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Abstract—Learning appropriate metric is critical for effectively capturing complex data characteristics. The metric learning of
categorical data with hierarchical coupling relationships and local heterogeneous distributions is very challenging yet rarely explored.
This paper proposes a Heterogeneous mEtric Learning with hIerarchical Couplings, HELIC, for this type of categorical data. HELIC
captures both low-level value-to-attribute and high-level attribute-to-class hierarchical couplings, and reveals the intrinsic
heterogeneities embedded in each level of couplings. Theoretical analyses of the effectiveness and generalization error bound verify
that HELIC effectively represents the above complexities. Extensive experiments on 30 data sets with diverse characteristics
demonstrate that HELIC-enabled classification significantly enhances the accuracy (up to 40.93%), compared with five state-of-the-art
baselines.
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1 INTRODUCTION

D Eveloping distance metrics that can effectively capture com-
plex data characteristics in categorical data is a fundamental

yet challenging task, which largely determines the learning qual-
ity. Although considerable work has been conducted to measure
numerical data, only limited efforts have been made on categorical
data. As discussed in [1] etc., it is not as straightforward to
measure categorical data similarity as it to measure numerical
distance. This is due to the significantly greater challenges in
understanding and representing categorical data complexities: (1)
Categorical values are nominal, i.e., without explicit intervals
(note: in this paper we do not consider ordinal categorical data)
and (2) there are hierarchical couplings and heterogeneities that
essentially determine data complexities.

Target Problems & Gap Analysis This paper thus focuses
on learning the distance metrics for categorical data embedded
with sophisticated coupling relationships (couplings for short) and
heterogeneities. Here couplings refer to the interactions within
and between attributes, objects, and classes; and heterogeneities
relate to different parts of data that hold diverse relationships and
distributions [2], [3], [4].

Most of the existing metric learning methods handle numerical
data [5], [6], [7], [8], [9], [10], [11], [12], [13]. Although these
methods can learn the distance in numerical data, they cannot han-
dle categorical data directly. While categorical input is involved in
work such as [14], [15], [16], they ignore the above-discussed
couplings and heterogeneities.

In recent years, several distance metrics or measures have
been proposed to capture intra- and inter-attribute couplings in
categorical data. For example, the conditional probability [17] and
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rough membership function [18] capture intra-attribute couplings.
The inter-attribute conditional probability in [1], [19], [20] and
the co-occurrence frequency of highly interdependent attributes in
[21] measure inter-attribute couplings. A novel categorical data
distance measure named coupled object similarity (COS) [22],
[23] learns and integrates the intra- and inter-attribute couplings.

However, the above methods for learning feature interactions
treat the distributions for value, attribute and object in categorical
data as homogeneous. They usually adopt one measure for all
data but ignore the difference between values (and attributes and
objects) and their relationships. Hence, these methods cannot
represent the heterogeneity in categorical data. In [24], multiple
distances are learned to handle more than one type of categorical
relationship, but this method ignores the hierarchical interactions
in categorical data.

As a result of overlooking or insufficiently representing cou-
plings and/or heterogeneities in metric learning, the learned metric
is ineffective for approximating data complexities and measuring
distances in a categorical space.

Our Design & Main Contributions
To tackle the above issues, this paper introduces a novel data-

driven Heterogeneous mEtric Learning of hIerarchical Couplings
(HELIC) for representing categorical data. First, HELIC captures
both low-level value-to-attribute and high-level attribute-to-class
couplings to comprehensively reveal the intrinsic and hierarchical
characteristics in categorical data. HELIC captures the follow-
ing interactions: (1) the relationships between the values of an
attribute, called intra-attribute couplings, to measure the within-
attribute similarities. Such couplings reflect the value interactions
within an attribute; (2) the relationships between attributes, called
inter-attribute couplings, to measure the between-attribute similar-
ities. These couplings describe the interactions between attribute
values conditional on other attributes; and (3) the relationships
between attributes and classes, called attribute-class couplings,
to measure the attribute-class similarities. These couplings reveal
the value distribution w.r.t. each class. Second, HELIC reveals
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the intrinsic heterogeneities across various types of couplings to
identify their different local structures and distributions. Lastly,
HELIC learns a heterogeneous metric based on the captured
couplings and heterogeneity.

The key contributions of this work include:

• Learning hierarchical couplings: several learning func-
tions are proposed to represent the hierarchical couplings
in categorical data, i.e., the value-to-class (including value-
to-attribute and attribute-to-class) couplings within and
between categorical attributes and between attributes and
classes. These data-driven hierarchical value-to-class cou-
plings complement and enhance metric performance.

• Learning heterogeneities: a learning model is proposed
to learn and integrate heterogeneous local relationships
in categorical data. The hierarchical value-to-class cou-
plings are incorporated into different kernel functions,
and a transformed matrix and combination coefficient are
learned for each kernel to reveal the corresponding dis-
tributions of specific values and class labels. The learned
heterogeneous information represents the different local
views of categorical data relationships.

• Theoretical analysis of effectiveness: we prove the effec-
tiveness of HELIC in terms of improving metric learning
accuracy from a theoretical aspect. The learning general-
ization error bound is also analyzed. The theoretical results
explain why HELIC effectively discloses the complex
relationships in categorical data.

We compare HELIC with five state-of-the-art distance mea-
sures on 30 data sets with different data characteristics. The
experimental results show that HELIC significantly improves the
learning performance.

The rest of this paper is organized as follows. Section 2
discusses the related work and gaps. Section 3 outlines the HELIC
framework and introduces its design. Section 4 presents the theo-
retical analysis of the HELIC properties. Section 5 demonstrates
the HELIC performance by comparing it with existing categorical
distance measures from a variety of aspects. Lastly, Section 6
concludes this paper.

2 RELATED WORK

Distance metrics significantly affect learning performance. Typ-
ically, a poorly-designed distance metric cannot induce good
learning performance. On the contrary, a discriminative one is
more likely to enable better learning outcomes.

Typical categorical data distance metrics are matching- and
frequency-based. Compared with matching-based measurements,
e.g., Hamming distance, frequency-based methods can capture
more information. For example, the co-occurrence frequencies of
attribute values in samples is measured in [25], which reflects the
distance between the same nominal value in different objects but
does not capture the additional information on different values. In
[26], an occurrence frequency-based method evaluates the distance
between different values. Although these methods reveal distance
information in some aspects, they do not capture the hierarchical
coupling relationships [27], including the within and between
attribute interactions and the interactions between attributes and
labels, which fundamentally determine object distances.

Recent efforts in categorical metric learning have been made
on capturing various couplings. The work in [1], [17], [18],

[19], [20], [21] proposes more sophisticated tools to measure the
distance between different values according to value frequencies.
According to the captured information, they can be divided into
two groups: (1) intra-attribute information-based measures [17],
[18]; and (2) inter-attribute information-based measures [1], [19],
[20], [21].

In the first group, the method in [17] adopts the conditional
probability of an attribute value of an object with respect to a
cluster center to calculate the distance between an object and
the cluster center. However, this method has to update the mea-
sured similarity after every clustering step, making it sensitive
to clustering methods and inefficient. Inspired by biological and
genetic taxonomy, a rough set-based membership function mea-
sures the distance of attribute values inspired by biological and
genetic taxonomy in [18]. Although it is claimed to reveal more
information than the simple matching method, its main weakness
lies in that the rough set theory only provides detailed similarity
information of the same attribute values. The above methods
measure categorical value distance by only using intra-attribute
information, but ignore the inter-attribute information.

The second group involves inter-attribute information. For
example, in [19], the distance of categorical values is measured
w.r.t. their relationships with other attributes. Given two values
of an attribute, it considers the distance between the conditional
probability of other attributes. Specifically, it first calculates the
conditional probabilities of a value of another attribute in terms of
the given values. Then, it feeds the two conditional probabilities
into the Kullack-Leibler divergence method [28] to measure the
distance of given values. Following the work in [19], another inter-
attribute information-based metric [20] uses the maximum prob-
ability of two values’ divergence in another attribute to calculate
their distance. Both methods assume each attribute affects other
attributes significantly, which may not always hold [3]. To tackle
this problem, the Symmetric Uncertainty (SU) in [1] measures
the correlation of two attributes, but it only considers the inter-
attribute information between attributes with strong relevance but
small redundancy. In [21], the co-occurrence frequencies of highly
inter-dependent attributes are included into the measurement.
However, the above methods consider intra-attribute information
and inter-attribute information separately. To involve both intra-
and inter-attribute couplings and their combinations in measuring
object similarity, the similarity measure, coupled object similarity
(COS) in [22], [23], is the first method to capture complex
hierarchical couplings in categorical data. However, COS assumes
homogeneous data distributions, which does not hold in real-life
data.

