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Bidding Machine: Learning to Bid for Directly
Optimizing Profits in Display Advertising

Kan Ren, Weinan Zhang, Ke Chang, Yifei Rong, Yong Yu, and Jun Wang

Abstract—Real-time bidding (RTB) based display advertising has become one of the key technological advances in computational
advertising. RTB enables advertisers to buy individual ad impressions via an auction in real-time and facilitates the evaluation and the
bidding of individual impressions across multiple advertisers. In RTB, the advertisers face three main challenges when optimizing their
bidding strategies, namely (i) estimating the utility (e.g., conversions, clicks) of the ad impression, (ii) forecasting the market value (thus
the cost) of the given ad impression, and (iii) deciding the optimal bid for the given auction based on the first two. Previous solutions
assume the first two are solved before addressing the bid optimization problem. However, these challenges are strongly correlated and
dealing with any individual problem independently may not be globally optimal. In this paper, we propose Bidding Machine, a
comprehensive learning to bid framework, which consists of three optimizers dealing with each challenge above, and as a whole,
jointly optimizes these three parts. We show that such a joint optimization would largely increase the campaign effectiveness and the
profit. From the learning perspective, we show that the bidding machine can be updated smoothly with both offline periodical batch or
online sequential training schemes. Our extensive offline empirical study and online A/B testing verify the high effectiveness of the

proposed bidding machine.

Index Terms—Real-Time Bidding, User Response Prediction, Bid Landscape Forecasting, Bidding Strategy Optimization

1 INTRODUCTION

MERGING in 2009 [28] and popularized since 2011 [12],

real-time bidding (RTB) based display advertising has
become a major paradigm in computational advertising
for both technique and business perspectives. With ad ex-
changes as intermediaries, RTB enables publishers to sell the
individual ad impressions via hosting a real-time auction
and facilitates advertisers to evaluate each auctioned ad
impression and bid for it.

In RTB display advertising, as is shown is Figure 1,
when a user visits one publisher’s site e.g., a web page or
a mobile app page, (0) a bid request for the corresponding
ad display opportunity, along with its information about
the underlying user, the domain context and the auction
information, (1) is broadcast to hundreds or thousands of
advertisers for bid via an ad exchange [39]. With the help
of computer algorithms on demand-side platforms (DSPs),
each advertiser estimates the potential utility and the pos-
sible cost for the received bid request and (2) makes the
final decision of the bid price in this real-time auction. Then
the ad exchange will (3) determine that the winner, who
proposed the highest bid price, could show the ad and pay
for the second highest price which is called as the market
price [3] (in second-price auction). The whole loop will
be finished in less than 100 ms. The winning advertiser
(4) would send the ad creative to the user and (5) receive
the user response (e.g., click, conversion) later. For each
day, such a request-bidding-feedback loop occurs billions
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of times for an ordinary RTB platform, which makes RTB be
a true battlefield of big data. For example, YOYI DSP, which
has deployed our proposed algorithms in this paper and
hosted the online A/B testing, handles more than 10 billion
ad transactions daily in 2017.

In the view of an advertiser, the goal is to spend the
campaign budget on the most effective ad opportunities to
achieve high profits, which means the ad volume with more
positive user responses, e.g., clicks or conversions, yet non-
expensive cost. At each time, in order to calculate the bid,
the advertiser first predicts the probability of the positive
user response of that ad display, i.e., how likely the user
is going to click or convert, which is normally measured
by the predicted click-through rate (CTR) or conversion
rate (CVR). Generally, the advertisrs should bid higher and
allocate more budget on the ad inventory with higher CTR
or CVR [30]. For most advertisers, the cost, which means the
market price of that bid opportunity [3], should be estimated
to better determine the bid price.

As we may find in the above description, for each ad-
vertiser, there are three main challenges within the bidding
procedure. The first is to estimate the utility, i.e., CIR or
CVR of the ad impression, with the consideration of the
user, ad, publisher and contextual information. CTR or CVR
qualifies the expected probability of click or conversion
for the advertiser w.r.t. the given ad request. The second
challenge is to forecast the probably cost for showing the ad,
which is the amount paid for the impression. Note that the
true cost is the market price rather than the bid price for
the winner of the auction. The last but the most important
problem is to adopt a proper bidding strategy to win as many
effective (high utility, yet low cost) impressions as possible
to maximize the profits of the advertiser with the campaign
budget constraint.
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Typically, the bid optimization is done in the following
sequential basis. First, the CTR estimation’ is formulated as
a binary regression problem, which can be solved by ma-
chine learning models such as logistic regressions [25], [35],
Bayesian probit regression [13], gradient boosting regression
trees [14], factorization machines [29], etc. The common
objective in this stage is to make the estimation as accurate
as possible by, for instance, minimizing the cross entropy
error between the predicted CTR and ground truth user
responses. Second, for cost estimation, literatures [9], [41]
formulate the problem as a prediction task to forecast the
market price distribution, which is named as bid landscape
forecasting, or directly estimate the winning price of the
given bid request. Third, based on the estimated CTR and
cost of the ad display opportunity, we will seek for the
optimal bidding function along with other considerations
including the campaign budget and the auction volume etc.
[19], [22], [30], [47], [48].

However, such sequential optimization is indeed not
optimal. According to the Bayesian decision theory [4], the
learning of the user response model and bid landscape
model should be informed by the final bidding utility. As
is studied in the literature [33], the required accuracy of the
CTR prediction would not be the same throughout the range
of the prediction [0, 1] as there is a cost (negative utility) for
the advertiser to win an impression if no click, but no cost
(zero utility) for losing one. The value of clicks also varies
across campaigns; and it would be good if the CTR learning
can tailor its efforts more toward those higher-valued cases
and make them better predicted. More importantly, the user
response prediction is indeed correlated with the second
price auction in RTB — if won an auction, the advertiser
pays the market price and then obtain the payoff from the
user conversions triggered by the ad.

Therefore, the market price and the competition have a
significant impact on the campaign performance. On one
hand, if the performed bid is in a highly competitive situa-
tion, it is of low confidence to predict whether the advertiser
will win the ad auction or not; thus the optimization of
the CTR prediction in such case should be more focused
and fine-tuned than that in the less competitive case. On
the other hand, the bidding strategy also influences the
utility estimation and cost prediction modules. In [22], the
authors proved the advantage for bidding effectiveness of
combining the two optimization models for both CTR and
the winning price under budget constraints. As a conse-
quence, the natural idea is to solve the three main challenges
altogether and derive a comprehensive methodology to
jointly optimize the bidding performance.

In this paper, we present a novel optimization frame-
work, named as Bidding Machine (BM) as shown in Fig-
ure 1, which considers the three challenges as a whole and
directly pushes the limit of the campaign profit by jointly
optimizing the three components: user response prediction,
bid landscape forecasting and bid optimization. In bidding
machine, we adopt the utility estimation model and the cost
prediction model while utilizing a comprehensive utility op-
timization objective function. Moreover, we take the budget

1. In this paper, we focus on the CTR estimation, while the CVR
estimation can be done by following the same token.
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Fig. 1: The joint learning framework of bidding machine.

into consideration and prove the optimal bidding strategy
under the second price auction. Whereafter a functional
optimization method is used to derive the optimal bidding
function with budget constraints. The overall methodology
works as a learning to bid model, which consumes recent
historical bidding logs and (i) updates the estimation mod-
els and (ii) optimizes the corresponding bidding strategy;
then (iii) performs the bidding phase online and observes
the real-world feedback. After that, it returns to the first step
and repeats the update-optimize-perform loop. The procedure
circulates and acts as a machine interacting with the market
while trying to maximize the obtained profits.

Note that our methodology tries to resolve the three
main challengs in a comprehensive optimization framework
and directly optimize the profit for the advertiser. To our
best knowledge, it is the first work that takes these three
key components of RTB altogether to optimize. In our recent
work [33], we combined utility estimation and bidding
strategy in a whole while adopting naive counting-based
method for market price modeling, which is not optimal
considering the expected cost since the market price is
flexible in different contexts. The authors in [22] proposed a
method which combines CTR estimation and winning price
prediction (as will be compared in the experiment). But the
method still regards the two aspects as separate problems
and does not put them into a joint optimization framework.

To sum up, the contributions of this paper are three-
fold: (i) We point out the three main challenges in RTB,
namely user response prediction, bid landscape forecasting
and bid optimization, are indeed highly correlated but are
commonly tackled separately in previous work. (ii) We
propose bidding machine, a comprehensive framework to
jointly optimize these three components to directly push
the limit of the campaign profit. (iii) Extensive empirical
study demonstrates that BM vastly improves the bidding
performance against the state-of-the-art baselines, in both
offline experiments on two public datasets and online A/B
testing on a commercial RTB platform.
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In the rest of our paper, we first discuss related lit-
eratures in Sec. 2 and then present the bidding machine
framework. Specifically, we formulate the problem in Sec. 3,
and then present our CTR estimation model in Sec. 4 and
cost prediction model in Sec. 5. After that, we solve the
functional optimization problem for the optimal bidding
strategy in Sec. 6. Due to page limit, the online learning
version is presented in Appendix A, also with the proof of
the optimal bidding function under the second-price auction
described in Appendix B. We also make a game theoretic
analysis of multiple bidders with the same optimal strategy
in Appendix C. We present the experiments and discuss the
detailed results in Sec. 7. Finally we conclude this paper and
discuss the future work in Sec. 8.

2 RELATED WORK

In this section, we discuss the related literatures about RTB
techniques, specifically the three key components of RTB,
as pointed out in Sec. 1, namely utility estimation, cost
prediction and bidding strategy optimization.

