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by Hierarchical Coupling Learning
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Abstract—The representation of categorical data with hierarchical coupling relationships (i.e., value to value cluster interactions) is
very critical yet challenging for capturing data characteristics in learning tasks. This paper proposes a novel and flexible coupled
unsupervised categorical data representation (CURE) framework which not only captures the hierarchical couplings but also is flexible
to be instantiated for contrastive learning tasks. CURE first learns value clusters with different granularities based on multiple value
coupling functions and then learns value representation from the couplings between the obtained value clusters. Based on two
complementary value coupling functions, CURE is instantiated into two instances: the coupled data embedding (CDE) for clustering
and the coupled outlier scoring of high-dimensional data (COSH) for outlier detection, by customizing the ways of value clustering and
coupling learning between value clusters. CDE embeds categorical data into a new space in which features are independent and
semantics are rich. COSH represents data with an outlying vector to capture complex outlying behaviors of objects in high-dimensional
data. Substantial experiments show that CDE significantly outperforms three popular unsupervised embedding methods (with
maximum 19% improvement) and three state-of-the-art similarity-based representation methods (maximum improvement of 8%), and
COSH performs significantly better than five state-of-the-art outlier detection methods (with 67% maximum improvement) on
high-dimensional data sets. CDE and COSH are scalable and stable, linear to data size and quadratic to the number of features, and
are insensitive to their parameters.

Index Terms—Categorical Data Representation, Unsupervised Learning, Coupling Learning, Clustering, Outlier Detection.
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1 INTRODUCTION

CATEGORICAL data with finite unordered feature values
is ubiquitous in real-world applications and has re-

ceived increasing attention for representation and learning
[1], [2]. Unlike numerical data, categorical data cannot be
directly manipulated per algebraic operations; hence many
popular numerical learning algorithms are not directly ap-
plicable. Accordingly, it is important to learn an expressive
numerical representation of categorical data.

1.1 Motivations

In general, a good representation should effectively capture
the intrinsic data characteristics [3]. One key characteristic
in complex categorical data is the following hierarchical
couplings (i.e., different types of interactions) embedded
in feature values. (1) On the low level, there exist strong
couplings [4] between feature values, demonstrating the
natural clustering of values. Taking the census data as an
example, it may be visible that the value PhD of feature
Education is highly coupled with the values Scientist and
Professor of feature Occupation; and these values form a
semantic value cluster that characterizes one type of strong
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relation between education and occupation. In addition,
different value clusters exist on different granularities and
with different semantics [5]; e.g., all values belong to one
super cluster at the coarsest granularity while each value
is a cluster at the finest granularity. (2) On the high level,
the clusters of feature values are further coupled with each
other. Couplings exist between clusters of the same granu-
larity and between clusters of different granularities.

A good representation should enable learning tasks
to obtain better learning performance. For unsupervised
learning, there are two main tasks: clustering and outlier
detection (or anomaly detection). Clustering aims to assign
all objects to different clusters, so the clustering performance
is decided by the majority of data objects; while outlier
detector aims to find abnormal objects (i.e., rare or incon-
sistent objects compared to the majority of objects), so the
performance is decided by the minority of data objects.

For clustering, the more relevant information the rep-
resentation captures, the more reliable the clustering is,
especially for complex data where there are hierarchical
couplings. However, existing embedding and similarity-
based representation methods for clustering can capture
only a part or none of these feature value couplings. Typical
embedding-based representation methods transform cate-
gorical data to numerical data by encoding schemes, e.g.,
one-hot encoding and Inverse Document Frequency (IDF)
encoding [6]. These methods are easy to implement, but do
not consider the couplings between feature values since they
usually treat features independently. Some recent similarity-
based representation methods, e.g., in [1], [7], [8], [9] incor-
porate feature relations into similarity or kernel matrices.
However, they do not capture the couplings from values to
value clusters or couplings between value clusters, leading
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to insufficient representation power in handling data with
such hierarchical value couplings.

For outlier detection, the representation capturing more
relevant information, however, does not guarantee better
performance. The captured information also needs to be
outlier-discriminative. Most encoding or similarity-based
methods [1], [7], [8] are majority-based representation ap-
proaches, which do not capture the abnormal aspects of the
data. Different from these methods, most existing outlier de-
tection methods for categorical data [10], [11], [12], [13] use
pattern-based representation (i.e., the data is represented by
a set of outlying/normal patterns) to disclose the character-
istics of outliers. However, the patterns are normally a sub-
set of compact predefined value combinations and can only
capture partial couplings between values. This may result in
less expressive representation power in data with sophisti-
cated value couplings, in particular high-dimensional data,
in which there exists a complex mixture of relevant features
and irrelevant features. A very recent method called CBRW
[14] models the full value couplings to generate value-based
representation for categorical outlier detection. The value-
based representation is more fine-grained and flexible than
the pattern-based methods. However, CBRW captures only
pair-wise value interactions and thus fails to work in data
sets with high-order interactions between values.

1.2 Contributions
Therefore, the hierarchical value to value cluster couplings,
which reflect some key intrinsic data characteristics and
complexities, need to be captured and properly customized
in data representations for different learning tasks and ap-
plication scenarios. However, this is not a trivial task and,
to our best knowledge, no work reported properly handles
them. Accordingly, this paper aims to propose a flexible
framework which captures the hierarchical value couplings
and could be instantiated to solve different problems. The
main idea and contributions are as follows.
• A Coupled Unsupervised categorical data REpresenta-

tion (CURE for short) framework is proposed, which
has a hierarchical learning structure and is flexible to
be instantiated. CURE defines multiple value coupling
functions for clustering values with different granulari-
ties to capture the low-level complex couplings between
values. CURE further learns couplings between the
multi-granularity value clusters to incorporate high-
order interactions between values into our value-based
data representation. This enables CURE to capture the
intrinsic data characteristics and produce an effective
numerical representation for categorical data with so-
phisticated couplings.

• For clustering, CURE is instantiated into a Coupled
Data Embedding (CDE for short) method to capture
majority-based hierarchical value couplings. CDE uti-
lizes the couplings to embed categorical data into a new
space with independent dimensions and rich semantics.
This creates a meaningful Euclidean space for the sub-
sequent object clustering.

• For outlier detection, CURE is instantiated into a Cou-
pled Outlier Scoring of High-dimensional data (COSH
for short) method to capture minority-based hierarchi-
cal value couplings. COSH uses the multi-granularity

value clusters to compute the most outlying aspect of
values, which enables it to obtain reliable outlier scores
in data sets with many irrelevant/noisy features.

Substantial experiments show that (1) CDE significantly
outperforms three popular embedding methods: one-hot
encoding (noted as 0-1), one-hot encoding with PCA (0-1P),
and inverse document frequency embedding (IDF), with
maximum F-score improvement of 19%, and gains maxi-
mally 8% F-score improvement over three state-of-the-art
similarity measures for clustering: COS [1], DILCA [8] and
ALGO [7] on 10 real-world data sets with different value
coupling complexities; (2) COSH significantly outperforms
(maximally 67% AUC improvement) five state-of-the-art
outlier detection methods: CBRW [14], and ZERO [15], iFor-
est [16], ABOD [17] and LOF [18] on 10 high-dimensional
data sets; (3) CDE and COSH obtain good scalability: it is
linear to data size and quadratic to the number of features;
and (4) CDE and COSH perform stably and are insensitive
to its parameters.

The rest of this paper is organized as follows. We discuss
the related work in Section 2. The CURE framework are
detailed in Section 3. Two complementary value coupling
functions are presented in Section 4. The two instances of
CDE and COSH are introduced in Section 5. Experimental
results for clustering and outlier detection are provided in
Section 6 and Section 7 respectively. Discussion of instanti-
ating CURE is given in Section 8. Conclusion are shown in
Section 9.

2 RELATED WORK

This section discusses representation methods for the clus-
tering and outlier detection of categorical data. The repre-
sentation methods for clustering consists of two main parts:
embedding-based and similarity-based methods, while rep-
resentation for outlier detection is scoring-based methods.