In addition, another set of methods, e.g., [14], [16], [29], [30],
[31], [32], [33], learns metrics by using side-information such as
labels, to guide metric learning for categorical data. The work
in [29] is the first to consider label information for categorical
data similarity, which uses labels to divide data into subsets and
considers the attribute value distribution within these subsets. The
difference in the attribute values’ appearance frequency is used as
a distance measure, called the Value Difference Metric (VDM).
However, VDM only considers the categorical value distribution
in a label-induced subset and treats each attribute separately,
which may cause overfitting. The method in [14] revises VDM
by considering inter-attribute information to learn a similarity
measure, achieving better classification performance but being
time consuming. Instead of calculating the metric directly, the
work in [30] learns a vector representation for a categorical value
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guided by the label information. It optimizes vector representation
to guarantee that the intra-class distance is smaller than the inter-
class distance. Another method in [31] studies the connection
between metric learning and kernel learning by transforming a
metric learning problem to a kernel learning task so that the
similarity of different types of data, including categorical data,
can be measured. Although these two methods can learn metrics
for categorical data, they ignore data characteristics and have high
computational complexity. The work in [32] proposes a kernel
density metric learning (KDML) method with a non-linear and
probability-based similarity measure. However, KDML suffers
from information loss due to only using the matching method to
capture the relationships in the data. Instead of considering class as
side information, the method in [33] captures the class information
and classification model information simultaneously. However, it
only maps a categorical value to a numerical value, which cannot
well represent a categorical value when it has high-dimensional
embedding. Multiple distances are learned in [24] to leverage
the heterogeneous categorical relationships, while the hierarchical
couplings are ignored. In [16], a metric learning method fits the
ordinal data characteristic but is not suitable for learning metrics
for general categorical data owing to its strong ordinal assumption.

In addition, there are many methods for learning distance
metrics on numerical data [5], [6], [7], [9], [12], [13], [34]. They
cannot handle categorical data directly or be simply converted to
measure categorical data because: (1) they usually represent data
w.r.t. numerical vectors with certain intervals, which violates the
nature of categorical data; (2) transforming categorical data to
an appropriate numerical representation is nontrivial, as shown in
[35].

In this work, the proposed HELIC directly learns categorical
data distance metrics. It considers the hierarchical couplings from
value to attribute, object and class and measures their respective
distances in terms of frequency and co-occurrence in categorical
data. Further, HELIC learns the heterogeneities in categorical
data by incorporating hierarchical value-to-class couplings into
different kernel functions to learn the corresponding distributions
of respective entities.

3 THE HELIC DESIGN

In this section, we introduce the working mechanisms of HELIC
and its components.

3.1 Problem Statement
Generally speaking, a categorical data set can be represented as a
three-element tuple S =< O,A, V >, where O = {oi|i ∈ No}
is the object set with no elements oi, and No is the set of index for
objects; A = {ai|i ∈ Na} is the attribute set with na elements ai;
and V =

⋃na

j=1 V
(j) is the collection of attribute values with nv

elements, in which V (j) = {v(j)
i |i ∈ N

(j)
v } is the set of attribute

values v(j)
i with n(j)

v elements of attribute aj . For the above tuple,
v

(j)
i is the value of the i-th object in j-th attribute. In supervised

cases, a class set C = {ci|i ∈ Nc} partitions data into nc classes.
For the i-th object, ci refers to its class. Table 1 lists the symbol
styles used in this paper.

The metric learning for categorical data aims to learn a
distance metric d(·, ·) : O ×O → R+

0 for all categorical objects
in a data set O that satisfies the properties:

1) d(oi, oj) + d(oj , ok) ≥ d(oi, ok),

TABLE 1
List of Symbols

Symbol Symbol Style
element lowercase with sans serif font
value lowercase
vector lowercase with bold font
matrix uppercase with bold font
set uppercase
function lowercase with parentheses
space uppercase with calligraphic font
value index subscript
attribute index superscript with parenthesis

2) d(oi, oj) ≥ 0,
3) d(oi, oj) = d(oj , oi).

Denoting the representation of objects in the learned metric space
as x that d(oi, oj) = xi � xj , where � refers to any kinds
of operations between two vectors. The learned distance metric
should also minimize the divergence between the data distribution
in the categorical space O and the data distribution in the metric
space X. Although it is hard to measure the divergence directly,
the divergence can be approximated through involving some side
information (like class label) for specific problems. Given an
approximate divergence measure D̃iv(·||·) based on side infor-
mation, the objective function of metric learning for categorical
data can be formalized as follows,

minimize
x

D̃iv(O||X)

subject to o ∼ O

x ∼ X

d(oi, oj) = xi � xj .

(1)

In this paper, the proposed HELIC learns a metric for cate-
gorical data. It satisfies all metric properties and simultaneously
captures the hierarchical couplings and heterogeneity in categori-
cal data to minimize the divergence between data distributions in
the categorical space and the metric space.

3.2 The HELIC Framework
Fig. 1 illustrates the framework of HELIC, which has a three-
layer hierarchical structure for coupling learning, heterogeneity
learning, and metric learning. At the coupling learning stage,
HELIC maps categorical data into three coupling spaces: intra-
attribute couplings, inter-attribute couplings, and attribute-class
couplings, to reveal the value-to-class couplings. At the hetero-
geneity learning stage, HELIC models each type of couplings
in the coupling spaces by specific kernel functions, and learns
a transformed matrix for each kernel to construct a heterogeneous
kernel space. As a result, the various relationships corresponding
to respective kernels are revealed. Lastly, at the metric learning
stage, a distance metric is learned from the heterogeneous kernel
spaces by involving a hypothesis and/or side information (e.g.,
label, ordinal and semantic information) relevant to a learning task.

3.3 Basic Information Functions
Let the relationships between objects, attributes and attribute
values be represented by a set of functions {v(j)(·)|j ∈ Na},
in which v(j)(·) : O → V (j) maps an object to a particular
value w.r.t. attribute aj . Let the relationships between objects and
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Fig. 1. The HELIC Framework: The coupling learning first represents
the couplings in the categorical data, then the heterogeneity learning
reveals the heterogeneous distributions of categorical values in the
coupling spaces and feeds them into metric learning.

classes be represented by the function c(·) : O → C, which
maps an object to its corresponding class or classes. For example,
in Table 2, a relationship between object, attribute and value for
A2 is v(2)(A2) = yellow, and a relationship between object and
class for A2 is c(A2) = low. With this, we define the following
basic information functions to learn the hierarchical couplings in
our proposed methods.

TABLE 2
Toy Example: The watermelon information table

ID Texture Color Root Shape Sweetness
A1 clear white straight low
A2 blurry yellow straight low
A3 blurry yellow curled low
A4 clear green slightly curled low
A5 blurry green curled high
A6 clear black slightly curled high

Definition 1 (Attribute-to-Object Mapping Function (AOF)).
AOF, denoted as g(j)(·), is a mapping function that maps values
in a value set of the j-th attribute to their corresponding objects in
the data set.

g(j)(V (j)
∗ ) = {oi|v(j)(oi) ∈ V (j)

∗ }, (2)

where V (j)
∗ ⊆ V (j) is a subset of the attribute a(j)’s value set.

Accordingly, g(j)(V
(j)
∗ ) returns those objects having the given

values in V (j)
∗ .

For example, in Table 2, g(3)({slightly curled}) = {A4, A6}
and g(2)({white, black}) = {A1, A6}.

Definition 2 (Class-to-Object Mapping Function (COF)). COF,
denoted as h(·), is a mapping function that finds those objects
whose class labels are contained in a given class set.

h(C∗) = {oi|c(oi) ∈ C∗}, (3)

where C∗ ⊆ C is a subset of all classes.

For example, h({low}) = {A1, A2, A3, A4} and h({high})
= {A5, A6} as shown in Table 2.

Definition 3 (Information Conditional Probability Functions
(ICPF)). ICPF are functions to calculate the information condi-
tional probability of the value set of a categorical attribute w.r.t. the
set of another attribute, following Bayes’ Theorem. To calculate
two sets of values from different attributes, we denote ICPF as
pj|k(·|·). To calculate a set of values and a set of classes, we
denote ICPF as pj|c(·|·). Given value subset V (j)

∗ of attribute aj
and value subset V (k)

∗ of attribute ak, ICPF pj|k(V
(j)
∗ |V (k)

∗ ) is
calculated as:

pj|k(V (j)
∗ |V (k)

∗ ) =
|g(j)(V

(j)
∗ ) ∩ g(k)(V

(k)
∗ )|

|g(k)(V
(k)
∗ )|

. (4)

Given value subset V (j)
∗ of attribute aj and class subset C∗, the

ICPF pj|c(V
(j)
∗ |C∗) is calculated as:

pj|c(V
(j)
∗ |C∗) =

|g(j)(V
(j)
∗ ) ∩ h(C∗)|
|h(C∗)|

. (5)

In Eqs. (4) and (5), ∩ calculates the intersection of two sets, and
| · | returns the number of elements in a given set.

For example, in Table 2, the ICPF of the value curled of
attribute root shape w.r.t. the value yellow of attribute color is

p3|2({curled}|{yellow}) =
|{A3,A5} ∩ {A2,A3}|

|{A2,A3}|
=

1

2
,

and w.r.t. the class low is

p3|c({curled}|{low})

=
|{A3,A5} ∩ {A1,A2,A3,A4}|

|{A1,A2,A3,A4}|

=
|{A3}|

|{A1,A2,A3,A4}|
=

1

4
.