Utility: User Response Prediction. The first challenge is
the utility estimation, which is mostly about user response
prediction, such as the click-through rate (CTR) estimation
or the conversion rate (CVR) estimation. And it plays a key
role in real-time display advertising [19], [25], [38]. The re-
sponse prediction is a probability estimation task [27] which
models the interest of users in the content of publishers
or the ads, and is used to derive the budget allocation
of the advertisers [35]. Typically, the response prediction
problem is formulated as a binary regression problem with
prediction likelihood as the training objective [1], [13], [29],
[35]. From the methodology view, linear models such as
logistic regression [19] and non-linear models such as tree-
based model [14] and factorization machines [27], [29] are
commonly used. Other variants include Bayesian probit
regression [13], FTRL-trained factorization machine [36],
and neural network learning framework [31]. Normally,
area under ROC curve (AUC) and relative information gain
(RIG) are common evaluation metrics for CTR prediction
accuracy [13]. Recently, the authors in [7], [37] pointed out
that such metrics may not be good enough for evaluating
CTR predictor in RTB based advertising because of the sub-
sequent bidding and auctions. The authors in [37] proposed
a cost-sensitive objective function to tackle the cost issue
in user response prediction learning. However, it may be
influenced by the suboptimal cost estimation module. In
this part of the paper, considering utility estimation, we use
a logistic regression as a working example and go one step
further over [7] to reformulate the CTR estimation learning
by directly optimizing campaign performance (profit).
Cost: Bid Landscape Forecasting. For cost estimation,
we refer it to bid landscape forecasting, which aims at
predicting the distribution of market price for a type of ad
inventory [9]. The advertisers use it to calculate the winning
rate given a bid and help decide the final bid price. Several
winning function forms were hypothesized in [20], [48] to
directly induce the optimal bidding functions. A campaign-
level forecasting system with tree models was presented
in [9]. The authors in [17] conducted an error handling
methodology to improve the efficiency and reliability of

the bid landscape forecasting system. As advertisers only
know the statistics (market price, user clicks etc.) from
their winning impressions, the authors in [41] proposed a
solution to handle such data censorship in market price
prediction. Later we will show that market price distribution
indeed plays an essential role in both CTR model learning
and bidding strategy optimization for campaign profit opti-
mization, which has never been formally discussed.
Strategy: Bid Optimization. With the estimated utility of
CTR/CVR, the advertisers would be able to assess the
value of the impression and perform a bid. The auction
theory [11] proves that truthful bidding, i.e., bidding the
action value times the action rate, is the optimal strategy
in the second price auction [19]. However, with budget and
auction volume constraints, the truthful bidding may not
be optimal [46]. The linear bidding strategy [30] is widely
used in industry, where the bid price is calculated via the
predicted CTR/CVR multiplied by a constant parameter
tuned according to the campaign budget and performance.
The authors in [8] proposed a bidding function with truthful
bidding value minus a tuned parameter. A lift-based bid-
ding strategy was recently proposed in [43] where the bid
price was determined by the user CVR lift after seeing the
displayed ad.

However, the impact of market price distribution, i.e.,
bid landscape, has not yet been studied in the above works,
and the final utility of the campaign is not considered
in the optimization objective, which may result in some
unfavorable statistics such as relatively high effective cost
per click (eCPC) and low return-on-investment ratio (ROI).
The authors in [20] combined the winning rate estimation
and the winning price prediction together and deployed
the estimation results in different bidding strategies towards
different business demands. The authors in [18] embedded
a budget smoothing component into a bid optimization
framework. In [47], [48], with the estimated CTR as input
of the bidding function, the authors leveraged functional
optimization to derive non-linear bidding functions. Our
work is different from the above works as we directly model
CTR learning and cost estimation as part of bid optimization
for campaign profit maximization. In [22] the authors com-
bined two predictors to decide the final bid price. However,
the proposed model may be suboptimal since they did not
take profit as the objective function and heuristically set the
bidding as a predicted winning price plus a constant value.

To sum up, all the existing learning frameworks in
RTB consider the user response prediction, bid landscape
forecasting and bid optimization as three separated parts,
while in our paper, we model them as a whole and perform
a novel joint optimization.

3 PROBLEM DEFINITION OF BIDDING MACHINE

We propose a unified learning framework, named as Bidding
Machine, which integrates both utility and cost estimation
and puts them back into bid optimization, to maximize the
overall profit for advertisers.

Recall that in RTB scenario, on one side, the user visiting
an online page may trigger an auction, in real time, for each
ad slot on the web page. On the other side, the advertiser
receives a bid request from the ad exchange [45], along with
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the information about user, context on web page and other
auction features. Then the bidding engine of DSP decides,
on behalf of a campaign, whether to participate the auction
and how much to bid on this impression opportunity.

As is discussed in many literatures [8], [22], [30], [48],
the final bid price is influenced by many factors including
estimated utility (i.e., user response) and cost (i.e., mar-
ket price). And bid optimization should also consider the
budget pacing [2] to control the cost to optimize the final
profit. However, almost all the related work bases bidding
decision on the estimated utility and the predicted cost,
and treats these three parts desperately. [33] embedded
user response prediction, i.e., utility estimation, into the bid
optimization and made the prediction aware of the market
information and cost sensitivity. [48] took budget constraint,
winning probability and cost of the particular ad impression
altogether and proposed a functional bidding optimization
to maximize the target KPIs, e.g., clicks.

Our work goes steps further. We propose a unified
optimization framework on the integral utility minus cost
objective, which is the profit gained by the advertiser. Our
goal is to learn the user response prediction model with
market competition modeling, and optimize the final bid-
ding strategy considering the preset budget constraints. We
will first formulate the unified learning problem and then
discuss our optimization solutions. Note that the derived
learning formulations of each component benefit from the
update of the other two parts. Thus the whole optimization
framework is a joint learning procedure, where the user re-
sponse learning, market competition modeling and bidding
strategy optimization run as a circulation mechanism.

3.1 Problem Definition

Typically, a bid request contains various information of an
ad display opportunity, including the information of the un-
derlying user, location, time, browser and other contextual
information about the web page. Along with the features
extracted from the campaign itself, we construct the high-
dimensional feature vector for the bid request, which is
denoted as x. We also use pz(x) to denote the probability
distribution of the input feature vector « that matches the
campaign target rules.

Without loss of generality, we take click as user re-
sponse and the CTR estimation is denoted as a function
p(y = 1llg) = fo(xr) mapping from feature = to the
probability of a click, where y € {0, 1} is a binary variable
indicating whether a user click occurs (1) or not (0). We
define the true value of an occurring click as v which is
preset by the advertiser.

Next, we define the context where utility estimation is
situated. A lot of previous work has specified the bidding
strategy as a function b(fo(x)) mapping from the predicted
CTR (or other estimated KPIs) fg(z) to the bid price [19],
[30], [48]. Essentially, the mapping follows a sequential
dependency assumption  — fg(x) — b proposed by [47],
[48]. In this paper, we follow the same formulation. For
simplicity, we use b(-) to represent the bidding function, but
also occasionally use b to directly represent the bid price.

Once the DSP sends out the bid b, the ad exchange hosts
a second-price auction [15] and decides who is going to

TABLE 1: Notations and descriptions

Notation | Description
v The pre-defined value of positive user response.
J The true label of user response.
x The bid request represented by its features.
pe () The probabilistic density function of x.
z The market price.
pz(2) The probabilistic density function of z.
o The weight of CTR estimation function.
fo(x) The CTR estimation function to learn.
r The predicted CTR.
b(fe(x)) | The bid price determined by the estimated CTR,
b for short.
D The training set.
R(+) The utility function.
we (b) The winning probability given bid price b.
c(b) The expected cost given bid price b if winning.

win the auction. The probability of winning an auction is
influenced by the bid price b and the stochastic market price
z with an underlying p.d.f. p,(z); we use w¢(b) to denote
the probability of winning as:

we(b) :/0 p.(2)dz, (1)

which is the probability that the bid b is higher than the
market price z [15] and ¢ is the parameter of our winning
probablity model. The details of the winning function will
be discussed later.

If the bid wins the auction, the advertiser pays the cost,
which is the market price z. We denote the expected cost in
the second price auction as

- fob 2p.(2)dz

fob p.(2)dz
which is essentially the expected market price when win-
ning the auction [15]. Once we have defined the bidding
function b, the true value of a click v, and the winning rate
w, the expected cost ¢, we are ready to define a general
form of the utility function as Rg(x, y; b, v, ¢, w) for a given
(z,y) 2-tuple in the training data (all the received historical
impressions).

Our task is to build a joint optimization framework
modeling user response, market competition and bidding
strategy, to maximize the overall profit for the advertiser,
which is formulated as

(4),6",6") = axgmasx | Re,sb v w)pa(@)da, @)

Following [7], [33], the overall revenue R(:) can be
defined as utility function below w.rt. the corresponding
auction sample (z, y):

R(b,6,¢) = / [y — (b fo(2))]we (b(fo(@)))ps(z)dz
= Y [oy - c(b(fo (@) wa (b fo(@))).

(z,y)€D

c(b) 2)

4)

The summary of our notations are gathered in Table

1. In the next three sections, we will discuss the detailed

optimization of R(b,0,¢) wrt. the CTR estimator fp()

(Sec. 4), the winning function we(-) (Sec. 5) and the bidding
function b(-) (Sec. 6).
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4 UTILITY: USER RESPONSE LEARNING

In this section, we formally describe the utility estimation
task, i.e., user response learning, and propose two solutions
for this problem. Recall that, in the training set defined as
D, each sample is represented as a 2-tuple as (x, y), where x
denotes the feature vector of the bid request, and y denotes
the indicator whether user action (click) occurs.

4.1 Gradient for Expected Utility

To solve Eq. (3), utility function Rg(-) can be naturally
defined as the expected direct profit from the campaign:

R (w,y) = [vy — c(b(fo(x)))] - w(b(fo(x))),  (5)

where to simplify our notation, we drop the dependency of
b, v, c,w for REU(:/B, y). The expectation is w.r.t. whether win-
ning or not, where no winning has zero utility. Recall that,
in the training set defined as D, each sample is represented
as a 2-tuple as (z, y), where x denotes the feature vector of
the bid request, and y denotes the indicator whether user
action (click) occurs. The overall expected direct profit [7] of
all the auctions can be calculated by replacing Egs. (1) and
(2) into Eq. (5) as

> RgY(z,y)

(z,y)€D
fob(fe(m)) z-p.(2)dz b(fo(z))
= 2 |w- ) : / p2(2)dz
(z,y)€D Jo px(2)dz 0
b(fe(x))
- Z / (vy — 2) - p-(2)dz. 6)
(wﬁl/)eD 0

Taking Eq. (6) into Eq. (3) with a regularization term, we
have

A
U _— EU AMigl2
6tY = arg min E Rg (x,y) + 5 16112 @)
(z,y)€eD

b(fo (=) A
= argmgn - Z/ (vy — 2) - p.(2)dz + §6T9,
0
x

where the optimal value of 6 is obtained by taking a
gradient descent algorithm. The gradient of RV (z,y) with
regard to 6 is calculated as

6 R]gU (IE, y) bid error market sensitivity
—ag = (wy—b(fo(@)) p:(b(fe()))- "
(fo()) Do ()
Ofe(x) 06

and we update for each data instance as 6 <+ 6 —
o REU
n (—(meaiff’y) + /\9) with above chain rule where 7 is the
learning rate.
We take logistic regression as our CTR prediction func-
tion, i.e.,

1
fol@) = 0(072) = T | ©)

and get afgié(f) = 0(0Tz)(1 — 0(87x))z. After learning,
we denote the predicted CIR as r = fg(x) to simplify
the subsequent derivation. We will discuss the specific for-
mulation and the corresponding optimization method for

bidding function b(r) w.r.t. the predicted CIR r.

o
o
=1
-

3008 0.016

=)

200+ 1 0.0141 % 1

o
o
e
~
|
-

100+

\\ « | == Market Sensitivity
V| — Negative Response|
- Positive Response

|
N}

0 —1 &

Bid Error

—100-

~2000 il 1
_..-="""| — Negative Response|
—300}: " -+~ Positive Response |

0 50 100 150 200 250 300 ] 50
Bid Price

ar
°
>
S
S
I
o
Bid Error x Market Sensitivity

|
&

I
'

[
[ N
1
!