2.1 Representation for Clustering

Embedding-based Representation. Embedding-based represen-
tation constructs a numerical vector for each categorical
object. Encoding methods are the most widely used for cate-
gorical data representation [19]. One popular method is the
one-hot encoding which encodes each feature with a zero-
one matrix. Feature fi is encoded with |Vi|-dimensional
vectors, where each vector has a single 1 corresponding
to one value, and all rest entries are 0s. Although one-hot
coding is reversible with the original data, it assumes that all
values are independent and equal which is often violated in
real-world data. Also, one-hot encoding results in very high
dimensions if original data has a large number of values,
and consequently it may lead to the curse of dimensionality
issue [20]. Dimension reduction methods, like principal
component analysis (PCA) [21], are often conducted on
a one-hot encoding matrix to alleviate the issue. Another
well-known method is IDF encoding [6] which represents
each value with the logarithm of its inverse frequency. IDF
captures the value couplings from occurrence perspective.
Although these simple embedding methods are easy to
implement and have a good efficiency, they cannot capture
the complex value couplings in data. CDE captures the
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hierarchical couplings between values and value clusters
and keeps a good efficiency at the same time.

Several effective embedding methods are available for
textual data, such as latent semantic indexing (LSI) [22],
latent Dirichlet allocation (LDA) [23], skip-gram [24] and
their variants [25], [26], [27]. However, categorical data has
an explicit feature structure, which is very different from
unstructured textual data. Hence, these methods do not fit
our target problem.

Similarity-based Representation. Similarity-based represen-
tation approaches (including some kernel methods) rep-
resent categorical data with an object similarity matrix.
Various similarity measures have been designed to capture
value couplings in data: ALGO [7] first use conditional prob-
ability of two feature values to describe the value couplings;
DILCA [8] and DM [9] incorporate feature selection and
feature weighting into capturing feature couplings respec-
tively; COS [1] takes inter- and intra-feature couplings into
object similarity. Similar to COS, coupledMC [28] transforms
categorical feature value into real value which is calculated
according to the similarity between values. These similarity
measures focus on capturing the pairwise value couplings.
They therefore fail to capture the couplings among multiple
values and higher order interactions, which are captured by
CDE in the couplings between value clusters. Meanwhile,
similarity measurement is not an efficient method of repre-
sentation since it needs to calculate and store the pairwise
similarity. The storage complexity is at least quadratic w.r.t.
the number of objects which may limit its applications on
large data. In contrast, CDE has linear time complexity w.r.t.
data size and well scales up to large-scale data.

In addition, there are some embedding methods, e.g., the
one in [29], [30] which optimizes the embedding representa-
tion on the similarity matrix, but their results heavily rely on
the underlying similarity measures. Some other embedding
methods (e.g., [2], [31]) require class labels to learn distance,
and thus they are inapplicable for unsupervised tasks.

2.2 Representation for Outlier Detection

Most existing outlier detection methods [10], [11], [12], [13]
for categorical data unify the two successive tasks - data
representation and outlier identification. These methods
often aim to identify a set of outlying/normal patterns
to represent the data objects. Since the identified patterns
carry the outlierness of objects, they can be directly used
to identify outliers. Such outlier detection-oriented methods
are referred to as scoring-based representation approaches,
since they are very different from embedding- or similarity-
based representation which separates model learning from
data representation learning and focuses on how to effec-
tively transform the original data into a meaningful space
for well enabling subsequent model learning. However,
these methods involve costly pattern discovery. As a result,
their computational time is prohibitive in high-dimensional
data. Also, these methods become ineffective in handling
data sets with many irrelevant/noisy features [14].

There have been some methods (e.g., in [14], [15], [32])
scalable to high-dimensional data. The method CBRW [14]
models the intra- and inter-feature value couplings to esti-
mate the outlierness of values and uses the value outlierness

to represent the objects. CBRW is a closely related work
to COSH as it also attempts to use value outlierness to
represent the data. CBRW avoids the costly pattern search
and has good scalability w.r.t. the data dimensionality. How-
ever, CBRW only captures pair-wise value interactions and
may fail to work in data with higher order value inter-
actions, e.g., high-dimensional data, while COSH captures
such higher order interactions in the couplings between
value clusters. The method ZERO++ [15] can efficiently
handle high-dimensional data by working on a random set
of feature subspaces, but the random subspace generation
may include many irrelevant features and downgrade its
performance in those data. The method ITB [32] aims to
identify a set of outliers so that the removal of these outliers
from the data set mostly reduce the entropy-based data un-
certainty. It has linear time complexity w.r.t. the number of
features. However, it uses the full feature sets to compute the
uncertainty and is largely affected by the irrelevant features,
and thus it becomes less effective in high-dimensional data
where outliers are manifested in a small subset of features.

Some methods like ABOD [17], [33] and iForest [16] for
high-dimensional numeric data may also be extended to
handle categorical data by working on its embedding- or
similarity-based numeric representation, but their perfor-
mance is heavily dependent on the effectiveness of the data
representation methods.

More importantly, all the above methods estimate the
outlier scores based on single-granularity outlierness repre-
sentation, i.e., the outlierness estimation operates with the
same granularity; whereas our method COSH captures the
outlierness with a wide range of granularity. Our outlier-
ness estimation is therefore less likely to be biased by the
overwhelming irrelevant features in high-dimensional data.

3 THE CURE FRAMEWORK FOR CATEGORICAL
DATA REPRESENTATION

In this paper, we introduce the CURE framework which
models hierarchical couplings between values and value
clusters to learn a numerical representation of categorical
data. As shown in Fig. 1, CURE first learns the low-level
couplings between values by several coupling functions.
Then it learns value clusters with different granularities by
clustering on multiple value coupling matrices with differ-
ent granularity settings. CURE further learns the couplings
between value clusters to obtain the value representation
and the object representation.

Let X = {x1, x2, ..., xN} be a set of data objects with
size N, described by a set of D categorical features F =
{f1, ..., fD}. Each feature f (f ∈ F ) has a value domain
Vf = {v1, v2, ...} which consists of a finite set of possible
feature values (at least two values). The value domains of
different features are distinct, i.e., Vfi ∩ Vfj = ∅,∀i 6= j.
The whole value set of features is the union of all the value
domains: V = ∪f∈FVf , and the size of V is denoted as L.

Problem Statement Our problem can then be stated as
follows. Given a set of data objects X , we aim to learn
the object numerical representation O of X . Following the
process of CURE framework, we firstly construct the value
coupling set Φ(X ) by learning value couplings. Secondly we
learn the value clusters in the value clustering process Ωη .
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Fig. 1. The CURE framework in which Φ, η, Θ and ∆ can be customized
according to different tasks. By changing the dashed line boxed part, we
instantiate the framework into two instances: CDE and COSH.

Thirdly, the couplings between value clusters are learned
in coupling learning process Θ. Finally, the object represen-
tation are learned by ∆. The four components of CURE:
Φ, Ωη , Θ and ∆ are introduced in details in the next four
subsections.

3.1 Learning Value Couplings
Value couplings refer to the interactions of feature values
which may include the interactions between values from the
same feature and interactions between values from different
features. Such value couplings reflect the low-level interac-
tions between values. The more value couplings learned will
benefit more to the following value clusters. The definition
of the value coupling set is given as follows.

Definition 1 (Value Coupling Set). The value coupling set
Φ(X ) is defined as a set of multiple value coupling functions
with size of n to capture the low level pairwise value couplings:

Φ(X ) = {φi(X ), i = 1, 2, .., n}, (1)

where φi(·) : X 7→ Mi ∈ RL×L is one kind of value coupling
functions, to capture the value couplings from one specific per-
spective. The output of φi is a value coupling matrix Mi which
consists of couplings between each value pair.

These value coupling matrices are decided by the value
coupling functions and reflect the low-level data characteris-
tics. The value coupling functions can be specified from sev-
eral aspects, e.g., occurrence-based and co-occurrence-based
functions, set theory-based functions (such as intersection of
value sets), value neighbourhood-based functions and/or
non-co-occurrence-based functions. Good value coupling
functions should capture different kinds of couplings.