For simplicity, in the following parts, we use p(·|·) to represent the
ICPF for both cases, i.e., between two sets of values and between a
set of values and a set of classes, when it does not cause confusion.

3.4 Learning Value-to-Class Couplings
Learning Intra-attribute Couplings. Intra-attribute couplings
represent the interactions between the values of an attribute. One
way to observe such couplings is to analyze the value distributions
in an attribute. We set a value frequency function to map the
intra-attribute distributions to a numerical space, and the intra-
attribute couplings are measured by the distance in this numerical
space. For a categorical value v

(j)
i in the j-th attribute, the intra-

attribute coupling learning function m
(j)
Ia (v

(j)
i ) maps an intra-

attribute coupling between the value and other categorical values
in this attribute to a one-dimensional vector,

m
(j)
Ia (v

(j)
i ) =

|g(j)(v
(j)
i )|

no
. (6)

An intra-attribute coupling space is spanned by the vector obtained
in an attribute by Eq. (6) and is defined below:

M(j)
Ia = {m(j)

Ia (v
(j)
i )|v(j)

i ∈ V
(j)}. (7)

For categorical data with na attributes, the intra-attribute coupling
spaces areMIa = {M(1)

Ia , · · · ,M
(na)
Ia }.

An intra-attribute coupling space is a one-dimensional em-
bedding of the categorical data space. Since a categorical value
is often embedded in a high-dimensional attribute-value space,
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the intra-attribute coupling space cannot completely reflect the
original attribute space. Inter-attribute couplings and attribute-
attribute couplings are discussed in the following to capture the
complementary information.

Learning Inter-attribute Couplings. Inter-attribute cou-
plings refer to the interactions between attributes, which con-
tain the contextual and/or semantic information of values w.r.t.
other attributes. For the examples in Table 2, if the number of
watermelons which are white and black in color are similar,
but the values of the other attributes, e.g., their root shape, are
significantly different, we can differentiate these white and black
colored watermelons by including their root shape.

HELIC uses information conditional probability to present
the inter-attribute couplings, which reveal the categorical value
distributions in subspaces w.r.t. values in other attributes. For a
categorical value v

(j)
i in the j-th attribute and the set of values in

other attributes V∗ = {V (k)|k ∈ Na, k 6= j}, the inter-attribute
coupling learning function is formalized as follows:

m
(j)
Ie (v

(j)
i ) = [p(v

(j)
i |v∗1), · · · , p(v(j)

i |v∗k), · · · , p(v(j)
i |v∗|V∗|)]

>,
(8)

where v∗l ∈ V∗. With this learning function, the inter-attribute
coupling space is constructed as follows:

M(j)
Ie = {m(j)

Ie (v
(j)
i )|v(j)

i ∈ V
(j)}. (9)

For categorical data with na attributes, the inter-attribute coupling
spacesMIe = {M(1)

Ie , · · · ,M
(na)
Ie }.

The defined inter-attribute coupling mapping function reveals
the value frequency in each subspace spanned by values in other
attributes. The distance defined in the inter-attribute coupling
space reflects inter-attribute couplings. The dimensionality of the
inter-attribute coupling space equals |V | − |V (j)|. The degree of
freedom of the j-th attribute is |V (j)| − 1, which implies that the
inter-attribute mapping function can project categorical values into
a higher dimensional space if |V | > 2|V (j)| − 1. In this case, the
inter-attribute coupling space is powerful enough to describe the
categorical attribute space.

Learning Attribute-Class Couplings. The attribute-class
couplings capture the interactions between attributes and classes,
which reveal the relationships between attribute value distributions
w.r.t. each class. For a categorical value v

(j)
i in the j-th attribute,

the learning function m
(j)
Ac(v

(j)
i ) adopts ICPF to reveal value

distributions w.r.t. classes:

m
(j)
Ac(v

(j)
i ) =

[
p(v

(j)
i |c1) · · · p(v

(j)
i |cnc

)
]>
. (10)

The inter-attribute coupling space is a Nc-dimensional space that
is spanned by the vector obtained by Eq. (10) as follows:

M(j)
Ac = {m(j)

Ac(v)|v ∈ V (j)}. (11)

For categorical data with na attributes, the attribute-class coupling
spaces areMAc = {M(1)

Ac , · · · ,M
(na)
Ac }.

Let us explain the need to consider attribute-class couplings.
Assume the number of students who pass an exam is equal to
those who fail the exam, then the similarity between passes and
failures is very high when only the intra-attribute coupling is
considered, indicating that the two outcomes, pass and fail are
similar. In reality, this may not make sense; with the attribute-
class couplings, we can obtain a more reasonable understanding.
If students are classified as first or second class based on their
overall performance, many more passes than fails appear in the

first group, compared to fewer passes in the second group. This
shows that passes and fails are not highly coupled across all classes
and it is necessary to explore attribute-class couplings which can
complement intra-attribute couplings.

3.5 Heterogeneity Learning

The learned couplings preserve the basic characteristics and dif-
ferent relationships of categorical values in its generated spaces.
Although these couplings reveal low-level value relationships
from various aspects, the high-level complex relationships among
coupling spaces need an in-depth analysis. Specifically, the het-
erogeneity in these coupling spaces should be learned, and the
interactions among these coupling spaces should be disentangled.

The heterogeneity in coupling spaces refers to the different
value distributions and different value relationships. Intrinsically,
such heterogeneities are caused by two factors: (1) each attribute
may have a different value distribution, and values in an at-
tribute may have different distributions; (2) each coupling may
reflect a different kind of relationship. Learning the heterogeneous
distributions can capture the difference between attributes and
reveal the local structure in each attribute. Meanwhile, learning
the heterogeneous relationships can find the couplings that are
consistent with the final task while filtering the noise caused by
the couplings that deviated from the final task.

The disentangled interactions between coupling spaces assist
in discovering the independent components, and combining them
can obtain the complete information in coupling spaces without
redundancy. Value-to-class couplings capture hierarchical value
relationships with regard to other values, attributes, and classes.
In order to combine these relationships that are at different levels,
a further transformation is needed to map them into the same
space. Meanwhile, these couplings are not extremely independent.
They may contain consensus and complementary information. To
reduce the duplicated information, the coupling spaces should be
selectively combined according to the interactions among them.

HELIC learns heterogeneity by adopting a variety of kernels
to map heterogeneous coupling spaces into homogeneous kernel
spaces and learning an adaptive kernel combination to integrate
information with a sparse regularization. The intuition behind
this process is that different kernels are sensitive to different
distributions. If the impact of a kernel on the values that match
its sensitive local distribution can be preserved while the impact
on others can be released, heterogeneous distribution learning can
be wrapped into kernel learning. Meanwhile, the side information
for the final learning task can be used to guide the kernel learning.
Therefore, the relationships related to the final task can be learned
as well. As an effect of sparse regularization, the duplicated
information in a kernel space can be reduced.

Given a kernel function k(·, ·) and a coupling space for the
j-th attribute M(j), denoting the vector in the coupling space
corresponding to value v

(j)
i as mi, i.e., mi = m(j)(v

(j)
i ), the

kernel space is constructed by mapping each value pair as follows,

K =


k(m1,m1) k(m1,m2) · · · k(m1,mn

(j)
v

)

k(m2,m1) k(m2,m2) · · · k(m2,mn
(j)
v

)
...

...
. . .

...
k(m

n
(j)
v
,m1) k(m

n
(j)
v
,m2) · · · k(m

n
(j)
v
,m

n
(j)
v

)

 .
Using various kernel functions for the value-to-class coupling
spaces, a set of kernel matrices {K1, · · · ,Knk

} can be obtained.
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Further, a set of transformation matrices {T1, · · · ,Tnk
} can be

learned to guarantee that the space of the p-th transformed kernel
K′p only contains the p-th kernel sensitive information, where K′p
is defined as:

K′p = Tp ·Kp. (12)

HELIC forces the transformation matrix Tp to be a diagonal
matrix. In this case, the diagonal values of Tp are the weights
of each categorical value for the p-th kernel. Let Tp,ij denote
the value of the (i, j)-th entry of matrix Tp. The large Tp,ii

implies that the p-th kernel is more sensitive to the i-th value.
Consequently, the spaces spanned by these transformed kernels
are heterogeneous kernel spaces. To capture the relationships
within value-to-class coupling spaces and enhance the fitness
of the distance measure in heterogeneous kernel spaces, HELIC
wraps the above heterogeneity learning into metric learning to
comprehensively learn the kernel transformation matrix and the
distance measure. These will be discussed in the next section.

3.6 Metric Learning
To learn a suitable distance measure for data in heterogeneous
kernel spaces, HELIC uses the squared Euclidean distance in each
heterogeneous kernel space as the base distance measure, and
then combines them to construct a suitable distance measure in
heterogeneous kernel spaces.

