

Aalborg Universitet

Location Inference for Non-geotagged Tweets in User Timelines

Li, Pengfei; Lu, Hua; Kanhabua, Nattiya; Zhao, Sha; Pan, Gang

Published in:
I E E E Transactions on Knowledge & Data Engineering

DOI (link to publication from Publisher):
10.1109/TKDE.2018.2852764

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Li, P., Lu, H., Kanhabua, N., Zhao, S., & Pan, G. (2019). Location Inference for Non-geotagged Tweets in User
Timelines. I E E E Transactions on Knowledge & Data Engineering, 31(6), 1150-1165. Article 8403245.
https://doi.org/10.1109/TKDE.2018.2852764

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 17, 2024

https://doi.org/10.1109/TKDE.2018.2852764
https://vbn.aau.dk/en/publications/1fbabfa8-d637-4c81-8503-958d9d2a6e66
https://doi.org/10.1109/TKDE.2018.2852764

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Location Inference for Non-geotagged Tweets in
User Timelines

Pengfei Li, Hua Lu, Senior Member, IEEE, Nattiya Kanhabua, Sha Zhao, and Gang Pan

Abstract—Social media like Twitter have become globally popular in the past decade. Thanks to the high penetration of smartphones,
social media users are increasingly going mobile. This trend has contributed to foster various location based services deployed on
social media, the success of which heavily depends on the availability and accuracy of users’ location information. However, only a very
small fraction of tweets in Twitter are geo-tagged. Therefore, it is necessary to infer locations for tweets in order to attain the purpose of
those location based services. In this paper, we tackle this problem by scrutinizing Twitter user timelines in a novel fashion. First of all,
we split each user’s tweet timeline temporally into a number of clusters, each tending to imply a distinct location. Subsequently, we
adapt two machine learning models to our setting and design classifiers that classify each tweet cluster into one of the pre-defined
location classes at the city level. The Bayes based model focuses on the information gain of words with location implications in the
user-generated contents. The convolutional LSTM model treats user-generated contents and their associated locations as sequences
and employs bidirectional LSTM and convolution operation to make location inferences. The two models are evaluated on a large set of
real Twitter data. The experimental results suggest that our models are effective at inferring locations for non-geotagged tweets and the
models outperform the state-of-the-art and alternative approaches significantly in terms of inference accuracy.

Index Terms—Twitter, Location Inference, Bayes, LSTM

F

1 INTRODUCTION

THANKS to the high penetration of smartphones, social media
users are increasingly going mobile. For example, 56.5%

Facebook users login only from mobile devices by the end of July,
20161, and Twitter has approximately 257 million mobile active
users monthly as per the first quarter in 20162. This big trend has
fostered various location based services deployed on social media.
The success of such location based services heavily depends on
the availability and accuracy of users’ location information that a
social media platform can get access to. Knowing the locations
of individual tweets of users enables a wide variety of appli-
cations, e.g., location-based summarization [1], location-aware
recommender system [2], [3], friends notification [4], influential
users recommendation [5], [6], [7] place advertisements [8] and
business information spreading [9], city-scale collective attention
analytics [10] and even disaster detection [11].

However, only a very small fraction of tweets are geo-tagged,
i.e., being sent with GPS coordinates or place names. Cheng et
al. [12] found that only 26% of Twitter users in a random sample
of over 1 million users reported their location in their profiles
and only 0.42% of the tweets in the sample were geo-tagged.
Therefore, it is necessary to infer locations for Twitter users in
order to attain the purpose of and to improve the quality of the
location based services offered to the users. Most related works so

• P. Li, S. Zhzo, and G. Pan are with Department of Computer Science,
Zhejiang University, China.
E-mail: {pfl, szhao, gpan}@zju.edu.cn

• H. Lu is with the Department of Computer Science, Aalborg University,
Denmark.
E-mail: luhua@cs.aau.dk

• N. Kanhabua is a senior data scientist at NTENT, Barcelona.
E-mail: nattiya@gmail.com

1. http://expandedramblings.com/index.php/facebook-mobile-app-statistics/
2. http://expandedramblings.com/index.php/twitter-mobile-statistics/

far have focused on inferring only the home location for a Twitter
user’s timeline. This is apparently insufficient for location based
services in general.

Location inference for tweets are challenged by two major
issues. First, Twitter limits the length of each tweet content to 140
characters, and thus a tweet only contains a small number of words
and conveys limited information. Second, Twitter users often use
non-standard and shorthand terms, and tweets are often unclear
and noisy. Consequently, finding location clues from short, noisy
tweets is indubitably difficult.

In this study, we investigate how to infer the locations of non-
geotagged tweets at the city level by scrutinizing Twitter users’
timelines using a novel approach. Our approach combines analysis
on the contents of tweet short texts and that on the user timelines
with temporal information. Along the temporal dimension, each
user timeline is split into a number of tweet clusters; each cluster
implies a distinct user location. This process is called temporal
clustering of tweets.

Subsequently, two machine learning models are carefully
adapted to our problem setting and classifiers are designed to
classify each tweet cluster from a user’s timeline into one of the
pre-defined location classes at the city level. The Bayes based
model focuses on the information gain of words with location
implications in the user-generated contents, whereas the LSTM
based model treats user-generated contents and their associated
locations as sequences and employs a bidirectional LSTM [13] and
convolution operation to make location inferences. Our models are
trained using offline data, but they can be used to infer locations
for historical tweets and online (incoming) tweets.

The two models are experimentally evaluated on a large real
dataset, in comparison with alternative approaches. The experi-
mental results suggest that the proposed models are effective at
inferring locations for tweets and they outperform alternatives
significantly in terms of inference accuracy.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Our contributions in this study are summarized as follows.

• We design temporal clustering methods that split a user’s
tweet timeline into a set of clusters each of which contains
tweets that are likely sent from the same city.

• We design a Bayes’ theorem based model for location
inference for tweet clusters. The model measures words’
geographical scopes by computing words’ information
gains across all locations of interest.

• We build a novel neural network that combines convo-
lution operation and long short-term memory unit when
extracting features from the contents of tweet clusters. It
is able to exploit spatially-local correlation [14], [15], [16]
when inferring locations for tweet clusters.

• We evaluate the performance of our proposed approach
and models using real-world Twitter data. The results show
that our approach with the models outperforms state-of-
the-art alternatives.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 formulates the research problem and
introduces our solution framework. Section 4 describes the tempo-
ral clustering methods for training and testing data. Sections 5 and
6 detail our two models for tweet location inference, respectively.
Section 7 reports on the experimental results. Finally, Section 8
concludes the paper and points to future work directions.

2 RELATED WORK

Existing techniques for inferring locations in social networks fall
in two categories: those inferring a Twitter user’s location and
those inferring locations for tweets. Most of them infer locations
at the city level.

2.1 Location Inference for Social Network Users
Several existing techniques make use of social networks and
friends’ locations to infer locations for Twitter users. Davis Jr.
et al. [17] and Jurgens [18] consider the locations of a user’s
friends and take the friend’s location with the majority votes as the
user’s location. Rout et al. [19] use an SVM classifier and features
extracted from Twitter user networks to predict home locations for
Twitter users. Backstrom et al. [20] study the relationship between
friendship and spatial distance for Facebook users, and exploit
the relationship to compute a Facebook user’s home location.
McGee et al. [21] enhance that method with social tie strength
for Twitter users. Rodrigues et al. [22] combine user-posted texts
and user friendship network to infer the locations of Twitter users.
Li et al. [23] propose a unified discriminative influence model
that utilizes both user contents and social network to infer user
locations. Jurgens et al. [24] report on a comparative study of user
location inference approaches based on social networks.

As social networks are dynamic and their topology changes,
predicting users’ locations based on social networks may face dif-
ficulties. Therefore, more approaches make the location inferences
only using user-generated contents.

Most content-based approaches aim to build a probabilistic
system and determine user location by maximum likelihood.
Wing et al. [25] use language models and information retrieval
techniques for location prediction. Dividing the space into grids,
the approach compares the distribution of words in a given
user’s tweets to those in each grid cell using Kullback-Leibler
(KL) divergence to identify the user’s most likely location. The

approach has a serious data skewness problem—grid cells in rural
areas tend to contain very few tweets while those in urban contain
too many. To alleviate the problem, Roller et al. [26] use a k-d-
tree-based adaptive grid in which cells contain approximately the
same amount of data.

