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Abstract—We develop an adversarial learning algorithm for supervised classification in general and Convolutional Neural Networks (CNN) in

particular. The algorithm’s objective is to produce small changes to the data distribution defined over positive and negative class labels so that the
resulting data distribution is misclassified by the CNN. The theoretical goal is to determine a manipulating change on the input data that finds

learner decision boundaries where many positive labels become negative labels. Then we propose a CNN which is secure against such
unforeseen changes in data. The algorithm generates adversarial manipulations by formulating a multiplayer stochastic game targeting the

classification performance of the CNN. The multiplayer stochastic game is expressed in terms of multiple two-player sequential games. Each game
consists of interactions between two players – an intelligent adversary and the learner CNN – such that a player’s payoff function increases with

interactions. Following the convergence of a sequential noncooperative Stackelberg game, each two-player game is solved for the Nash
equilibrium. The Nash equilibrium finds a pair of strategies (learner weights and evolutionary operations) from which there is no incentive for either

learner or adversary to deviate. We then retrain the learner over all the adversarial manipulations generated by multiple players to propose a
secure CNN which is robust to subsequent adversarial data manipulations. The adversarial data and corresponding CNN performance is

evaluated on MNIST handwritten digits data. The results suggest that game theory and evolutionary algorithms are very effective in securing deep
learning models against performance vulnerabilities simulated as attack scenarios from multiple adversaries.

F

1 INTRODUCTION

To learn mathematical patterns, machine learning methods
make assumptions on the data distributions for training and
testing the learning algorithm. In this paper we design an
algorithm that generates a testing data distribution which is
non-stationary with respect to the training data distribution.
Designing robust data mining models, computing systems
and machine learning algorithms for non-stationary data
analytics is the goal of adversarial learning. Adversarial
learning has application in areas such as spam filtering,
virus detection, intrusion detection, fraud detection, bio-
metric authentication, network protocol verification, com-
putational advertising, recommender systems, social media
web mining and performance modelling of complex sys-
tems [1, 2].

Adversarial learning algorithms are specifically de-
signed to exploit vulnerabilities in a given machine learning
algorithm. These vulnerabilities are simulated by training
the learning algorithm under various attack scenarios and
policies. The attack scenarios are assumed to be formulated
by an intelligent adversary [3]. The optimal attack policy
is formulated to solve one or many optimization problems
over one or many attack scenarios. A learning algorithm
designed over adversarial settings becomes robust to such
vulnerabilities in the training and testing data distributions.
The various adversarial learning algorithms differ in as-
sumptions regarding the adversary’s knowledge, security
violation, attack strategies and attack influence [4].

We formulate and customize objective functions and
search algorithms for adversarial learning where the learner
is assumed to be a deep neural network. We then derive ad-
versarial manipulations and defence mechanisms for deep
learning algorithms. Deep learning refers to a class of neural

network algorithms with many stages of nonlinear infor-
mation processing in hierarchical architectures exploited for
pattern classification and feature learning [5]. Deep learning
research aims at discovering machine learning algorithms
at multiple levels of data abstractions. In high dimensional
data, deep learning has been found to be susceptible to
adversarial examples [6]. Such adversarial examples can be
crafted by prior knowledge, observation, and experimenta-
tion on the network layers and loss functions in the deep
learning model.

The intuition for our objective function is derived from
game theory actions and moves. We assume that the attack
scenarios in adversarial learning can be modelled as the
moves made by a learning algorithm and countermoves
made by an intelligent adversary. Game Theory is the
study of interactions or games between independent self-
interested agents or players. Each player has a set of as-
sociated strategies/moves/actions that optimize a payoff
function or utility function. The key idea in game theory is
that of an equilibrium state from which none of the players
have any incentive to deviate. A two-player game where
a single follower acts in response to the moves of a single
leader is called a Stackelberg game. It is said to converge
onto the equilibrium state called Nash equilibrium.

Our adversarial algorithm proposes a game between
two players - a data miner or learner and an intelligent
adversary or adversary. The interactions between the learner
and adversary are modelled as a two-player sequential
Stackelberg zero-sum game. In our game, the adversary
is the leader and the learner is the follower. The learner
retrains the model after the adversary’s attack. The payoff
function for each player is specified in terms of objective
functions simulating the adversary’s attack process and
learner’s learning processes. The attack processes specify



2

the adversary’s constraints and optimal attack policy. The
learning processes specify the learner’s gain and adversary’s
gain under the optimal policy. The optimal attack policy
is formulated in terms of stochastic optimization operators
and evolutionary computing algorithms.

Following are the major contributions of this research.

• We formulate the problem of finding attack scenarios
in adversarial learning and defence mechanisms in
deep learning as a maxmin optimization problem
rooted in game-theoretic learning models.

• We formulate two-player games and multiplayer
games simulating adversarial manipulations in terms
of adversarial cost and learning error on the training
and testing data distributions.

• We represent the solution of adversarial manipu-
lations by stochastic operators and game strategies
in evolutionary algorithms. We evaluate adversarial
manipulations with a tensor-based fitness function
and corresponding payoff functions in the game.

• Our algorithms can adapt to continuous adversarial
data manipulations unlike most of the existing ad-
versarial learning algorithms. We do not assume the
adversary knows anything about the deep network
structure which is close to real-life settings.

• On the MNIST data, we demonstrate the effective-
ness of the proposed adversarial manipulations in
both the two-player and multiplayer games. Fur-
thermore, both convolutional neural networks and
generative adversarial networks are shown to be
vulnerable to the adversarial manipulations.

The paper starts with related work in Section 2 comparing
the new approach with existing approaches. The stochastic
game and corresponding sequential game is formulated in
Section 3. The pseudocode for the proposed sequential game
and the experiments for the proposed stochastic game are
presented in Section 3 and Section 6 respectively. The paper
ends in Section 7 with a summary of current work and
future work.

2 RELATED WORK

The existing adversarial learning algorithms are summa-
rized in Table 1 by algorithm design. The table’s columns
list the various features to compare the adversarial learning
algorithms. The table’s rows list the various algorithms
under comparison. The algorithms are compared in terms
of adversary’s knowledge, attack strategy, search algorithm
and convergence conditions. The ”adversary’s knowledge”
is the semantic information of the adversary. The ”security
violation” is the purpose of the adversarial attack setting.
The ”attack strategy” is the attack scenario under which the
adversary operates. The ”search algorithm” is the algorithm
used to find an optimal solution. The ”convergence condi-
tions” are the search criteria for creating adversarial data.
Our algorithm is termed ”Game theory : deep learning”.

2.1 Adversarial Security Mechanisms
As shown in Table 1, the existing adversarial learning algo-
rithms and applications can be classified by the learner’s de-
fence mechanisms and adversary’s attack scenarios [4, 7, 14,

15]. The learner’s defence mechanisms have been proposed
by designing secure learning algorithms [4], multiple clas-
sifier systems [7], privacy-preserving machine learning [14]
and the use of randomization or disinformation to mislead
the adversary [15].

Biggio et al. [4] discuss the learner’s defence mech-
anism in terms of an empirical framework extending the
model selection and performance evaluation steps of pattern
classification [16]. The framework recommends training the
learner for ”security by design” rather than ”security by
obscurity”. The additional steps validate the defence mech-
anisms proposed in the case of both generative learning
and discriminative learning under attack. Depending on the
goal, knowledge and capability of the adversary, these steps
are classified in terms of attack influence, security violation
and attack specificity.

Our algorithm has causative attack influence, integrity
security violation and targeted attack specificity. It causes a
slight change to the data distributions simulated by stochas-
tic optimization and randomized sampling methods. The
optimization problem converges into a solution computed
at the Nash equilibrium in the game. From the adversary’s
standpoint, the equilibrium solution is a local optimum in
worst-case attack scenarios and a global optimum in best-
case attack scenarios. The strength and relevancy of the
attack scenario is determined by the performance of the
deep learning model under attack.

2.2 Generative Adversarial Networks

Goodfellow et al. [6] argue for the need to have an
adversarial training procedure with the objective to mini-
mize the worst case error when the data is perturbed by
an adversary. Goodfellow et al. [6] propose a minmax
game between two deep learning networks called Genera-
tive Adversarial Networks (GANs). A variety of generative
methods are available to create the perturbation between
training and testing data distributions [17]. Radford et al.
[18] propose a stable GAN called DCGAN. Gulrajani et al.
[19] design IWGAN which undertakes a theoretical analysis
of the generative learning process. Berthelot et al. [20]
propose BEGAN with a new loss function in the training
algorithm. Chen et al. [21] propose InfoGAN which uses
generative learning models for unsupervised representation
learning.