3.2 Learning Value Clusters
A value cluster refers to the value set which consists of
multiple similar values. The value clusters reflect the cou-
plings among multiple values instead of pairwise value
coupling, e.g., all values belong to one super value cluster at

the coarsest granularity while each value is a cluster at the
finest granularity. The definition of value clustering process
is given as follows.

Definition 2 (Value Clustering Process). The value clustering
process w.r.t. value coupling matrix M consists of multiple
clustering on value couplings matrices with different granularities
which is defined as follows:

Ωη = {ηi(Mi, s
i
j), j = 1, 2, ..., qi}, (2)

where ηi is one clustering process on value coupling matrix Mi,
and sij is the clustering parameter which decides the granularity of
clusters. The output of ηi is a value cluster matrix Ci ∈ RL×q

i

.

The value clustering process can be done by various
clustering methods, e.g., centroid-based clustering algo-
rithm, hierarchical clustering algorithms, distribution-based
clustering, and density-based clustering algorithms. The
granularities of value clusters can be decided by the pre-
defined algorithm parameters, e.g., the cluster number, and
the density range parameter. Different clustering algorithms
prefer different kinds of clusters. For example, centroid-
based clustering algorithms capture the convex shape of
clusters, while density-based clustering algorithms are able
to capture the manifold shape of clusters. We can conduct
different clustering algorithms on different value coupling
matrices or conduct only one clustering algorithm on all
coupling matrices with different parameters. The choice of
clustering process is decided by the clusters’ characteristics
captured by the clustering algorithm and its efficiency.

3.3 Learning Couplings between Value Clusters

The value clusters learned by clustering may contain cou-
plings and redundancy in them. Through learning the com-
plex couplings between value clusters, CURE learns the
meaningful value representation. The definition of coupling
learning between value clusters is defined as follows.

Definition 3 ( Coupling Learning Between Value Clusters).
The coupling learning process Θ between value clusters is defined
as follows:

V = Θ{C1, ...,Cn}, (3)

where Ci is one value cluster matrix and V ∈ RL×
∑n

i=1 q
i

is the
value representation matrix.

The coupling learning process between value clusters
aims to learn the correlation or interaction of different value
clusters and try to eliminate the redundancy information
among value clusters. So Θ can be implemented by a
dimensionality reduction process, relation learning process,
or an embedding model, e.g., principal component analysis
(PCA), linear discriminant analysis (LDA), matrix factoriza-
tion and neural network. The choice of Θ depends on the
data characteristics and the subsequent learning tasks.

3.4 Learning Object Representation

Based on the value representation, we model the object
representation learning process.
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Definition 4 (Object Representation Learning Function).
The representation of an object x (x ∈ X ) is modelled by an
incorporating function w.r.t. value representation V:

Ox = ∆(Vx
1 , ...,V

x
D), (4)

where Vx
i is the value representation of object x from feature fi.

The object representing function ∆(·) utilizes value rep-
resentation to assign each object a numerical vector as
representation, which could be specified according to the
application of instances, e.g., concatenation, weighted sum,
or maximum.

4 COMPLEMENTARY VALUE COUPLINGS

In this paper, we instantiate the CURE framework into two
instances: CDE for clustering and COSH for outlier detec-
tion according to their different learning goals. Both CDE
and COSH are based on the same value coupling functions
which is the basis for further value clusters learning. In this
section, we introduce the two value coupling function and
prove its complementary discriminative ability.

4.1 Definition of Two Value Coupling Functions

To learn value couplings, we construct two value influence
matrices to capture the value couplings from two basic
perspectives: occurrence and co-occurrence, whose comple-
mentary discriminative ability is proved in Section 4.2. Be-
fore introducing the value influence matrices, we introduce
some preliminaries.

The value from feature f of object x is denoted by vfx
and the feature which the value vi belongs to is denoted
by fi. We assume that the probability p(v) of a value can
be computed by its frequency. The joint probability of two

values vi and vj is p(vi, vj) =
|{vfix =vi∩v

fj
x =vj ,x∈X}|
N .

We define normalized mutual information [34] ψ to
reflect the relation between two features as follows:

ψ(fa, fb) =

2
∑

vi∈Vfa

∑
vj∈Vfb

p(vi, vj)log
p(vi,vj)
p(vi)p(vj)

h(fa) + h(fb)
, (5)

where h(fa) = −
∑
vi∈Vfa

p(vi)log(p(vi)).

Definition 5 (Occurrence-based Value Influence Matrix).
The occurrence-based value influence matrix Mo is defined as
follows:

Mo =

φo(v1, v1) . . . φo(v1, vL)
...

. . .
...

φo(vL, v1) . . . φo(vL, vL)

 , (6)

where the coupling function φo(vi, vj) = ψ(fi, fj) × p(vj)
p(vi)

indicates the occurrence influence on value vi from value vj .

The occurrence or marginal probability is the basic uni-
variate property of values, which can be used to differentiate
values. Instead of symmetric distance measure between the
marginal probabilities of two values, we use an asymmetric
ratio to quantify the influence on one value from another
value so that Mo captures more information. Besides, we
incorporate mutual information ψ as the weight of value

couplings since marginal probabilities cannot differentiate
different features.

Definition 6 (Co-occurrence-based Value Influence Matrix).
The co-occurrence-based value influence matrix Mc is defined as
follows:

Mc =

φc(v1, v1) . . . φc(v1, vL)
...

. . .
...

φc(vL, v1) . . . φc(vL, vL)

 , (7)

where the coupling function φc(vi, vj) =
p(vi,vj)
p(vi)

indicates the
co-occurrence influence on value vi from value vj .

The co-occurrence or joint probability is the basic bi-
variate relation between two values, which captures the
most natural dependency between two variables. We use
asymmetric conditional probability to define the influence
on one value from another value since the same joint proba-
bility may have different influence on values with different
marginal probabilities. The φc value of two values from the
same feature always equals 0 since they never co-occur in
the same object.

4.2 Complementary Discriminative Ability
The two coupling functions is complementary and discrimi-
native for the values which can be verified by the distance of
Mo and Mc. Since the following instances CDE and COSH
learn value clusters with k-means clustering which is based
on the Euclidean distance, we thus take the Euclidean dis-
tance as an example to show complementary discriminative
ability of the above two value coupling functions.

The distance matrix in k-means clustering determines
the quality of value clusters. By proving the complementary
discriminative ability of the two distance matrices, we can
observe that the two value couplings have complementary
discriminative ability.

The occurrence distance between values vi and vj is
defined as follows:

do(vi, vj) =

√√√√ L∑
h=1

(φo(vi, vh)− φo(vj , vh))2, (8)

where φo(vi, vh) is the occurrence coupling function defined
in Definition 5, and L is the number of values.

The co-occurrence distance between values vi and vj is
defined below:

dc(vi, vj) =

√√√√ L∑
h=1

(φc(vi, vh)− φc(vj , vh))2, (9)

where φc(vi, vh) is the co-occurrence coupling function de-
fined in Definition 6. If any two distinct values can be dis-
tinguished by do or dc, then do and dc are complementary.

Theorem 1 (Distance Complementarity). For any two values
vi 6= vj , do(vi, vj) 6= 0 or dc(vi, vj) 6= 0.

Proof. To prove the above theorem, we prove that vi 6= vj
and do(vi, vj) = 0 satisfy dc(vi, vj) 6= 0 for all cases and
vi 6= vj and dc(vi, vj) = 0 satisfy dc(vi, vj) 6= 0 for all cases.

We first prove that vi 6= vj and do(vi, vj) = 0 satisfy
dc(vi, vj) 6= 0 for all cases. If dc(vi, vj) = 0, then ∀vh ∈
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V, φc(vi, vh) = φc(vj , vh). To prove dc(vi, vj) 6= 0, we only
need to prove ∃vh ∈ V, φc(vi, vh) 6= φc(vj , vh). We consider
the proof for the following cases.

(1) If vi and vj belong to the same feature which means
ψ(fi, fh) = ψ(fj , fh), then do(vi, vj) = 0 if and only if
p(vi) = p(vj). Let vh = vi, then φc(vi, vh) = 1 and
φc(vj , vh) = 0 since vi, vj belong to the same feature. Hence,
dc(vi, vj) 6= 0 when vi and vj belong to the same feature.