Given a categorical data set, considering the p-th kernel matrix
corresponding to the q-th attribute, let i and j represent the index
of values in the p-th kernel space corresponding to the i-th
and j-th objects respectively. Specifically, v(q)

i = v(q)(oi) and
v

(q)
j = v(q)(oj). The distance between oi and oj in the p-th

heterogeneous kernel space is dp,ij :

dp,ij = (K′p,i· −K′p,j·)
>(K′p,i· −K′p,j·), (13)

where K′p,i· and K′p,j· are the i-th and j-th columns of K′p, respec-
tively. As shown in Eq. (13), the base distance dp,ij is determined
by both the given kernel and the learned transformation matrix. In
addition, it equals a squared Mahalanobis distance in its original
kernel space,

dp,ij = (Kp,i· −Kp,j·)
>T>p Tp(Kp,i· −Kp,j·). (14)

The distance metric dij between the i-th and j-th objects is
defined by a linear combination of base distance measures from
heterogeneous kernel spaces:

dij =
nk∑
p=1

αpdp,ij , (15)

where αp is the weight for the p-th base distance measure.
With a positive semi-definite matrix ωp = αpT

>
p Tp, the

metric dij is calculated as:

dij =
nk∑
p=1

k>p,ijωpkp,ij , (16)

where kp,ij = Kp,i· −Kp,j·. Further, we define a vector,

kij =
[
k>1,ij k>2,ij · · · k>nk,ij

]>
, (17)

and a diagonal matrix,

ω =


ωdiag

1 0 · · · 0

0 ωdiag
2 · · · 0

...
...

. . .
...

0 0 · · · ωdiag
nk

 , (18)

where ωdiag
p is the diagonal matrix of ωp. The metric dij is equal

to a Mahalanobis distance in kij’s space with a positive semi-
definite matrix ω.

dij = k>ijωkij . (19)

The learning of the set of kernel transformation matrices
{T1, · · · ,Tnk

} and the combination coefficient of base distance
measures {α1, · · · , αnk

} can be wrapped into the learning of a
positive semi-definite matrix ω. In other words, to construct the
metric space for categorical data, we only need to learn the positive
semi-definite matrix ω. Consequently, the data vector of the i-th
object in the learned metric space can be represented by

xi = [
√
ω1,11K1,i1, · · · ,

√
ωnk,n∗vn

∗
v
Knk,in∗v ], (20)

where ωi,jj means the value of the (j, j)-th entry in ωi, and n∗v
refers to the number of values in the attribute corresponding to
the nk-th kernel. The learned representation xi can be fed into a
vector-based classifier as a numerical approximation of categorical
data. Due to space limitations, this paper only uses labels as the
side information and assumes that the distance between objects
with the same label is smaller than the distance between objects
with different labels. ω should be sparse because each kernel is
only sensitive to partial structure.

The learning objective function is defined as:

minimize
ω,b

1

n2
o

∑
i,j∈No

ξij + λ‖ω‖1

subject to ω < 0,

ωkl = 0 for k 6= l,

1 + rij(k
>
ijωkij − b) 6 ξij ,

ξij > 0,∀i, j ∈ No.

(21)

In the above function, ‖·‖1 refers to the `1-norm, λ is a trade-
off parameter that balances empirical error and regularization, and
ωkl refers to the value of the (k, l)-th entry in the matrix ω. rij
indicates whether two objects have the same label, defined as:

rij =

{
1, c(oi) = c(oj)

−1, c(oi) 6= c(oj)
(22)

Since ω is a diagonal matrix, this objective function can be
efficiently optimized by linear programming.

In this paper, we use the stochastic optimization method to
obtain an approximate optimal solution for the learning objective
function. As shown in Eq. (21), the number of training data is n2

o if
there are no categorical objects. Although linear programming can
be used to find the global optimal of Eq. (21), it is time and space
consuming when the amount of data is large. Instead of training all
the data at once, HELIC uses the stochastic optimization method to
randomly select a mini-batch of object pairs to calculate gradient
values and update the learning parameters at each iteration. After
several iterations of training, HELIC reaches an approximate
optimal that can construct the metric for categorical data. Section
4.3 will theoretically analyze the necessity and effectiveness of
using stochastic optimization to obtain the approximate solution,
and Section 5.6 will empirically evaluate the convergence of
stochastic optimization for solving the objective function. Both
theoretical and empirical analyses demonstrate that the stochastic
optimization method can effectively solve the objective function
with a fast convergence speed. Therefore, HELIC enjoys good
scalability for large-scale categorical metric learning.
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4 THEORETICAL ANALYSIS OF HELIC PERFOR-
MANCE

4.1 HELIC Effectiveness
Before proving the effectiveness of HELIC for categorical data,
we give the following lemma.

Lemma 1. Given an ideal kernel space that is spanned by a set
of kernels K = {K1, · · · ,Kn} to capture various information,
the target similarity in categorical space S , and a bounded loss
function `(·), the expected loss of similarity with respect to
S based on K and its subset K∗ are denoted by ˆ̀(S;K) and
ˆ̀(S;K∗). Their difference is bounded as

|ˆ̀(S;K)− ˆ̀(S;K∗)| ≤
√
I(S;K \ K∗|K∗), (23)

where I(·; ·|·) is the conditional mutual information, and K \ K∗
refers to the subspace that is spanned by the set of kernels in K
minus the set of kernels in K∗.

Proof. Considering |`(x)| ≤ 1, and two probability distributions
P and Q, we have∣∣∣∣∫ `(x)dQ−

∫
`(x)dP

∣∣∣∣ =

∣∣∣∣∫ (1− θ)`(x)dQ

∣∣∣∣
≤
∫
|1− θ| dQ

≤
√
KL(Q;P ),

(24)

where θ = dP
dQ , KL(·; ·) is the KL divergence, and the upper

bound holds because the `1 variational distance is bounded by the
square root of the KL divergence.

With the above, for a fixed ideal similarity set K, its subspace
K∗ and the target similarity space S , we have

|ES|K`(S;K)| −ES|K∗`(S;K) ≤
√
KL(PS|K;PS|K∗), (25)

where PS|K and PS|K∗ are the conditional distribution of S
conditioned on K and K∗, respectively.

Taking the expectation with respect to K and Jensen’s inequal-
ity, we obtain

|ˆ̀(S;K)− EKES|K∗`(S;K)| ≤
√
EKKL(PS|K;PS|K∗).

(26)
Since

ˆ̀(S;K∗) ≤ EKES|K∗`(S;K) (27)

and
ˆ̀(S;K) ≤ ˆ̀(S;K∗), (28)

we obtain

|ˆ̀(S;K)− ˆ̀(S;K∗)| ≤
√
EKKL(PS|K, PS|K∗). (29)

Considering

EKKL(PS|K, PS|K∗) = I(S;K \ K∗|K∗), (30)

we have

|ˆ̀(S;K)− ˆ̀(S;K∗)| ≤
√
I(S;K \ K∗|K∗). (31)

Therefore, HELIC effectiveness is ensured by the following
theorem.

Theorem 4.1. HELIC can improve the metric accuracy if each
coupling space contains information complementary to the other
coupling spaces and the heterogeneous kernel spaces capture such
information effectively.

Proof. Given a set of coupling space

M = {M1,M2, · · · ,Mn∗},

and a set of kernel matrices generated on the coupling space
{K1, · · · ,Kn}, let the kernel space spanned by these kernel
matrices be K∗ = {K1, · · · ,Kn} and the target similarity space
S . The kernel space K∗ must belong to an ideal space K which
obeys the following property.

I(S;Km|Km−1) > 0, (32)

where Km and Km−1 refer to the subspace in K that are spanned
by a set of m components and a subset with m − 1 elements in
that set, respectively.

In addition,

I(S;K \ Km−1|Km−1)− I(S;K \ Km|Km)

= (H(S,Km−1) +H(K)−H(S,K)−H(S,Km−1))

− (H(S,Km) +H(K)−H(S,K)−H(S,Km))

= (H(Km)−H(Km−1))− (H(S,Km)−H(S,Km−1))

= H(Km|Km−1)−H(Km|S,Km−1)

= I(S,Km|Km−1).
(33)

Therefore, we have

I(S;K \ Km−1|Km−1)− I(S;K \ Km|K) > 0. (34)

According to Lemma 1 and Eq. (34), when m increases,
I(S;K \ Km|Km) as well as the gap between `(S;K) and
`(S;Km) will decrease. Therefore, the similarities in the kernel
space K∗ can increase the similarity accuracy. This means that
HELIC can improve the similarity accuracy if each coupling space
contains information that is complementary to others.

Since HELIC adopts different coupling learning functions to
capture data characteristics w.r.t. the intra-attribute value distribu-
tions, inter-attribute interactions, and attribute-class relationships,
the information contained in each coupling space reflects a respec-
tive view and is thus complementary to other coupling spaces. The
proposed heterogeneity learning approach reveals and combines
different information from value-to-class coupling spaces. Hence,
HELIC-based metric learning captures heterogeneous characteris-
tics embedded in categorical data.

4.2 HELIC’s Generalization Error Bound

This section analyzes HELIC’s learning generalization error bound
which shows to what extent HELIC can achieve its effectiveness.
The HELIC’s generalization error bound is given by the following
theorem.