Insofar as the learner’s defence mechanisms are con-
cerned, our game formulation is similar to the GAN game
formulation. However, the objective of our research is to
simulate a real adversarial attack scenario on two-label
classification model in terms of cost to the adversary. We
seek to increase the classification performance when the
data distribution is changed with a malicious intent. By
contrast, the objective of GAN is to generate synthetic
data that is indistinguishable from the original data. Our
objective function has cost and error terms defining the
attack scenarios in adversarial data settings. By contrast,
the objective function in GAN is defined in terms of the
loss functions of deep neural networks underlying the given
training and testing data distributions.

In a minmax game formulation, we seek to create the
datasets for attack scenarios in a discriminative learning
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Adversarial algorithm Adversary’s
knowledge

Attack strategy Search algorithm Convergence Conditions

Classifier ensembles [7] Training features Reorder features by
importance for dis-
criminant function

Randomized sampling Ensemble size, feature subset size

Feature weighting [8] Training features Addition/deletion of
binary features

Feature bagging Number of base models

SVM : inputs [9] Gradient of loss Train noise injection Gradient ascent Change in test error
SVM : labels [10] Training labels Label noise injection Gradient ascent Support vectors from linear and

quadratic programming
Adversarial networks : GAN [6] Training and testing

data
Linear perturbation on
training data

Backpropagation with
L-BFGS

Early stopping on adversarial vali-
dation set error

Adversarial networks : DNN [11] Testing data Observe DNN outputs
given inputs chosen by
the adversary

Jacobian-based dataset
augmentation

Early stopping on adversarial vali-
dation set error

Adversarial networks : DAE [12] Testing data Gaussian additive
noise

Stacking DAEs into a
feed forward neural
network

Training error

Game theory : support vector machines [13] Training features Delete different fea-
tures from different
data points

Quadratic program-
ming

Training error subject to regulariza-
tion terms

Game theory : deep learning (Our method) Training data Move positive samples
towards negative sam-
ples

Evolutionary
algorithm

Nash equilibrium

TABLE 1: Adversarial algorithms comparision by design

model and supervised learning problem while GAN ad-
dresses a generative learning model and unsupervised
learning problem. Furthermore, the generator is the leader
of the game in minmax formulation for GAN, whereas
in our minmax formulation an intelligent adversary leads
the game. While searching for the Nash equilibrium in a
minmax game, GANs solve a convex optimization problem
with gradient-based optimization algorithms whereas we
solve a non-convex stochastic optimization problem with
evolutionary learning algorithms. Thus, we are able to
estimate the best cost for the adversary in effecting the
adversarial attack.

2.3 Game-Theoretic Learning Models
Stochastic games defined on a strategy space have been used
to generate adversarial examples [22]. The strategy space
is defined in terms of two or more adversaries’ actions
and corresponding payoff functions. Each adversary can
engage one or more learners in a game and vice versa. From
the learner’s standpoint, adjusting parameters is computa-
tionally less expensive than building a new model that is
robust to adversarial manipulation. From the adversary’s
standpoint, the attack scenarios can be characterized by the
stochastic optimization parameters estimated in the game.
A game ends in an equilibrium with payoffs to each player
based on their objectives and actions. The learner has no
incentive to play a game that leads to too many false posi-
tives with too little increase in true positives. The adversary
has no incentive to play a game that increases the utility
of false negatives not detected by the learning algorithm.
At equilibrium, the adversary is able to find testing data
that is significantly different from the training data whereas
the learner is able to update its model for new threats from
adversarial data.

Globerson and Roweis [13] discuss a classification
algorithm with a game theoretic formulation. The proposed
algorithm is robust to feature deletion according to a min-
max objective function optimized by quadratic program-
ming. In Liu and Chawla [23], the interactions between an
adversary and data miner are modelled as a two-player

sequential Stackelberg zero-sum game where the payoff
for each player is designed as a regularized loss function.
The adversary iteratively attacks the data miner using the
best possible strategy for transforming the original training
data. The data miner independently reacts by rebuilding
the classifier based on the data miner’s observations of the
adversary’s modifications to the training data. The game is
repeated until the adversary’s payoff does not increase or
the maximum number of iterations is reached. Liu et al. [24]
propose an extension to Liu and Chawla [23] where a
one-step game is used to reduce the computing time of
the minmax algorithm. The one-step method converges to
Nash equilibrium by utilizing Singular Value Decomposi-
tion (SVD). Yin et al. [25] formulate a bi-level optimization
problem from a non-zero sum game on adversarial data
transformations. The game experiments with sparse regu-
larizers for designing robust classification objectives.

To derive the payoff functions in the game, we assume
that the adversary has no knowledge of either the deep
neural network layers or loss functions in the deep learning
model. The proposed minmax problem is solved without
making assumptions on the training/testing data distri-
butions. The strategy space for algorithmic randomization
and data manipulation in the game is determined by the
stochastic operators in evolutionary algorithms defining the
attack scenarios.

2.4 Stochastic Optimization
Evolutionary Algorithms (EA) have been used in stochastic
optimization to generate rule-based data mining models
with attribute interactions [26]. The EA-based stochastic
search and optimization algorithms are Evolutionary Pro-
gramming (EP), Evolutionary Strategies (ES), Genetic Al-
gorithms (GA), Differential Evolution (DE), Estimation of
Distribution Algorithm (EDA) and Swarm Intelligence (SI)
algorithms [27], [28].

In our adversarial algorithm, the search and optimiza-
tion algorithm is either a genetic algorithm or a simulated
annealing algorithm. The adversarial data samples are gen-
erated by the selection, crossover, mutation search operators
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in the genetic algorithm and the annealing search operator
in the simulated annealing algorithm. By using probabilistic
hill climbing algorithms over Markov chains in multivariate
models, the current search operators can be extended to
define explicit probabilistic distributions performing a com-
plex neighbourhood search for the candidate solutions [29].

3 GAME FORMULATION

In this section, we discuss the problem formulation for
the proposed adversarial learning algorithm. The stochastic
multiplayer game is formulated in terms of multiple two-
player sequential games.

3.1 Sequential game formulation
The training algorithm simulates the adversarial learning
as a constant sum Stackelberg game between two play-
ers. The two players are called Leader (L) and Follower
(F). The leader initiates the game by making the first ac-
tion/move/play. In our algorithm, the adversary is the
leader and the learner is the follower. In a constant sum
game, the learner’s loss is assumed to be the adversary’s
gain and vice versa.

Each player is associated with strategy spaces A and W
for L and F respectively. The strategy space is a choice of
moves available to each player. The outcome of a strategy is
determined by the player’s payoff function JL and JF . For
a given observation of w ∈ W , the best strategy α∗ ∈ A for
the leader is

α∗ = argmaxα∈AJL(α,w) (1)

Similarly for L’s move α, F’s best strategy is

w∗ = argmaxw∈WJF (α,w) (2)

Moreover, the sum of payoff functions JL for the adversary
and JF for the classifier is assumed to sum to a constant
profit Φ. This allows us to rewrite the expression for w∗ in
terms of JL

w∗ = argmaxw∈WΦ− JL(α,w) = argminw∈WJL(α,w) (3)

Combining Equation 1 with Equation 3 we formulate the
following maxmin problem in the game.

Maxmin : (α∗, w∗) = argmaxα∈AJL(α, argminw∈WJL(α,w))
(4)

We train a Convolutional Neural Network (CNN) as the
learner. With knowledge of only the learner’s classification
error, the adversary is assumed to target the true positives.
In each iteration of the game, the learner trains the weights
w in the CNN layers for the input α presented by the adver-
sary. The adversary then adapts the data manipulations to
the weights trained by the CNN. Thus, each player’s move
is based on the opponent’s last play. The game is initiated
by the adversary. Thus the adversary is the leader L and the
learner is the follower F. Each game iteration is composed
of the moves made by L and F.