Topic models are also often used to infer locations based on
contents. Eisenstein et al. [27] build geographic topic models to
infer the home locations of Twitter users in terms of regions and
states. The follow-up works [28], [29] use sparse additive mod-
els to combine region-specific, user-specific and non-informative
topics. Chen et al. [30] build a topic model to mine user interest
from short texts and then establish a mapping between locations
and user interests.

Some probabilistic approaches use the idea of naive Bayes to
estimate the probabilities that users are located in given locations.
Cheng et al. [12] propose a probabilistic framework that applies a
variant of naive Bayes to estimate users’ city-level locations purely
based on tweet contents. Ryoo and Moon [31] apply a similar idea
to Korean Twitter users. Hecht et al. [32] analyze the user location
field in user profiles and use multinomial naive Bayes to estimate
user locations at country and state levels.

Recently, Qian et al. [33] propose a probabilistic model based
on factor graphs for Twitter user’s location inference at the country
level. Chang et al. [34] use Gaussian Mixture Model (GMM)
and an unsupervised approach to infer city locations of users.
Liu et al. [35] propose a Hidden Markov Model framework
that integrates tweet content and user movement to infer home
locations at the city level.

There are also non-probabilistic approaches focusing on other
aspects, e.g., feature selection. Han et al. [36], [37] emphasize
the role of feature selection to identify location indicative words
for the task of location inference for users. Huang et al. [38]
pay particular attention to features from users’ profiles to infer
locations for Twitter users. Mahmud et al. [39], [40] use an
ensemble of statistical and heuristic classifiers to predict locations
at the city level. Ikawa et al. [41] use a rule-based approach to
predict a user’s current location based on their previous tweets.
Krishnamurthy et al. [42] propose a knowledge-based approach
utilizing Wikipedia as a source of knowledge base to predict a
Twitter user’s location. Yamaguchi et al. [43] propose an online
location inference method over social streams that exploits the
spatiotemporal correlation to infer the locations of users.

2.2 Location Inference for Individual Tweets
Only a handful of existing approaches infer locations for individu-
al tweets [44], [45], [46], [47], [48], [49], [50], [51]. Their location
inferences are all based on tweet contents. Table 1 summarizes
these studies.

TABLE 1: Studies on location inference for tweets

Location Granularity Key Idea
Ref. [44] City/Zip Code Language model
Ref. [45] Neighborhood Language model
Ref. [46] City Gaussian mixture model
Ref. [47] Country Features combination
Ref. [49] Geo-coordinate Spatiotemporal topic model
Ref. [50] Country/City Using time as a feature
Ref. [48]
Ref. [51] City/Neighborhood Tweet similarity comparison

Kinsella et al. [44] create language models of locations using
geo-tagged tweets. They measure the difference between a tweet

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

and the language models using Kullback-Leibler (KL) divergence
and infer tweet locations at the city and zip code levels. Doran
et al. [45] build smoothed language models to estimate tweet
locations at the neighborhood level. Priedhorsky et al. [46] propose
a two-dimensional Gaussian Mixture Model (GMM) to infer the
city location of a tweet. Zubiaga et al. [47] extract features
from user profiles and tweet contents, and then use a weighted
maximum entropy classifier to determine the country in which a
tweet was posted in a real-time scenario.

Some studies consider not only content and metadata in user
profiles but also temporal information. Yuan et al. [49] propose a
probabilistic topic model to exploit micro-blogging data to detect
spatio-temporal topics, and then they use the discovered topics
to model user mobility behaviors and infer tweet locations in the
geo-coordinate level. Dredze et al. [50] also consider the impact
of time on tweet locations. The authors take time as a feature and
use a linear classifier trained on geo-tagged tweets to infer tweet
locations at the country and city levels. Aiming at locations at city
and neighborhood levels, studies [48], [51] exploit the similarities
in the contents between a tweet and a set of geo-tagged tweets
posted at the same time. However, a single tweet may be too short
to contain sufficient features similar to other tweets that are even
posted in the same location. In addition, people often post similar
tweets at different times and locations.

Compared with existing approaches, our approach exploits the
temporal information differently. A temporal clustering technique
is used to split each Twitter user’s timelines into clusters each of
which is expected to contain tweets posted at the same location.
Unlike existing approaches, ours adapts a deep learning model
which helps achieve high accuracy when inferring locations for
individual tweets. To the best of our knowledge, this is the
first work on applying a deep learning model to tweet location
inference. As Paraskevopoulos and Palpanas’s approach [51] is
the most recent study to estimate tweet locations at the city
level, we compare our approach with it in the experimental study.
The results show that ours achieves significantly better location
inference results.

3 RESEARCH PROBLEM AND SOLUTION FRAME-
WORK

This section formulates the research problem and gives our solu-
tion framework. The main notations used throughout this paper
are given in Table 2.

TABLE 2: Notations

L The location set of interest
V The vocabulary that contains every word across L

Vl
The vocabulary of location l that contains every
word appearing in l

W Word sequences of the content of all tweets in a cluster
∆t The time difference between two consecutive tweets
τ The temporal period of a tweet cluster
w, wi A word in a word sequence W
TLtrain All timelines of users in training data
TLtest All timelines of users in testing data
Ctrain All clusters built for the timelines in TLtrain
Ctest All clusters built for the timelines in TLtest

3.1 Problem Definitions
A tweet contains a unique id tid, a user id uid, a timestamp,
a short content and some flags that indicate if the update is

“original”, a reply, or a retweet. The short content of a tweet
may contain hashtags. Besides, some tweets are sent with GPS
coordinates or place names. In such a case, we can know the
actual location where the tweet was sent. With the help of an
appropriate geographic information service like Google Map API,
the GPS coordinates in a tweet can be translated into a hierarchical
string in the format of “Country-State-City-District-Street”. In this
paper, we infer tweet locations at the city level as this granularity
enables a wide range of applications for which locations at other
levels are unsuitable. For example, a social network like Twitter
can recommend points of interest [2] to a user who is known
to be on a visit to a city other than her/his hometown. It is
also of interest to recommend to social media users other users
who share the same interest and appear in the same city such
that local communities [5] may be established in an online-to-
offline fashion. A coarser location at the country or state level
disables many applications or cannot guarantee the application
quality, whereas a finer location at the district and street level
tends to cost considerably extra inference cost without improving
the application quality. As a result, we regard all GPS coordinates
in the same city as the same location and give every city-level
location a unique id.

Below, we give some definitions about a Twitter user’s data.
Definition 1 (Location). A location l is a 2-tuple l = (lid,

city name) where lid is an id that identifies the city with the
name city name.

We use L to denote the set of locations of interest throughout
this paper. For simplicity, we sometimes use lid only to indicate a
location when the context is clear. In other words, we may write
lidi ∈ L if lidi is a location id.
Definition 2 (Tweet). A tweet t is a 4-tuple t = (uid, ts, content,

lid), where uid identifies the user who sent t, ts is the times-
tamp when t was sent, content is the content of this tweet, and
lid implies the location where t was sent.

If a tweet t was sent without a geo-tag, its lid is set to -1.
Otherwise, its lid is not -1 and we use geo-tweets to refer to such
tweets.
Definition 3 (Timeline). A timeline tl of a user is a sequence of

the user’s original tweets, i.e., tl contains all the tweets a user
has ever sent that are not replies or retweets.

Note that every tweet in a given timeline tl has the same user
id. All tweets in tl are sorted by timestamps in chronological order.
In other words, agelong tweets are firstly pushed to tl and the
recent are appended to the end.

We define our research problem as follows.
Location Inference for Non-geotagged Tweets in a Time-

line: Given a timeline tl and a location set L = {l1, l2, ..., ln} in
which the items stand for n cities with unique identifiers, for every
tweet t in tl, estimate the probability p(l|t) that tweet t was sent at
a location l in L, such that the location with maximum probability
p(l|t), i.e., l̂ = maxargl∈Lp(l|t), is the actual location where
tweet t was sent.

