 

from Sheffield institute with 500 patients. We are interested in selecting an optimal public 

dataset in a logistic regression model. The response in logistic regression is 0–1 disease 

variable and the covariates in this study are Pain in left arm, Pain in right arm, Nausea, Hypo 

perfusion, ST elevation, New Q waves, ST depression, T wave inversion and Sweeting, 

which are all 0–1 categorical variables and all measured in both institutes.

Since the data is collected from different sites, there is an intrinsic bias if using one dataset 

to approximate the other. In our study, we mimic the case that one dataset is public while the 

other is private. We first take Sheffield dataset as public and Edinburgh as private and then 

converse their roles. Note that since the datasets are of discrete variables, it is necessary to 

remove the replicates in the public dataset when getting the weights for the weighted density 

to avoid ambiguity of assigning the weights. The distinct data points in Sheffield institute are 

153 and for Edinburgh are 181. We compare the performance of three M-estimators (from 

the public dataset, from the hybrid dataset without adding noise to the weights and from the 

hybrid datasets under DP) in logistic regression for the real datasets, in the same manner as 

in the previous section of simulation studies.

In Figure 7, it demonstrates the case that Sheffield dataset is public while Edinburgh is 

private, and in Figure 8, it demonstrates the case that Edinburgh dataset is public while 

Sheffield is private. In both cases, applying Algorithm 1–2, we consider ε1 = ε2 = ε3 and set 

the total of privacy parameter is 3ε where ε = (1, 3, 10). We add 10 points each time to the 

sequence sorted subsets of the public dataset. To mimic the real application, we report the 

prediction error defined in Algorithm 2) from one repeat.

From both Figure 7 and Figure 8, we can see the tradeoff phenomenon in the performance of 

the DP M-estimator from hybrid datasets (the red curve) is still clear, as we discussed in the 

previous section. To select the optimal subset under DP, the performance of the M-estimator 

from hybrid datasets without adding noise (the black curve) can not be released since it has 

private information. However, the turning point in the red curve suggests an optimal sample 

size to release. In reality to protect the privacy, we can only see the red curve and the blue 

line for the performance of M-estimator from the public dataset. Comparing those 

performance gives us a guideline to select the optimal subset under DP.
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6 Discussion and Conclusion

In this paper, we discuss a privacy problem in a situation where both the private and public 

datasets are present. How to effectively take use of the public information to better 

understand the private information without releasing privacy is a prime challenge and 

especially important in the healthcare data analysis. In our work, we formulate this big 

question to how to effectively select public data points under the framework of differential 

privacy in the analysis of M-estimator. We first proposed our DP weighted density 

estimation based on the hybrid datasets which make it possible to do non interactive 

learning. Along the same line as [2], we gave the convergence rate of our DP M-estimator 

from hybrid datasets. Based on that, we found that the bias-variance tradeoff can be 

characterized in the sample size of the released dataset. This inspired us to explore an 

algorithm to implement the selection procedure. The framework of our Algorithm 1–2 gives 

a guideline for answering more general questions. As we previously pointed, this paper 

focused on a small question but can be generalized to more variants in both statistical 

interests and privacy concerns.

To integrate public and private information, in Section 3, we used the public points to 

estimate the private density weighing them by how they are representative to the private 

points in (3). In Section 4, we defined a distance d(D, E) in (5) to measure similarity of these 

two datasets and we showed the accuracy of the DP M-estimator highly depends on d(D, E). 

However, in reality, how the public dataset at hand is representative to the private dataset is a 

data-dependent question. As we saw in our investigation in the effect of rescaling in 

Subsection 3.2, when these two sets are not extremely different, our proposed procedure still 

could provide a DP M-estimation in high utility. If we consider a case that only males are in 

the public dataset while both males and females in the private dataset, then we can never 

infer the coefficient for the female in the private dataset from the public dataset. In this case 

under the concern of privacy, either we do not consider the gender effect or try to find 

another more related public dataset. Our work intends to give a general framework to select 

the optimal public subset to provide another option besides directly learning from the public 

dataset and only from the private dataset itself, as we explained in the workflow in Figure 1.