Using an evolutionary algorithm, the adversary searches
for data manipulations that maximize classification error
error(w). The fitness function in evolutionary algorithm
JL(α,w) is defined to be the adversary’s payoff function.
The fitness function increases with iterations of the game.
The game converges when the adversary does not see an

increase in the payoff function or the maximum number of
iterations is reached. The game convergence criteria depend
on the search and optimization criteria of the evolutionary
algorithm used in each game iteration. The game converges
to an adversarial data manipulation α∗ on the learner with
weights w.

For labelled input training data Xtrain, Xtest available
during the game, the adversary searches for a move α that
maximizes the following payoff function or fitness function
JL(α) where error is the classification error as measured by
recall for the current adversarial data. The term cost is the
`2 norm for the current α.

JL(α,w) = 1 + λ ∗ error(w)− cost(α) (5)

error(w) = 1− recall(w) (6)

cost(α) = ||α||2 (7)

The negative cost(α) term in Equation 5 ensures that the
adversary minimizes changes to the current α while max-
imizing the positive error(w) term. By definition of the
fitness function, error(w) is maximized by minimizing the
corresponding recall(w). recall(w) is computed for each
iteration of the game on the manipulated training data
Xtrain + α so that the α which gives the maximum value
for JL(α,w) is selected for subsequent iterations in the
game. cost(α) is enhanced by an weighting term λ that is
empirically evaluated for each dataset. A constant 1 is then
added to JL(α) to ensure a positive fitness function in the
evolutionary algorithm.

Therefore, from a theoretical standpoint, we characterize
the statistical difference between the input training data
distribution Xtrain and adversarial testing data distribution
Xtest + α∗ in terms of the adversary’s cost cost(α) and
the learner’s error error(w). During the game’s iterations,
the manipulation of the training data distribution Xtrain

into Xtrain + α allows us to find the α that maximizes
the adversary’s payoff JL(α,w). After game convergence,
the manipulation of the testing data distribution Xtest into
Xtest +α∗ allows us to find the α∗ that minimizes learner’s
payoff JF (α,w). Equation 5 is solved for α∗ – the additive
pixel level manipulations generating the adversarial manip-
ulations. α∗ allows us to find an adversarial testing data
distribution Xtest+α∗ that is non-stationary with respect to
the original training data distribution Xtrain.

Various multiplayer multi-label game formulations
would allow us to optimize various adversarial manipula-
tions on the input data distribution. Equation 5 can also be
solved for more types of adversarial manipulations whose
cost of generation cost(α) is characterized by structured
adversarial manipulations on complex data structures like
tensors and graphs increasingly found in big data models.

From an application standpoint, we observe that the
adversary’s interest is in converting illegitimate data to
legitimate data with a minimum of changes and not vice
versa. To account for this objective, we assume the learner’s
error to be classification recall. By converting true positives
to either false positives or false negatives, the adversary
tries to reduce the true positives in the learner’s perfor-
mance regardless of the changes to the true negatives. The
adversary’s attack scenarios are expressed in terms of the
parameter settings in the evolutionary algorithms. Each
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different parameter setting allows us to converge onto a
different adversarial data manipulation on the testing data
distribution.

From the perspective of improving the robustness of
deep learning networks, our formulation generates the ma-
nipulated data distributions maximizing the error of the
deep network and measuring the cost of the corresponding
attack scenarios generating data manipulations over the
training data in adversarial learning. A successful attack
scenario allows us to estimate a manipulated data distri-
bution that leads to statistically significant testing error.
The estimation of neural networks weights on such data
distributions is the area of our research and investigation.

3.2 Stochastic game formulation

In this section, we generalize Equation 5 for multiple adver-
saries participating as players in the game. At the end of the
game, we propose a learner that is robust to the adversarial
data generated by each adversary.

Suppose a set L of M adversaries L =
{L1, L2, L3, ..., LM} associated with the strategy space
A are attacking the single learner F associated with the
strategy space W . The outcome of all M adversaries
strategy set AS = {α1, α2, α3, ..., αM} is determined
by the vector JL of M adversary payoff functions
JL = {JL1

, JL2
, JL3

, ..., JLM
} such that JLi

corresponds
to αi where i = 1, 2, 3, ...,M . For a given best observation
of w∗ ∈ W and best estimate of α∗ ∈ A, under the same
assumptions, we can generalize the maxmin problem in
Equation 4 to the following Equation 8 for a multiplayer
constant sum stochastic game.

Maxmin : (A∗S , w
∗) = argmaxAS∈AJL(AS , argminw∈WJL(AS , w))

(8)
In this research, we assume that the vector AS is the set of
its component scalar αi where i = 1, 2, 3, ...,M , so that the
multiplayer stochastic game can be simplified as many two-
player sequential games. Each two-player game is played as
a sequential game following Equation 4 and Equation 5. The
output of all the games is a set A∗

S .
Upon convergence, each game i outputs adversarial

data manipulation α∗
i where i = {1, 2, 3, ...,M}. Each α∗

i

is added to the original training data distribution Xtrain

and original testing data distribution Xtest to create final
adversarial manipulations Xtrain + A∗

S and Xtest + A∗
S .

Definition 1. Xtrain + A∗
S = {∪Mi=1{Xtrain + α∗

i }}

Definition 2. Xtest + A∗
S = {∪Mi=1{Xtest + α∗

i }}

We choose a Convolutional Neural Network (CNN) as
the learner. The CNN architecture’s input layers and output
layer are described in Krizhevsky et al. [30] and available
in the Tensorflow 1 as the CIFAR10 model. The CNN has
input layers consisting of convolution layers, maxpooling
layers, regularization layers and activation units. The CNN
has output layer of the softmax probability distribution
function. The overall loss function of the learner is defined
by the CNN’s input and output layers.

From multiplayer game output A∗
S , we define the fol-

lowing CNN models corresponding to manipulated training

1. https://www.tensorflow.org/tutorials/deep cnn#cifar-10 model

Fig. 1: A flow chart illustrating the benefits of a game theoretic
learner. The two-player game is played by a single adversary
and one Learner. The game produces a final deep learning
network CNNsecure that is better equipped to deal with the ad-
versarial manipulations than the initial deep learning network
CNNoriginal.

data distribution Xtrain + A∗
S and testing data distribution

Xtest+A∗
S . Xtrain is sampled from a given MNIST database

Xoriginal as well as a Generative Adversarial Network
(GAN) output Xgenerated−gan.
Definition 3.

CNNoriginal = CNN(Xtrain, Xtest),
Xtrain = Sample(Xoriginal),
Xtest = Sample(Xoriginal)

Definition 4.
CNNmanipulated−cnn = CNN(Xtrain, Xtest + A∗

S),
Xtrain = Sample(Xoriginal),
Xtest = Sample(Xoriginal + A∗

S)

Definition 5.
CNNmanipulated−gan = CNN(Xtrain, Xtest + A∗

S),
Xtrain = Sample(Xgenerated−gan),
Xtest = Sample(Xoriginal + A∗

S)

Definition 6.
CNNsecure = CNN(Xtrain + A∗

S , Xtest + A∗
S),

Xtrain = Sample(Xoriginal + A∗
S),

Xtest = Sample(Xoriginal + A∗
S)

3.3 Stochastic game illustration
Figure 1 illustrates the learning process in the game for-
mulation as a flow chart. The CNNoriginal is trained on
training data Xtrain and evaluated on testing data Xtest

given as ’learner performance’ in the experiments described
in Section 6. Figure 1 illustrates a two-player game. The
game has moves executed by each of the adversaries and
the learner during each interaction. In these moves, an
adversary targets the learner by the adversarial sample
produced from the evolutionary operators. The learner then
adapts the deep learning operators for the adversarial data
by retraining the CNN on the new cross-validation sample.

A set L of M adversaries L = {L1, L2, L3, ..., LM}
targets this performance by engaging the CNN in multiple
two-player sequential games. In each two-player game, the
CNNs trained on the original and generated data samples
and tested on the adversarial data are CNNmanipulated−cnn,
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(a) 2 manipulated to look
like 8

(b) 3 manipulated to look
like 8

(c) 4 manipulated to look
like 9

(d) 7 manipulated to look
like 9

Fig. 2: Examples of transformed images found at Nash equilib-
rium in a Stackelberg game. To avoid detection, the adversary
adds pixels in (a) and (d), and changes shape in (b) and (c).