Theorem 4.2. Let ε(ω, b) be the expected error, and εZ(ω, b) be
the empirical error. For any 0 < δ < 1, the generalization error
of learning can be bounded with probability 1− δ as

ε(ω, b)− εZ(ω, b) 6 2(1 + 1/
√
λ)
√

2 ln(1/δ)/no

+

(
8 + 16

√
e ln(nonk)

)
/
√
noλ+ 12/

√
no.

(35)
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Proof. According to Theorem 3 in [36], we have

ε (ω, b)− εZ (ω, b) 6
4Rn√
λ

+
4(3 + 2X∗/

√
λ)

√
no

+ 2
(

1 +X∗/
√
λ
)(2 ln

(
1
σ

)
no

) 1
2

,

(36)
where Rn is the Rademacher complexity of metric learning
defined as

Rn =
1⌊
no

2

⌋EKEσ
∥∥∥∥∥∥∥
bno

2 c∑
i=1

σiki(bno
2 c+1)

∥∥∥∥∥∥∥
∗

,

and

X∗ = sup
k∈K

∥∥∥kijk>ij∥∥∥∗ .
In the above formula, ‖·‖∗ refers to the dual norm of `1-norm,⌊
no

2

⌋
denotes the largest integer less than no

2 , K is the ker-
nel space, {σ1, σ2, · · · , σbno

2 c} are independent variables drawn
from the Rademacher distribution, and ED is the expectation over
space D. Since the dual norm of `1-norm is the `∞-norm and the
maximum of kij in the space K is not more than 1, hence

X∗ = sup
k∈K
‖kij‖2∞ 6 1, (37)

and the Rademacher complexity can be written as

Rn =
1⌊
no

2

⌋EKEσ
∥∥∥∥∥∥∥
bno

2 c∑
i=1

σiki(bno
2 c+i)

∥∥∥∥∥∥∥
∞

.

Considering the property of norm and letting i∗ =
(⌊
no

2

⌋
+ i
)
,

for any 1 < q <∞, that

Rn 6
1⌊
no

2

⌋EKEσ
∥∥∥∥∥∥∥
bno

2 c∑
i=1

σikii∗

∥∥∥∥∥∥∥
q

=
1⌊
no

2

⌋EKEσ
nonk∑

l=1

nonk∑
m=1

∣∣∣∣∣∣∣
bNo

2 c∑
i=1

σikl,ii∗km,ii∗

∣∣∣∣∣∣∣
q

1
q

6
1⌊
no

2

⌋EK
nonk∑

l=1

nonk∑
m=1

Eσ

∣∣∣∣∣∣∣
bno

2 c∑
i=1

σikl,ii∗km,ii∗

∣∣∣∣∣∣∣
q

1
q

,

(38)

where kl,ij refers to the l-th element of vector kij defined as in
Eq. (17). Considering the Khinchin-Kahane inequality [37], that

Eσ

∣∣∣∣∣∣∣
bno

2 c∑
i=1

σikl,ii∗km,ii∗

∣∣∣∣∣∣∣
q

6 q
q
2

Eσ
∣∣∣∣∣∣∣
bno

2 c∑
i=1

σikl,ii∗km,ii∗

∣∣∣∣∣∣∣
2

q
2

= q
q
2

b
no
2 c∑
i=1

K2
l,ii∗K

2
m,ii∗


q
2

6 sup
k∈K
‖kij‖2q∞

(⌊no
2

⌋) q
2
q

q
2

6
(⌊no

2

⌋) q
2
q

q
2 .

(39)

Putting the result of Eq. (39) into Eq. (38), we obtain that

Rn 6
1⌊
no

2

⌋ ((nonk)
2
(⌊no

2

⌋) q
2
q

q
2

) 1
q

. (40)

Letting q = 4 ln(nonk), Eq. (40) induces that

Rn 6 2

√
e ln(nonk)/

⌊no
2

⌋
6 4

√
e ln(nonk)/no.

(41)

Putting Eq. (37) and Eq. (41) into Eq. (36) yields Eq. (35).
Theorem 4.2 is thus proved.

This bound provides a solid foundation for HELIC and of-
fers the following guidance. (1) More training data leads to a
lower generalization error. (2) The smaller the number of base
kernels, the lower the generalization error. Fortunately, d has a
logarithmic relationship with the generalization error. This shows
that the number of base kernels will not dramatically increase the
generalization error. (3) According to Theorem 4.1, increasing the
number of base kernels provides more complementary information
which reduces the expected error ε(ω, b). Therefore, the overall
performance will still increase when complementary base kernels
are added. This can be achieved by building additional coupling
spaces and using more discriminative kernels.

4.3 Computational Efficiency
The HELIC time complexity is determined by two parts: coupling
learning and metric learning. For the coupling learning part,
the time cost depends on what kind of couplings HELIC cap-
tures. In this paper, HELIC captures the intra-attribute couplings,
inter-attribute couplings, and attribute-class couplings. Calculating
intra-attribute coupling requires the measurement of the frequency
of each value, which has a complexity O(nv). Capturing inter-
attribute couplings requires calculating the relationship of each
value pair in each attribute pair. Accordingly, the time cost is
O(n2

mvn
2
a), where nmv is the maximal number of values in

the attributes. For the attribute-class couplings, HELIC needs to
calculate the relation between each value and each class that has
time complexity of O(nvnc). Therefore, the time complexity for
the coupling learning part is O(nv(nc + 1) + n2

mvn
2
a) in this

paper.
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In metric learning, the time complexity depends on the solu-
tion. If using linear programming to find the global optima, the
time complexity in the worst case scenario is O((n2

o)
3.5n2

ω), and
a fast approximate solution can achieve O(n2

o+
2(nω+n2

o) log(n2
o)

ε2 )

with O(1 ± ε) cost, where nω =
∑nk

i=1 n
(i∗)
v is the length

of parameter ω, and n
(i∗)
v refers to the number of values in

attribute i∗ corresponding to the i-th kernel. If using stochastic
optimization for an approximate optimum, the time complexity is
only O(nbnωnstep), where nb is the number of object pairs in
each batch and nstep is the number of iterations used to achieve
convergence. Compared with the linear programming method,
stochastic optimization is much more efficient if it can converge
within a small number of iterations.

Actually, stochastic optimization can effectively find an ap-
proximate optimal solution for HELIC. Considering the structure
of our objective function, the key parameter which needs to be
learned is ω, which is a vector with size nω . When n2

o � nω ,
the loss of the objective function will converge before using all
n2
o training data. Since nω =

∑nk

i=1 n
(i∗)
v = nvn

∗
k, where n∗k is

a constant that relates to the number of used kernels, the above
condition can be rewritten as n2

o � nvn
∗
k. Fortunately, the large

scale categorical data always fits this condition because: (1) the
number of discrete values is much less than the number of objects;
(2) the number of base kernels used in HELIC should be small to
guarantee a lower generalization error according to Section 4.2.

The space complexity of HELIC with linear programming
is O(n2

onω) and of HELIC with stochastic optimization is
O(nbnω). For a large categorical data set, the space complexity
is very high when linear programming is used to find a perfect
solution. However, a stochastic optimization-based approximate
solution largely reduces the space complexity since nb � n2

o.
Therefore, it is necessary to use stochastic optimization for HELIC
to tackle large categorical data.

Overall, HELIC has the time complexity O(nv(nc + 1) +
n2
mvn

2
a + nbnωnstep) and space complexity O(nbnω). This

means HELIC suits large data. In addition, HELIC can be further
sped up by applying parallel computing to both coupling learning
and metric learning for large data.

5 EXPERIMENTS AND EVALUATION

We empirically evaluate the proposed HELIC framework w.r.t. the
following five criteria:

1) the HELIC representation performance: whether HELIC
enables a model to obtain better results;

2) the HELIC representation quality: the goodness of the
metric learned by HELIC;

3) the effect of learning couplings and heterogeneity: to
what extent the learned couplings and heterogeneity con-
tribute to the metric;

4) the HELIC scalability: whether HELIC is scalable w.r.t.
different data factors for a large amount of data; and

5) the HELIC stability: whether the HELIC performance is
stable under different settings.

5.1 Parameter Settings

In our experiments, the HELIC default settings are as follows. The
kernels used in HELIC are 11 Gaussian kernels with width from
2−5 to 25 and three polynomial kernels with order from 1 to 3.

λ is set as 1
nk

for HELIC. The stochastic optimization method
used to solve the HELIC objective function is Adam [38] with
the initial learning rate 10−3, the batch size 20, and the number
of iterations 1, 000. For the parameters in these baseline methods,
we take their recommended settings.

5.2 Data Sets and Characteristics
We use 30 data sets1 in different areas for the evaluation. These
comprise medical data: Lymphography (Lym), Hepatitis (Hep),
Audiology (Aud), Primarytumor (Prim), Spect (Spc), Breastcancer
(Br), Mammographic (Ma); gene data: DNAPromoter (DNAP),
DNANominal (DNAN), Splice (Spc); social and census data: Hou-
sevotes (Hsv), Adult (Adt), Census (Cens), Hayesroth (Hay); hi-
erarchical decision-making data: Monks3 (Monk), Krvskp (Krv),
Tictactoe (Tic), Krkopt (Krk), Connect4 (Cnt); nature data: Soy-
beansmall (SoyS), Soybeanlarge (SoyL), Zoo, Flare (Flr), Mush-
room (Ms); Business data: Crx; psychological experimental data:
Balance (Ba); disaster prediction data: Titanic (Titn); and synthetic
data with heterogeneous couplings: Mofn3710 (Mof), ThreeOf9
(Tr) and Led24 (Ld).