100 150 200 250 300°
Bid Price

Fig. 2: The illustration of the impact from the bid and market

price of Expected Utility (EU); click value v = 300.

Discussion. Eq. (8) provides a novel gradient update, taking
into account both the utility and the cost of a bidding
decision (the bid error term) as well as the impact from the
market price distribution (the market sensitivity term). They
act as two additional re-weighting functions influencing a
conventional gradient update, which is formulated by the
remaining terms in the equation. We illustrate their impact
in Figure 2. The left subfigure shows the weight from bid
error against bid price with different user responses (y = 1
or y = 0). We see that the update of the CTR model aims
to correct a bid towards the true value vy from a training
instance, i.e., an optimal model (parameter) would generate
a bid close to v for a positive instance, while close to zero
for a negative instance. The right subfigure plots the weight
adjustment from the market sensitivity term (y-axis left) and
the combined weight bid error x market sensitivity (y-axis
right). We observe that the market sensitivity term re-weights
the bid error by checking the fitness to the market price
distribution; this makes the gradient focused more on fixing
the errors (if any) when the bid is close to the market price.
This is intuitively correct because when the bid is close to the
market price, the competition is high and a small error (win
a case that is no click and vice versa) would make a huge
difference in terms of the cost and reward. Specifically, for
the negative response (y = 0), the combined weight bp, (b)
stays positive in order to constantly lower the bid via CTR
learning, but its peak location is slightly higher than the
mode of market price. For the positive response (y = 1),
the combining weight (b — v)p,(b) in —% is negative
to push the bid higher to v. Note that the bid is restricted
in [0,v] as bidding higher than v is of no advantage than
bidding v when optimizing profit.

4.2 Gradient for Risk-Return

Besides the expected utility (EU), we also propose a risk-
return (RR) model to balance the risk and return of a bid
decision as below:

By = (2~ "I a(fo(a)).

z v— 2z
< ——

return risk

(10)

where we define that when y = 1, the winning utility is g,
which is the ratio between the return and the cost of this
transaction; when y = 0, the winning utility becomes the
penalty for taking risk =, which is defined as the ratio
between the lost (—v) and the gain if winning (v — 2). Note
that v is always higher than z as v > b > z. The penalty is
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very high when bidding for a very low margin (low v — 2)
case. Thus the new optimization objective function is

) A
ORR:argmem - Z RI;R(CE,ZJ)JF§||9”§

(®,y)eD
b(fo()) 1
=argmin — / (% — u)pz(z)dz
6 0 z v—z
(®,y)eD
A
+ 59To9, (11)

which leads to the gradient of R~ (x, y) w.r.t. 6 as

bid error L
market sensitivity

8R§R(m,y) _ vy _ v(l 7y) /—/T
00 B (b(fe(ag)) v—b(fg(a:))) p-(b(fo(x)))
9b(fo(x)) 9fe(x)
Tofolx) 06 (12)

Discussion. To understand the above gradient, we plot the
bid error, market sensitivity and their combined weight in Fig-
ure 3. The RR model is different from the previous EU model
in that, the bid error turns to return when the response is
positive, and becomes risk when meets a negative response.
If y = 0 and bid price is high, or if ¥ = 1 and bid price is
low, the bid error is quite significant to avoid the happening
of such cases.

As is shown in both Egs. (8) and (12), the market price
distribution plays an important role in the optimization:
with the determined bidding function and CTR estimation
function, the gradient is weighted by the probabilistic den-
sity function (p.d.f.) of market price, denoted as p, (z).

4.3 Model Realization

Solving the proposed learning objectives (7) and (11) relies
on the realization of the bidding function b(fe(x)), the
market price distribution p,(z) and the CTR estimation
function itself fg(x). In this section, we will discuss the
solutions from the proposed two training objectives given
some specific implementations of b(fg(x)), p.(2) and fo(x).

Without loss of generality, for the CTR estimation model,
we adopt the widely used logistic regression for fg(x) as in
Eq. (9).

For the bidding strategy, we employ a widely used linear
bidding function w.r.t. the predicted CTR [30] with a scaling
parameter p

b(fe(x)) =p-v- fo(x). (13)

Taking Egs. (9) and (13) into (8) and (12), respectively, we
derive our final gradient of the proposed EU utility:

OREY
% =pv*(y — po(07x)) - p.(b(fo(x)))-  (14)
o(0Tx)(1—0o(6Tx))x ,
and that of the RR utility:
90 _pv(PU(eTﬂ?) S 1- pU(GTw)) (15)

p:(b(fo(x))) - 0 (8" x)(1 — o (67 ) ,

where the bidding function parameter p acts as a calibration
term in bid correction.

Note that, various bid landscape models can be uti-
lized to model p.(z), such as the parametric log-normal
distribution [9] and Gamma distribution [7]. In this paper,
while our model is flexible with various landscape models,
we first adopt a non-parametric p,(z) which is directly
obtained from each campaign’s winning price data [3], and
also a parametric functional model p,(z, z; ¢) which will be
discussed later.

4.4 Links to Previous Work

It is of great interest to compare our profit-optimized solu-
tions with the existing ones that optimize the fitness of the
user response data. A logistic regression could be trained
with squared error (SE) loss to fit user response data:

£ (0) = 3y —o(072)?,
0L @) (5(072) — y)o(07w)(1 ~ o(07w))2. (6)

More commonly, in a binary output case, a logistic
regression can be also trained with cross entropy (CE) loss:

Lg (x,y) = —ylogo(6"x) — (1 —y)log(1 — o (8 x)),
OLG" (z,y)
0

We see that our solutions in Eq. (14) and Eq. (15) extend
the original gradients in Eq. (16) and Eq. (17) by (i) replacing
the user response errors with the bid errors, and (ii) adding
the consideration from the market price and the competi-
tion. Under the assumption of (i) truthful bidding function
[19], [30] and (ii) uniform market price distribution as

b(fe(z)) =v- fo(x),
pz(z) =1 s

= (0(6"z) —y)z. (17)

(18)
(19)

our proposed learning models which directly optimize
(maximize) the profit-related utility are equivalent to the
standard logistic regression with (minimizing) squared error
loss or cross entropy loss:

W =" (0(0"2) —y) - 0(0T2)(1 ~ 0(8"2))z ,
—ORER(x,y)
gia =vl(c(8Tx) —y)x .

(20)
Table 2 summarizes and provides a straightforward com-
parison among various model settings with the EU and RR
loss. But note that, in our settings, we adopt more reasonable
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TABLE 2: The comparison of the model gradients (without regularization). LR: logistic regression, TB: truthful bidding, LB:
linear bidding, UM: uniform market price distribution. LR and LR+TB+UM are equivalent (LR+TB reduces to the baseline

LR when assuming the uniform market price distribution).

Model Setting | EU (SE) Gradient RR (CE) Gradient
R oLy (w,y) _ T T T OLY (m,y) _ T
LR (baseline) —Ce— =(0(0"x) —y) - 0(0 x)(1 —-0(6" x))x —Cg— = (0(6" x) —y)z
RN (x, < RN (1
LR+TB o) 2067 2) — y) - 2 (b(fo(x)) - 0(0T2)(1 — 00Tz | - LTV = y(0(6T2) —y) - p (b(fo(x))) - @
EU 2 RR @
LR+TB+UM —w =0%(c(8Tx) —y) - 0(8Tx)(1 — (87 x))x - w =vl(c(8Tx) — y)x
ORY (@,y) ORG (z,y) 1— |
LR+LB - e = v (g0 (07 @) — y)T pz(b(fe(“’)T)) % = ¢w( = GeteTay T uw(gTw%) = (0(fo(x)))
o0 x)(1—0c(0" x))x 0(072)(1 — o(87x))x
1.0 Winning probability w, (b) _ 0.01£robability dense function p.() ~ Note that the p.d.f. of the market price has a long-tail
0al R 0012} T e Wi property, which is shown in our discussion of Sec. 7.6, so we
> > 0-010% ~ togTaile=7 [ propose three formulations for the bid landscape function
506 5 0.008 for market price modeling.
S 0.4l § 0.006f -7
& = Linear a=300 % 0.004}f X
0.2 . Quadratic a =300 H o 002? Tl __ coEITTTTE i
0.0k +_ Long Taila 15 0,000 T, 9.1 Linear Form
"0 50 100 150 200 250 300 770 50 100 150 200 250 300

Bid Price Market Price

Fig. 4: An illustration of landscapes with different a values
, the forms of p,(z) reflecting the analysis results in Sec. 7.6

bidding functions and market price distributions, to achieve
substantial improvement against the traditional regression
loss methods.

5 CosT: MARKET COMPETITION MODELING

From the above derivation, the market price distribution
p~(z) has great contributions to the utility estimation com-
ponent. Moreover, as is mentioned in Sec. 4.3, the landscape
function p,(z) has various realizations. In this section, we
propose a machine learning methodology to model the
market competition, which is to learn the market price dis-
tribution function p,(z,z; ¢) with the specified feature x.
Besides, our learning objective is the profit of the advertiser,
rather than merely the likelihood between the true distribu-
tion and the learned model, though our model has similar
prediction accuracy of distribution modeling as shown in
the experiments in Appendix E.

We take the objective function of expected utility as
Eq. (59) and the gradient of R w.r.t. ¢ can be derived as

oo = a5l | b (a)ie - / apala)ds] .