(2) If vi and vj belong to different features, and
do(vi, vj) = 0 which means ∀vh ∈ V, ψ(fi, fh)p(vh)p(vi)

=

ψ(fj , fh)p(vh)p(vj)
; When ψ(fi, fh) 6= ψ(fj , fh) and p(vi) 6=

p(vj) (suppose p(vi) < p(vj)), then p(vi, vj) < p(vj).
Let vh = vi, then φc(vi, vh) = 1 and φc(vj , vh) > 0.
Accordingly, dc(vi, vj) 6= 0 when p(vi) 6= p(vj). When
ψ(fi, fh) = ψ(fj , fh) and p(vi) = p(vj), ∃vh in feature
fi and p(vj , vh) > 0, but p(vi, vh) = 0, then φc(vj , vh) 6=
φc(vi, vh). Therefore, dc(vi, vj) 6= 0 when vi and vj belong
to different features.

Further, we prove vi 6= vj and dc(vi, vj) = 0 satisfy
do(vi, vj) 6= 0 for all cases. We consider the proof for the
following cases.

(1) If vi and vj belong to the same feature, then we could
let vh = vi so that φc(vi, vh) = 1 and φc(vi, vh) = 0. Then
we can prove that do(vi, vj) 6= 0.

(2) If vi and vj belong to different features, then we could
consider p(vi) = p(vj) or p(vi) 6= p(vj). If p(vi) = p(vj) and
dc(vi, vj) = 0, then ψ(fi, fh) = 1 which is impossible for
different features. Otherwise, we could let vh = vi (suppose
p(vi) < p(vj)) then φc(vi, vh) = 1 and φc(vj , vh) < 0, and
dc(vi, vj) cannot be 0. So if dc(vi, vj) = 0, then vi and vj
must belong to the same feature.

The theorem shows that the two value couplings are
able to distinguish any two different values. For clustering,
the theorem says that at least one clustering process is
able to differentiate any two values in extreme case where
each value belongs to one cluster. For outlier detection, the
theorem states that the outlier detector could differentiate
the outlying behavior between any two values. For different
applications, we can enhance the discriminative ability from
a specific aspect by utilizing different information of value
clusters. The following section demonstrates how to utilize
the value couplings to learn value clusters and couplings
between value clusters to achieve different goals.

5 TWO CONTRASTIVE INSTANCES

In this section, we show two instances of CURE: CDE
for clustering and COSH for outlier detection in high-
dimensional data. CDE and COSH use the above value
couplings, but they use different methods to learn value
clusters and couplings between value clusters.

5.1 CDE: The CURE Instance for Clustering

In this subsection, we introduce an instance CDE for clus-
tering which aims to capture the couplings among majority
values based on the above value couplings. CDE learns
the value clusters with different granularities by multiple
k-means clustering with different cluster numbers k. By
filtering the value clusters which have less discriminative

information for majority values, CDE differentiates values
according to the value to value cluster affiliation. Based
on the information in filtered value clusters, CDE learns
the couplings between value clusters with PCA. The object
embedding is the concatenation of value representation.

5.1.1 Learning Value Clusters for Clustering
Based on the two value influence matrices, we can learn the
value clusters with different granularities which represent
different semantics and well reflect the data characteristics.
To learn the value clusters with different granularities, here
we conduct clustering on the value matrices with different
cluster numbers.

We conduct k-means clustering on Mo with different k,
i.e., {k1, k2, ..., kno

}, and on Mc with {k1, k2, ..., knc
}. The

clustering results are represented by a cluster membership
indicator matrix CI which is defined as follows:

CI(i, j) =

{
1 if vi is in cluster j ,
0 if vi is not in cluster j.

(10)

For the majority values, the value cluster with a small
number of values has less discriminative information since
CDE aims to generate the value clusters which can dif-
ferentiate more values. Accordingly, we remove the small
value clusters which only have one value. k is also decided
by the removed small clusters which will be discussed
in Section 5.1.3. We further concatenate the two indicator
matrices derived from two value influence matrices and
get a large indicator matrix to represent each value whose
dimensionality is no more than (

∑no

i=1 ki +
∑nc

j=1 kj).
k-means clustering is chosen for two major reasons:

(1) The value influence matrices are numerical and the
Euclidean distance fed in k-means clustering captures the
global relation between values. (2) k-means clustering is
linear w.r.t. the size of the input matrix, which enables CDE
to efficiently learn value clusters with different sizes.

5.1.2 Learning Linear Couplings between Value Clusters
The indicator matrix CI conveys rich couplings between
the value clusters with different granularities based on two
value influence matrices. For simplicity and the consider-
ation of common scenarios, we assume that couplings be-
tween value clusters are linear correlations, and apply PCA
on the indicator matrix to eliminate the linear correlations
between value clusters to obtain a vector embedding for
each value. PCA is chosen because (1) it reduces the data
complexity with little loss of information by converting a
matrix with linearly correlated variables to a new matrix
with linearly uncorrelated components, and (2) it substan-
tially reduces the dimensionality of the value embedding,
which enables us to represent an object in a considerably
lower-dimensional embedding space.

We first calculate the centralized matrix Z of the indi-
cator matrix CI by subtracting the mean of each column
and further derive a covariance matrix S from Z. The
value embedding V is obtained by the following matrix
decomposition:

V = ZYT , (11)

where Y is the principal component matrix derived from
the singular value decomposition results of S, i.e., S =
UΣY.



IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 7

After the PCA transformation, the dimensions of value
embedding V are independent of each other so that the
algebraic operations in the Euclidean space can be used on
the embedded matrix.

5.1.3 The CDE Algorithm

Algorithm 1 presents the main procedures of CDE. The first
step is to generate the value influence matrices Mo and Mc

according to Definitions (5) and (6) by scanning the original
data matrix. Specifically, we scan the data matrix by rows.
For each row, we scan it by columns for two times, and
then we can get the co-occurrence of any two values. After
scanning all rows we can calculate the frequency of any
value. Than we can easily calculate the coupling functions.

k is the clustering parameter which decides the granu-
larity of value clusters. Instead of setting to a fixed value,
we use another proportion factor α to decide the maximum
cluster number, as shown in Steps (6-10) of Algorithm 1. The
clusters that only have one value are meaningless to value
cluster. Therefore, we remove those small clusters with
only value by controlling the proportion of small clusters
through α. With the increasing of k more small clusters are
generated. Until the proportion of removed small clusters,
i.e., length(rm)

k , exceeds the α, we stop increasing k whose
initial value is 2. The final CI is the concatenation of all
clustering results with different k from Mo and Mc.

After conducting PCA on the indicator matrix to learn
the correlations between value clusters, we treat V as the
original representation of values where each column repre-
sents a dimension. Since the distance between two values
is the sum of the distance on each dimension, the columns
with small range have less contribution to the final distance.
We remove those columns whose range (maximum element
minus minimum element) is less than β from original rep-
resentation V. In this way, we control the dimension of
the representation vectors through a flexible data-dependent
way. Finally, we calculate the object embedding O by con-
catenating embedding vectors of its values from V.

We generate the Mo and Mc through value frequency
vector and co-occurrence matrix. Scanning the data set and
count the frequency of all values and co-occurrence of all
value pairs have the complexity of O(ND2). Generating
Mo and Mc based on frequency vector and co-occurrence
matrix have the complexity of O(L2). The total number of
clustering times is (kmax − 1) due to that kmax increases
from 2. Then clustering on the value matrix has complexity
O(kmaxL) since k-means clustering has linear complexity
w.r.t. the size of the input matrix. The number of value clus-
ters are proportional to k2max and then PCA has O(k6max).
With the numerical representation of values, generating the
embedding matrix of objects has O(ND). The computa-
tional complexity of CDE is O(ND2 + L2 + k6max). Since
kmax does not increase w.r.t. the D and N and kmax is a
relatively small constant, k6max is much smaller than ND2.
And in real datasets, the average number of values per
feature is often small, so L2 is similar to D2. Approximately,
the time complexity of CDE is O(ND2).