These 30 data sets have strong diversity in terms of data
factors: the number of objects (no), the number of attributes (na),
the number of classes (nc), the average number of attribute values
(nav), and the maximal number of attribute values (nmv). Specif-
ically, the number of objects ranges from 101 to 299,285, and the
number of attributes ranges from 3 to 69. The data sets contain
both binary and multiple classes with the maximum number of
24 classes. The average and maximal numbers of attribute values
range from 2 to 16.09 and from 2 to 53, respectively. They are
used to test the HELIC sensitivity on diverse data characteristics.

Monte Carlo cross-validation is taken to partition a data set
to training and test sets. Compared with other validation methods,
Monte Carlo cross-validation can largely retain the heterogeneous
distributions in the training set. Hence, it is more suitable for
evaluating HELIC, which intends to learn the heterogeneous
distributions. Specifically, we randomly select 90% of objects in
each data set for training and use the remainder for testing, and 20
random sampling iterations generate 20 sets of training and test
data for the experiments.

5.3 Testing HELIC Representation Performance
The HELIC representation performance is evaluated from the
following perspectives: (1) The HELIC learned metric is compared
with the baseline categorical distance measure, i.e., Hamming
distance (Hamming for short). (2) It is also compared with five
state-of-the-art distance measures for categorical data: COS [23],
MTDLE [24], Ahmad [20], DILCA [1], and Rough [18], to show
whether HELIC outperforms the others in learning metric.

5.3.1 HELIC-enabled Classification Performance
The distance learned by HELIC is incorporated into KNN, which
is probably the most popular distance-based classifier and is
sensitive to distance measure, to demonstrate the HELIC-enabled
classification performance. To avoid the impact of class imbalance,
we evaluate the performance by F-score, which is a combination
of recall and precision. A higher F-score indicates better learning
accuracy. For a method, the averaged rank (AR) over all data sets
is used to evaluate its overall performance.

1. They are downloaded from: http://archive.ics.uci.edu/ml;
https://www.sgi.com/tech/mlc/db; and https://www.kaggle.com.
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TABLE 3
KNN Classification F-score (%) with Different Distance Measures. The Monte Carlo cross-validation results are reported w.r.t. mean ± standard

deviation. The best results are highlighted in bold, the results without a significant difference from the best results for a data set under the student
t-test (p-value > 0.05) are labelled by ∗, and ∆ is the HELIC’s improvement over the best results of the other measures. The averaged rank of a

method over all data sets with significant difference from others w.r.t. the Bonferroni-Dunn test (p-value < 0.05) is labelled by ∗∗.

Data no na HELIC COS MTDLE Ahmad DILCA Rough Hamming ∆
SoyS 47 35 100 ± 0.00∗ 100 ± 0.00∗ 100 ± 0.00∗ 100 ± 0.00 ∗ 100 ± 0.00∗ 100 ± 0.00 ∗ 100 ± 0.00∗ 0.00%
Zoo 101 16 100 ± 0.00∗ 100 ± 0.00∗ 100 ± 0.00∗ 100 ± 0.00∗ 100 ± 0.00∗ 97.75 ± 11.11 100 ± 0.00∗ 0.00%

DNAP 106 57 92.90 ± 5.85∗ 75.89 ± 13.35 81.67 ± 10.19 79.98 ± 9.14 90.33 ± 10.31 81.16 ± 10.30 78.05 ± 12.00 2.85%
Hay 132 4 90.85 ± 5.07∗ 79.64 ± 9.71 68.54 ± 10.55 52.26 ± 10.20 54.60 ± 12.58 81.50 ± 8.59 61.73 ± 12.40 11.47%
Lym 148 18 86.74 ± 8.11∗ 77.82 ± 10.01 80.54 ± 10.49 83.84 ± 10.57∗ 84.32 ± 9.59∗ 81.25 ± 8.21∗ 78.52 ± 8.70 2.87%
Hep 155 13 74.70 ± 13.59∗ 64.05 ± 13.00 69.17 ± 15.65∗ 65.40 ± 13.25 61.73 ± 14.22 64.01 ± 14.89 65.65 ± 15.19 7.84%
Aud 200 69 75.44 ± 7.60∗ 41.51 ± 7.20 36.70 ± 7.50 54.29 ± 8.96 64.83 ± 8.04 36.37 ± 7.60 58.55 ± 10.30 16.36%
Hsv 232 16 96.65 ± 3.40 94.28 ± 4.95 91.09 ± 5.55 95.81 ± 4.15 94.90 ± 4.14 91.59 ± 5.14 93.77 ± 5.30 0.88%
Spc 267 22 53.09 ±10.35∗ 51.31 ± 9.16∗ 52.94 ± 9.48∗ 52.70 ± 9.69∗ 51.11 ± 8.97∗ 51.18 ± 7.90∗ 51.98 ± 8.85∗ 0.28%
Mof 300 10 94.39 ±5.86∗ 79.35 ± 9.07 68.74 ± 10.58 79.35 ± 9.07 71.21 ± 8.42 77.70 ± 11.44 74.82 ± 8.08 18.95%
SoyL 307 35 90.97 ± 7.06 93.45 ± 4.87∗ 64.92 ± 10.09 93.43 ± 4.95∗ 92.87 ± 5.35∗ 90.05 ± 4.92 89.84 ± 7.21 0.00%
Prim 339 17 35.76 ± 8.61∗ 23.09 ± 6.71 27.00 ± 6.80 28.30 ± 7.93∗ 27.46 ± 7.56∗ 20.80 ± 6.64 29.42 ± 9.53 21.55%
Monk 432 6 100 ± 0.00∗ 34.85 ± 0.00 99.88 ± 0.52∗ 34.85 ± 0.00 34.85 ± 0.00 100 ± 0.00∗ 92.06 ± 5.24 0.00%

Tr 512 9 91.01 ±2.93∗ 32.00 ± 0.00 75.88 ± 8.41 32.00 ± 0.00 32.00 ± 0.00 78.84 ± 5.09 78.84 ± 5.09 15.44%
Ba 625 4 58.91 ±1.31∗ 21.25 ± 0.00 41.80 ± 5.82 21.25 ± 0.00 21.25 ± 0.00 39.32 ± 4.25 39.32 ± 4.25 40.93%
Crx 690 9 83.26 ± 5.68∗ 78.58 ± 4.74 77.54 ± 5.68 82.79 ± 3.86∗ 81.02 ± 4.08 77.63 ± 5.12 78.28 ± 4.87 0.57%
Br 699 9 95.72 ± 2.07∗ 94.07 ± 2.84 93.44 ± 3.21 96.34 ± 2.00∗ 94.14 ± 2.50 92.65 ± 3.42 93.93 ± 2.33 0.00%
Ma 830 4 79.61 ±4.59∗ 70.22 ± 7.12∗ 70.14 ± 7.10∗ 70.20 ± 7.02∗ 70.22 ± 7.81∗ 69.79 ± 7.11 ∗ 69.95 ± 7.29∗ 13.37%
Tic 958 9 92.80 ± 3.49 90.56 ± 2.70 78.29 ± 5.55 100 ± 0.00∗ 89.72 ± 3.79 46.65 ± 4.10 46.56 ± 4.65 0.00%
Flr 1066 11 59.88 ± 3.36∗ 57.01 ± 4.38∗ 57.11 ± 3.09 54.41 ± 3.39 55.61 ± 3.13 55.88 ± 4.38 54.98 ± 4.00 4.85%
Titn 2201 3 23.33 ± 2.48∗ 10.54 ± 1.76 10.06 ± 0.62 10.06 ± 0.99 10.54 ± 1.76 10.54 ± 1.76 10.54 ± 1.76 32.48 %

DNAN 3186 60 93.12 ± 1.05∗ 77.52 ± 1.21 52.22 ± 0.00 80.33 ± 1.48 91.65 ± 1.39 81.46 ± 1.75 69.11 ± 1.45 1.60 %
Spl 3190 60 93.69 ± 1.11∗ 77.25 ± 2.19 24.45 ± 0.00 79.85 ± 2.07 84.96 ± 2.21 81.05 ± 1.81 69.29 ± 2.24 10.28 %
Krv 3196 36 96.98 ± 1.06∗ 91.77 ± 1.66 90.04 ± 1.65 92.46 ± 1.74 91.39 ± 2.05 89.00 ± 1.43 91.48 ± 1.68 4.89%
Ld 3200 24 63.37 ± 1.94∗ 62.11 ± 1.85∗ 41.35 ± 2.74 61.81 ± 1.98∗ 62.58 ± 1.85∗ 47.89 ± 2.37 41.57 ± 2.19 1.26 %
Ms 5644 22 100 ± 0.00∗ 99.98 ± 0.06∗ 100 ± 0.00∗ 100 ± 0.00 ∗ 100 ± 0.00∗ 100 ± 0.00 ∗ 100 ± 0.00∗ 0.00%
Krk 28056 6 53.62 ± 1.71∗ 52.66 ± 0.78∗ NA 52.50 ± 0.96∗ 52.57 ± 1.02∗ 39.05 ± 0.70 10.42 ± 0.10 1.82%
Adt 30162 8 84.91 ± 0.86∗ 68.13 ± 1.12 NA 68.20 ± 1.07 68.16 ± 1.14 67.76 ± 1.04 68.01 ± 1.04 24.50%
Cnt 67557 42 56.33 ± 0.78∗ 48.23 ± 0.73 NA 46.95 ± 0.49 46.65 ± 0.55 53.22 ± 0.73 45.81 ± 0.72 5.84%