Next, we will discuss several formulations of the market
price distribution p,(z, x; ¢).

The market price z is a positive variable and its p.d.f.
is p,(2),z € [0,+00). Here we model p,(z,x; ¢) and nat-
urally get the winning probability w, which describes the
winning probability of proposing b under the market price
assumption of p,(z) as in Eq. (1). Our another goal is to find
the proper formulation for winning probability function w,
and the formulated function should satisfy two properties:

21)

b—0", w—0;

(22)
b— 400, w—1.

First, we base on the assumption of the uniform market
price distribution ranging in [0, (x; ¢)] where « is the max-
imal value of the market price, and we take a(x; ¢) = e’
for each bid request feature x, where the exponential func-
tion is used to make sure the upperbound is positive. Thus
the corresponding winning probability for the proposed bid
price b is

b b
wb7w7¢ = :Tab€07aw;¢ ’
0.559)= gy = e PEDeEL
(2,2 ) = ow(z,z;¢) 1
p\z, x; - 82 - €¢Tm .
Thus the gradient g—g‘ derived from Eq. (21) is that
OR 0 b b
e %[vy/o pz(z)dz—/o zpz(z)dz} o

= (g—vyb)ed’%.

As is shown in Figure 4, the winning probability function
w,(b) is proportional to the bid price and the maximal
market price is o, whose value varies for different = and
is learned by our parametric model.

5.2 Quadratic Form

We keep modeling the maximal market price as a(x; @),
thatis z € [0, a(x; ¢)], and take a quadratic formulation for
winning probability function w (b). Then

b b
wbaid) = s (2 ) e a0,
a .
emio) = MGE = e @

since winning probability has the properties that w(b = 0) =
0,w(b = o) = 1, and is monotonously increasing over [0, o,
as in illustrated in Figure 4.
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Thus the gradient g—g derived from Eq. (21) is

g—g = % [vy /Obpz(z)dz — /Ob zpz(z)dz]

= [vy (a(;i);)g - a(aibdg)?) h (3a(f;3¢)3 - 04(322@2)]
do(z; ¢)

¢

(26)
And a(x; ¢) is a functional mapping from « to the maximal
market price for each bid request. We also take a regression
model to fit the mapping function as that in Sec. 5.1 whose
parameter is ¢.

5.3 Long Tail Form

Some simple winning probability function [48] can be de-
rived from Eq. (21) as

b
bx,p) = ——— 27
we also take a(x;¢) = ¢®'® as to learn the optimal
parameter « value for each feature x.
The market price distribution p.(z, x; ¢) is
ow(z, x; @) e?'®
2%, L5 = = . 28
Thus we can derive the gradient of U w.r.t. ¢ as
OR 0 b b
oy = %[vy/o p.(z)dz 7/0 zpz(z)dz}
0 wyb o [t
= - — 2 d
b b+ edTw ad’/ozp(Z)Z
T T
vybe® ® 0 e ® o7
S S f (| ® 4 p
(b+e?'™)? "~ O¢ [(e‘f’” T TR T D)
—(¢Tz + 1))&“-‘”] 9)

As is also shown in Figure 4, the market price probability
p-(2) is monotonously decreasing while z is rising and has
long-tail property for large market prices. Thus the winning
probability function w,(b) approaches to 1 when the bid
price b gets larger.

5.4 Double Optimization for Campaign Performance

With the derived the optimal bid landscape forecasting
model for campaign profits, we can naturally propose a
double optimization algorithm. In Algorithm 1, both the
CTR estimation model and the bid landscape forecasting
model are learned, whose parameters are 8 and ¢, re-
spectively. Moreover, the bid landscape model derives the
corresponding winning probability function we(b) w.r.t. the
proposed bid price b.

Generally speaking, this double optimization aims to op-
timize the campaign profit in the view of the two prediction
model. Note that, in this procedure, the contribution made
by the bid landscape forecasting model ¢ lies in the learning
of the CTR estimation model 0 since the update of the CTR
model contains the landscape forecasting results p,(z, ; ¢)
as in Egs. (8) and (12).

Algorithm 1 Double Optimization for Campaign Profits

Input: Training set D
Output: winning function we(),
Optimal utility (CTR) estimation model fg()
1: Initially set parameter 8 and ¢
2: for num. of training rounds do
3:  for each sample (z,y) € D do
4 Calculate the gradient of 8 via Eq. (8)
5 Calculate the gradient of ¢ via Eq. (21)
6: Update parameters 6 and ¢ via gradient descent
7:  end for
8: end for

6 BID OPTIMIZATION

In this section, we will focus on bid optimization con-
sidering budget constraints. The rational is that, since the
CTR estimation and winning probability have been settled
down, the bidding function b(-) should be fine tuned for bid
optimization. The click maximization framework [48] only
takes the bid price as the upper bound of the cost, which is
suitable in the first-price auction rather than the commonly
used second-price auctions.

As is proved in Appendix B, the linear bidding function
b(u) w.r.t. the utility u is the optimal bidding strategy under
the second-price auction. Here we replace f(x) with r to
represent the predicted user response for simplicity, and
consider the linear bidding function

u(r) =or,
(30)
b(r) = yu(r) = yor .
Then we derive the optimal solution of parameter ~.
~yur
arg max T// (vr — 2)p.(2)dz - p(r)dr
v rJO (31)

Yyur
s.t. T// zp.(2)dz - p.(r)dr =B .
rJ0O
The Lagrangian L£(vy, \) =

T/,,/OW [vr — (A4 1)2] p.(2)dz - p.(r)dr + AB,  (32)

where ) is the Lagrangian multiplier. Taking the derivative
equal to zero, we get that

9L(y,A) _

oy AL

To solve ), we take the Lagrangian derivative w.r.t. to A
ant let it be zero, which obtains the constraint equation

T//1+A z2p.(2)dz pr(r)dr = B,
rJO

which normally has no analytic solution of A except for
some trivial implementation of p,(z) and p, (r). Fortunately,
the numeric solution of A is easy to find because the left
part of the equation monotonously decreases against A in
the bidding function.

From Eq. (34), we find that the distribution of the pre-
dicted CTR p,(r) directly influences the optimal value of A
in the bidding function Eq. (33). It means if we update the
CTR estimation model fg (), p, () will change accordingly,
which in turn leads to the change of optimal A [48].

=0 = v (33)

(34)
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Algorithm 2 Periodic Bidding Machine

Input: Training sets {D1, D3, ..., D,}, total budgets
{B1, Ba, ..., B,} for each training set D;
Output: Optimal utility (CTR) estimation model fg(),
winning function we() and bidding strategy b(-)
1: Initially set parameter 8 and ¢ and ~y
2: for each dataset D; in the training data do
3:  for each sample (x,y) € D; do
Calculate the gradient via Egs. (8) and (21)
Optimize the corresponding parameters as gradient
descent algorithm
6: end for
7. Update bidding function b(-) via solving Eq. (34)
8: end for

6.1 Bidding Machine Algorithm

Having specified the learning algorithms for utility op-
timization and market modeling, and gone through bid
optimization, we deliver our bidding machine algorithm
as in Algorithm 2, which is also illustrated in Figure 1.
After received a bid request, our bidding machine will put it
through the whole predicting process, i.e., (i) estimate utility
and (ii) predict the winning function, and then (iii) propose
the corresponding bid price according to the optimal bid-
ding strategy. Our predicted results will be aligned with the
ground truth, that is, if winning, the true user response to
supervise the utility estimation module, and the real market
price to correct the winning function learning. After that,
we will fine-tune our bidding strategy to gain the optimal
bidding function to maximize the advertiser’s total profit.
The offline training involves a joint optimization of the three
components by alternatively optimizing one and fixing the
other two.

We can find that the bidding machine algorithm will
digest the historical bidding information and update the
parameters as a whole. We have also derived the online
FTRL learning paradigm [25] for bidding machine frame-
work, which is included in Appendix A. For comparison
with our previous work [33], we implement SGD learning
paradigm in our offline experiments.

7 EXPERIMENTS

In this section, we first present the datasets and the ex-
periment settings with evaluation metrics. Second, we will
present the user response prediction model performance
and bid landscape forecasting results, and discuss some
reasons behind the improvement of our models. Third, we
will discuss the experimental results for the whole bidding
machine framework and finally the online A /B test results.

7.1 Datasets
We use two real-world datasets: iPinYou and YOYI, and
provide repeatable offline empirical studies?.

iPinYou is a leading DSP company in China. The iPinYou
dataset® was released to promote the research on real-
time bidding. The entire dataset contains 65M bid

2. Repeatable experiment code: https://goo.gl/uCmdLR.
3. iPinYou Dataset link: http://goo.gl/9r8DtM.

records including 20M impressions, 15K clicks and 16K
CNY expense on 9 different campaigns over 10 days in
2013. The auctions during the last 3 days are set as test
data while the rest as training data.

YOYI runs a major DSP focusing on multi-device display
advertising in China. YOYI dataset* contains 402M
impressions, 500K clicks and 428K CNY expense during
8 days in Jan. 2016. The first 7 days in the time sequence
are set as the training data while the last 1 day is as the
test data.

For the repeatable experiments, we focus on our study on

iPinYou dataset. Our algorithms are further evaluated over

the YOYI dataset for multi-device display advertising.

In real-time bidding, the training data contains much
fewer positive samples than negative ones. Thus similar to
[14], the negative down-sampling and the corresponding
calibration methods are adopted in the experiment. The
online A/B test is conducted on an operational real-time
bidding platform run by YOYI.

7.2 Experiment Setup

Experiment Flow. We take the original impression history
log as full volume bid request data. The data contain a
list of bid record triples with user response (click) label,
the corresponding market price and the request features.
We follow the previous work [48] for feature engineering
and the whole experiment flow, which is as follows: the
bid requests are received along with the time sequence,
which is the same as the procedure that history log was
generated. When received one request, our bid engine will
decide the bid price to participate the real-time bidding
auction. It wins if its bid price is higher than the market
price, otherwise loses. Note that, the overall objective is
to gain as much profit as possible, and the contribution
of the market modeling to the final goal is to help the
learning of CTR model which sequentially affects the final
bid price. Thus our user response prediction and market
modeling are both derived to a CTR estimation model in the
experimental measurement as results. Thus, on one hand,
we deploy different CTR estimation models to predict the
user response probability, which then can be compared
against each other. On the other hand, we also present
the experimental results of our bid landscape forecasting
model with other prediction models in Appendix E. After
bidding, the labeled clicks of the winning impressions will
act as user feedback information. It is worth mentioning that
this evaluation methodology works well for evaluating user
response prediction and bid optimization [3], [48] and has
been adopted in display advertising industry [21].