3.2 Solution Framework
3.2.1 Temporal Clusters of Tweets
Due to the 140-character limit and possible noises, the content
of an individual tweet hardly contains sufficient clue for location
inference. Nevertheless, more tweets sent from the same location

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

Training
Timelines

Temporal Clustering
for Training Timelines

Parameters
Training

c1 c2 cT…

BiLSTM-CBuild Neural
Network

Build Language Model +
Compute Information Gains

IG-Bayes

Testing
Timelines

Temporal Clustering
for Testing Timelines

c1 c2 cT…

l1
…

ln

l1
…

ln

IG-Bayes

BiLSTM-C

Fig. 1: The proposed framework

may imply more geographical information. A reasonable assump-
tion is that the tweets sent by a user in a short period of time are
likely from the same location. If we cluster such tweets together
and make use of them collectively, the location inference task can
become easier. Motivated as such, we define the concept of tweet
clusters as follows.
Definition 4 (Tweet Cluster). A tweet cluster c is a 4-tuple

c = (otl, lid, ∆t, τ), where otl is a list of original tweets
whose uid are the same. All tweets in otl are sorted by their
timestamps in ascending order. The time distance3 between
any pair of consecutive tweets is less than ∆t and the time
distance between the first and last tweet in otl is less than τ .

In Section 4, we will give the details for finding temporal
clusters of tweets based on this definition. We call τ the temporal
period of cluster c. Ideally, every tweet t in c.otl has the same lid
except for those tweets whose lid are -1. If c.lid = −1, it means
that every tweet in c.otl was sent without geo-tag. In the rest of
this paper, we focus on inferring the location for a tweet cluster
instead of for individual tweets. We then use the inferred location
for cluster c as the location for all the tweets in cluster c.

3.2.2 System Overview
Fig. 1 shows the framework of the solution to location inference
for tweets. The upper part illustrates how to construct our informa-
tion gain based Bayes model and bidirectional LSTM convolution
model from training data. The two models are called IG-Bayes
and BiLSTM -C for short, respectively. After that, we use the
two models to solve the tweets location inference problem on real
world data (or testing data). The application or testing of the two
models is illustrated in the bottom half in Fig. 1.

The first step splits a Twitter user’s entire timeline into clusters.
We call this step temporal clustering, which is different for
training and testing since different sets of information are available
for training and testing. For training, we make use of the possible
GPS coordinates and/or other geo-tags in tweets, whereas in the
testing we do not need such implications.

We propose two probabilistic models for location inference
that purely rely on tweet content. They both regard the content
of a tweet cluster c as a bag-of-words W = (w1, ..., wn) and

3. Time distance is the difference between the timestamps of two tweets.

estimate the probability p(l|W) for every location l in L. One
model compares the information gain value of a word w that
appeared in location l and the average information gain of words
in l, measures how closely word w is related to location l, and
utilizes this measurement to infer the most possible location for
a cluster according to Bayes’ theorem. The other model builds
a neural network to learn features φ of W and computes the
probability p(l|φ). It contains a bidirectional LSTM layer to learn
a long dependency of W and a convolution layer to learn spatial
local features of phrases in W . Experimental results show that the
two models are effective at inferring tweet locations.

3.2.3 Evaluation Metrics

We compare the location inferred linfer (t) returned by our ap-
proach with the actual location lact(t) for each geo-tweet in a
user’s timeline tl in the testing data TLtest . We use tl.geo-tweets
to refer to all the geo-tweets in tl. The more locations correctly
inferred by a model across all geo-tweets in TLtest, the better the
model is. Therefore, we use the metric accuracy (Acc for short) to
evaluate a location inference model. Specifically, accuracy in our
setting is the percentage of geo-tweets’ locations that are inferred
correctly.

Acc =

∑
tl∈TLtest

|{t ∈ tl.geo-tweets|linfer (t) = lact(t)}|∑
tl∈TLtest

|tl.geo-tweets|

4 TEMPORAL CLUSTERING

The key point of a temporal clustering method is to determine ∆t
and τ for a user’s timeline. The simplest way is to let ∆t be a fixed
time distance, for example, the shortest flight time that enables a
user to fly from one city to another. However, users have different
frequencies of updating status on Twitter. Therefore, using a fixed
threshold ∆t or τ for all users can be too rigid to cope with the
real situations. Instead, we use more sophisticated ways to decide
∆t and τ and make them adaptive to different users and timelines.

We proceed to present the temporal clustering methods for
training data and testing data respectively. We make use of the
geo-tweets for training but not for testing.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

4.1 Temporal Clustering for Training Data
The key idea of temporal clustering for training data is to combine
a geo-tweet and its neighbor tweets to form a cluster. We want to
find a proper temporal period τ for every timeline in the training
data. For every geo-tweet tgeo, we put all the tweets in its τ

2 -
neighborhood into tgeo’s cluster. According to our observation on
the collected tweet data, the few tweets preceding or succeeding
a geo-tweet are very likely to be sent in the same location as the
geo-tweet. Intuitively, a user does not go to a third city during the
period of his sending two tweets ti and tj if they are located in
two cities and the time in-between is not long. However, a user
may stay in a city for a long time without sending a (geo-)tweet.
Alternatively, a user may send two geo-tweets in the same location
in a short period of time. For example, tourists often do so when
they visit a city for the first time.

To handle different situations, we define a minimum and
maximum temporal period τmin and τmax to bound τ , i.e.,
τmin ≤ τ ≤ τmax. Let ∆tmin be the shortest temporal distance
between two consecutive geo-tweets with different locations in the
timeline. We set τ to be min(τmax,max(τmin,

2
3∆tmin)). We

use a multiplier of 2
3 to get rid of those tweets with timestamps

close to the midpoint of the timestamps of two geo-tweets sent
in different cities. Essentially, it is impossible that a training
tweet belongs to two adjacent, overlapping clusters. This requires
τmin <

2
3∆tmin, which is very rare according to our statistics.

We exclude such overlapping clusters to avoid disturbance. On
the other hand, there are tweets without geo-tags and not included
in any clusters. We have little confidence to judge which city they
belong to. They cannot help the training and thus are also excluded
from the clustering results. In our implementation, we set τmin
and τmax to 1 hour and 6 hours, respectively.

After deciding τ , the temporal clustering for a user’s timeline
tl for training data is done according to Algorithm 1. All geo-
tweets in tl are pushed to a FIFO queue geo-tl in the temporal
order of their timestamps. A list clusters is created to hold the
clusters of tl. Each time a geo-tweet tgeo is picked up from geo-tl,
a new cluster candidate ccandi is created. It accepts all tweets in tl
whose timestamps fall in (tgeo.ts− τ

2 , tgeo.ts+ τ
2) into ccandi . If

ccandi contains only one geo-tweet or every geo-tweet in it has the
same lid, ccandi is a legal cluster and it is added into clusters.
Otherwise, we regard ccandi as illegal and increase error-count,
i.e., the number of illegal clusters.

The temporal clustering may be disturbed by company ac-
counts shared by colleagues in different locations. For business
or branding purpose, those colleagues may post tweets almost
simultaneously that are geo-tagged with different locations. This
kind of behavior results in tweets sent within τmin but located
in different locations. The variable error-count in Algorithm 1
keeps track of how many cluster candidates contain tweets sent
in more than one locations. The returned error-count should
be larger than a threshold value4 for those timelines of company
accounts. In this way, the algorithm is able to remove those
timelines of company accounts.

Fig. 2 shows an example of temporal clustering for a timeline
in training dataset, where t1 and t4 are two geo-tweets. The time
distance between t0 and t1 and that between t1 and t2 are less
than τ

2 . So the distance between the first tweet (t0) and last tweet
(t2) in cluster c0 is less than τ . In contrast, tweet t3’s timestamp
is not within the τ

2 -neighborhood of any geo-tweet, it belongs to

4. In our implementation, we set the threshold to |clusters|
4

.

Algorithm 1 Temporal Clustering for Timelines in Training Data

Input:
tl: a user’s timeline
geo-tl: an FILO queue of geo-tweets in tl, sorted by timestamps
in descending order
τ : temporal period for the clusters to be generated

Output:
clusters: a list of clusters for tl
error-count: an integer recording illegal cluster candidates

1: set clusters an empty list
2: error-count← 0
3: while geo-tl is not empty do
4: Set ccandi an empty cluster
5: tgeo ← geo-tl.pop()
6: ccandi .lid← tgeo .lid
7: for all t ∈ tl such that |t.ts− tgeo .ts| < τ

2
do

8: ccandi .otl.add(t)
9: if ∀t ∈ ccandi .otl : t.lid = tgeo .lid or t.lid = −1 then

10: clusters.add(ccandi)
11: else
12: error-count← error-count+ 1
13: return clusters, error-count

A geo-tweet

A non-geo-tweet

Fig. 2: Converting a timeline (training data) to clusters

no cluster. Also, tweet t4 forms a singleton cluster as no tweets
fall in its neighborhood.