CNNmanipulated−gan respectively. All these CNNs are
given under the umbrella term ’manipulated learner per-
formance’ in the experiments in Section 6. We find that
CNNmanipulated−cnn as well as CNNmanipulated−gan are
significantly worse performing than the original CNN
CNNoriginal trained on the original training and testing
data (Xtrain, Xtest). Thus we conclude adversarial manip-
ulation succeeds in attacking the learner. A new Convo-
lutional Neural Network CNNsecure is then retrained on
(Xtrain + A∗

S , Xtest + A∗
S) to adapt to adversarial manip-

ulations. It is given as ’secure learner performance’ in the
experiments described in Section 6. CNNsecure is our pro-
posed model. It is found to be better than the manipulated
CNN’s CNNmanipulated−cnn and CNNmanipulated−gan.

Therefore, we conclude that the new CNNsecure has
successfully adapted to adversarial data generated by mul-
tiple adversaries while the given CNNoriginal is vulnerable
to each adversarial manipulation α∗

i generated by each
adversary Li playing a game i on the given training/testing
data distributions. Our algorithm is able to find a data
sample that affects the performance of a CNN. The CNN
that is able to recover from our adversarial attack is better
equipped to deal with unforeseen changes in the underlying
data distribution. The game between adversary and learner
allows us to produce adversarial data manipulations for a
CNN trained on the underlying data distribution.

3.4 Illustrative Examples

Figure 2 shows examples of data transformations on pos-
itive labels that appear to be negative labels in the adver-
sarial algorithm. Some of the transformations that avoid
detection are adding and deleting pixels, and changing the
shape and size of the image. In Figure 2(a), the handwritten
digit 2 has been manipulated to look like a 8 by adding
pixels. In Figure 2(b), the handwritten digit 3 has been
manipulated to look like 8 by changing the thickness and
shape. In Figure 2(c), the handwritten digit 4 has been ma-
nipulated to look like 9 by adding pixels and deleting pixels.
In Figure 2(d), the handwritten digit 7 has been manipulated
to look like 9 by adding pixels but not changing the shape.

4 STOCHASTIC GAME ALGORITHM

In this section we discuss the adversarial learning algorithm
with a set L of M adversaries participating in a stochastic
game. Each adversary Li participates in a sequential two-
player game iwith the CNN to output α∗

i according to either
Algorithm 2 or Algorithm 7.

Algorithm 1 solves for A∗
S in Equation 8. As input, the

algorithm requires the labelled training data Xtrain and
labelled testing data Xtest Each record in the training and
testing data is a tensor with pixel values representing an
image. A variable M determines the number of adversaries
participating in the multiplayer game. M is set to 1 for
the two-player game. The variable gametype allows each
adversary in a multiplayer game to choose between GA and
SA as the optimization procedure for a two-player game.

The cumulative effect of all the adversaries attack is
validated by datasets Xtrain+A∗

S and Xtest+A∗
S following

Definition 1 and Definition 2 respectively. In Section 6.5 and
Table 6, these datasets are used to validate the CNN F1-
score performance according to Definition 3, Definition 4,
Definition 5 and Definition 6.

Algorithm 1 Multiplayer Game with Multiple Adver-
saries
Input:
1: Labelled training data Xtrain, Labelled testing data Xtest, Number

of adversaries M , Optimization flag variable gametype
Output:
2: Adversarial manipulations A∗S , Attack performance F1-

scoremanipulated, Retraining performance F1-scoresecure
3: for i ∈ [1..M ] do . Iterate i on M adversaries choosing either GA or

SA as flag variable gametype
4: Begin
5: If gametype == GA then
6: α∗i = twoplayergame-ga(Xtrain)
7: If gametype == SA then
8: α∗i = twoplayergame-sa(Xtrain)
9: End

10: A∗S = {α∗i }, i = {1, 2, 3, ...,M}
11: Generate Xtrain + A∗S from Definition 1
12: Generate Xtest + A∗S from Definition 2
13: Train CNN on Xtrain
14: Calculate F1-scoremanipulated by testing CNN on Xtest + A∗S
15: Train CNN on Xtrain + A∗S
16: Calculate F1-scoresecure by testing CNN on Xtest + A∗S
17: return A∗S , F1-scoremanipulated, F1-scoresecure

5 SEQUENTIAL GAME ALGORITHM

The pseudocode for a two-player sequential game i with
output α∗ is discussed in Section 5.1 and Section 5.2. By
assuming that each sequential game i is independent of the
remaining games in the stochastic game withM adversaries,
we drop game number i in the sequential game pseudocode.
The experiments in Section 6.3, Section 6.2 and Table 5 vali-
date the sequential game. Section 6.2. Section 6.4 provides a
conclusion to these experiments.

5.1 Genetic algorithm

Algorithm 2 gives the training algorithm for the two-player
sequential game that takes into consideration adversarial
attacks. As input, Algorithm 2 requires the training data
Xtrain. Each example in the input data is a three dimen-
sional tensor of RGB pixel values. Algorithm 3 calculates the
fitness function values for candidate solutions. Algorithm 4,
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Algorithm 5, Algorithm 6 give the genetic operators used
by Algorithm 2 to search for candidate solutions.

Algorithm 2 initializes the game by training the CNN
on Line 2 to store the weights to disk. The fitness function
values are computed on Line 5 for each randomly initialized
α. α belongs to a genetic population αpopulation operating
on the input data Xtrain. αpopulation is randomly initialized
around the mean of the positive class. It is assigned to
population on Line 4. A variable maxpayoff is used to
keep track of the adversary’s current payoff in the current
iteration of the game from Line 7 to Line 25. The if condition
on Line 11 ensures that the algorithm converges when
maxpayoff does not exceed the current payoff currpayoff
by a small number 0.0001. In each game iteration, the current
αcurr which gives the best fitness value is selected on
Line 8. On Line 9, the CNN is retrained to react to attack
Xtrain+αcurr. The variable maxpayoff is updated on Line
13 if αcurr satisfies the game convergence criteria.

From Line 14 to Line 20, the standard genetic oper-
ators selection, crossover, mutation, and clone are used
to generate population in the genetic algorithm. On Line
14, the selection operator conducts a weighted sampling
without replacement where the weights are proportional
to the fitness function values for the current population.
The selection function in Algorithm 4 randomly samples
the current population to return the selected candidates
and the remaining candidates as the offspring and parents
respectively. On Line 17, the crossover operation is applied
between the odd children and even children in the offspring.
The crossover function in Algorithm 5 randomly slices and
swaps the pixels of the current children. The starting and
ending indices for slicing are also selected randomly. On
Line 19, random mutations are applied to the pixels of each
offspring. The mutation function in Algorithm 6 applies a
mask of randomintegers that are added to the pixel values in
the current child. Since the masking allows for pixel values
in the range of -255 and +255, any mutated pixel values
crossing 255 and 0 are taken to be 255 and 0 respectively. The
pixels for mutation are selected with a uniform probability.

The new population for the next iteration is cloned
on Line 20. Line 21 calls Algorithm 3 to recompute the
fitness function values for new αpopulation. Line 4 of Al-
gorithm 3 in turn calls an evaluation function to compute
the performance metrics on the data subject to adversarial
manipulation. These metrics are calculated subject to the
current softmax probabilities of the learner. Line 6 of the
Algorithm 3 calls Equation 7 to compute the cost of α∗,
cost(α).

In Algorithm 2, Line 26 and Line 27 find α∗ that is
the final converged attack for the adversary. On Line 28,
the training algorithm Algorithm 2 returns the final testing
performance F1-score on input testing data Xtest subject to
adversarial data manipulation Xtest + α∗.

5.2 Simulated annealing algorithm
Algorithm 7 gives the adversarial learning algorithm for
attacks from adversaries using a simulated annealing algo-
rithm. The game is played on labelled training data Xtrain.
Algorithm 8 uses the annealing operator used to generate
candidate solutions called α. The game converges onto a
final solution α∗.