It is obvious that if our bid engine bids very high price
each time, the cost and profit will stay the same as the
original test log. Thus the budget constraints play a key role
in evaluation [48]. For CTR estimation and bid landscape
forecasting, we only report for the test results without
budget constraints since we care more about the prediction
performance. For the bidding strategy optimization, we
follow [47], [48] to run the evaluation test using 1/64, 1/32,
1/16,1/8,1/4, 1/2 of the original total cost respectively in
the test log as the budget constraints.

4. YOYI Dataset link: http://goo.gl/xaao4q.
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7.3 Evaluation Measures

Since our objective is to improve the profit of a performance
campaign and cut down the unnecessary cost in bidding,
in our evaluation we measure profit and ROI wur.t the
corresponding cost in bidding phase. When the bid engine
wins the auction, the corresponding market price will be
added into the total cost. While the user response (click) is
positive, we will take the campaign click value (preset by
the advertiser) of this action as return. In our settings, this
click value is set equal to eCPC in the campaign’s history
data log. While in the real-world scenario, the campaign
value is set by the advertiser. The profit is regarded as
the total gross profit (3 return — > cost) for the whole
test data auctions. ROI=profit/cost is another important
measurement reflecting the cost-effectiveness of a bidding
strategy. It can be regarded as a relatively orthogonal metric
to auction volume and bid cost.

We also take ad related metrics such as eCPC, cost per
thousand impressions (CPM), CTR, and the winning rate to
compare the bidding performance of the different prediction
models.

To measure the binary classification performance for
CTR estimation, we adopt commonly used AUC (area under
ROC curve) °> and RMSE (root mean squared error) to
measure the accuracy of a regression model. Moreover, for
bid landscape forecasting, we report the ANLP (averaged
negative log probability) [40] of the forecasting results over
the test dataset. The detailed experimental results of AUC,
RMSE and ANLP can be found in Appendix D and E. We
also present the significance test results in Appendix F.

7.4 Compared Settings

Test Settings without Budget Constraint. For the first part
of our experiment, the unlimited budget is tested. All the
CTR models are embedded with the same truthful bidding
function. We compare 4 models in this part:

CE - The logistic regression model [14], [25] is widely
used in many DSP platforms to make predictions of
user feedback. This model takes cross entropy as its
optimization objective and has the gradient as Eq. (17).

SE - This logistic regression model takes the squared error
loss as the objective function, which takes the gradient
update as Eq. (16).

EU - Our proposed expected utility model for CTR estima-
tion, which takes the gradient update as Eq. (14).

RR - Our proposed risk-return model for CTR estimation,
which takes the gradient update as Eq. (15).

BM(MKT) - Our proposed CTR estimation model with
market (MKT) modeling, which is described in the
binary optimization method of Algorithm 1.

Note that EU and RR models consider a statistical bid land-
scape function p, (z), while the last BM(MKT) model utilizes
a parametric market competition modeling p.(z, z; ¢).

Test Settings with Budget Constraint. In the second sce-
nario, we evaluate different bidding strategies under budget
constraints. Here we test 4 solutions:

5.1t has been shown that AUC is equal to the probability that a
regressor correctly ranks a randomly chosen positive example higher
than a randomly chosen negative one.

1e9 Learning curve (YOYI)

1e7 Learning curve (1458)
4.0F T I

12 3 4 5 6 7 8 9 0 5 10 15 20
Train Rounds Train Rounds

Fig. 5: Training on iPinYou (left) and YOYI (right).

TABLE 3: Direct campaign profit over baselines.

Profit (x107) ROI
iPinYou SE CE SE CE
1458 3.2 3.6 42 6.6
2259 -0.32 0.40 | -0.080 0.18
2261 0.29 0.63 026 040
2821 0.11 0.08 021 0.023
2997 0.11 0.14 042 071
3358 1.76 24 54 5.2
3386 0.51 1.6 0.16 12
3427 0.33 2.9 011 34
3476 0.65 3.1 0.36 35
Average 0.74 1.7 12 2.3
YOYI [ 665.6  669.5 | 1.8 1.9

CELIN - As in [30], [48], the bid value is linearly propor-
tional to the predicted CTR. We implement a logistic
regression model with a linear bidding strategy, which
is widely used in lots of production environment.

ORTB - Optimal Real-time Bidding strategy [48] which
applies functional optimization for bidding function.

PRUD - A Prudent bidder [22] which combines CTR esti-
mation and winning price prediction together to effi-
ciently bid in real time.

BM(FULL) - The full bidding machine framework with
joint optimization as described in Algorithm 2.

7.5 Campaign Profit Optimization

As we have found in Appendix D that our models have
at least comparable performance for predicting CTR, we
are now ready to examine the performance of profit opti-
mization for each campaign in an unlimited budget setting
(we will present the results under limited budget in Sec-
tion 7.7.2). Figure 5 plots the obtained profit against the
training rounds for the 4 models in both the iPinYou and
YOYI datasets. The model learns on the whole training set
in each round. While the figures show the convergence of
each estimation model, SE does not well generalize its CTR
prediction to the profit optimization in iPinYou dataset.
Compared to RR, EU’s prediction focuses on medium-
valued CTR cases, which is indeed the range with high
volume of clicks in YOYI's market data, while RR focuses
more on higher-valued cases. This results shows EU better
in winning more quality cases than RR.

We further examine the two baselines, SE and CE, with
more details in Table 3. Both models achieve positive ROls
in almost all campaigns. And, in most campaigns CE outper-
forms SE in terms of the profit and ROI. This is consistent
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TABLE 4: Campaign profit improvement over baseline CE.

Profit gain ROI gain
iPinYou EU RR EU
1458 7.10% 9.00% 233% 267%
2259 81.6% 99.3% 233% 472%
2261 26.3% 31.1% 44.4% 91.2%
2821 573% 615% | 1334% 943%
2997 5.00%  0.700% | -3.60% -11.4%
3358 1.70% 6.70% 77.1% 77.7%
3386 -1.20% 2.50% 20.6% 58.3%
3427 5.50% 8.70% 52.0% 175%
3476 4.20% 8.60% 16.0% 91.1%
YOYI 9.04%  0.600% 14.8% 2.11%
Average | +712%  +782% [ +202%  +217%

TABLE 5: Overall statistics in offline evaluation.

CTIR (x10~7%) eCPC
iPinYou SE CE EU RR SE CE EU RR
1458 34 33 59 190 17 11 4.3 3.4

2259 33 36 37 58 | 303 235 172 136
2261 24 27 30 28 | 234 212 188 168
2821 55 59 48 70 | 116 137 105 112
2997 31 25 26 27 9.8 8.2 8.3 8.6
3358 51 41 69 61 18 19 12 12
3386 7.8 11 13 15 90 48 43 36
3427 72 25 29
3476 6.4 16 17
Average 16 18 25 46 | 110 81 64 57
YOYI 16 18 26 24 124 113 12

CPM \ Win Rate
iPinYou SE CE EU RR SE CE EU RR
1458 57 37 25 65 | 022 024 013 .041
2259 100 84 64 78 | 0.89 063 044 0.24
2261 57 56 56 46 | 055 081 071 0.67
2821 63 80 50 78 | 0.12 0.63 048 045
2997 30 20 21 22 | 055 063 065 0.63
3358 92 77 80 70 | 0.11 020 0.11 013
3386 71 54 55 55 | 0.82 045 036 029
3427 70 60 49 75 | 075 026 022 .082
3476 71 55 50 65 | 049 031 031 0.15
Average 68 58 50 62 | 050 046 038 0.30
YOYI 20 23 29 30 | 036 030 022 022

with our finding in Appendix D that CE outperforms SE for
CTR prediction accuracy.

We next pick up the best CE model and use it as the
baseline to compare the profit gain and ROI gain with our
proposed EU and RR models, as shown in Table 4. We
can observe that (i) Both EU and RR consistently achieve
higher profit than the CE baseline. Only in iPinYou cam-
paign 3386, EU gains less profit. In average, our proposed
models improve the profit about 71.2% for EU and 78.2%
for RR, respectively. (ii) For the ROI metric, EU and RR
get even higher overall improvements against the baseline
CE. The average ROI gains are 202% for EU and 217% for
RR, respectively. Those results suggest that our proposed
models are much more cost-effective. (iii) RR is the best and
in average it gains 7.0% and 15% than EU in profit and ROI,
respectively.

Finally, Table 5 provides other statistics to summarize
the overall campaign performance for the 4 CTR estima-
tion models. CTR and eCPC reflect the quality and cost-
effectiveness of the winning impressions. Our models, both
EU and RR, outperform the baselines in terms of CTR and
eCPC with comparable CPM and a relatively low winning
rate. This indicates EU and RR successfully allocate the
budget to high quality cost-effective ad inventories and
avoid on the low quality ones.

Distribution of Bid Price and Market Price Distribution of Price Difference

— Market Price
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Fig. 6: Analysis of bid price and market price distribution
(iPinYou campaign 2259) reflecting the formulation in Sec. 5.

TABLE 6: High bid price (> 300) case statistics

Model Auctions Budget Largest Bid Price
Baseline CE 92.5% 14.0% 37,795
Proposed Model EU 10.3% 1.49% 13,901

7.6 Bidding Data Analysis

In this section, we further analyze the bidding data to
gain more insights into why our models outperform the
baselines. As we discussed in our formulation, a key ad-
vantage of our models is the introduction of the market
price distribution and the utility of the bid to the learning
of CTR model parameters. To understand the impact, in the
left subfigure of Figure 6, we plot the distribution of bid
values for our EU (similar to RR) model and the baseline CE
model and compare them with the market price distribution
and also the market price of the impressions that received
clicks. We cut off the figure for price > 300 since the market
price never goes beyond 300 in the dataset.

Firstly, we see that the bid prices generated from CE
deviate far from the market prices; a large portion of the
bids from CE are very high, whereas the distribution (in log
scale) of the market prices gently descends from 50 to 300,
with its peak in the region between 0 and 30.

By contrast, our model EU nicely reduces the difference
between the distributions of bid price and the market price
by focusing the training on the cases that the bid is close to
the market price (see the discussion in Section 4.3).