Cens 299285 35 68.93 ± 0.55∗ 66.88 ± 0.40 NA 67.47 ± 0.43 66.66 ± 0.42 66.96 ± 0.55 67.16 ± 0.37 2.64%
AR - - 1.45∗∗ 4.27 4.87 3.73 4.00 4.72 4.68 2.28

HELIC is compared with six distance measures with the results
shown in Table 3. The averaged classification performance and
standard deviation on the partitions of a data set are reported
w.r.t. F-score. The best results are highlighted in bold, the results
without significant difference from the best results under the
student t-test (p-value > 0.05) are labelled by ∗, and ∆ is the
HELIC’s improvement over the best results of other measures. The
averaged ranks of these methods over all data sets are reported to
show their overall performance. It should be noted that MTDLE
cannot produce the distance results on some large data sets in our
experiments due to out-of-memory error, which is marked by NA
in the table. In most cases, HELIC performs significantly better
than the compared methods. For example, the F-score improves
40.93% in Balance and 32.48% in Titanic compared to the best-
performing method MTDLE and COS. In some simple data sets,
e.g., Zoo, Monks3 and Mushroom, on which the Hamming method
achieves high performance, HELIC achieves 100.

The results also show that some of state-of-the-art measures
fail to appropriately measure distances in some data sets. For ex-
ample, on Monks3 and Balance, COS, Ahmad and DILCA achieve
the same low performance. The reason lies in the fact that they
only capture frequency-based intra- or inter-attribute couplings but
ignore other interactions, e.g., attribute-class couplings; values in
these data sets follow a uniform distribution and have the same
frequency. In contrast, HELIC captures hierarchical value-to-class
couplings that address such data characteristics.

To statistically compare HELIC’s performance with the above
distance measures, we calculate their averaged ranks per the
Friedman test and Bonferroni-Dunn test [39]. The χ2

F of Friedman
test is 45.92 associated with p-value 9.42e−9. This result indicates
that the performance of all the compared methods is not equal.

Further, the Bonferroni-Dunn test evaluates the critical difference
(CD) between HELIC and other methods, and shows the CD at
p-value < 0.05 is 1.64. As shown in Table 3, HELIC achieves
an overall averaged rank 1.45. Compared with the best state-of-
the-art method Ahmad with an averaged rank of 3.73, HELIC
improves by 2.28 which is larger than the CD value and shows
statistical significance. We show all the comparison results in Fig.
2, which reveals HELIC is significantly (p < 0.05) better than all
the compared distance measures.

1 2 3 4 5 6 7

HELIC
Ahmad
DILCA
COS

Hamming
Rough
MTDLE

Fig. 2. Comparison of HELIC against the Other Distance Measures per
the Bonferroni-Dunn Test. All distance measures with ranks outside the
marked interval are significantly different (p < 0.05) from HELIC.

5.3.2 HELIC-enabled Retrieval Performance
We further test the HELIC representation performance in object
retrieval. The objects in the test set are used as queries, and
precision@k, i.e., the fraction of k-closest objects selected per a
distance measure that are the same-class neighbors, is reported.
Three data sets, i.e., Breastcancer, Krvskp, and Led24 are tested,
in which all the compared distance measures can achieve similar
KNN classification accuracy for retrieval performance evaluation.

Different from the KNN classification results, the precision@k
of retrieval can demonstrate the quality of learned distance from
local (when k is small) to global (when k is large). The results are
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(a) Curve on Breastcancer Data Set.
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(b) Curve on Krvskp Data Set.
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(c) Curve on Led24 Data Set.

Fig. 3. The Precision@k-Curve of Different Distance Measures: A better metric yields a higher curve in this figure.

shown in Fig. 3, the precision of HELIC-enabled retrieval consis-
tently outperforms the others. It reflects that HELIC can capture
more details of distribution than other distance measures, which
is powered by hierarchical coupling learning and heterogeneity
learning.

5.4 Testing HELIC Representation Quality
We follow the definition of (ε, γ)-good criterion in [40] to evaluate
the representation quality of the proposed HELIC. Following
Definition 4 in [40], Q is a strongly (ε, γ)-good similarity function
for a learning problem P if at least a 1 − ε probability mass of
objects o satisfies:

Ex′∼P [Q(o, o′)|c(o) = c(o′)]

> Eo′∼P [Q(o, o′)|c(o 6= c(o′)] + γ.

The intuition of this criterion is that a good similarity measure
should make the data in the same class closer than the data in
different classes. More importantly, the (ε, γ)-good similarity can
induce a classifier with a bounded error (see more details in
Theorem 1 of [40]). In this experiment, we transform the learned
distance metric D to similarity measure S as follows:

Sij = 1−Dij . (42)

The transformed similarity S is then used for the (ε, γ)-good
criterion. Since different ε values may correspond to different γ
values, we draw the (ε, γ)-curves to demonstrate the quality of
the learned metric and compared methods. With the same ε, the
better metric would have a greater γ. In other words, the better
metric would yield a higher curve in the (ε, γ)-curve figure. In
this experiment, we draw the (ε, γ)-curves on three data sets, i.e.,
DNAPromoter, Audiology and Spect. The results are shown in Fig.
4. It should be noted that we only focus on ε that can guarantee a
non-negative margin, i.e., γ > 0. Therefore, Fig. 4 only displays
part of (ε, γ)-curve, in which γ > 0.

The results illustrate that the proposed HELIC is better than
its competitors in terms of (ε, γ)-good criterion. The results also
reveal the insight behind the KNN classification performance in
Table 3. For the DNAPromoter and Audiology data sets, the
HELIC-enabled KNN has much higher F-score than the others
since HELIC yields a larger margin between different classes,
which is reflected by the (ε, γ)-good in Figs. 4(a) and 4(b). For the
Spect data set, all methods have a low F-score, and the HELIC-
enabled KNN is only slightly better than its competitors. This is
because none of the methods can well distinguish nearly 40% part
of the Spect data, and HELIC can separate more data, compared
with other methods, as shown in Fig. 4(c).

5.5 Effect of Learning Couplings and Heterogeneity

To evaluate the contribution to learning hierarchical couplings and
heterogeneity, HELIC is compared with its variant metric HC
which only captures hierarchical couplings. HC concatenates on
the intra-attribute coupling space, inter-attribute coupling space
and attribute-class coupling space for each attribute to construct
a value-to-class coupling space. The Euclidean distance in this
space is then used as the metric. Meanwhile, HELIC is compared
with its variant HELIC-Linear which only adopts a linear kernel
to learn a homogeneous metric in the hierarchical coupling space.
The comparative classification results are shown in Table 4.

TABLE 4
KNN Classification F-score (%) with HELIC Variants. The Monte Carlo
cross-validation results are reported as mean ± standard deviation. ∆

shows the HELIC improvement over the best results of its variants.

Dataset HELIC HC HELIC-Linear ∆
SoyS 100 ± 0.00 100 ± 0.00 100 ± 0.00 0.00%
Zoo 100 ± 0.00 100 ± 0.00 100 ± 0.00 0%

DNAP 92.90±5.85 94.93 ± 7.00 85.77± 8.75 0%
Hay 90.85±5.07 85.89 ± 6.39 67.09 ± 13.94 5.77%
Lym 86.74 ± 8.11 77.69 ± 12.71 58.98 ± 15.96 11.65%
Hep 74.70 ± 13.59 70.08 ± 13.07 62.27 ± 15.30 6.65 %
Aud 75.44±7.60 54.94 ± 11.85 47.29 ± 7.24 37.31%
Hsv 96.65 ± 3.40 95.43 ± 4.46 94.48 ± 3.90 1.28%
Spc 53.09 ± 10.35 51.40 ± 9.51 50.15 ± 8.18 3.28%
Mfn 94.39 ± 5.86 94.92 ± 3.36 75.16 ± 10.24 0.00%
SoyL 90.97 ± 7.06 92.27 ± 3.86 89.72 ± 5.92 0.00%
Prim 35.76 ± 8.61 26.03 ± 5.82 24.71 ± 5.64 37.38%
Monk 100 ± 0.00 100 ± 0.00 100 ± 0.00 0.00%