Algorithm 2 Two-player Game with Genetic Algorithm
1: function twoplayergame-ga(Xtrain)
2: Train CNN on Xtrain
3: maxpayoff = 0, exitloop = False
4: population = αpopulation . Initialize population to size ψ
5: F (Xtrain) = fitness(Xtrain, αpopulation))
6:
7: while gen<maxiter ∧ ¬ exitloop do
8: αcurr, currpayoff = max(F (Xtrain))
9: Train CNN on Xtrain + αcurr

10:
11: If abs(currpayoff - maxpayoff) < 0.0001 then
12: Begin
13: maxpayoff = currpayoff
14: parents,offspring = selection(population,0.5)
15:
16: for child1 in odd offspring and child2 in even off-

spring do
17: child1, child2 = clone(crossover(child1,child2))
18: for mutant in offspring do
19: mutant = mutation(mutant)
20: population = clone(parents + offspring)
21: F (Xtrain) = fitness(Xtrain, αpopulation)
22: End
23: else
24: exitloop = True
25: end while
26: αcurr,maxpayoff = max(F (Xtrain))
27: α∗ = αcurr
28: return α∗
29: end function

Algorithm 3 Genetic Operators: Fitness function
1: function fitness(X,Y, αpopulation)
2: for α ∈ αpopulation do
3: Begin
4: metrics = evaluate(X + α, Y ) . Compute performance

measures on manipulated data
5: error = λ ∗metrics[′recall′]
6: αfitness = 1 + error − cost(α) . Update fitness values

for population
7: End
8: return αpopulation
9: end function

Algorithm 4 Genetic Operators: Selection function
1: function selection(P, ζ)
2: Retrieve fitness values WP for all P
3: Sample P without replacement biased by WP for ζ percentage

of children C
4: return P − C,C
5: end function

Algorithm 5 Genetic Operators: Crossover function
1: function crossover(c1, c2)
2: Randomly slice c1 and c2 into c1sliced and c2sliced with mini-

mum width η
3: Swap c1sliced with c2sliced
4: return c1, c2
5: end function

Algorithm 6 Genetic Operators: Mutation function
1: function mutation(m)
2: Randomly select a step between δ and −δ
3: Randomly generate a boolean tensor mask for m
4: m[mask] = m[mask] + step . Slice m by mask and update by

step
5: return m
6: end function
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Algorithm 7 starts the game on Line 2 and ends the
game on Line 43. The game iteration is defined in terms
of the payoff function value currpayoff which in turn is
determined by the convergence criteria for the simulated
annealing. The game is initialized between Line 2 and Line
7. On Line 2, a target CNN is trained on Xtrain and tested
on Xtest. The purpose of the game is to find a α∗ such that
Xtest+α∗ decreases the performance of this CNN found on
Xtest. On Line 3, two flagging variables maxpayoff and
exitloop are created to control the convergence of the game.
Line 4 initializes the variables controlling the convergence
criteria for simulated annealing. Line 6 initializes the candi-
date solutions to be generated by simulated annealing. Line
6 initializes the mask to be used in the anneal operators.
The current mask mask is taken to be all the nonzero pixels
contained in the mean images of both the positive class µ+

and negative class µ−. Line 7 computes the fitness function
value evalc for the initial solution αc. The game’s iteration is
given between Line 9 and Line 41. The current temperature
for simulated annealing is initialized on Line 4 and is
updated on Line 34. On Line 11, the adversary’s payoff in
the game is taken to be the same as fitness function value for
candidate solution αg . For both the genetic algorithm and
the simulated annealing algorithm, the fitness function is
computed by the function defined in Algorithm 3 discussed
earlier. The game is continued only when there is an increase
seen in the payoff currpayoff for the adversary on Line 13.
The game ends and the program control shifts to Line 41 if
there is no increase in currpayoff .

Within each iteration of the game, the candidate solu-
tions are generated by the annealing operator between Line
17 and Line 35. For every temperature Tcurr, ν number
of candidate solutions αn are generated. Initially αn is
generated from a randomly initialized αc. Further solutions
from simulated annealing are generated by the current αc
updated on Line 25 and Line 31 according to the searching
criteria of the simulated annealing. αc is also updated on
Line 36 at the end of every iteration of the game. The combi-
nation of the search parameters sample size ν, reduction rate
ρ, maximum temperature Tmax and minimum temperature
Tmin determines the number and rate of generation of
candidate solutions αn. On Line 20, each αn is obtained
by applying the annealing operator anneal on the best
solution αc defined in Algorithm 8. The masking process
used in the operator allows for the randomized selection of
tensor regions in the game’s search procedure. The random
masks are generated by the Boolean tensor mask maskb
on Line 2 and the sliced index mask masksliced on Line
6 alongwith the initialization mask maska passed as a
function argument on Line 1 of Algorithm 8. A step of tensor
values between parameter −δ and δ is then applied on the
region selected for adversarial manipulation.

On Line 21, the fitness function value evaln is computed
for every αn. If a given candidate solution αn is found to
be fitter than the best solution αc, then the best solution
αc is updated on Line 25. If an increase in adversary’s
payoff is seen on the given candidate solution αn, then
the adversarial manipulation αg is updated on Line 27.
The corresponding fitness function values evalc and evalg
are also simultaneously updated. On Line 30, the search
procedure in simulated annealing is randomly restarted

with a probability e(evaln−evalc)/Tcurr depending on the
current fitness function and current temperature values. The
values of αc and evalc are updated by the current candidate
solutions αn and evaln at every such restart on Line 31.
The current temperature Tcurr is decreased on Line 34.
The best solution αc found from the simulated annealing
iteration within the game iteration is updated on Line 36.
At the end of the game, the αg giving maximum payoff
to the adversary is assigned to α∗ on Line 41. Line 42
finds the manipulated performance F1-score of the CNN on
adversarial data Xtest + α∗ which was trained in Line 2 on
the original data Xtrain.

Algorithm 7 Two-player Game with Simulated Anneal-
ing Algorithm
1: function twoplayergame-sa(Xtrain)
2: Train CNN on Xtrain
3: maxpayoff = 0, exitloop = False
4: Tmax = 1000, Tmin = 5, ν = 50, ρ = 0.6, Tcurr = Tmax
5: Randomly initialize αc, αg , αn to same tensor values
6: mask = µ+ ∧ µ− . Initialize the SA parameters and masks
7: evalc = fitness(Xtrain, αc)
8:
9: while ¬ exitloop do

10: evalg = fitness(Xtrain, αg)
11: currpayoff = evalg
12:
13: If abs(currpayoff - maxpayoff) < 0.0001 then
14: Begin
15: maxpayoff = currpayoff
16:
17: while Tcurr ≥ Tmin do
18: i = 1
19: while i ≤ ν do
20: αn = anneal(αc,mask)
21: evaln = fitness(Xtrain, αn)
22:
23: If evaln > evalc then
24: Begin
25: αc = αn, evalc = evaln
26: If evalg < evaln then
27: αg = αn, evalg = evaln
28: End
29: else
30: If random(0,1) <= e(evaln−evalc)/Tcurr

then
31: αc = αn, evalc = evaln
32: i+ = 1
33: end while
34: Tcurr∗ = ρ
35: end while
36: αc = αg
37: End
38: else
39: exitloop = True
40: end while
41: α∗ = αg
42: return α∗
43: end function

Algorithm 8 Simulated Annealing Operators: Anneal
function
1: function anneal(α,maska)
2: Randomly generate a boolean tensor maskb for α
3: mask = maska ∧maskb
4: Randomly generate a tensor step with values between δ and −δ
5: . step has same shape as α
6: Randomly slice mask into masksliced
7: α[masksliced]+ = step[masksliced]
8: . Slice α by masksliced and update by step
9: return α

10: end function
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6 EXPERIMENTS

In this section we discuss the experimental validation and
stochastic parameters of the adversarial learning algorithm.
During the game, an adversary finds adversarial data ma-
nipulations using either a genetic algorithm or a simulated
annealing algorithm as the search algorithm. For a two-
player game, various parameter settings produce adversar-
ial manipulation α∗ on the images such that the positive
class examples are misclassified as negative class examples
by the CNN aka learner. For example, the CNN misclassifies
the handwritten digit 7 which had been positively labelled
before adversarial manipulation as the negatively labelled
handwritten digit 9 after adversarial manipulation. The
CNN is then secured against attacks in a stochastic game
with multiple adversaries by defending against adversarial
manipulations in many sequential games with two adver-
saries. The performance of the proposed secure CNN model
is also compared with the performance of a CNN model
augumented by the data produced from various Generative
Adversarial Network (GANs). In both the multiplayer game
and the two-player game, we observe that the manipulated
learner performance is lower than the original learner per-
formance. Also, the secure learner performance is higher
than the manipulated learner performance.