Moreover, considering the market price distribution of
the impressions with clicks, we find that the bid distribution
of EU fits it much better than that of CE, which means the
bids from EU are more unlikely to miss high quality ad
impressions than those from CE.

The right subfigure in Figure 6 further shows the distri-
butions of the price difference between the bids (from EU and
CE respectively) and the true market prices. We find that CE
has a rather biased bidding strategy — a large portion of the
bids are much higher than the corresponding market prices.
For EU, on the contrary, the major proportion of the bids are
in the “sensitive zone” where bid price is close to the market
price. The peak is located right at zero, which indicates that
EU effectively leverages the market price distribution and
performs sensibly.

It is particularly important to control the over spending
as some of RTB auctions are in fact the first price auction or
with soft floor prices [44]. Table 6 gives the statistics related
to high bid price cases, where the bid value exceeds the
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Fig. 7: Bidding Machine Learning Performance.

highest market price 300 in our dataset. Specifically, for the
baseline CE there are 14.0% winning auctions with bid value
exceeding 300. By contrast, our model EU substantially
reduces the number of high bids and controls the high price
auctions fewer than 1.5% in the whole bidding process.

7.7 Bidding Machines
7.7.1  Profit Optimization with Market Modeling

In this section, we present the performance of our CTR
estimation model with learning of the bid landscape forecast-
ing. In Algorithm 1, the learning of bid landscape forecast-
ing p.(z,x;¢) and the corresponding winning probability
function w(b, ; ¢) contribute to the CTR estimation model
fo(x). Thus, for evaluation, we implement the learned CTR
model which optimizes the campaign profits with the bene-
fits from the bid landscape forecasting model. In this exper-
iment, we try to demonstrate that the binary optimization
(with both CTR optimization and market price learning) for
campaign profits is stronger than the single optimizer (with
only CTR optimization).

Table 7 summarizes the results over four key metrics of
the binary optimization framework which takes paramet-
ric market modeling into consideration. In the table, we
can easily find that the binary optimization i.e., BM(MKT)
performs the best in almost all the measurements. The
improvement is reasonable since the both the CTR estima-
tion part and the bid landscape modeling part are learned
by maximizing the profits. For AUC performance, we can
see that the learning of bid landscape model contributes
to CTR estimation model in classification accuracy, which
reflects the effectiveness of learning paradigm for the market
sensitivity p.(z) in Eq. (8).

Recall that EU and RR both significantly improved the
profit and ROI against normal CTR estimation model CE,
as described above. The binary optimization model with
market modeling makes steps further and achieve higher
profits and ROI than the solely CTR learning.

Moreover, there are three main metrics for the three sub-
problems that are AUC for CTR estimation, ANLP for bid
landscape forecasting and profit for the bidding strategy.
We plot the learning curves in terms of these metrics for
bidding machine as in Figure 7. We can observe that for
the campaign profit, the model converges around 8 rounds,
and for both AUC and ANLP, the model converges after
6 rounds, which shows the good convergence property of
bidding machine.

7.7.2 Experiments with Budgets

As formulated in Eq. (6), the bidding machine algorithm
is capable of jointly optimizing all the CTR estimation, bid
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Fig. 8: Performance with budgets on iPinYou.

landscape forecasting and bidding function by alternatively
fixing two of them and optimizing the third module. In
this section, we evaluate our joint optimization models
under budget constraints. We mainly compare four mod-
els: CELIN, ORTB, PRUD and our integrated algorithm
BM(FULL) as discussed in Section 7.4. And we set the test
budgetas 1/2,1/4,1/8,1/16,1/32 and 1/64 of the original
total cost in the history log respectively.

In Figure 8, we compare the overall performance for
those three models over the tested campaigns of iPinYou
dataset. The x-axis indicates the test proportion of the total
cost as the budget settings. We find that in almost all
settings and metrics, our proposed bidding machine algo-
rithm BM(FULL) outperforms the other strong baselines,
including state-of-the-art ORTB and PRUD.

Specifically, we find that (i) BM(FULL) achieves higher
profits than other models since the learning objective of
bidding machine is directly the profit. Moreover, when
the budget constraint looses, the baseline models get high
profits in medium degree of the constraint but drop quickly
as the budget gets larger, which means that these models do
not care much about the bidding efficiency and waste the
budget on the high market price requests with low returns.
(ii) The results of ROI and eCPC performance reflect the
cost-effectiveness. We can see the overall ROI decreases to
almost zero for the baselines while BM(FULL) stays effective
under all settings, which means our model can dynamically
drop the bid traffic with low benefits and save the budget.
(iii) As for CTR, we find that PRUD achieves the highest
CTR with tight budgets and our model gets better when the
budget constraint is loose. The PRUD model is to maximize
the total clicks and achieves state-of-the-art performance.
However, the profit is not the optimization goal so that
PRUD has higher CTR but lower ROI than our model.

In Table 8, we list the details of the achieved profits by
all the compared models under three different budget con-
straints on iPinYou campaigns. The results clearly present
the trends as observed in Figure 8.
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TABLE 7: Campaign profit for Single CTR estimation and Binary Optimization with market modeling.

1458 2259 2261 2821 2997 3358 3386 3427 3476 | Average
EU .987 674 .622 .608 .606 970 761 .976 954 .795
AUC RR 977 .691 619 .639 .608 .980 778 .960 950 .800
BM(MKT) 981 .678 .647 .620 .603 .980 .788 973 .955 .803
EU 391 732 797 .539 .147 2.42 1.58 3.05 3.25 1.82
Profits (x107) RR 3.98 .803 .827 572 141 2.54 1.64 3.14 3.39 1.89
BM(MKT) 4.02 .766 .863 .669 .148 2.57 1.73 3.18 3.31 1.91
EU 19.2 .607 .582 .333 679 9.26 1.46 5.30 4.02 4.60
ROI RR 243 1.03 771 247 .624 9.29 1.90 9.57 6.63 6.04
BM(MKT) 31.7 .829 .692 476 .733 8.83 1.08 9.70 5.40 6.61
EU 4.27 172 187 104 8.33 11.4 42.5 17.3 30.0 64.3
eCPC RR 3.39 136 167 112 8.61 114 36.1 10.3 19.7 56.1
BM(MKT) 2.62 151 175 94.7 8.07 11.9 50.2 10.1 23.5 58.7

TABLE 8: Achieved direct profit (x 10) with budgets.

iPinYou CELIN ORTB PRUD BM(FULL)
1/64 1/8 1 1/64 1/8 1 1/64 1/8 1 1/64 1/8 1

1458 401 371 225 | 399 372 328 | 353 323 355 | 407 405 405
2259 247 567 569 | 1.81 372 -255| 400 520 .838 | 391 647 8.62
2261 193 448 151 | 1.63 499 389 | .872 347 246 | 197 531 913
2821 397 603 -138 | 3.69 547 -413 | 142 457 170 | 410 728 7.60
2997 518 125 -1.03 | 530 136 .151 | .111 .665 675 | .670 139 149
3358 243 243 111 | 243 236 180 | 240 214 124 | 252 263 263
3386 783 133 243 | 667 123 101 | 710 115 371 | 830 164 184
3427 298 309 101 | 296 305 206 | 309 323 335 | 307 320 324
3476 21.7 333 157 | 173 331 228 | 198 296 282 | 233 33.6 348

Average | 147 1737 462 | 139 169 113 [ 137 156 226 | 154 188 19.8
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Fig. 9: Online testing results on YOYI (Phase I in 2016).
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7.8 Online A/B Testing

Our bidding machine models are deployed and tested in
a live, commercial environment provided by YOYI PLUS
(Programmatic Links Us) platform, which is a main DSP in
China. The online experiment consists of two phases. The
first phase is to test our CTR estimation models with desk-
top traffic, while the second phase is to compare different
bidding strategies over campaigns that only target mobile
inventories. The received bid requests are randomly selected
to send to each model at each time according to the user
cookie ID, while the chance controlled by the DSP platform
for each model is set equal among all the compared models.
We set the same budget constraint for all deployed models
and the unit of money is CNY.

Phase 1. We test over 10 campaigns during 25-26 January,
2016. There are 4 deployed models: EU, RR, CE and FM,
where the first three have been discussed in Section 7.4
and FM is a factorization machine model [29] with non-
hierarchical feature engineering. The comparison of bidding
machine with our previously proposed models will be pre-
sented in Phase II. To show the comparable performance
of user response prediction, we set the same linear bidding
function for all prediction models including baselines. The
only difference is the embedded prediction model. The
whole tested bid flow contains over 89M auctions including

ROI Profit ( x10* CNY) eCPC (CNY)
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Fig. 10: Online results on YOYI MOBILE (Phase II in 2017).
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3.3M impressions, 8,440 clicks and 1,403 CNY budget cost.
The overall results are presented in Figure 9.

From the comparison in Figure 9, we have the following
conclusions: (i) EU and RR achieve higher profit and ROI
than CE and FM. Specifically, EU has twice ROI as FM, and
RR achieves more than 50% return of FM. EU gains 25.5%
and 53.0% more profit than CE and FM respectively. (ii)
eCPC consistently has inverse relationship with the trend of
ROL. The online result also reflects this relationship: EU and
RR have lower eCPC than other two baseline models. (iii) As
for CTR, we find that EU achieves the highest CTR and RR
also performs better than CE. Here FM has higher CTR than
the CE model because it could learn feature interactions via
the latent vector inner product [29]. However, FM obtains
relatively less profit gain and ROI than CE, which shows
that FM does not care enough about those auctions with
high return value.
Phase II. We test over 5 campaigns on the mobile platform
during 30 days in April, 2017. Here we deploy three bidding
strategies, which are CELIN, EULIN and BM. The first two
are the linear bidding strategy with CE and EU model
embedded. The third algorithm is our bidding machine
algorithm, namely BM in this section, which considers CTR
optimization, bid landscape modeling and bidding strategy
optimization altogether to maximize the whole profits. Note
that, in our two-staged online testing phase, RR model
performs inferior to EU model, which has been shown in
Phase I. Thus we discard the RR testing in Phase II for
business constraint. The whole tested bid flow involves
224M auctions including 23M impressions and 168K clicks
and totally 50K CNY budget cost. The overall results are
illustrated in Figure 10.