Algorithm 1 CDE (D, α, β)
Input: D - data set, α - proportion factor, β - dimension

reducing factor
Output: O - the numerical representation of objects

1: Generate Mo and Mc

2: Initialise CI = ∅
3: for M ∈ {Mo,Mc} do
4: Initialise k = 2
5: rm = ∅
6: repeat
7: CI = [CI; kmeans(M, k)]
8: Remove the cluster with only one value and store

the remove cluster in rm
9: k+ = 1

10: until length(rm)
k ≥ α

11: end for
12: Z = CI −mean(CI)
13: Calculate the covariance matrix S of Z
14: [U, Σ, Y] = SVD (S)
15: V = ZYT

16: Remove the columns whose range (maximum element
minus minimum element) is less than β from V.

17: Generate O by the concatenation of V
18: return O

5.2 COSH: The CURE Instance for Outlier Detection in
High-dimensional Data

In this subsection, we introduce another instance COSH for
outlier detection in high-dimensional data which contains
complex value interactions and is insufficiently explored.
COSH use the same clustering methods, i.e., k-means, to
learn multi-granularity value clusters. Different from CDE
that abandons small value clusters, COSH retains them
as they reflect the outlying behavior of values. Unlike
CDE which uses binary cluster membership to represent
the value clusters, COSH represents them with continuous
dissimilarity between values and cluster centers to better
quantify the outlying behavior of values. Based on the dis-
similarity of value clusters, COSH learns couplings between
value clusters. The object representation is the vector with
outlying score of each value.

5.2.1 Learning Value Clusters for Outlier

In COSH, we also conduct k-means clustering on the two
value coupling matrices. In addition to the reasons ex-
plained in Section 5.1.1, the sensitivity of k-means clustering
is an important reason of using it to learn value clusters for
outlier detection.

Instead of indicator matrix, we use value-cluster dissim-
ilarity matrix to represent the clustering result for each clus-
tering process. The definition of value-cluster dissimilarity
matrix Ck w.r.t. cluster number k is as follows:

Ck =

dis(v1, c1) . . . dis(v1, ck)
...

. . .
...

dis(vL, c1) . . . dis(vL, ck)

 , (12)



IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 8

where v is one row of a value coupling matrix M, c is the
centroid vector of one cluster. dis is defined as follows:

d(v, c) =


0 , if v and c are in different clusters

max(0,
L∑
i=1

c(i)− v(i)), otherwise.
(13)

The use of the above asymmetry dissimilarity measure
instead of distance measures, e.g., Euclidean distance, is
decided by the semantic meaning of Mo and Mc. There is a
basic assumption that outlying values are infrequent among
all values. The value coupling matrices Mo and Mc are
correlated with value frequency. Hence, the smaller value
from Mo and Mc indicates the greater likelihood that it
could be outlying value. Further, the value smaller than the
centroid has larger chance to be an outlier than the value
larger than the centroid.

5.2.2 Learning Outlying Couplings between Value Clusters
We consider two properties of outlying value and outly-
ing value cluster: (1) The outlying value is quite different
from the centroid. (2) The outler cluster is quite different
from other clusters. The value cluster matrix Ck defined in
Section 5.2.1 has considered the difference between a value
and the centroid. We use another cluster-cluster matrix to
incorporate the outlying couplings of value clusters, which
is defined as follows:

Dk =

dis(c1, c1) . . . dis(c1, ck)
...

. . .
...

dis(ck, c1) . . . dis(ck, ck)

 , (14)

where dis(·) is the dissimilarity defined in Equation 13.
Based on these two properties, we learn the value outlier

scores w.r.t. to the value cluster difference matrix Ck and
cluster-cluster matrix Dk as follows:

V = maxe{Ck1Dk11k1 ,C
k2Dk21k2 , ...}, (15)

where 1k is a vector with size k of ones, maxe choose the
element-wise maximum value across different vectors. Each
entry in V is the outlier score for one value. Large entry
values indicate higher outlierness.

The outlier object representation O for object x ∈ X is
[Vx

1 , ...,V
x
D]. The outlier score of object x is the summation

of values’ outlying scores, which is outlier(x) =
∑D
j Vx

j .

5.2.3 The COSH Method
Algorithm 2 presents the main procedures of COSH which is
similar to CDE. Different from CDE, COSH represents value
cluster with Ci and compute the dissimilarity between
value clusters in Steps (8-9); COSH uses different methods
to represent values shown in Steps (14-16).

As shown in Section 5.1.3, generating Mo and Mc takes
the complexity of O(ND2+L2) and clustering on the matri-
ces has complexity O(kmaxL). Computing the outlier scores
of values has complexity O(Lk2max), where kmax is the
number of times for clustering on one value matrix which
is much more less than L. With the outlier scores of values,
generating the outlier scores of objects has O(ND). And
in real datasets, the average number of values per feature
is often small, so L2 is similar to D2. Correspondingly, the
time complexity of CDE is O(ND2).

Algorithm 2 COSH (D, α)
Input: D - data set, α - proportion factor
Output: O - the outlier scores of all objects

1: Generate Mo and Mc

2: Initialize i = 0
3: for M ∈ {Mo,Mc} do
4: Initialize k = ∅ and j = 2
5: rm = ∅
6: repeat
7: k(i) = j
8: Ci = kmeans(M,k(i))
9: Calculate Di

10: Store the clusters with one value in rm
11: j+ = 1 and i+ = 1
12: until length(rm)

k(i) ≥ α
13: end for
14: V = maxe{CqDq1k(q), q = 1, 2, ..., i},
15: for each x ∈ X do
16: Ox = [Vx

1 , ...,V
x
D]

17: end for
18: return O

5.3 Contrast Analysis of CDE and COSH

The CDE and COSH are both instantiated from CURE which
is based on the hierarchical value couplings. The shared
basis of CDE and COSH is two value coupling functions
which are shown to be complementary and discriminative
in Section 4.2. However, the other parts, i.e., value clusters
learning and coupling learning between value clusters, are
customized according to different goals of CDE and COSH.
In this section, we compare these different components and
analyze the intrinsic motivation of instantiation.

5.3.1 Contrastive Value Clusters

The value clusters contain abundant information so that
value clusters could be customized flexibly according to
different applications. In the following part, we analyze that
why CDE and COSH use different value cluster learning
strategies to achieve different goals.

When generating value clusters, CDE removes the small
value clusters because the small value clusters have less
discriminative ability for majority values and contribute less
to the final clustering process. Meanwhile, COSH keeps all
the small value clusters or prefers small value clusters since
small clusters have higher discriminative ability for outlying
values and contribute more to the outlier detection.

When representing value clusters, CDE uses the cluster
membership indicator matrix CI which keeps consensus
information and differentiates values from different value
clusters. Further, by multiple clustering with different clus-
ter numbers, the value clusters group values from different
granularities and keep different levels of consensus informa-
tion which is helpful to distinguish similar values. Different
from CDE, COSH uses the value-cluster dissimilarity matrix
Ck to represent value clusters which is able to differentiate
two values within or across value clusters. Ck keeps the
most distinguishable information for each value, so that
COSH could use it to give each value an outlying score and
differentiate the outlier values from normal values.
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5.3.2 Contrastive Value Cluster Couplings
Since CDE and COSH use different learning strategies to
learn the value clusters, the couplings between value clus-
ters are different. In the following part, we analyze why
CDE and COSH learn different couplings between value
clusters and use different representations.

CDE uses the concatenation of multiple cluster mem-
bership matrices to represent values, and one dimension
of value representation corresponds to one value cluster.
Since value clusters are generated by the same clustering
methods, there are redundancy and correlations in value
representation. It is better for CDE to keep all the useful
discriminative information in addition to redundancy since
it is designed for clustering task. Meanwhile, we expect that
the dimensions of new representation are independent and
uncorrelated so that the algebraic operations can be applied
and for the further learning tasks. Therefore, we use PCA
which does not make any information loss to eliminate the
redundancy and learn linear correlation couplings in CI.