4.2 Temporal Clustering for Testing Data

When deciding the temporal clusters for testing data, we treat
all tweets in the way as if none of them is geo-tagged. We
find the minimum and maximum time distances (∆tmin and
∆tmax, respectively) between any two consecutive tweets in a
timeline tl of a user, and split the interval (∆tmin,∆tmax) into
several smaller intervals (∆t0,∆t1), . . . , (∆tn−1,∆tn) where
∆tmin = ∆t0 and ∆tmax = ∆tn. The length of every smaller
interval is half an hour. For every such half-hour interval, we count
the pairs of consecutive tweets whose time distance is within it.
Suppose that we get the interval (∆ti−1,∆ti) of which the count
is the largest. Accordingly, we set ∆t = ∆ti. We would like
to find users’ most likely frequency of sending tweets. By our
observation, a user is unlikely to move if she/he sends two tweets
within the period of ∆t. Also, our statistics show that only a very
small fraction (less than 1%) of the clusters in the testing data
Ctest contain more than one geo-tweet with different locations.
This verifies the rationality of our temporal clustering for testing
data.

Unlike the temporal clustering for training data, the temporal
clustering for testing data here does not need the parameter τ .
Here, it is possible to achieve the ideal circumstance where every
tweet t in tl has the same lid except for t.lid = −1. As the location
information in those geo-tweets is not needed by the temporal
clustering for testing data, the clustering here starts with the time
distance between two consecutive tweets instead of the overall
temporal period that is indicated by the parameter τ . Algorithm 2
briefly formalizes the procedure of temporal clustering for a user’s
timeline tl in testing data.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 2 Temporal Clustering for Timelines in Testing Data

Input:
tl: an FILO sequence of user’s timeline sorted by timestamps in
descending order
∆t: time distance for the clusters to be generated

Output:
clusters: a list of clusters for tl
error-count: an integer recording illegal cluster candidates

1: set clusters an empty list
2: error-count← 0
3: tlast ← tl.pop()
4: Set ccandi a new empty cluster
5: ccandi .otl.add(tlast)
6: while tl is not empty do
7: t← tl.pop()
8: if tlast.ts− t.ts < ∆t then
9: ccandi .otl.add(t)

10: else
11: clusters.add(ccandi)
12: Set ccandi a new empty cluster
13: ccandi .otl.add(t)
14: tlast ← t
15: clusters.add(ccandi)
16: return clusters

The temporal clustering converts the timelines in training data
into clusters from which we build our inference models, whereas
the temporal clustering converts the timelines in testing data into
clusters for which we infer locations. In training data, as one
cluster corresponds to one geo-tweet, the number of clusters is
the same as that of geo-tweets that do not repeat within a short
period of time except those illegal cluster candidates. In testing
data, the clusters that contain at least one geo-tweet are used as
ground truth in our model evaluation. The temporal clustering for
testing timelines ensures that no geo-tweet in a timeline appears
in two clusters.

Fig. 3 gives an example of temporal clustering for testing data.
The time distance between tweets t0 and t1 and that between t1
and t2 are less than ∆t. Thus, {t0, t1, t2} satisfies the conditions
of a cluster and the set forms cluster c0. In contrast, the time
distance between t2 and t3 is larger than ∆t, so t3 does not belong
to c0 but forms a singleton cluster c1. A tweet in a testing timeline
cannot belong to two clusters, as a testing tweet always starts a
new cluster if it is later than the previous cluster’s last tweet by at
least ∆t.

A tweet

Fig. 3: Converting a timeline (testing data) to clusters

From the presentation above and the illustration in Fig 3, it
can be seen that our temporal clustering method for testing data
can be applied to an online setting. Suppose we have gotten a
user’s timeline tl up to now. When he/she posts a new tweet t,
we just need to append t to tl, update ∆t, and do the temporal
clustering again using Algorithm 2. All these operations can be
done in a very short time. As a result, given a model that is able to
infer locations for clusters in a very short time, individual tweets’
locations can be inferred in an online manner.

5 INFORMATION GAIN BASED BAYES MODEL

In this section, we first give a baseline probabilistic model for
location inference that is based only on Bayes’ theorem. Sub-
sequently, we explain the drawbacks of the baseline model and
present an improved Bayes model for location inference.

5.1 Baseline Bayes Model for Location Inference
First, we consider a basic probabilistic language model that
regards a tweet cluster as a word sequence W . Our aim is to
estimate the probability that a new word sequence W was issued
from a given location by sampling from the word distribution for
that location. Let Dl be the distribution of words associated with
location l, and p(l) the prior probability of location l. According
to Bayes’ theorem, we have

p(l|W) =
p(W |Dl)p(l)

p(W)
(1)

Assuming a uniform distribution for p(l) is unrealistic as some
locations are associated with more tweets. We use an estimation
for p(l):

p̂(l) =
|{c ∈ Ctrain|c.lid = l}|

|Ctrain|
Note that p̂(l) gets larger with the increase of tweet density in
l. We ignore p(W) from Equation 1, since it is the same for all
locations.

For simplicity, we assume all words are independent from each
other and we have:

p(W |Dl) =
∏

wi∈W
p(wi|Dl)

The smoothing maximum likelihood estimate of the probability
that a word w is “generated” by location l is as follows:

p̂ml(w|Dl) =

{
wf(w,l)

|Dl| if wf(w,l) > 0,
TFw

TN otherwise.

Above, wf(w,l) is the word frequency of w in Dl, and |Dl|
is defined as the total number of words in location l, i.e.,
|Dl| =

∑
w wf(w,l). Furthermore, TFw =

∑
l wf(w,l) is the

total word frequency of w across all locations, and TN =∑
w TFw =

∑
l |Dl| is the total number of words in all loca-

tions. When estimating the probability given a sequence W , we
ignore those words in W that are absent from all locations word
distributions. Altogether, we have:

p̂ml(W |Dl) =
∏

wi∈W
p̂(wi|Dl)

p̂ml(l|W) ∝ p̂ml(W |Dl)× p̂(l)

5.2 The Improved Bayes Model
There are two problems of the maximum likelihood estimator
mentioned above. On the one hand, we cannot get an arbitrary
sized sequence of data from the actual words distribution Dactual

l

over locations. As a result, we cannot be confident in the maximum
likelihood estimator [52], [53]. On the other hand, the maximum
likelihood estimator treats all words equally, ignoring those words
that have more compact geographical scopes and higher implica-
tions of locations. To address these two problems, we improve the
maximum likelihood estimator and propose an information gain
based Bayes model for location inference. We call this improved
model IG-Bayes .

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

5.2.1 A Robust Probability Estimator
To mitigate the first problem, we adapt the approach described by
Song and Croft [52] to our problem. In particular, we define an
average estimate of likelihood for a word w over all the locations
whose words distribution contains w:

p̂avg(w) =

∑
l(w∈Dl)

p̂ml(w|Dl)

|Lw|
Above, Lw denotes the locations set in which every location’s
words distribution containsw. We call |Lw| the location frequency
of word w. This is a robust statistic as the average probability is
calculated using considerably more data. As word sequences in
different locations were generated by different distributions, there
would be no distinction if we use p̂avg(w) in every location and
the mean probability would become riskier to use as an estimate.
In order to make use of the robustness of average estimate above
and to keep the pattern of word distributions, we model the risk for
a word w generated by Dl using the geometric distribution [52],
[53]:

R̂(w, l) =

(
1.0

1.0 + f̄w

)
×
(

f̄w
1.0 + f̄w

)wf(w,l)
Above, f̄w is the average word frequency of word w in locations
where w appears: f̄w = p̂avg(w)× |Dl|.

The estimate of the probability that a word w is “generated”
by location l is then as follows [53]:

p̂r(w|Dl) ={
p̂ml(w|Dl)

(1−R̂(w,l)) × p̂avg(w)R̂(w,l) if wf(w, l) > 0,
TFw

TN otherwise.