6.1 Dataset description

Class
Labels

Positive
Class

Positive
Class

Cardinality

Negative
Class

Cardinality
(2,8) 2 6990 6825
(4,9) 4 6824 6958
(1,4) 1 7877 6824
(5,8) 5 6313 6825
(3,8) 3 7141 6825
(7,9) 7 7293 6958
(6,8) 6 6876 6825
(2,6) 2 6990 6876

TABLE 2: Datasets of colour images used in the experiments

We use a cross-validation dataset of colour images split
between two class labels. The dataset is taken from the
MNIST handwritten images database [31]. The two class
labels and their cardinality are described in Table 2. The
lower digit is taken to be the positive class. For example,
if the class labels are 7 and 9, the class label 7 is taken to
be the positive class. The learner is Tensorflow’s CIFAR10
CNN model 2 [30]. The learner’s testing performance is the
baseline performance targeted by the adversary in the game.
We assume the adversary has a mean image of positive
label data to initialize the population in genetic algorithm
Algorithm 2. We also assume that the adversary has a mean
image of positive label and negative label data to initialize
the masking in simulated annealing algorithm Algorithm 7.

6.2 Genetic algorithm validation in Sequential Game

In this section we validate the adversarial data in a sequen-
tial game that is constructed by the mutation, crossover,
and selection genetic operators defined on the images. The

2. https://www.tensorflow.org/tutorials/deep cnn#cifar-10 model
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Fig. 3: Testing performance with variations in evolutionary
operators consisting of genetic parameters and annealing pa-
rameters. Genetic parameters are given in fig(a), fig(b), fig(c),
and fig(d) for mutation step δ, crossover width η, selection size
ζ, and population size ψ respectively. Annealing parameters
are given in fig(e), fig(f), fig(g), and fig(h) for annealing step δ,
annealing mask width η, annealing sample size ν, and anneal-
ing reduction rate ρ respectively. The manipulated learner has
lower performance than the original learner. The secure learner
has higher performance than the manipulated learner.

testing performance for mutation, crossover, selection oper-
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ators and population size on the data manipulated by final
α∗ is reported in Figure 3. The x-axis has variation in the
parameters for each genetic operator. The y-axis has the
learner F1-score performance for the manipulated data.

In the following, the genetic operators and parameters
are described in more detail.

Population initialization In the initial αpopulation of the
images, the pixel values are randomly initialized around the
meanimage of the positive class. The range for random pixel
values is between the lower bound of RGB pixel value(-255)
and the upper bound of RGB pixel value(+255). The size of
the images is 32*32*3 as required by the CNN model. For
the input images manipulated by adding α∗, the pixels with
values greater than 255 are set to 255 and pixels with values
less than 0 are set to 0.

Mutation operation A mask of randomly generated
integers between a lower bound -δ(set to -50 by default)
and upper bound +δ(set to +50 by default) for the step is
added to the current image in the mutation operation. In
Figure 3(a), the x-axis is varied by δ - the mutation step.
From Figure 3(a) we conclude that the F1-score is minimized
to 0.5 on the MNIST dataset for δ around 80.

Crossover operation For a three-dimensional 32*32*3
RGB image, the height and width indices are randomly
selected. The starting index for height is selected between
pixels 1 and 16(half of the largest height). The ending index
for height is selected between lower bound η(set to +2 by
default) and η(set to +10 by default) from the corresponding
starting index of height and upper bound 32. A similar
random indexing scheme selects the starting width and
ending width of the image. The slice of the starting and
ending index of height/width over all the pixels in depth
is then swapped between the two images in the crossover
operation. In Figure 3(b), the x-axis is varied by η - the
crossover width. From Figure 3(b) we conclude that the F1-
score is minimized to 0.5 on the MNIST dataset for η around
7.

Selection operation The selection operation is an exten-
sion of random sampling without replacement. The parents
for the next generation are randomly chosen from the cur-
rent generation parents. A ζ(set to 0.5 by default) percentage
of the current generation parents are selected to be the
offspring for the next generation. The remaining candidates
in the current generation of parents are preserved as par-
ents for the next generation. The probability of selecting
an offspring is proportional to the fitness values of the
current parents. The selected offspring are then changed by
crossover and mutation to get the parents for the next gener-
ation. Across every generation of the genetic algorithm, the
size of the entire population(consisting of current offspring
and parents) is fixed to the initial size of the parents. In
Figure 3(c), the x-axis is varied by ζ - the selection size. From
Figure 3(c) we conclude that the F1-score is minimized to 0.5
on the MNIST dataset for ζ around 30 %.

Population size In Figure 3(d), the x-axis is varied by ψ
- the population size. ψ is supposed to have an effect on the
randomization of the genetic operators. From Figure 3(d),
we observe that the testing performance of the manipulated
learner decreases by around 20% from 0.79 to 0.60 for the
F1-score. Then the testing performance of the secure learner
trained on the manipulated data increases by around 15%

from 0.6 to 0.75 for the F1-score. The highest decrease in
the manipulated learner’s performance is seen at population
size 3000, 8000 and 9000. But the highest increase in the
performance of the secure learner is seen at 9000. So we
conclude that the secure learner performance increases with
an increase in ψ. But the corresponding performance of the
manipulated learner is seen to be periodically decreasing
with ψ. ψ values of 3000 and 9000 seem to be the most
suitable for the MNIST dataset.

We find higher values of λ>1 are suitable for finding the
most suitable genetic algorithm parameters. In all the figures
we have used λ = 10 to minimize the F1-score and maxi-
mize the error term in the fitness function of Equation 5. For
various settings of the genetic parameters, the game quickly
converges into an α∗ at Nash equilibrium in a maximum
of 20 generations of the genetic algorithm. Randomization
and the corresponding effect on the manipulated learner
performance increases with attack strengths, iterations and
population size in the game.

6.3 Simulated annealing validation in Sequential Game

In this section, we validate the adversarial data that is con-
structed by the annealing operator defined on the images.
The testing performance for the annealing operator over
steps, masks and its parameters settings on sample size, and
reduction rate are reported in Figure 3. The x-axis shows
variation in each parameter’s values. The y-axis shows the
learner F1-score performance for the original data and the
manipulated data. In all the figures, we observe that the
secure learner performance is higher than the manipulated
learner performance and the manipulated learner perfor-
mance is lower than the original learner performance.

In the following, the annealing operator and parameters
are described in more detail.

Annealing step The annealing step parameter δ limits
the upper and lower bounds for the pixel values added to
the region of the image selected by the annealing operator.
δ takes a default value of 20 and is varied between 5
and 100. The pixel values are randomly selected to be any
integer value between −δ and δ. In Figure 3(e), the x-axis is
varied by δ. From Figure 3(e) we conclude that a δ between
40 and 60 is most suitable for adversarial manipulation.
Compared to the original F1-score performance, the drop
in manipulated F1-score performance by varying δ varies
from 15% to 30% whereas the gain in retrained F1-score
performance varies from 15% to 50%. The annealing step
parameter δ is similar to the mutation step parameter δ.

Annealing mask The annealing mask width parameter
η limits the upper and lower bounds on the indices of the
images that have been selected by the annealing operator for
adversarial manipulation. η takes a default value of 2 for the
lower bound and 10 for the upper bound for an image that is
32 pixels wide and 32 pixels high. The starting and ending
indices for annealing are taken to be any random integer
between the bounds set by η. A square region with the same
starting and ending indices determined by η is then selected
for adversarial manipulation. To generate appropriate can-
didate solutions, an additional condition is that the starting
index for η is in the first half of the image and the selected
square region has an area of at least 1 pixel. The final mask
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applied to generate candidate solutions is determined by the
randomization resulting from η alongwith the nonzero pixel
values found in positive and negative data. In Figure 3(f),
the x-axis is varied by the difference in the upper bound
and lower bound for η. From Figure 3(f) we conclude that
a width of 4 is suitable for adversarial manipulation on
the given training data. A maximum performance drop
and gain of 20% and 50% is also observed in Figure 3(f).
The annealing mask width parameter η is similar to the
crossover width parameter η.