COSH is designed for outlier detection which cares the
outlying behavior of values and value clusters. Accordingly,
COSH uses the dissimilarity matrix Dk to quantify the
outlying couplings between value clusters. The value cluster
which is far from other value clusters could be regarded
as outlying value cluster in which the values have greater
likelihood to be outlying values. Each value cluster pro-
duces one outlying score for each value which is concise
and enough to distinguish the normal values and outliers.
And the maximum operation across all the outlying scores
from different value clusters ensure that COSH cannot miss
any outlying value.

6 EXPERIMENTS FOR CLUSTERING

6.1 Experiment settings

6.1.1 Data Representation Methods and Its Parameter Set-
tings
To test the embedding performance, CDE is compared with
three popular unsupervised categorical data embedding
methods: 0-1, 0-1P, and IDF. The 0-1 keeps the most complete
information in the original data. The 0-1P incorporates fea-
ture correlations into the embedding. The IDF differentiates
values w.r.t. frequency.

To the best of our knowledge, no existing embedding
methods capture the value couplings in categorical data as
in CDE. To test the CDE-based learning performance, we
compute the Gaussian similarity based on CDE (denoted
by CDEG) and compare it with three typical and well-
performed similarity measures which involve feature rela-
tions: COS [1], DILCA [8] and ALGO [7].

In Table 2, |C| is the number of ground-truth classes in
data, which is used for the clustering evaluation. We set
parameter α = 10 in CDE and parameter β = 10−10 in PCA
used by CDE and 0-1P. In COS, DILCA and ALGO, we use
the default parameters in their original papers.

6.1.2 Data Representation Evaluation Methods
K-means clustering is used to evaluate the performance
of CDE against other embedding methods. The embed-
ding methods transform categorical data into numerical

data, hence k-means clustering can efficiently cluster objects
without computing the pairwise object similarity matrix.
Spectral clustering is used to evaluate the performance of
this object similarity matrix against other object similarity
matrices obtained by CDEG, COS, DILCA and ALGO.

F-score and NMI [35] are two of the most popular clus-
tering evaluation methods. Since we fix the cluster number
to the number of classes in each data set, NMI performs
similarly as F-score. Here we only report the results of F-
score. Higher F-score indicates better clustering accuracy
driven by a better embedding method or similarity measure.
The p-value results are based on the paired two-tailed t-
test using the null hypothesis that the clustering results of
CDE and other methods come from distributions with equal
means. For each data set, the F-score is the average over 50
validations of clustering with distinct starting points due to
the instability of k-means clustering.

All embedding methods and similarity measures are
implemented in MATLAB and clustering experiments are
performed at 3.4GHz Titan Cluster with 96GB memory.

6.1.3 Data Indicators for Clustering

We use ten real-world UCI data sets from different domains
for the experiments.1 The basic data information consists of
data size (denoted by |X |), the number of features (denoted
by |F|), the number of feature values (denoted by |V|), and
the number of classes (denoted by |C|) for clustering are
demonstrated in Table 1 and Table 2.

Various data indicators are used to measure the underly-
ing characteristics of data sets, which are associated with the
learning performance of embedding methods. Two key data
indicators and their quantization are defined below, and the
results are reported in Table 1 and Table 2.
• The feature correlation index (FCI) measures the average

correlation strength between features:

FCI =
2

D(D − 1)

D−1∑
i=1

D∑
j=i

SU(fi, fj) (16)

SU measures the correlation between features fi and fj
by the symmetric uncertainty [36]. Larger FCI indicates
stronger correlation between features.

• The value cluster index (V CI) is the average of the
maximum non-overlapping ratio between value sets
contained in different classes for each feature:

V CI =
1

D

D∑
h=1

maxi,j{1−
|VhCi

⋂
VhCj
|

|VhCi

⋃
VhCj
|
} (17)

where VhCi
is the value set in class Ci for feature fh.

Larger VCI indicates the higher discriminative ability
of the value sets.

6.2 Evaluation Results

CDE is firstly compared with three embedding methods,
followed by a comparison with three similarity measures.
We then conduct the scalability and sensitivity test of CDE.

1. https://archive.ics.uci.edu/ml/datasets.html
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TABLE 1
F-score Results of CDE vs. Three Embedding Methods on 10 Data

Sets in k -means Clustering. Note: The best performance for each data
set is boldfaced. The datasets are sorted by the descending order of

FCI.

Basic Data Info. & Data Indicator F-score

Data |X | |V| FCI CDE 0-1 0-1P IDF
Wisconsin 683 89 0.212 0.967 0.946 0.946 0.943
Soybeansmall 47 58 0.180 0.915 0.829 0.854 0.763
Mushroom 5644 97 0.148 0.731 0.709 0.694 0.506
Mammographic 830 20 0.116 0.809 0.793 0.815 0.517
Zoo 101 30 0.110 0.647 0.596 0.607 0.537
Dermatology 366 129 0.089 0.670 0.598 0.606 0.616
Hepatitis 155 36 0.085 0.680 0.681 0.667 0.535
Adult 30162 98 0.060 0.654 0.585 0.588 0.479
Lymphography 148 59 0.057 0.418 0.381 0.379 0.561
Primarytumor 339 42 0.020 0.240 0.230 0.238 0.190
Average 0.673 0.635 0.640 0.565

p-value 0.003 0.003 0.020

6.2.1 Comparison with Three Embedding Methods
The F-scores of CDE, compared with 0-1, 0-1P and IDF, are
shown in Table 1. CDE obtains the best F-score performance
on seven data sets, which are significantly better than other
embedding methods; and on average, it demonstrates an
approximate 9%, 5% and 19% improvement over 0-1, 0-
1P and IDF, respectively. The significance test results show
that CDE significantly outperforms these three embedding
methods at the 95% confidence level.

According to the data indicator FCI , the F-score per-
formance of CDE, 0-1 and 0-1P has a downward trend
with the decrease of FCI . CDE outperforms all the other
embedding methods. This is because CDE is able to capture
more sophisticated pairwise feature correlation than the
other methods, which is illustrated by the performance
on data sets with higher FCI , e.g., Wisconsin, Soybeans-
mall, Mammographic, Zoo, Dermatology. This also explains
the improvement of 0-1P over 0-1. Besides the couplings
between features, CDE also captures the couplings across
the values clusters, which makes CDE performs well on
data sets with high-order feature correlation, e.g., Adult and
Primarytumor that has lower FCI but may have high-order
feature correlation. IDF is only sensitive to value frequency
couplings, i.e.,φo, while CDE is based on φo and φc which
captures two complementary discriminative couplings. This
explains why IDF can only obtains good results on the data
sets where the objects are discriminative in terms of value
frequency, e.g., Lymphography.

6.2.2 Comparison with Three Similarity Measures
CDEG is compared with three well-performing feature
relation-based similarity measures: COS, DILCA and
ALGO. As shown in Table 2, although COS and DILCA
obtain the best performance on two data sets, CDEG remains
the best performer on half of the data sets. CDEG obtains
about 8%, 3% and 5% improvement over COS, DILCA and
ALGO respectively in terms of F-score. The significance
test results show that CDEG significantly outperforms the
other similarity measures at the 90% confidence level. It is
noted that tests on COS, DILCA and ALGO on data set
Adult run out of memory since the computation of object
similarity needs a large amount of memory. This shows that

TABLE 2
F-score Results of CDE-G vs. Three Similarity Measures on 10 Data
Sets in Spectral Clustering. Note: COS, DILCA and ALGO run out of
memory on Adult. The average values are computed according to the

data sets except Adult.

Basic Data Info. & Data Indicator F-score

Data |F| |C| V CI CDEG COS DILCA ALGO
Wisconsin 9 2 0.237 0.962 0.973 0.921 0.971
Soybeansmall 21 4 0.712 1.000 0.893 0.910 0.911
Mushroom 21 2 0.310 0.828 0.825 0.826 0.826
Mammographic 4 2 0.071 0.817 0.828 0.826 0.818
Zoo 15 7 0.733 0.644 0.538 0.583 0.547
Dermatology 33 6 0.664 0.784 0.730 0.808 0.710
Hepatitis 13 2 0.141 0.667 0.463 0.679 0.662
Adult 8 2 0.032 0.676 NA NA NA
Lymphography 18 4 0.699 0.397 0.395 0.353 0.366
Primarytumor 17 21 0.873 0.242 0.196 0.224 0.209
Average 0.704 0.649 0.681 0.669

p-value 0.050 0.100 0.032
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Fig. 2. Scalability Test Results.

it may be more efficient to represent categorical data with
an embedding matrix than by a similarity matrix.