From a statistical point of view, to estimate the private density from public data points, we 

took the weighted empirical probabilities in (3). As we mentioned in the Section 3, one can 

further develop other density estimation methods in the context of DP to get a better 

convergence rate.

From the privacy concerns, more work can be done in effectively distribute the privacy 

parameters (ε1, ε2, ε3) in Algorithm 2. Since the privacy parameter controls of the utility of 

the randomized mechanism, the question in how to optimize the distribution of the privacy 

parameter should be further investigated. For example, instead of releasing the entire 

performance curve (the red curve in our simulation studies) to pick the optimal sample size, 

one can apply other DP mechanism such as exponential mechanism to improve the utility.

In conclusion, we proposed Algorithm 1–2 as a strategy to select an optimal public subset to 

get DP M-estimator in high utility, which serves as a guideline to real world applications.
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Fig. 1. 
Workflow of the proposed framework. (1) A trusted third party (TTP) can access both public 

and private datasets. (2) A data user would like to infer an M-estimator over a private 

dataset. (3)The TTP compares the results from (i) directly learning from the public dataset 

(ii) applying our DP selection procedure to learn from an optimal subset of the public dataset 

(iii) in low dimension, applying the perturbed histogram method only learning from the 

private dataset. (4) The TTP reports the user the best model under DP to learn the private 

information.
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Fig. 2. 
Scatter plots of two covariates in the original private dataset D (upper left), original public 

dataset E (upper right) and rescaled private dates D̃ (lower left), rescaled public dates Ẽ 
(lower right). The dots in blue indicate response 0 and in red indicate response 1.
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Fig. 3. 
Scatter plots of two covariates in the rescaled public dataset Ẽ. The red dots indicates the 

points whose weights calculated from (D̃, Ẽ) have at most 2 counts difference (in the left 

panel), or greater than 2 counts difference (in the right panel), compared to the 

corresponding weights calculated from (D, E).
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Fig. 4. 
d(D̃, Ẽ(i)) decreases with the sample size of Ẽ(i) under dimension p = 2, 100, where Ẽ(i) is the 

scaled subset of Ẽ with sorted points defined in Algorithm 2 and the sample sizes of {Ẽ(i)} 

start from 100 to nE with increment 500. In this simulation, D is a set of 104 points 

independently generated from MVN((0, …, 0)⊤, Ip×p) and E is a set of 104 points 

independently generated from MVN((0, …, 0)⊤, 0.5Ip×p), where Ip×p is the identity matrix.
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Fig. 5. 
Prediction error varies with the released points from the public dataset under privacy 

parameter (ε1, ε2, ε3) = (0.8ε, 0.2ε, ε) where ε = 0.5, 1, 3 from replicating 10 times on the 

whole procedure. The black dotted curve is the prediction error from the M-estimator from 

the hybrid datasets without adding noise. The red dotted curve is from the M-estimator from 

the hybrid datasets under DP. The blue line is from the public dataset. The pink line is from 

the perturbed private dataset.
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Fig. 6. 
Prediction error varies with the released points from the public dataset under privacy 

parameter (ε1, ε2, ε3) = (0.8ε, 0.2ε, ε) where ε = 0.5, 1, 3 from replicating 10 times on the 

whole procedure.
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Fig. 7. 
Sheffield dataset is public while Edinburgh is private. The sum privacy parameter is 3ε, 

where ε = (1, 3, 10). The black dotted curve is the prediction error from the M-estimator 

based on hybrid datasets without adding noise to the weights. The red dotted curve is from 

M-estimator based on the hybrid datasets under DP. The blue dashed line is from the one 

based on public dataset. The study is only under one repeat.
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Fig. 8. 
Edinburgh dataset is public while Sheffield is private. The sum privacy parameter is 3ε, 

where ε = (1, 3, 10).
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