Tr 91.01 ± 2.93 89.96 ± 2.92 76.23 ± 5.18 1.17%
Ba 58.91 ± 1.31 59.64 ± 1.46 44.99 ± 7.12 0%
Crx 83.26 ± 5.68 82.43 ± 4.39 81.34 ± 5.17 1.01%
Br 95.72 ± 2.07 94.19 ± 2.80 92.71 ± 2.67 1.62%
Ma 79.61 ± 4.59 70.31 ± 7.00 76.07 ± 8.45 4.65%
Tic 92.80 ± 3.49 79.73 ± 2.60 66.30 ± 4.65 16.39%
Flr 59.88 ± 3.36 55.40 ± 3.93 55.31 ± 4.32 8.09%
Titn 23.33 ± 2.48 12.15 ± 1.65 12.15 ± 1.65 92.02%

DNAN 93.12 ± 1.05 91.83 ± 1.64 87.43 ± 1.34 1.40%
Spc 93.69 ± 1.11 75.88 ± 2.03 63.45 ± 2.60 23.47%
Krv 96.98 ± 1.06 92.49 ± 0.92 95.27 ± 0.82 1.79%
Ld 63.37 ± 1.94 57.71 ± 2.46 51.56 ± 2.11 9.81%
Ms 100 ± 0.00 100 ± 0.00 100 ± 0.00 0.00%
Krk 53.62 ± 1.71 52.44 ± 1.58 52.03 ± 1.96 2.25%
Adt 84.91 ± 0.86 84.32 ± 0.80 68.16 ± 1.46 0.70%
Cnt 56.33 ± 0.78 43.07± 0.50 43.82 ± 0.67 28.55%

Cens 68.93 ± 0.55 64.23 ± 0.49 64.82 ± 0.52 7.32%
AR 1.27∗∗ 2.02 2.72 0.75

We see from Table 4 that the overall averaged rank of HELIC,
HC, and HELIC-Linear are 1.27, 1.98 and 2.75, respectively. The
Friedman test shows that χ2

F of these results is 36.76 associated
with p-value 1.04e−8, which means the performance of these
three methods is significantly different. We illustrate the compari-
son between HELIC and its variants in terms of averaged rank in
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(c) (ε, γ)-curve on Spect Data Set.

Fig. 4. The (ε, γ)-Curve of Different Transformed Similarity Measures: A better metric would yield a curve with higher y-axis values.

Fig. 5, which shows HELIC is significantly better than HC and
HELIC-Linear in terms of CD value 0.60 of the Bonferroni-Dunn
test at p-value < 0.05. The results demonstrate that heterogeneity
learning contributes to an additional 0.75 to the averaged rank of
hierarchical couplings. In some data sets, we can see that the F-
score improvement ratio of HELIC in terms of HC is very large,
e.g., 92.02% on Titanic, and 37.38% on Audiology. However,
HELIC does not achieve better performance than HC over all data
sets, showing that not all data sets involve strong heterogeneity.

1 2 3

HELIC
HC

HELIC-Linear

Fig. 5. Comparison of HELIC against Its Variants per the Bonferroni-
Dunn Test. All distance measures with ranks outside the marked interval
are significantly different (p < 0.05) from HELIC.

The results also demonstrate the significance of learning
hierarchical couplings (HC), since HC achieves the averaged
rank of 2.88 compared with the other six methods, as shown
in Table 3. This is better than that of the best state-of-the-art
method Ahmad (3.40). However, HC performance does not show
significant difference from others, as shown in Fig. 6.

1 2 3 4 5 6 7

HC
Ahmad
DILCA
COS

Hamming
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MTDLE

Fig. 6. Comparison of HC against the Other Distance Measures per
the Bonferroni-Dunn Test. All distance measures with ranks outside the
marked interval are significantly different (p < 0.05) from HC.

The HELIC-Linear performance is worse than that of HC
according to Table 4. These results indicate that the distributions
in coupling spaces are complex and heterogeneous. Therefore, a
learning metric in the linear space transformed by the linear kernel
is not sufficient. As analyzed in Section 4.2, a variety of kernels
should be tested to capture the heterogeneity.

5.6 Testing HELIC Scalability
HELIC scalability is proportional to the number of iterations to
achieve convergence, as discussed in Section 4.3. In this section,
we first empirically evaluate the convergence speed of HELIC, and
then illustrate the HELIC time cost under different data factors.

We use six real data sets to evaluate HELIC convergence.
These data sets represent data with a large number of attributes
and objects. The method used to solve HELIC is Adam with
the same settings as given in Section 5.1. The loss of objective
function Eq. (21) for these data sets is shown in Fig. 7. As shown
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Fig. 7. The HELIC Training Loss on Different Data Sets. The stochastic
optimization method for HELIC is Adam [38], the initial learning rate is
10−3, and the batch size is 20. X-axis refers to the number of iterations,
and y-axis refers to the loss value of HELIC metric learning objective
function Eq. (21).

in Fig. 7, the loss value converges rapidly within 200 iterations.
This is consistent with our theoretical analysis and demonstrates
that HELIC time complexity is very low.

We further generate synthetic data to test the computational
cost of HELIC. The default data factors for synthetic data are as
follows: the number of objects is 1, 000, the number of attributes
is 10, and the maximum number of values in each attribute is 3.
We generate three groups of data and tune one of these factors for
each group. For the first group of data, the number of objects is
from 1, 000 to 100, 000. For the second group of data, the number
of attributes is from 10 to 200. For the third group of data, the
maximum number of values in the attributes is from 10 to 100.
The HELIC time cost under each data factor is shown in Fig. 8.

As shown in Fig. 8, the HELIC time cost is at the same
level as most of the state-of-the-art methods. Although the Rough
method has lower time complexity, it has a lower representation
performance compared with others. Fig. 8(a) shows that the
HELIC time cost is almost stable (from 0.84(s) to 3.47(s)), which
demonstrates its good scalability w.r.t. the amount of data no.
Actually, the small time cost increase is related to the Python
built-in functions when identifying a categorical value location
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Fig. 8. The HELIC Time Cost w.r.t. Data Factors: Object Number no, Attribute Number na, and Maximum Number of Attribute Values nmv .
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Fig. 9. The HELIC Time Cost w.r.t. Number of Kernels.

in the data. Since this cost increases by an extremely small
proportion with regard to the amount of data, we can ignore it
when applying HELIC. Fig. 8(b) and Fig. 8(c) demonstrate that
the time cost has a quadratic relation with both na and nmv , which
is consistent with the time complexity of HELIC, as analyzed in
Section 4.3. These results also show that the main HELIC cost
lies in hierarchical coupling learning (HCL), while the cost of
heterogeneity and metric learning (HML) is constant. The reason
for this is that HELIC calculates the pairwise value relations when
learning inter-attribute couplings. Hence, for categorical data with
high dimension, the trade-off between capturing comprehensive
complex couplings and preserving efficiency needs to be made.

To evaluate the relation between time cost and the number of
kernel functions, we set the number of kernels used in HELIC
from 1 to 50 and test the computational cost of HELIC on the
synthetic data set with default data factors. The HELIC time cost
with a different number of kernels is shown in Fig. 9. This shows
that the HELIC time cost is linear to the number of kernels with
a very small slope. Increasing the number of kernels only slightly
affects the computational time of HELIC. This is consistent with
our theoretical analysis, which indicates nω is linear to the time
complexity of HELIC. Here, nω has a linear relation with the
number of kernels.

5.7 Testing HELIC Stability

We evaluate HELIC stability with regard to its parameter λ, which
is a parameter that controls the weight of sparsity of ω. The larger
λ is, the less components are selected for the construction of the
finial metric, and vice versa. Fig. 10 shows the HELIC-enabled
KNN classification F-score under different settings of λ on the
Krvskp data set. This illustrates that HELIC is stable for a large
range of λ especially when λ is less than 1. However, the F-
score drops rapidly when the value of λ increases over 10, which

indicates that the regularization dominates the objective function.
In this case, the learned ω cannot well reveal the heterogeneity
and may even cause to lose the learned couplings. Therefore, we
suggest to choose a small value for λ. A good choice for λ is 1

nk
,

which decreases as the size of ω increases.
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Fig. 10. The HELIC-enabled KNN Classification F-score w.r.t. λ.

6 CONCLUSIONS

Complex categorical data is often embedded with hierarchical
coupling relationships and heterogeneities, which are highly chal-
lenging to model and are rarely explored. This work reports on
an effective heterogeneous metric HELIC for learning hierarchical
couplings within and between attributes and between attributes and
classes in categorical data. HELIC analyzes the heterogeneities
in hierarchical interaction spaces and integrates heterogeneous
couplings in complex categorical data. Both theoretical and ex-
perimental analyses show HELIC’s effectiveness and efficiency in
classifying categorical data with diverse data characteristics.

The proposed method has the potential to be applied to a vari-
ety of categorical data. One noted direction in HELIC applications
is to select appropriate kernels by aligning them with specific
data characteristics and domain knowledge of the problems. A
good selection of kernels may further improve the metric learning
performance, which will be part of our further work. In addition,
we are modeling more complex couplings, such as couplings
between several attributes, to enhance the HELIC framework.
Lastly, learning complex couplings and heterogeneities forms
a challenging yet important non-IID learning problem, widely
embedded in big data applications.
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