Annealing sample size The annealing sample size pa-
rameter ν determines the number of candidate solutions
generated in each run of simulated annealing within each
iteration of the game. ν takes a default value of 50. In
Figure 3(g), ν is varied between 10 and 100. From Figure 3(g)
we conclude that a sample size of 40 is suitable for adver-
sarial manipulation. We also observe that there is a periodic
trend in the manipulated performance across ν. A maximum
performance drop and gain of 20% and 50% is also observed
in Figure 3(g).

Annealing reduction rate The annealing sample size
parameter ρ determines the rate of convergence of the
simulated annealing runs within each iteration of the game.
ρ takes a default value of 0.6. In Figure 3(h), ρ is varied
between 0.5 and 0.9. A value of ρ < 0.5 ensures that the
simulated annealing converges quickly whereas ρ > 0.5
ensures it converges slowly. From Figure 3(h) we conclude
that a value of ρ between 0.5 and 0.6 seems best suited for
adversarial manipulation. A maximum performance drop
and gain of 25% and 60% is also observed in Figure 3(h).

6.4 Fitness function validation in Sequential Game

The adversarial manipulation α∗ is found on convergence
of the game. The game convergence criteria are subject to
the fitness function Equation 5 used in the evolutionary
algorithm. In this section, we report that by using an α∗,
an adversary is able to affect the testing performance of
the learner across various parameter settings in the evolu-
tionary algorithm and various combinations of positive and
negative classes in the input MNIST database. t-statistics are
calculated on the testing F1-score performance to check the
effect of α∗ across various classes and attack scenarios used
in both the genetic algorithm and the simulated annealing
algorithm.

For a converged α∗ output by the game in either Algo-
rithm 2 or Algorithm 7, F1-score measures the performance
of our algorithm in terms of the testing data Xtest, manipu-
lated testing data Xtest + α∗ that are seen when the learner
is trained on input data Xtrain and manipulated training
data Xtrain + α∗.

Fitness function error weight The error weight param-
eter λ determines the importance of the CNN error with
respect to the cost of adversarial manipulation as simulated
annealing generates candidate solutions within each itera-
tion of the game. In Figure 4, λ is varied between 0.1 and
20. A value of λ < 1 ensures that simulated annealing gives
less weight to CNN error rather than game cost to determine
the best candidate for adversarial manipulation. A value of
λ > 1 gives more weight to CNN error rather than game
cost. A value of λ = 1 gives the same weight to CNN error
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Fig. 4: Testing performance with variation in error weight
λ. The manipulated learner has lower performance than the
original learner. The secure learner has higher performance
than the manipulated learner.

and game cost. λ is empirically set for each labelled input.
From Figure 4 we conclude that a value of λ > 1 is best
suited for the current input. Specifically, λ between 10 and
15 seems best suited for the game. A maximum performance
drop and gain of 20% and 40% is also observed in Figure 4.
Table 3 and Table 4 shows the p-values for the learner’s
F1-score before and after the game. Here t-statistic is an
unpaired 2-sample t-test statistic. We conclude the following
from the p-values on the performance of original learner
CNNoriginal, manipulated learner CNNmanipulated−cnn or
CNNmanipulated and secure learner CNNsecure.

• The manipulated learner CNNmanipulated under at-
tack has lower performance than the original learner
CNNoriginal.

• The secure learner CNNsecure retrained from the
game has higher performance than the manipulated
learner CNNmanipulated under attack.

• The secure learner CNNsecure has equal or higher
performance than the original learner CNNoriginal.

• The low p-values in Table 3 and Table 4 allow us
to reject the null hypothesis that the means of the
performance measures are the same before and after
adversarial data manipulations.

• From the low p-values (<0.05) of the t-statistic com-
paring original learner CNNoriginal with manipu-
lated learner CNNmanipulated, the t-statistic com-
paring manipulated learner CNNmanipulated with
secure learner CNNsecure and the Friedman test
statistic in the paired test statistics of Table 3 we
conclude that adversarial manipulations from the
genetic algorithm affect learner performance with
and without adversarial training data.

• From the low p-values (<0.05) of the t-statistic
comparing original learner CNNoriginal with ma-
nipulated learner CNNmanipulated, t-statistic com-
paring original learner CNNoriginal with secure
learner CNNsecure, the t-statistic comparing manip-
ulated learner CNNmanipulated with secure learner
CNNsecure and the Friedman test statistic in paired
test statistics of Table 4 we conclude that adversarial
manipulations from simulated annealing algorithm
not only affect learner performance with and without
adversarial training data but also that the retrained
learner has better performance and is comparable to
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the original learner.
• From the high p-values (>0.05) of t-statistic com-

paring original learner CNNoriginal with secure
learner CNNsecure in Table 3 and the low p-values
(<0.05) of the t-statistic comparing original learner
CNNoriginal with secure learner CNNsecure in Ta-
ble 4 we conclude that the learner with simulated
annealing attack scenarios is more robust than the
learner with genetic algorithm attack scenarios in the
two-player two-label sequential game.

• From the low p-values across Table 3 and Table 4,
we conclude that our game is not sensitive to the
choice of an evolutionary algorithm. The statistical
significance of our model generalizes across vari-
ous parameter randomizations comparing the per-
formances of original learner CNNoriginal, manip-
ulated learner CNNmanipulated and secure learner
CNNsecure. In all the attack scenarios and two-
label classification problems, we conclude that se-
cure learner CNNsecure is robust to adversarial at-
tacks proposed and simulated on the original learner
CNNoriginal.

6.5 Evolutionary operations validation in Stochastic
Game
In this section, we report the proposed model performances
across various game types. Table 5 reports the perfor-
mances for a sequential game and Table 6 reports the
performances for a stochastic game. The sequential game
is a special case of the stochastic game. The F1-scores
in the tables are given for original learner CNNoriginal,
manipulated learner CNNmanipulated that is either a CNN
based learner CNNmanipulated−cnn or a GAN based learner
CNNmanipulated−gan on original and generated data re-
spectively, secure learner CNNsecure. For the purposes of
experimentation in a stochastic game, we assume five inde-
pendent adversaries attack the learner. We also assume the
original learner for baseline performance is a CNN model.
The CNN is trained/tested on both the original data in the
MNIST database and the generated data is obtained from an
adversarial network. The lower digit in the class labels tuple
of Table 5 and Table 6 is taken to be the positive label for
adversarial manipulation. In the tables, we use the models
defined in Section 3.2.

To obtain the generated data, we use four GANs, namely,
Conditional DCGAN [18], IWGAN [19], BEGAN [20] and
InfoGAN [21]. The data is generated for each pair of posi-
tive and negative labels. The CNN trained on the original
MNIST data participates in the game whose output is the
adversarial manipulation on each of the positive labels
creating adversarial data. Then, a CNN trained on the
generated data is validated against the adversarial data.

The stochastic game consists of multiple adversaries
playing attack scenarios in terms of either genetic oper-
ators or annealing operators determining the training al-
gorithm in the game. Following the formulation in Equa-
tion 8, by retraining the learner on all the adversarial
manipulations, we demonstrate an effective learner robust
to combined attacks from all the players. In Table 5 and
Table 6, for both the original data and generated data,

we observe that a learner tested on manipulated data
CNNmanipulated−cnn, CNNmanipulated−gan shows a signif-
icant decrease in performance compared to the learner
CNNoriginal trained and tested on original data.

By validating the adversarial data against the CNN
trained on the output of various GANs, we observe that
the effectiveness of the attack decreases with the increased
robustness of the GANs. A more successful attack with
larger error margins is possible when the CNN participating
in the game is trained on original data as well as generated
data. We also observe that GA attacks are better than SA
attacks. Finally, multiplayer game attacks are better than
two-player game attacks. After the game’s convergence, the
learner can be retrained on the manipulated data to find
secure learner CNNsecure weights that are secure to further
adversarial manipulations on both original and generated
data.