For the bidding efficiency, we have these conclusions
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from Figure 10: (i) Both three bidding algorithms achieves
more than 100% profit w.r.t. the cost, especially the bid-
ding machine algorithm gains almost double profit. The
joint profit optimization has delivered best performance in
the ROI and profit measurements. (ii) The EULIN model
achieves the best (lowest) eCPC in Phase I online experi-
ments, while our bidding machine beats the strong EULIN
baseline and reduces the cost of each click in one more
step. The reason is that bidding machine dynamically learns
the market competition while EULIN remains static bid
landscape forecasting. (iii) EULIN and BM maintain lower
winning rates than CELIN while achieving higher CTR
performance, which reflects the finding in Phase I online
testing. (iv) BM and CELIN prefer lower price impressions
as shown in CPM comparison. Moreover, our learning-
based bid landscape modeling also aims to maximize the
overall profits, which makes a step further than only CTR
optimization and contributes to obtain more profits.

In sum, the online A/B testing results demonstrate the
effectiveness of our proposed bidding machine model for
profit optimization. As for the difference between offline
and online experimental results, it is reasonable because of
the offline data bias and the market dynamics [49].

8 CONCLUSIONS

In this paper, we proposed bidding machine, a comprehen-
sive learning to bid framework, which aims to maximize
the profit of the advertiser in real-time bidding for display
advertising. In our bidding machine paradigm, the learn-
ing model consumes the recent bidding logs and jointly
optimizes three components, including user response pre-
diction, bid landscape forecasting and bidding strategy, in
a unified objective function. Our mathematical derivations
showed that the gradient of each component benefits from
the behavior of the others. We tested our prediction model
and the optimized bidding strategy with other state-of-the-
art bidding algorithms under various market settings. The
empirical study including both offline experiments and on-
line A/B testing on a commercial RTB platform has verified
the practical efficacy of our proposed bidding machine.

In the future work, we plan to integrate the censored
learning [3], [40] paradigm for more accurate learning in bid
landscape forecasting. Also, extending the BM framework
to reinforcement learning settings [6] would be a promising
direction. Besides, we would investigate the multi-agent
bidding machine interactions and explore the potential equi-
libriums.
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APPENDIX A
ONLINE LEARNING PARADIGM

To solve the learning problems in the bidding machine model, several algorithms
have been proposed, such as SGD [34], FOBOS [10] and RDA [42]. In [24], the
authors derived the relationship between FTRL-Proximal algorithm and other
mirror descent algorithms and showed the better sparsity of it. For sequentially
update the embedded model of the bidding machine, we derive FTRL-Proximal
algorithm [25] to dynamically control the learning process while maintaining
satisfying sparsity.

We first denote g; as the gradient of the t*" instance. To update the CTR
estimation model and winning probability model, the corresponding equation
are
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and g1+ = >0, gs-
In online gradient descent styple, the model parameters 6 and ¢ will be
respectively updated as
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where 7; is a non-increasing learning rate schedule. Instead, we use FTRL-
Proximal paradigm for parameter updating:

1 t
Ou41 = argmin(gy, - 00 + = > 6,(10 = 0513 + Ma|6]),
X S:tl 37)
$ei1 = argmin(gfl, - do + 5 D 06 — ellz + Millgll),
s=1

where we define §1.; = ﬁ as in terms of the learning rate schedule.
As is shown in [25], only one number per coefficient needs to be stored and

we can rewrite the argmin equation as a quadratic function of the two parameter

1 t
o 16113 + (g7, — D 8:65) - 0 + A1]|0]| + (const),
t

s=1

(38)
1 t
;wui + (gt =D 6.0.) - &+ Al + (const).

v s=1

If we store z:Ll =gi.t-1 — Ei;i 0560, and the same for ¢, and we update at

tt" instance as
1 1
z =2 49l +(— - ——)0,
Nt MNt—1 (39)
1 1
T R e L
Mt MNt—1

So that we can update per-coordinate of the parameter as

if|z) ;| < Ar,

0
Oiy1,i =
B - nf(zf,i - Sgn(zzi)Al) otherwise,

(40)
if|zf,] < A1,

0
b1, =
' - ”?(Zﬁi - Sgﬂ(zzi)M) otherwise,

where the second subscript i is the coordinate index of the parameter.
For learning rates n;, we implement as per-coordinate rate updating as

[e3%

B8+ \/ Z;:l 931 1

where 7 is the index of the coordinate.

Nt,i = 41)
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APPENDIX B
OPTIMALITY UNDER SECOND-PRICE AUCTION

In this section, we give the proof of the optimal bidding function under the
second-price auction.

Theorem 1. The optimal bidding function under the second-price auction is linear to
the estimated utility.

Proof. Recall that, under the second price auction, the winning probability w(b)
w.r.t. the bid price b is integral over [0, b] for the market price distribution p_ (z)
as

b
w®) = [ () @)
0
And ¢(b) is the expected cost of bidding with price b.

fob zp.(z)dz .
fob p(z)dz

We use r to represent the predicted user response of the given bid request, while
b(r) is the bidding function w.r.t. » and u(r) is the utility function set by the
advertiser.

Our optimization problem is to maximize the proft of the advertiser with the
budget constraint B under the second-price auction, which is formulated as

c(b) = (43)

max 7 [ [u(r) = e(b(r)Jub(r)p (r)ar

(44)
s.t. T/ c(b(r))w(b(r))p,(r)dr =B,
where T is the total number of the bid requests.
The Lagrangian of the optimization problem Eq. (44) is
L(b(r),A) = / [u(r) = e(b(r)]w(b(r))pr(r)dr
" (45)

=3 [ e ar+ 3

where X is the Lagrangian multiplier.
Solving b(). Based on calculus of variations, the Euler-Lagrangian condition of
b(r) is

OL(b(r), N) _
o) 0, (46)
which can be derived as
o L), N
T ab(r)
= 0= u(rpe () TG — (3 ()
dc(b(r)) dw(b(r))
Ao w(b(r)) +c(b(r))7ab(r) } (47)
= e 0 2w
o Dw(b(r))
= [u(r) = O+ De(b(r))] o) Z5 2
Since
de(b(r)) 2 (b(r)) [b(r) fé’ p2(2)dz — fob zpz(z)dz] i)
ab(r) n (w(b(r)))? ’ (
and dw(b(r)
w(b(r
T(’I') = p2(b(r)), (49)

taking Eq. (48) and Eq. (49) into Eq. (47), we can then derive the Euler-Lagrangian
condition as
A+ Db(r) = u(r)
u(r) (50)

= b = {7

APPENDIX C
GAME THEORETIC ANALYSIS

In this section, we conduct a theoretic analysis of the optimal bidding strategy
under the symmetric game of repeated auctions with budget constraints following
[46], [49]. First, we will derive the optimal bidding function in the equilibrium of
the second price auction. Second, based on the derived bidding function, we
discuss that a tragedy of the commons situation exists among multiple advertisers
with the same optimal bidding strategy in RTB display advertising. Note that the
analysis may not be first proposed in this work and we present it here to make
this paper self-contained.

C.1 Problem Settings

At first we present some preliminaries and describe the problem settings. We add
subscripts b, z, r to the c.d.f. and p.d.f. functions to make differences among these
variables.

Monotonicity of the Bidding Function. In a clean game theoretic analysis setting
[26], there are n (n > 2) advertisers with the same bidding strategy b(r) which
takes the estimated CTR r and outputs the bid price b. It is reasonable that b(r)
is monotonically increasing w.r.t. CTR 7, i.e.

b(r1) > b(r2) & 11 > 12 (51)

Later we will prove this monotonicity. Each time when an impression is auc-
tioned, for each advertiser the CTR 7 follows the same p.d.f. p,.(r) independently
(ii.d.) and the corresponding c.d.f. is F.(r) as

Fo(r) = /orpT(t)dt, BFBT:’")

We also define Fy(b) as the c.d.f. of the bid price b, i.e. the probability of
performing a bid less than b:

= PT(T) . (52)

b
Fu) = [ palayda. (3)
0
Note that
Fy(b(r)) = P(b(r) > b(rs) = P(r > r3) = Fu(r) , (54)

since b(r) monotonously increases w.r.t. 7. Thus, for the market price variable
z, which is defined as the highest bid price across (n — 1) competitors, its c.d.f.
F.(z)is

Fe(2) = Fy(2)" 7", (55)

and the corresponding p.d.f. p. (2) is

OF;(z)

5 — (- DF,(2)" pu(2) . (56)
z

pz(2) =

The Winning Probability in a Symmetric Game. In such a setting, the winning
probability w,.(r) of Advertiser 1, without loss of generality, w.r.t. the given CTR
r is the largest one among the n advertisers that

we(r) = P(r>ra,m > 15, ..., >1p) = Fp(r)" 1. (57)
Note that, according to Eqs. (54) and (55), we can also derive the winning
probability function wy, (b(r)), which is equivalent to w(b(r)) in the main part of
our paper, w.r.t. the bid price is that

wy (b(r)) = P(b(r) > ba,b(r) > bs,...,b(r) > by)
= RO = Fu(r)" -
=P(r>ro,r>r3,...,7 >1y)

= w,(r).

The Expected Utility and the Expected Cost. We follow our previously conducted
results in Eq. (43) and derive the expected utility of profit R(r, b) as that

f(f’ zp.(z)dz .
fob p2(z)dz

where b is the output variable of the bidding function b(r).

R(r,b) = u(r) — c(b) = u(r) — (59

C.2 Optimal Bidding Function under Symmetric Game

Now that we have defined the problem settings with the utility and the cost
function, we will derive the optimal bidding function under the symmetric game
scenario, where each advertiser participating in the game adopts the same bidding
function.

Theorem 2. The optimal bidding function under a symmetric game of repeated auctions
with budget constraints is linear to the estimated utility, the bid price is monotonously
increasing w.r.t. the number of the participating advertiser bidders.

Proof. Our optimization problem is to maximize the profit of each participating
advertiser with the budget constraint B under the second price auction, which is
formulated as

max

b0
s.t. T/ c(b(7))wp (b(7))pr(r)dr = B,

T / [u(r) — e(b(r)]ws (b(r))p, (r)dr ,
- (60)

here we assume that the bidding is based on a signal T related with the CTR 7.
The Lagrangian function £(7, A) is

£ =52 + [y brp (rydr
n (61)
= 1) [ ebm)wn () (r)dr
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where X is the Lagrangian multiplier. Note that the utility function «(r) is only
influenced by the true CTR 7 and the cost is dependent on the bid price which is
based on the known CTR signal .