CDEG achieves better performance than the other sim-
ilarity measures, especially on data sets with larger VCI
and larger |C|, e.g., Primarytumor, Zoo, Soybeansmall, Lympho-
graph. This is because CDEG learns the value clusters with
different granularities and considers the couplings between
these value clusters, which enables CDEG to obtain more
faithful value similarities than the other similarity measures
that do not consider such couplings. Also, comparing to the
performance of 0-1, 0-1P and IDF demonstrated in Table
1, the performance of similarity measures are better on
the data sets with higher FCI, e.g., Wisconsin, Soybeansmall,
Mushroom, Mammographic according to Table 2 . This is
because CDEG, COS, DILCA and ALGO are able to capture
the pairwise relations between features.

6.2.3 Scalability Test
We use five subsets of the largest data set Adult to test the
scalability w.r.t. data size. All these data subsets contain
eight features. The execution time excludes the running time
of clustering.

In terms of scalability w.r.t the number of features, we
generate five synthetic data sets with the smallest dimension
of 25 and largest dimension of 400. Each feature has two
values which is randomly distributed. All the synthetic data
sets have the same number of objects, i.e., 10,000.

In the left panel of Fig. 2, CDE runs significantly faster
than COS, DILCA and ALGO and one order magnitude
slower than 0-1, 0-1P and IDF embedding. This is be-
cause CDE is linear to the data size (N ), while DILCA
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Fig. 4. Sensitivity Test of Parameter β on Four Data Sets in Terms of
Dimension and F-score.

has O(N2D2logD), COS has O(N2D3R3) and ALGO has
O(N2D2 + D2R3), where R denotes the is the maximum
number of distinct values for each features. In the right
panel, CDE has similar runtime with COS and DILCA, and
they run considerably slower than ALGO because ALGO
is quadratic to the number of features (D) according to the
computational complexity. All coupled methods run much
slower than pure embedding methods, i.e., 0-1, 0-1Pand IDF,
since modeling complex value interactions and/or feature
correlations is costly.

6.2.4 Sensitivity Test
There are two parameters in CDE: α controls the dimen-
sion of value embedding before PCA and β controls the
dimension of value embedding after PCA. Since the results
on all data sets have the similar trend, we demonstrate
the results of four data sets: Adult, Dermatology, Wisconsin,
Primarytumor, which have the largest |O|, largest |V |, largest
FCI and largest V CI respectively.

Fig. 3 shows the dimension of value embedding before
PCA and the clustering performance with different α which
directly influences the value of k in Algorithm 1. k deter-
mines the granularity of value clusters which constitute the
original value embedding. Since we only drop the clusters
with only one value, the clustering performance is stable
with parameter α.According to Fig. 3, the dimension is
stable when α ≥ 10.

Fig. 4 shows the dimension of the final value embedding
and the clustering performance w.r.t. β which influences the
dimension of embedding matrix during the PCA process.
The smaller β value is, the higher the dimension of value
embedding vector is. It shows that the performance of the
clustering is stable w.r.t. β. When β ≥ 10−15, the dimension
of value embedding vectors decreases with the increase of β
on all data sets.

According to Fig. 3 and Fig. 4, the clustering perfor-
mance is not sensitive to parameters α and β. The dimension
is stable when α ≥ 10 and β ≥ 10−15.

7 EXPERIMENTS FOR OUTLIER DETECTION

7.1 Experimental Settings
7.1.1 Outlier Detectors and Their Parameter Settings
COSH represents a categorical data object with an outlying
vector, so it can be applied to detect outliers directly. To
evaluate the effectiveness of COSH, we compare COSH with
two scoring-based representation and three other outlier
detectors on 10 real-world high-dimensional data. Similar
to COSH, CBRW [14] and ZERO++ (denoted by ZERO)
[15] unify data representation and outlier detection as one
learning task. CBRW is the state-of-the-art outlier detector
for categorical data and is also a coupled method since it
learns the low-level value couplings to estimate the outlier
score of values. ZERO is a recently proposed subspace
method for handling high-dimensional data.

The other three outlier detectors work on embedding-
based representation (i.e., iForest [16]) or similarity-based
representation (i.e., ABOD [37] and LOF [18]). iForest han-
dles high-dimensional data by working on the feature sub-
space. ABOD is an angle-based method which is designed
for high-dimensional data. LOF is one of the most popular
methods which works on full dimension. To keep most
complete information in original data sets and avoid intro-
ducing noise information for outlier detectors, we transform
the categorical data into numerical space with one-hot en-
coding for enabling iForest, ABOD and LOF to work on
categorical data. Another reason for using one-hot encoding
instead of similarity measures is that there is no consistently
effective similarity for different data sets [38] and one-hot
encoding performs comparably well to other embedding-
or similarity-based representation while it is much more
efficient [15], [38].

COSH uses k-means, so its result is not deterministic.
ZERO and iForest are also non-deterministic methods, so
these three methods’ performance results are taken average
from 10 runs. We set parameter α = 30 in COSH and
parameter α = 0.95 is recommended in CBRW [14]. We use
t = 50, n = 256 in iForest and t = 50, n = 8 in ZERO. LOF
is parameter free. Since small k is suggested in [18], we use
k = 5 in LOF.

7.1.2 Outlier Detection Evaluation Methods
All the outlier detectors also produce a ranking based on the
outlier scores. As shown in [39], the quality of ranking can
be estimated by the area under ROC curve (AUC) which is
computed by the Mann-Whitney-Wilcoxon test. AUC is one
of the most popular performance evaluation methods and
it takes the class-imbalance into consideration. Higher AUC
indicates better outlier detection accuracy.

COSH is implemented in MATLAB and other five outlier
detectors are implemented in JAVA. All the COSH related
experiments were performed at a node 3.4GHz Titan Cluster
with 96GB memory.

7.1.3 Data Sets and Data Indicators for Outlier Detection
Ten publicly available real-world data sets 2 are used, which
cover diverse domains, e.g., Internet advertising, image

2. The used data sets are available at http://featureselection.asu.edu,
https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/,
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html and
http://tunedit.org/repo/Data
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object recognition, web page classification, and text clas-
sification. The basic data information is shown in Table 3.
Six of all the data sets are directly transformed from highly
imbalanced classification data, where the smallest class is
treated as outliers and the largest class is regarded as normal
class; and we transform the other four data sets (PC, BASE,
web, RELA) by randomly sampling a small subset of the
smallest class as outliers to ensure the data sets contain 2%
outliers. The performance of these downsampled data sets
is taken average over 10 times of sampling.

We use two data indicators to quantify the value separa-
bility and the couplings between outlier values. We define
two data indicators value separability index (VSI) and outlier
coupling index (OCI) below and the quantization results are
shown in Table 3.
• The value separability index (VSI) is quantified by the

value overlapping in normal objects and outlier objects
which is defined as follows:

V SI = min {
|{x|x ∈ Xn ∩ vxj ∈ V

Xo
j }|

|Xn|
, j ∈ F}, (18)

where Xn is the set of normal objects and Xo is the set
of outlier objects, and vxj denotes the value of object
x in feature j. The larger VSI indicates the weaker
separability of values.

• The oulier coupling index (OCI) is quantified by the
pointwise mutual information between outlier values
and normal values, which is defined as follows:

OCI =
pmi(vo, v

′
o)

pmi(vo, v′o) + pmi(vo, vn)
, (19)

where pmi(vo, v
′
o) is the average pointwise mutual

information within outlier values, which is calculated
by pmi(vo, v

′
o) = average{ p(vo,v

′
o)

p(vo)p(v′o)
, vo, v

′
o ∈ Vo}.

OCI > 0.5 indicates that the couplings within outlier
values are stronger than the couplings between outlier
values and normal values.