The last five rows in Table 5 and Table 6 report p-values
for the t-statistics comparing secure learner performance
with manipulated learner performance where the manip-
ulated learner is trained on either the original data or the
generated data. The attack scenarios for generating adver-
sarial manipulations are determined by number and type of
players participating in the game. The game is simulated
over different combinations of the positive and negative
class labels. The t-statistics also validate that our method
is immune to various adversarial datasets. We demonstrate
that the original CNN model as well as the GAN-based
CNN model are vulnerable to proposed adversarial ma-
nipulations. The effectiveness of adversarial manipulations
is demonstrated to generalize from the two-player game
to the multiplayer game. More adversarial manipulations
can be obtained by defining more adversarial scenarios
comparing the original deep network model with the ma-
nipulated deep network model as well as the retrained deep
network model. Better search algorithms and optimization
conditions would lead to adversarial data manipulations
that are effective on both original data distributions as well
as generated data distributions.

7 CONCLUSION AND FUTURE WORK

We have formulated a maxmin problem for adversarial
learning with both two-player sequential games and mul-
tiplayer stochastic games over deep learning networks.
The experiments demonstrate the correctness and perfor-
mance of proposed adversarial algorithm. The algorithm
converges onto adversarial manipulations affecting testing
performance in deep learning networks. This allows us to
propose a secure learner that is immune to the adversarial
attacks on deep learning. We have shown that our model
is significantly more robust than traditional CNN and GAN
under adversarial attacks.

By changing the game formulation, we can experiment
with adversarial payoff functions over randomized strat-
egy spaces. The attack scenarios over such strategy spaces
would determine multiplayer games over mixed strategies.
In the future, we plan to investigate more challenging sce-
narios where adversaries attack multiple labels simultane-
ously.
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Genetic Parameter
Model performances t-statistics in Two-player games

CNNoriginal vs CNNmanipulated CNNoriginal vs CNNsecure CNNmanipulated vs CNNsecure Friedman test
Upper bound for

Mutation (δ)
8.0 × 10−16 0.1395 2.5 × 10−5 3.6 × 10−5

Minimum width for
Crossover (η)

0.0001 0.1446 0.0020 0.0098

Percentage offspring
size for Selection (ζ)

4.6 × 10−7 0.2393 0.0001 0.0111

Population size (ψ) 9.3 × 10−22 0.00936 7.1 × 10−10 5.7 × 10−06

TABLE 3: Genetic Algorithm : p-values comparison before and after game by varying parameters for each genetic operator.
t-statistics are computed between pairs of learner F1-score performance, manipulated learner F1-score performance and secure
learner F1-score performance.

Annealing Parameter
Model performances t-statistics in Two-player games

CNNoriginal vs CNNmanipulated CNNoriginal vs CNNsecure CNNmanipulated vs CNNsecure Friedman test
Upper bound for

Perturbation step (δ)
1.8 × 10−10 2.1 × 10−6 1.85 × 10−10 4.6 × 10−5

Upper bound for
Perturbation index (η)

2.0 × 10−4 4.6 × 10−6 5.4 × 10−7 3.4 × 10−4

Reduction rate (ρ) 1.6 × 10−6 1.0 × 10−2 4.9 × 10−5 1.5 × 10−2

Sample size (ν) 6.8 × 10−11 1.1 × 10−2 1.37 × 10−6 3.7 × 10−4

Error weight (λ) 5.1 × 10−7 2.0 × 10−4 1.9 × 10−7 3.0 × 10−4

TABLE 4: Simulated Annealing Algorithm : p-values comparison before and after game by varying parameters for each annealing
operator. t-statistics are computed between pairs of learner F1-score performance, manipulated learner F1-score performance and
secure learner F1-score performance.

F1-score: Genetic Operators in Two-player Game F1-score: Annealing Operators in Two-player Game
Class Labels

CNNoriginal
CNNmanipulated CNNsecure CNNoriginal

CNNmanipulated CNNsecure

CNN
DCGAN IWGAN BEGAN InfoGAN

CNN
DCGAN

IWGAN
BEGAN InfoGAN

0.8696 0.7023 0.7881 0.6814 0.7737 0.8019 0.909 0.8464 0.692 0.6834 0.6548 0.7483 0.7759 0.9372 (2,8)
0.8193 0.6354 0.7502 0.7219 0.7487 0.8029 0.9186 0.9582 0.7094 0.763 0.7539 0.8957 0.9218 0.9346 (4,9)
0.9678 0.5288 0.6147 0.631 0.631 0.6311 0.8834 0.9816 0.5953 0.693 0.6319 0.8681 0.634 0.9983 (1,4)
0.8889 0.4881 0.7041 0.679 0.6787 0.6758 0.8141 0.9119 0.6395 0.6547 0.6751 0.6786 0.6757 0.9639 (5,8)
0.8971 0.5183 0.6812 0.6484 0.7887 0.7314 0.9226 0.8974 0.5575 0.6433 0.6479 0.8681 0.7316 0.9977 (3,8)
0.7995 0.6546 0.6592 0.7486 0.6919 0.7738 0.9987 0.8177 0.6181 0.7097 0.8011 0.651 0.6481 0.9991 (7,9)
0.9649 0.5813 0.761 0.7197 0.7995 0.7317 0.9555 0.96 0.6172 0.761 0.7595 0.7057 0.7946 0.83 (6,8)
0.9463 0.5702 0.8873 0.8879 0.8985 0.9299 0.9612 0.9609 0.611 0.8581 0.9057 0.9514 0.95 0.989 (2,6)

t-statistics 7.0 × 10−8 1.2 × 10−4 3.5 × 10−5 3.1 × 10−4 8.0 × 10−4 Base t-statistics 8.2 × 10−9 3.8 × 10−6 4.4 × 10−5 3.0 × 10−3 1.2 × 10−3 Base

TABLE 5: Two-player Two-Label Sequential Games Performance Evaluation - F1-score before and after two-player game across
various combinations of handwritten digits. We observe a consistent decrease in the manipulated learner CNNmanipulated
performance tested on adversarial data as compared to learner CNNoriginal performance. We also observe a consistent increase
in the secure learner CNNsecure performance compared to manipulated learner CNNmanipulated.

F1-score: Genetic Operators in Multiplayer Game F1-score: Annealing Operators in Multiplayer Game
Class Labels

CNNoriginal
CNNmanipulated CNNsecure CNNoriginal

CNNmanipulated CNNsecure

CNN
DCGAN IWGAN BEGAN InfoGAN

CNN
DCGAN

IWGAN
BEGAN InfoGAN

0.8651 0.6316 0.6748 0.707 0.7564 0.7717 0.8715 0.8466 0.6826 0.6572 0.6193 0.7166 0.7894 0.9474 (2,8)
0.8607 0.6027 0.7461 0.7466 0.7974 0.8154 0.829 0.8212 0.7123 0.7238 0.7387 0.775 0.8153 0.9023 (4,9)
0.9745 0.629 0.6034 0.6314 0.636 0.6316 0.833 0.9777 0.5938 0.6288 0.7005 0.7315 0.7332 0.8679 (1,4)
0.8294 0.6718 0.6825 0.6789 0.6871 0.69 0.8491 0.9096 0.5251 0.6452 0.6956 0.6879 0.6871 0.9998 (5,8)
0.8876 0.7455 0.6698 0.6526 0.7788 0.7315 0.9041 0.9007 0.6306 0.6689 0.6506 0.8283 0.7316 0.8583 (3,8)
0.8572 0.6836 0.6824 0.7898 0.7273 0.7799 0.9866 0.8484 0.7176 0.7136 0.7811 0.7905 0.8317 0.9885 (7,9)
0.9602 0.5827 0.7444 0.6992 0.7927 0.7183 0.8528 0.9523 0.5457 0.6824 0.7475 0.7318 0.7433 0.7697 (6,8)
0.925 0.6304 0.8649 0.8902 0.9131 0.91 0.936 0.9449 0.766 0.8332 0.9022 0.9161 0.9295 0.9364 (2,6)

t-statistics 4.5 × 10−7 1.4 × 10−4 5.4 × 10−4 3.9 × 10−3 3.2 × 10−3 Base t-statistics 1.6 × 10−5 2.9 × 10−5 6.2 × 10−4 2.6 × 10−3 5.2 × 10−3 Base

TABLE 6: Multiplayer Two-label Stochastic Games Performance Evaluation - F1-score before and after multiplayer game across
various combinations of handwritten digits. We observe a consistent decrease in the manipulated learner CNNmanipulated
performance tested on adversarial data as compared to learner CNNoriginal performance. We also observe a consistent increase
in the secure learner CNNsecure performance compared to manipulated learner CNNmanipulated.
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