Finally, we use Dirichlet smoothing [54] on p̂r to get a smooth
estimate p̂µ:

p̂µ(w|Dl) =
wf(w,l) + µp̂r(w|Dl)

|Dl|+ µ

In this estimate, we set µ = 0.5|Dl|.

5.2.2 The Model Based on Local Measure of Words
It is still insufficient to only replace p̂ml by p̂µ. It is unreasonable
to treat all words equally because some words may only appear
at some particular locations. For example, “Louvre” can give the
model a clear hint that the sequence was very likely to be in
Paris. In contrast, “morning” cannot offer any local information.
“Louvre” may appear at the same times as “morning” in Paris;
but in other cities, “morning” may appear much more often
than “Louvre”. As a result, p̂µ(w|Dl) will be the same for
“Louvre” and “morning” if the location l is Paris. Moreover, if
f̄“morning” = wf(“Louvre”, Paris), the robust estimate p̂µ(w|Dl)
will be useless.

When we estimate the probability of a sequence generated by
the words distribution in a location, we want to emphasize the
effect of the words that have close ties with one or more locations.
In a previous work [12], a word like “Louvre” is called a “local”
word. However, other words like “museum” seem to be related
to some locations but it may be impossible to infer the location
of a sequence by only using such a word. Instead of merely
determining if a word is “local”, we want to estimate to what
extent a word is related to a location l. To this end, we propose a
metric that calculates the normalized information gain of a word
w with respect to a location l.

A measure of chaos in a set, information entropy shows the
uncertainty of relationship between data in the set and one of the
data properties. Related to that, information gain is a measure of
how much uncertainty a feature of the data can help to reduce.
Applying these concepts to our problem, we regard that “a cluster
c is located in a location l” as a property and every word in c’s
content as a feature.

Given a set Ctrain of training clusters and a set L of locations,
we define a random variable Xl to capture if a cluster c in Ctrain

satisfies c.lid = l. The possible values of Xl are only 1 or 0.
Consequently, the information entropy of the set Ctrain for a
location l ∈ L is as follows:

Hl(Ctrain) = −
∑

i∈{0,1}

p(Xl = i) log p(Xl = i)

p(Xl = 1) =
|{c ∈ Ctrain|c.lid = l}|

|Ctrain|
p(Xl = 0) = 1− p(Xl = 1)

Above, Hl(Ctrain) = 0 means every cluster’s location is either l
or not l.

We regard the word w’s appearance in a cluster c’s content
W as an attribute c in Ctrain and we use Aw to represent it.
If Aw = 1, w appears in c’s content; otherwise, Aw = 0. The
information gain for an attribute Aw is defined in terms of entropy
H(Ctrain) as follows:

IG(w, l) = Hl(Ctrain)−Hl(Ctrain|Aw)

= H(Ctrain)−∑
i∈{0,1}

|{c ∈ Ctrain|Aw = i}|
|Ctrain|

H({c ∈ Ctrain|Aw = i})

As the information gain is used to measure how an attribute can
decrease the degree of “chaos” in a set, if a word w has a compact
geographical scope, IG(w, l) will be larger for location l with
which w has close ties.

Last, we normalize the information gain of a word w over the
location set L to estimate the extent that w can be associated with
locations. The estimation ε(w, l) is defined as:

ε(w, l) =
¯IGexp(l)

eIG(w,l)
,where ¯IGexp(l) =

∑
w∈Vl

eIG(w,l)

|Dl|

Above, Vl contains all words that have appeared in location l.
We use ε(w, l) as a influence factor and the final probability

estimator becomes:

p̂(w|Dl) = p̂µ(w|Dl)
ε(w,l)

As p̂µ(w|Dl) is in the range (0, 1), when w is closely related
to l, ε(w, l) will be smaller than 1 and p̂(w|Dl) will be larger
than p̂u(w|Dl). Otherwise, p̂(w|Dl) will get smaller. Naturally,
the following holds:

p̂(l|W) ∝

 ∏
wi∈W

p̂ (w|Dl)

× p̂(l)
Therefore, we select the location l as the inferred location for a
given cluster c such that p̂(l|W) is the largest among L.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

6 BIDIRECTIONAL-LSTM CONVOLUTION MODEL

Although easy to train, the model based on Bayes’ theorem is
not sufficiently sophisticated to extract geographical features from
tweet clusters. In contrast, Deep Neural Networks (DNNs) are ex-
tremely powerful models to solve many difficult problems because
DNNs can approximate arbitrarily complex functions. Among
many kinds of DNNs, Recurrent Neural Network (RNN) [55], [56]
is specialized for handling sequential data, which is the case for
our tweet data. In addition, by taking advantage of local feature
extraction of the convolution operation, we are able to build a
network consisting of an RNN layer and a convolution layer.

In this section, we first briefly describe the architecture of
a standard RNN and one popular RNN called Long Short-Term
Memory (LSTM) [57]. Then we present the architecture of our
Bidirectional LSTM Convolution model (BiLSTM -C) that is
suitable for our tweet location inference problem.

6.1 Background: RNN and LSTM
The RNN is a natural extension of feedforward neural network on
modeling sequence. Given an input sequenceX = (x1, x2, ..., xT)
where each xi is a fixed-dimensional vector, a standard RNN maps
X to a sequence of hidden states H = (h1, h2, ..., hT), and H to
an output sequence Y = (y1, y2, ..., yT). The two mappings are
done by iterating the following formulas from time t = 1 to time
t = T :

ht = tanh(Whxxt +Whhht−1)

yt = Wyhht

Although standard RNNs can learn complex temporal dynam-
ics, it is difficult to learn long-term dynamics. Compared with a
standard RNN, an LSTM has more complicated dynamics that
enable it to “memorize” history information observed up to that
time step. In this sense, an LSTM is capable of learning long-
term dependencies. The core of an LSTM is the cell ct that stores
“long term” memory. An LSTM is regulated by components called
gates that overwrite ct, retrieve it, or keep it for the next time step.
Gates are composed out of a sigmoid or tanh layer and a point-
wise multiplication operation. The value of a sigmoid function lies
within the range (0, 1). So, gates can optionally let information
through.

Fig. 4 (from [58]) illustrates how an LSTM computes H.
Specifically,

it = sigm(Wxixt +Whiht−1 + bi)

ft = sigm(Wxfxt +Whfht−1 + bf)

ot = sigm(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxgxt +Whght−1 + bg)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

Here, i, f , o and g are the input gate, forget gate, output gate,
and input modulation gate, respectively; c is cell activation vector.
Their size is identical to that of the hidden vector ht.

The memory cell ct is a summation of two parts: the previous
memory cell ct−1 modulated by forget gate ft, and the current
input and previous hidden state it modulated by input modulation
gate gt. The layers it and ft output numbers between 0 and 1,
describing how much of each component should be let through.

⊗ 𝑐𝑡 ⊗

⊗

𝑓

𝑜 𝑖

𝑔

Forget gate

Input gate Output gate

Cell

Input
modulation

gate

ℎ𝑡−1

ℎ𝑡−1

ℎ𝑡−1 ℎ𝑡−1

ℎ𝑡

𝑥𝑡

𝑥𝑡 𝑥𝑡

𝑥𝑡

Fig. 4: A graphical representation of LSTM [58]

Therefore, an LSTM is able to learn to selectively forget its
previous memory or to consider its current input. Likewise, ot
helps an LSTM learn how much of the memory cell to transfer to
the hidden state. If a network stacks more than one LSTMs, the
hidden state in layer l at time step t is usually written as hlt. Then
the input xt for a higher LSTM layer is hl−1t , as shown in Fig. 4.

One shortcoming of conventional LSTMs is that they cannot
exploit future contexts. To this end, Bidirectional RNNs (BRNNs)
are designed to process data in two directions with two separate
hidden layers, as illustrated in Fig. 5. Combining BRNNs and
LSTMs gives Bidirectional LSTMs (B-LSTM) [13].

ℎ
←

𝑡−1 ℎ
←

𝑡 ℎ
←

𝑡+1

ℎ
→

𝑡−1 ℎ
→

𝑡 ℎ
→

𝑡+1

𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1

𝑦𝑡−1 𝑦𝑡 𝑦𝑡+1

... ...