7.2 Evaluation Results
7.2.1 Outlier Detection Effectiveness
The AUC performance of COSH and its five competitors:
CBRW, ZERO, iForest, ABOD and LOF is reported in Table
3. COSH performs better than its five competitors on seven
data sets, and significantly outperforms them at the 95%
confidence level. On average, COSH obtains more than 17%,
27%, 39%, 29% and 44% improvement over CBRW, ZERO,
iForest, ABOD and LOF, respectively. Among all outlier
detection methods, COSH, CBRW and ZERO are scoring-
based representation since they integrate model learning
and data representation into representation, while iForest,
ABOD and LOF are outlier detectors based on embedding
representation. From Table 3, the performance of scoring-
based representation is much better than pure outlier detec-
tors that rely on data conversion.

In Table 3, the data sets are sorted in the descend-
ing order of V SI . The data indicator V SI describes the
separability of values from single feature according to the
overlapping values of outlier objects and normal objects.
COSH obtains the best performance on all the data sets with
higher V SI (e.g. V SI > 60%), and it averagely achieves

TABLE 3
AUC Results of COSH vs. Five Outlier Detectors on 10 Data Sets.

Note: CBRW runs out of memory on high-dimensional data WebKB and
Reuters8. ABOD runs out-of-memory on large data w7a and CelebA

Data Info. Data Indicator AUC Performance

Data |X | |F| VSI OCI COSH CBRW ZERO iForest ABOD LOF
w7a 49749 300 0.950 0.589 0.835 0.646 0.538 0.404 NA 0.500
CelebA 202599 39 0.845 0.501 0.716 0.646 0.538 0.404 NA 0.500
WebKB 1658 6601 0.814 0.551 0.753 NA 0.698 0.678 0.670 0.825
RELATHE 794 4080 0.788 0.501 0.896 0.701 0.605 0.556 0.569 0.743
BASEHOCK 1019 4320 0.706 0.513 0.909 0.618 0.529 0.471 0.488 0.664
PCMAC 1002 3039 0.698 0.536 0.890 0.633 0.528 0.476 0.490 0.620
Reuters8 3974 9467 0.260 0.552 0.872 NA 0.883 0.839 0.786 0.892
Caltech-28 829 727 0.088 0.500 0.943 0.960 0.954 0.934 0.927 0.439
Caltech-16 829 253 0.054 0.510 0.996 0.993 0.988 0.972 0.977 0.388
wap.wc 346 4229 0.038 0.534 0.975 0.790 0.657 0.579 0.524 0.516
Average 0.879 0.748 0.692 0.631 0.679 0.609

p-value 0.023 0.020 0.002 0.008 0.010
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Fig. 5. Scalability Test Results. ABOD and CBRW run out of memory
when the number of objects reaches 25,000 and the number of features
reaches 8,000, respectively

substantial AUC improvement over its five competitors
CBRW, ZERO, iForest, ABOD and LOF by more than 28%,
46%, 67%, 50% and 30%, respectively. V SI quantifies the
separability of single feature, while some outliers could
be identified by multiple features. COSH captures high-
order interactions through couplings between value clusters
which helps to detect outliers in data sets without strongly
relevant features (i.e., low VSI).

OCI captures the relation between outliers and normal
values across two features. The larger OCI is, the stronger
couplings exist within outliers and weaker couplings are
between outliers and normal objects. In the data sets with
the highest OCI , i.e., w7a, COSH achieves much better
performance than others, while COSH does not show its
superiority in the data sets with the lowest OCI , i.e., Cal28.

7.2.2 Scalability Test

COSH is implemented by MATLAB while other methods
are implemented by JAVA, so the absolute time is not
comparable. We demonstrate the ratio of the execution time
to the base time which is from the smallest data set. We use
six subsets of the largest data set CelebA to test the scalability
w.r.t. data size. All these data sets contain the same number
of features, i.e., 39. The execution time on the smallest data
set is: 26.6s for COSH, 0.344s for CBRW, 3.416s for ZERO,
0.299s for iForest, 3685.467s for ABOD and 2.439s for LOF.

In terms of scalability w.r.t. the number of features, seven
subsets of the data sets with the largest number of features,
R8 are used. All these seven data sets contains the same
number of objects, i.e., 3,974. The execution time on the
smallest data set is: 88.21s for COSH, 1.657s for CBRW,
7.244s for ZERO, 0.182s for iForest, 84.345s for ABOD and
0.581s for LOF.
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Fig. 6. Sensitivity Test Results w.r.t. α on All Ten Data Sets.

The computational complexities of CBRW, ZERO, iFor-
est, ABOD and LOF are O(ND2), O(ND), O(ND),
O(N3D) and O(N2D) respectively. As shown in the right
panel of Fig. 5, COSH is one of the most efficient method
compared with other state-of-the-art outlier detection meth-
ods w.r.t. the number of objects, since COSH is linear to the
data size and quadratic to the number of features. In the left
panel of Fig. 5, COSH and CBRW have similar run time and
they run considerably slower than the other four detectors,
since both COSH and CBRW capture complex value interac-
tions while the other methods ignore them. Although COSH
and CBRW run slower, they obtain significantly better AUC
performance than their competitors, as shown in Table 3.

7.2.3 Sensitivity Test
We investigate the sensitivity test of COSH w.r.t. its only
parameter α on all the 10 data sets using a wide range of
α, i.e., {10, 20, 30, 40, 50, 60}. The sensitivity test results of
COSH are shown in Fig. 6. COSH performs stably w.r.t. α on
all data sets. The larger α means the less times of clustering
and smaller number of value clusters.

8 DISCUSSIONS

CURE is a hierarchical framework which can be customized
from multiple levels. We instantiate CURE by customizing
the value cluster learning and coupling learning between
value clusters according to different applications based on
the same couplings functions. More instances may be de-
rived by using other couplings for different applications.

The two complementary coupling functions used by
CDE and COSH capture only pairwise couplings. Instantiat-
ing the CURE framework by incorporating arbitrary length
patterns and their couplings may improve the discrimina-
tive ability of the low-level value coupling functions, and
further improve the representation quality.

One important component of CURE is the value cluster
learning, which is instantiated by k-means clustering in CDE
and COSH. Although k-means has multiple advantages, it
has some limitations for detecting special shape of clusters
and overlapping clusters. Learning arbitrary shapes of value
clusters with different clustering methods may enrich the
information of value clusters. However, various kinds of
value clusters may induce more heterogeneous couplings or
noises. Therefore, more advanced methods may be required
to capture couplings between value clusters in this case.

Another important part of CURE is the coupling learn-
ing between value clusters, which is highly related to the
properties of value clusters. There may be multiple kinds of

interactions and correlations between value clusters which
are also hard to interpret them directly. Incorporating more
sophisticated methods to learn value couplings, e.g., neural
network model, may improve the utility of each value
clusters and need less assumption.

9 CONCLUSIONS

This paper proposes a novel unsupervised representation
framework (CURE) for categorical data which models hi-
erarchical value couplings in terms of feature value in-
teractions and value cluster correlations. Following CURE,
two instances CDE and COSH are respectively introduced
for clustering and outlier detection, which are based on
two complementary and discriminative value couplings. A
contrast analysis of CDE and COSH is given to show the
underlying motivation of instantiation.

Different from existing encoding-based embedding and
feature correlation-based similarity measures, CDE learns
the data embedding from value clusters and couplings
between value clusters. Extensive experiments show that (1)
CDE significantly outperforms typical embedding methods
and similarity measures in clustering evaluation. (2) Two
data indicators can facilitate the explanation of clustering
performance on complex data sets. (3) CDE has a good
scalability and is more efficient than similarity-based rep-
resentation. (4) The performance of CDE is insensitive to the
two parameters

Different from existing single-granularity outlier detec-
tion methods, COSH observes hierarchical outlying behav-
iors from values to value clusters with different granu-
larities. Extensive experiments show that (1) COSH sig-
nificantly outperforms five state-of-the-art outlier detection
methods. (2) Two data indicators can facilitate the explana-
tion of outlier detection on complex data sets. (3) COSH
has a good scalability which enables it to run on high-
dimensional data sets. (4) There is only one parameter in
COSH and it has little influence on the outlier detection
performance.

We plan to model selective value couplings to suit dif-
ferent applications and extend the framework into other
scenarios.
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