Taking Egs. (58) and (59) into consideration, the Lagrangian function can be
derived as

L(1,A) :% + /T[u(r)FT(T)"*l

b(r) (62)
-\ + 1)/ Zps (z)dz:| pr(r)dr,
0
Solving b(). We can calculate the gradient w.r.t. 7 as that
AL(T, A
OL(r,2) _ /|:u(r)(n — D) F ()" " 2pe(7)
T i (63)

ob(t
- O+ D@0 T e ryar
T
In a symmetric equilibrium, the objective is maximized when using the true
signal, i.e., at 7 = r [26]. Therefore, we have

AOL(T, N)
or

=0 = (64)

T="r

2p7( ) = ob(r) )

or

u(r)(n — 1)Fp ()" (A + D)d(r)p=(b(r))

As b(r) is monotonously increasing w.r.t. r, then their p.d.f.s p,-(r) and py(b)
have the following relationship

pe(r) = poo(r)) 22 )
Taking Egs. (56) and (65) into Eq. (64), we can have that
wr)n — DE ()" 2pi(r)
= O D~ D) P (0(r) 22
S u)n - DR () (66
= O+ DB (0 = DR )" pr(r)
= b(r)= X (+)1 .

We can easily find that the bidding function is linear w.rt. the utility w(r).
Specifically, in Sec. 3.1 of our paper, we adopt a utility function as in Eq. (4)
that

u(r) = vr, (67)

where v is the click value of the advertiser. Therefore,

b(r) =

vr
A4+1°

(68)

Till now, we have derived the optimal bidding function under a symmetric
game of repeated auctions with multiple advertisers adopting the same bidding
strategy. Comparing the derived bidding function with that in the single bidder
situation, the only difference is the value of A. Next, we will illustrate that A has
a strong relationship with the number of the participating bidders.

Solving \. Take gradient of the Lagrangian function w.r.t. A, we can get the
budget constraint equation as

OL(T, \) o
B peas
T = /T/(; zp.(z)dz pr(r)dr
g = / /Oxi_*—1 z(n — l)Fb(z)"fzpb(z)dz pr(r)dr
g - / /O*% 2(n —1)F, (W:i}l)/z)%zpr (%) (69)
. (Av;l)dz pr(r)dr
B v n—2
= _//0 g DE O (1) db pr(r)dr
v B
X+l T[ [Ttn—D)F, ()" Zp, (t) dt p(r)dr

The third equation is derived with Eq. (56) and the forth equation considers
Eq. (54). Thus we can get the optimal bidding function as

Br
n—1)F. (£)" "2 p, (t) dt p,(r)dr

b(r) = (70)

NH1 T o u
From Eq. (70), we can easily find that the denominator is positive and its gradient
w.rt. n > 2 is negative, which means that the bid price b(r) is monotonously

increasing when the bidder number 7 increases.

TABLE 9: Regression performances over campaigns. AUC:
the higher, the better. RMSE: the smaller, the better.

AUC RMSE (x10-2)
iPinYou | SE CE EU RR | SE CE EU RR
T458 | 948 987 987 977 | 301 194 242 1232
259 | 542 692 674 691 | 201 177 176 179
2261 | 490 569 622 619 | 1.84 168 171 1.68
2821 | 511 620 608 .639 | 256 243 239 246
2997 | 543 610 606 .608 | 598 582 584 5.82
3358 | 863 974 970 980 | 3.07 247 332 2.67
3386 | 593 768 761 778 | 295 284 332 285
3427 | 634 976 976 960 | 278 220 261 234
3476 | 575 957 954 950 | 250 232 239 233
Average | 633 794 795 800 | 2.97 2.61 286 2.69
YOYI | 882 891 912 912 | 119 117 118 116

Analytic Solution with a Special Case. Here we propose an analytic solution
for b(r) with a special case of p,(r). Assume that CTR value r is uniformly
distributed, which means that

pr(r)=1,F.(r)=1r. 71)

Thus the closed form of the optimal bidding function is

vr Br
b(r) =
1 T [, [T t(n — 1)¢n=2 (t) dt dr’ 72
-~ Br _ Br-n(n+1)
B T ., % Lypm gpr — T(n—1)
In this case, we find that the optimal bidding function is linear w.r.t. the average

budget per auction £ and the number n of the participating bidders in the

market. When there are more than two advertisers (i.e, n > 2), the optimal
bid price is monotonously increasing when n increases.

C.3 Discussion about Tragedy of the Commons

In this part, we discuss about the derived results above. We define the perfor-
mance comparison scheme. First the advertiser will compare the achieved utility
u(r),e.g., u(r) = > vy and y is the click indicator of each ad impression. At this
point, the higher utility, i.e., more gained clicks, the better; Second, if the utility
values are the same, the lower cost for achieving this utility is better.

From Egs. (70) and (72), the optimal bid price is monotonously increasing
when the number of the competitor gets larger, which means that each bidder
tries to maximize the objective utility with the cost lower than the budget. When
the number of the participating bidders with the same optimal bidding function
is m, each bidder will win the auction with £ probability. Such that each bidder
will try to spend all the budget to maximize the objective utility. However, such
an equilibrium is not efficient and it will result in a situation with very low social
welfare since all the advertiser will exhaust all the budget while winning the same
utility, i.e., 2 impressions and clicks.

A Dbetter situation is that each advertiser spends B /n budget and still gets
the same utility (the same number of impressions and clicks as in the previous
case). Extremely when n — oo, each advertiser bids 0 so that the winner will
be selected randomly across all the bidders pays 0 for each auction. However,
this situation is never realistic since each bidder will compete with each other
rather than cooperation. In such an unstable case, every advertiser will propose
higher bid price to win the auction to maximize the expected utility given the
current market situation, i.e., F.(z). Finally, the whole system will get into the
equilibrium of Egs. (70) and (72) where every advertiser spend out all the budgets.

This is a tragedy of the commons [16] reflecting a prisoner’s dilemma [32] in the
RTB market competition with budget constraints. Note that such a tragedy of
the commons result is not just for the proposed bidding strategies in this work, it
applies to any bidding fuctions that is monotonously increasing w.r.t. the expected
utility. More discussions are provided in [46].

APPENDIX D
ACCURACY COMPARISON OF CTR ESTIMATION

In this section, we compare the accuracy of the CTR estimation models, measured
by AUC and RMSE. As our utility estimation models are designed to optimize
campaign profit rather than user response prediction accuracy, the evaluation
here is to see whether our proposed solutions would still be able to achieve
comparable performance against the conventional estimators that directly opti-
mize the prediction accuracy. Table 9 shows the AUC and RMSE for each model
over all campaigns. First, the baseline CE achieves better performance than the
baseline SE on all campaigns, confirming the previous study that cross entropy
as an objective naturally works better on the binary classification problem with
probabilistic predictions. Second, both our EU and RR models achieve similar
or higher AUC values over the strong baseline CE model, while maintaining
comparable RMSE performances. From our derivation in the main theory section,
we know that a key advantage of our EU model over the baseline SE model is
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TABLE 10: Experimental results of bid landscape forecasting
models over iPinYou dataset. ANLP: The lower, the better.

Model 1458 2259 2261 2821 2997 3358 3386 3427 3476
NM 536 676 553 655 536 583 527 488 528
MM 578 732 702 726 670 717 614 618 6.02

Linear 754 738 728 727 728 754 750 7.66 8.01
Quadratic | 656 9.18 915 114 648 850 684 695 6.64

TABLE 11: p-values under the AUC evaluation (MannWhit-
ney U test, one-tailed).

Models EU RR BM(MKT)
SE <108 <106 <10°°
CE 0442676 0192533 0.09581

that it considers the market price in the gradient updating. Here, we find that our
EU model not only compensates the relatively weakness of the SE model, but also
gains better in some campaigns, e.g., iPinYou campaign 2261 and YOYI. Moreover,
the EU model achieves similar (sometimes better) performances compared with
the CE model. Finally, we also observe that our RR model performs more stably
in most campaigns and achieves higher AUC than other three models in most
campaigns, e.g., iPinYou campaigns 2821, 3358, 3386 and YOYI, suggesting that
combining the cross entropy loss with the market price density is the best option.

APPENDIX E
RESULTS OF MARKET COMPETITION MODELING

In this section, we present the experimental results of our market competition
model, which is learned landscape p.d.f. p. (z, ; ¢).

The metric is the Averaged Negative Log Probability (ANLP) [40], which is
to measure the averaged log-likelihood of fitting the observed market price in the
test data:

Lo
Pyp=——3 logp:(2i, i 9) , (73)
=1

where 7 is the index of the sample in the test dataset and p. (z;, ®;; @) is the
corresponding probabilistic density calculated by the bid landscape model. The
better fitting performance is, the lower ANLP value it achieves.

We report the ANLP performance over the market modeling model in our
paper and the state-of-the-art model: the Mix Model (MM) [41] using linear
regression and censored regression altogether, and the normal model (NM) as
in [40] using only observed data without lost censored data. Our model includes
the performance of linear form and quadratic form of market modeling function,
as described in our paper.

As is illustrated in Table 10, we find that the NM model achieves the best
ANLP results and our models are in the same level as the MM model. The results
are reasonable since NM fits the raw market price distribution better while MM
pays more attention on the lost auctions which are censored in the true market.
Our model not only optimizes the direct profits but also learns the bid landscape
information very well.

APPENDIX F
SIGNIFICANCE TEST

In this section, we present the results of the significance test in our experiments.

For the AUC metric, we conducted a MannWhitney U test [23] and list the
results in Table 11. We find that our proposed models has significantly beaten the
linear regression model with squared loss (SE). However, the linear regression
with cross entropy loss (CE) has similar AUC performance with our models.
It is reasonable since our models aim at optimizing the overall revenue of the
advertiser, rather than the classification accuracy.

For the RMSE metric, we tested p-values [5] of the predicted CTR values
across all the models, which is illustrated in Table 12. From the results we can

TABLE 12: p-values under the RMSE evaluation.

Models EU RR BM(MKT)
SE <107% <10°° <1076
CE <107% <10°¢ <1078

TABLE 13: p-values under the ANLP Metric.

Models Linear Quadratic
NM <107% <10°°
MM <107% <10°°

find that the improvement of EU and RR model over linear regression models are
significant, either for the BM(MKT) model against all the baselines.

We also report the results of p-values under ANLP metric, which is shown
in Table 13. The results have shown the significant results for our bid landscape
modeling against other baselines.
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