......Outputs

Backward Layer

Forward Layer

Inputs

Fig. 5: Bidirectional RNN [13]

6.2 The BiLSTM-C Model
As in Section 5, we also regard a tweet cluster c as a word
sequence W . By converting words into real number vectors, our
problem can be translated into a sequence classification problem
that an RNN-based neural network is suitable to solve. The goal of
a network for sequence classification is to estimate the conditional
probability p

(
label|X = (x1, x2, ...xT)

)
where label is the

category to which X belongs. In practice, every sequence’s length
may be different. It is crucial to extract fixed dimensional features
that express the whole sequence X . Using RNN-based networks
can solve such classification problems about variable sequences.

An RNN calculates the X’s corresponding hidden states of the
final LSTM layer H = (h1, h2, ..., hT), builds a feature function
F that requires as input the sequence (h1, h2, ..., hT) and returns
a fixed-dimensional feature vector φ, and computes the probability
of label given φ:

p(label|x1, x2, ...xT) = p(label|φ = F (h1, h2, ..., hT))

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Generally, we use some simple layers such as fully connected and
relu layers followed by a softmax layer to handle φ and estimate
p(label|φ).

Mean

FC + Relu

FC + Relu

...

Optimizer

Softmax

B-LSTM B-LSTM ... B-LSTM

B-LSTM B-LSTM B-LSTM...

.
.
.

...

...

B-LSTM B-LSTM

B-LSTM B-LSTM

.
.
.

...

B-LSTM

B-LSTM

...

B-LSTM B-LSTM

B-LSTM B-LSTM

.
.
.

...

3×N Conv 3×N Conv 3×N Conv3×N Conv

Relu Relu Relu Relu...

...

Q layers

Fig. 6: BiLSTM -C Model for Location Inference

We adopt the idea mentioned above to solve our problem.
Fig. 6 shows the architecture of our BiLSTM -C model. The
key point is still how to extract features for the sequence W .
First of all, we need to convert a sequence of words W into a
sequence of fixed-dimensional vectors. In particular, we extract the
content of all tweets of each timeline in our training data Ctrain

and use the skip-gram algorithm [59] to train these word vectors.
Consequently, each word is expressed as anM -dimensional vector
of float numbers, where M is an empirical value that has little
effect on the overall model performance. It is set to 512 in our
experiments. Subsequently, we express the word sequence W of
a cluster as a word vector sequence V = (v1, v2, ..., vT). This V
serves as the vectorization for the word sequence W in a given
cluster. Each vt in V is the word wt’s M -dimensional vector and
the length of the sequence V , i.e., |V|, is T . Now we have the
input X = V .

We use a deep bidirectional LSTM layer to compute the N -
dimensional hidden states sequences

−→
H and

←−
H of V , where N

is the number of hidden units used in our model. Therefore,←−
ht and

−→
ht are vt’s two hidden states and they are also the

word wt’s hidden states. Sometimes, an individual word cannot
give clear location clues but word groups or phrases have close
ties with some particular locations. For example, “statue” or
“liberty” can be used everywhere while “Statue of Liberty” is the
landmark of New York City. In this sense, if we can combine word
groups together by considering such local features, more powerful
features would be extracted for location inference.

Convolution Neural Networks (CNNs) consider spatially-local
correlation in an image by enforcing a local connectivity pattern
between neurons of adjacent layers by a convolution opera-
tion [14], [15], [16]. Inspired by this, we add a convolution layer
above the LSTM layer to exploit the local features. Concatenating
every vector in

−→
H and

←−
H , we get two matrices

−→
HT×N and←−

HT×N , respectively. Subsequently, we convert the combination
of
−→
HT×N and

←−
HT×N into a T×N×2-dimensional tensor H

that can be viewed as a 2-channel image with height T and width
N . Using one filter K ∈ R3×N to convolute H , followed by a
nonlinear rectified linear unit (relu) operation, we get a (T -2)×N -
dimensional output “feature map” Y . Different from traditional
bidirectional RNNs which generate output sequence Y by directly
concatenating

−→
H and

←−
H , we use a convolution layer and a relu

layer to map the forward hidden states
−→
H and backward hidden

states
←−
H into output sequence Y . By computing the mean of

elements in Y across the first dimension, we get the fixed N -
dimensional feature φ:

H ::0 =

−→
h 0−→
h 1

...
−→
h T

 H ::1 =

←−
h 0←−
h 1

...
←−
h T

φ = Mean

(
Relu (K ∗H)

)
To make it easy to understand the architecture, we unroll the

convolution and a following relu layer in Fig. 6. As a matter of
fact, all the 3×N convolution layers use the same filter K.

The following fully connected layers and nonlinear rectified
linear units (Relu(x) = max(0, x)) are used to handle the
feature φ. On the top of those layers, the softmax layer outputs
the probability estimates that cluster c with content W was posted
at every location in L. The output pl falls in [0, 1]|L|. In particular,
we have

hq(x) = Relu(W qhq−1(x) + bq)

pl(W) = softmax

(
hQ
(
...h2

(
h1(φ)

)))
Above, hq is a fully connected layer followed by relu units and
Q is the total number of such layers. Finally, we construct the
commonly used cross entropy as the supervised loss L for the
softmax outputs of location inference,

L = −
∑

c∈Ctest

log(pl[c.lid])

Above, pl[c.lid] is the probability estimate that cluster c is located
at the location identified by c.lid.

The aim of our BiLSTM -C model is to minimize the loss
L defined above. Neural networks are often trained using an
optimizer by performing SGD (stochastic gradient descent) with
mini-batch. We first get the sets Ctrain according to Algorithm 1.
Subsequently, we sample batches from Ctrain, feeding them to
our BiLSTM -C model. Furthermore, we take gradient decent
steps to optimize the supervised loss L. We repeat this procedure
for a number of iterations until the loss L converges. After that, we
can apply it on testing data, for which the clusters are generated
by Algorithm 2.

6.3 Alternative LSTM
An existing variant of LSTM called ConvLSTM [60] also
combines convolution and neural network. It uses convolution
operations instead of fully-connected layers inside gates i, f , o
and g. This model is suitable for those problems whose data input
formats are sequences of 3D tensors such as videos. Formally,
the input X is in the form of X = (X1, ..,XT) where every
Xt ∈ RC×H×W . When Xt is a frame in a video, C, H and
W are the number of channels, height and width of this picture,

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

respectively. ConvLSTM aims to find local features inside the 3D
tensor Xt at every timestep t. If we use ConvLSTM to replace
our BiLSTM -C model for tweet location inference, as the input
V is a sequence of M -dimensional vectors, we have to expand the
dimensions of every item vt in V to be an M × 1 × 1 tensor. In
this case, the convolution operation will degenerate into a fully-
connected layer with most items being 0 in the weights matrix.
In addition, compared to ConvLSTM , our BiLSTM -C takes
the continuous word vectors of phrases such as “liberty of statue”
into consideration. Our experiments disclose that BiLSTM -C
achieves better performance on the problem of tweets location
inference than ConvLSTM . Details are given in Section 7.

7 EXPERIMENTS

In this section, we report on an experimental study to compare
models Baseline (Section 5.1), IG-Bayes (Section 5.2) and
BiLSTM -C (Section 6.2). We also compare our approaches with
existing methods. First, we include a probabilistic model [12]
that applies two optimization (Local Filtering and Neighborhood
smoothing) on a baseline maximum likelihood estimation. We call
it BLFN , short for baseline with local filtering and neighborhood
smoothing. Next, to study the efficiency of the convolution layer of
the model BiLSTM -C , we build another neural network model,
named B -LSTM , that only omits the convolution layer from
BiLSTM -C . Besides, we include the Logistic Regression model
(LR) in the comparison since it is often used as a baseline for
deep neural network models. Different from an RNN-based model,
LR requires that the dimension of its input XLR must be fixed.
So we average all word vectors of an input word sequence W ,
i.e., XLR = 1

T

∑T
t=1 vt where vt is wt’s word vector and the

length of W is T . In addition, we implement ConvLSTM [60] as
discussed in Section 6.3. It uses convolutional structures instead
of fully-connected layers in both the input-to-state and state-to-
state transitions. Last, we include the state-of-the-art approach
called TG-TI -C [51] that infers tweet locations using similarity
comparison between a tweet and a set of geo-tagged tweets. All
models are trained and evaluated on some Linux servers with
Nvidia Tesla M40 graphics cards.

7.1 Experimental Setting
The open-source library twitter4j was used to access Twitter’s
open API to crawl data. In total, 1,203,467 user timelines
from January 2016 to March 2016 were collected, involving
140,345,512 tweets totally. Only 1.9 percent of the tweets were
geo-tagged. We did not use all the data but focused on the cities
with the most geo-tweets. Two scenarios were considered in our
experiments:

• It is of interest to investigate the performance of the
models when there are large amounts of data for every city
in a small location set L. We selected 10 cities worldwide
associated with the most geo-tweets to form L, ignoring
other locations and corresponding tweets. The accuracy of
location inference for the 10 cities was computed. The top
10 cities are San Francisco, Los Angeles, London, New
York, Seattle, Santa Clara, Vancouver, Portland, Toronto
and San Diego.

• Alternatively, we selected top 100 cities in the United
States with the most geo-tweets to form a large L. All
of the top 100 cities in US have large populations.

In order to build training and testing datasets, we picked
up all user timelines that contain at least one geo-tweet from
the top-10 worldwide cities or top-100 US cities. We removed
those timelines from company accounts, which was done by the
temporal clustering approach for training data (Section 4.1). In
each remaining timeline, we only keep those tweets in English,
by using a language detection tool5. After the preprocessing, we
divided the remaining timelines into training and testing datasets
by a ratio of 4 : 1. The training and testing datasets were then fixed
for all of the models. After temporal clustering for training (or
testing) data, we removed those clusters without any geo-tweet as
they cannot be used for training (or evaluation) purpose. Detailed
statistics about the datasets used in our experiments are given in
Table 3.

TABLE 3: Dataset statistics

10 cities

number of training clusters 615,607
average number of tweets in a training cluster 4.08
number of testing clusters 89,268
average number of tweets in a testing cluster 3.69
number of total geo-tweets in testing clusters 105,247

100 cities

number of training clusters 1,098,824
average number of tweets in a training cluster 4.09
number of testing clusters 163,078
average number of tweets in a testing cluster 3.71
number of total geo-tweets in testing clusters 186,391

In the top-10 worldwide cities, there are 548 testing clusters
that contain more than one geo-tweets of different locations. The
number is 957 in the top-100 US cities. Such bad clusters account
for only about 0.61% and 0.59% for the two datasets, respectively.
It implies that our temporal clustering approach is reasonable to a
great extent.

7.2 Descriptions of Training
In order to train IG-Bayes , we removed stopwords6 in each word
sequence. In contrast, we simply replaced each stopword with a
</s> symbol when training BiLSTM -C , since stopwords are
often retained when an RNN is used.

Considering that a neural network with deeper layers works
better in general, we used a stacked dynamic bidirectional LSTM
with 4 layers when training BiLSTM -C . In particular, 512
hidden units at each layer and 512-dimensional word embeddings
were used, with an input vocabulary of 545,576. A dynamic LSTM
was selected because the sequence lengths are different and the
numbers of cells may differ in training iterations. The sequence
length varies from 3 to 200. The sequence longer than 200 or
shorter than 3 were removed. Thus, 1,536 to 102,400 real numbers
were used to represent a sequence in the network. More details are
as follows:

• We initialized the parameters of the bidirectional LSTM
and all the fully connected layers’ parameters with Gaus-
sian noise with mean being 0 and standard deviation set to
0.01.

• We initialized the initial state of the bidirectional LSTM
with zero.

• If a sequence’s length cannot be divided by 5 with no
remainder, we complemented the sequence by </s>. We
used batches of 128 sequences for back propagation and

5. http://polyglot.readthedocs.io/en/latest/Detection.html
6. https://www.ranks.nl/stopwords

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

every sequence in a mini batch has the same length. So
there are (200−5)

5 + 1 = 40 types of batches of different
lengths.

• As LSTMs tend to suffer from exploding gradient prob-
lem, we enforced a hard constraint on the norm of gradient
[0, 5] by scaling it when its norm exceeded a threshold.

• We used a momentum of 0.9 [61], and a dropout keep
probability of 0.9 [62] when training BiLSTM -C . These
are not involved when applying the model on testing data.

• To avoid overfitting, we added an l2-regularization term
Lreg on the original supervised loss L. The coefficient
λ of Lreg was set to 0.0005 in the beginning and was
divided by 10 every time when 48,000 training iterations
were finished.

• We performed SGD with mini-batch RMSProp [63], start-
ed with a learning rate of 0.01 and divided it by 10 every
time when 48,000 training iterations were finished. The
objective loss this optimizer minimize is L + λLreg .

• All neural network-based approaches were trained with 4
different initializations and the accuracies of them are the
averages over the corresponding 4 runs.

7.3 Experimental Results

7.3.1 Overall Results

Table 4 reports the accuracies of the approaches in compari-
son using the top-10 worldwide cities and the top-100 US c-
ities (Acc@10 and Acc@100, respectively). All approaches but
TG-TI -C adopts the temporal clustering method introduced in
Section 4 to convert group individual tweets into clusters.

TABLE 4: The performance of different models

Approach Acc@10 (%) Acc@100 (%)
TG-TI -C 48.20 33.61
Baseline 56.48 32.21
BLFN 59.23 38.76
IG-Bayes 63.66 42.84
LR 64.86 43.85
ConvLSTM 68.27 46.84
B -LSTM 73.39 50.99
BiLSTM -C 76.87 54.38

Referring to Table 4, TG-TI -C and Baseline get the worst
overall performance and BLFN performs a little better than both
of them. Compared to BLFN , IG-Bayes clearly improves the
accuracy of location inference: from 59.23% to 63.66% on the top-
10 worldwide cities and from 38.76% to 42.84% on the top-100
US cities. This indicates that our information gain based design
in IG-Bayes is able to make considerably better probability
estimates when inferring tweet locations.

Although IG-Bayes outperforms Baseline , TG-TI -C and
BLFN , it cannot match LR or any of the three RNN-based
models (B -LSTM , ConvLSTM and BiLSTM -C). Further-
more, the RNN-based models are considerably better than LR
on both datasets: LR’s Acc@10 is 64.86% whereas that of
B -LSTM , ConvLSTM and BiLSTM -C is 73.39%, 68.27%
and 76.87%, respectively; LR’s Acc@100 is 43.85% whereas that
of B -LSTM , ConvLSTM and BiLSTM -C is 50.99%, 46.84%
and 54.38%, respectively. These performance differences clearly
demonstrate the power of LSTM used in all RNN-based models
and that of the convolution layer used in BiLSTM -C . In addition,

the fact that ConvLSTM performs worst among the three RNN-
based models indicates ConvLSTM is not very suitable to solve
this problem.

Besides, the accuracy achieved by each model on top-10
worldwide cities is much higher than its accuracy on top-100 US
cities. This is attributed to the fewer location classes using the
top-10 worldwide cities, which makes the classification relatively
easier.

7.3.2 The Influence of τ and ∆t in Temporal Clustering
It is evident from Section 4 that τ and ∆t are self-adaptive
parameters in our algorithms, i.e., their values may vary with
different user timelines. This is reasonable as different users have
different frequencies of sending tweets. Nevertheless, we vary
the values for τ and ∆t, obtain different training and testing
clusters for each fixed value pairs, and run the IG-Bayes and
BiLSTM -C classifications on the top-10 worldwide cities and
the top-100 US cities. Table 5 shows the performance associated
with different values of τ and ∆t.

TABLE 5: Accuracies of BiLSTM -C and IG-Bayes in different
settings of τ and ∆t

IG-Bayes

Acc@10 (%) τ=1h τ=2h τ=4h τ=6h
∆t=1h 57.84 58.35 59.78 59.14
∆t=2h 58.42 58.95 60.23 59.57
∆t=4h 58.78 59.41 60.71 60.33
∆t=6h 59.03 59.73 60.38 59.91

Acc@100 (%) τ=1h τ=2h τ=4h τ=6h
∆t=1h 38.64 39.32 39.03 38.82
∆t=2h 39.15 40.43 39.98 39.61
∆t=4h 38.00 40.48 40.01 38.86
∆t=6h 37.46 39.78 38.83 38.10

BiLSTM -C

Acc@10 (%) τ=1h τ=2h τ=4h τ=6h
∆t=1h 67.32 67.52 68.26 68.64
∆t=2h 68.93 69.38 69.58 71.20
∆t=4h 70.54 70.81 72.20 71.91
∆t=6h 68.61 70.37 70.58 69.09

Acc@100 (%) τ=1h τ=2h τ=4h τ=6h
∆t=1h 44.96 45.47 46.07 45.88
∆t=2h 46.16 46.72 47.38 47.25
∆t=4h 48.36 49.28 51.65 50.84
∆t=6h 47.89 48.32 49.28 49.61

Referring to Table 4, with adaptive τ and ∆t, IG-Bayes’s
Acc@10 and Acc@100 are 63.66% and 42.84%, respectively,
clearly better than the counterparts reported in Table 5. For
BiLSTM -C , itsAcc@10 andAcc@100 are 76.87% and 54.38%,
respectively, when τ and ∆t are adaptive, also clearly better
than the counterparts in Table 5. These comparative experimental
results indicate that both IG-Bayes and BiLSTM -C with self-
adaptive τ and ∆t outperform the corresponding variants with
fixed τ and ∆t.

7.3.3 Features Generated by BiLSTM-C
In order to understand why RNN-based models such as
BiLSTM -C work well, we conducted experiments to observe
whether an RNN-based model can extract good features from data.
We used BiLSTM -C to capture the 512-dimensional features φ
for every testing cluster in top-5 cities worldwide with most geo-
tweets. Due to the high number of dimensions, we used t-SNE [64]
transformation to visualize φ in Fig. 7.

As we can see from Fig. 7, only a very small part of the data
in the center contains chaos. According to our observation, the
contents in the clusters displayed in the center either have no tie

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

10 5 0 5 10
dim-0

10

5

0

5

10
di

m
-1

San Francisco
London
Los Angeles
New York
Seattle

Fig. 7: 2-dimensional t-SNE projection of features generated by
BiLSTM -C for the testing clusters in top-5 cities

with any locations or are noises. Any local clue can be hardly
found in the clusters. Except for the slight chaos, most clusters
that come from the same cities are adjacent to each other and
form clusters as shown in Fig. 7. Therefore, it is reasonable to say
that our BiLSTM -C model is able to extract good features of a
sequence.

On the other hand, we discovered that BiLSTM -C can
extract more powerful features than B-LSTM by finding some
phrases with geographical clues. Three examples in the testing
clusters are given in Table 6. For these tweet contents, B-
LSTM makes wrong location inferences but BiLSTM -C works
correctly. Note that “Stone Brewing World Bistro & Gardens”,
“Statue Liberty” and “Staples Center” in these tweets have very
compact geographical scopes and strong ties to cities. The addi-
tional convolution layer in BiLSTM -C is able to process them
appropriately.

TABLE 6: The content of some clusters inferred correctly by
BiLSTM -C but wrongly by B -LSTM

City Tweets

San Diego
. We have arrived Stone Brewing World Bistro
& Gardens http://t.co/8lsfx3ev

NY C
. I’m at statue liberty - @designbyikea.
. @ andaz wall street http://t.co/av3t8uq3kl

LA
. Showtime!!! #summerslam #wwe #cenawinsweriot
@ Staples Center http://t.co/a3fgss6erx
. He’s alive! ultimate warrior is back!!!#wwe

7.3.4 The Influence of Training Dataset Size

In order to investigate how the amount of training data affects the
performance of location inference, we designed an experiment as
follows. We randomly picked up 10%, 20%, .., 90% and 100%
of training clusters to train our IG-Bayes and BiLSTM -C . The
comparative results of the two models with varying amount of
training data are reported in Fig. 8.

Clearly, both BiLSTM -C and IG-Bayes work better as the
amount of training data increases. With more training data, the
models are able to extract the features better and then make
probability estimates more accurately. Note that, BiLSTM -C is
slightly more sensitive to the amount of training data, as the more
layers in it collectively are able to make better use of more data.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Training Data Amount

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

BiLSTMC@10cities
BiLSTMC@100cities
IGBayes@10cities
IGBayes@100cities

Fig. 8: Accuracies of BiLSTM -C and IG-Bayes on two kinds
of dataset with varying amount of training dataset

7.3.5 The Influence of Word Sequence Length
We also conducted experiments to analyze how the sequence
length affects the performance of BiLSTM -C and IG-Bayes .
Based on the sequence length, we divided all the testing clusters
of top-10 world cities and top-100 US cities into two lists of small
parts, each consisting of sequences with length in a specific range.
The accuracy results are shown in Fig. 9.

10 20 30 40 50 60 70 80 90 100
Sequence Length

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

BiLSTMC@10cities
BiLSTMC@100UScities
IGBayes@10cities
IGBayes@100UScities

Fig. 9: Accuracies of BiLSTM -C and IG-Bayes on two kinds
of dataset with varying sequence length

It is evident from Fig. 9 that both BiLSTM -C and IG-Bayes
work better in general as the sequences become longer. For
short sequences, especially those whose length is shorter than
10, BiLSTM -C performs much better than IG-Bayes , which
indicates that BiLSTM -C can learn good representations even
for very short sequences.

7.3.6 The Improvement by Temporal Clustering
From Fig. 9, it is also figured out that temporal clustering makes
a significant contribution to the location inference. Due to the 140
characters limit in Twitter, we cannot obtain long word sequences
without applying the temporal clustering methods. Table 7 shows
the substantial performance improvement enabled by temporal
clustering. Here, “w TC” means that temporal clustering was used
in the model while “w/o TC” means the opposite.

7.3.7 Discussion on Model Choosing
Although BiLSTM -C outperforms IG-Bayes in terms of lo-
cation inference accuracies, the performance gain is not free. In

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

TABLE 7: Effect of temporal clustering on performance

Approach Acc@10(%) Acc@100(%)

IG-Bayes
w/o TC 54.51 37.65
w TC 63.66 42.84

BiLSTM -C w/o TC 63.93 45.54
w TC 76.87 54.38

our experiments, the training time used for BiLSTM -C is much
longer than that for IG-Bayes . It took approximately 40 hours
(60 hours) for BiLSTM -C to converge in the dataset of top-10
worldwide cities (top-100 US cities). In contrast, the LR used 3
and 5 hours to converge in the two datasets, respectively. Besides,
obtaining word vectors cost approximately another 20 hours for
BiLSTM -C . For IG-Bayes , it took less than quarter an hour
to calculate the information gains and build indexes. On the other
hand, BiLSTM -C needs large space to store the word vectors;
it is more sensitive to larger datasets compared with IG-Bayes .
Both models can infer the location of a cluster in less than 10 ms
on average in our experiments. Besides, the average computation
time of temporal clustering is less than 1 ms for both training and
testing datasets. This indicates that our models can work in online
scenarios.

Taking all these issues discussed above into consideration, it
is suggested that one choose IG-Bayes to infer tweet locations
if there is no sufficient data or space to use or if the overall
time (from training to inference) is a sensitive factor. Otherwise,
the BiLSTM -C model can be trained to solve the problem
with considerably higher inference accuracy if sufficient time and
resources are available.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to infer city-level loca-
tions for tweets without any geo-tags. Our approach first employs
a temporal clustering method to split each Twitter user’s timeline
into a set of clusters. Each of these clusters contains tweets that are
likely sent from the same location within a short period of time.
Subsequently, our approach adapts two probabilistic models to in-
fer locations for tweet clusters. The Information Gain Bayes model
(IG-Bayes) exploits the information gain of words with location
implications in the user-generated contents. The bidirectional
LSTM convolutional model (BiLSTM -C) treats user-generated
contents and their associated locations as sequences and augments
a bidirectional LSTM with convolution operation to make better
location inferences. We conduct extensive experiments using large
real datasets collected from Twitter. The experimental results
demonstrate that IG-Bayes and BiLSTM -C achieve high loca-
tion inference accuracy in multiple settings and clearly outperform
the state-of-the-art and alternative approaches.

The proposed models in this paper use tweet contents only. For
future work, it is interesting to consider other information such as
social relationship among users and frequent patterns shared by
users. When combined with tweet contents, such information may
be utilized to make even better location inferences. Also, it is
possible to make explicit use of the few geo-tagged tweets in a
user’s timeline, e.g., through spatio-temporal constraints, in the
hope of improving or easing location inference for non-geotagged
tweets.

REFERENCES

[1] S. Yardi and D. Boyd, “Tweeting from the town square: Measuring
geographic local networks,” in ICWSM, 2010.

[2] H. Yin, W. Wang, H. Wang, L. Chen, and X. Zhou, “Spatial-aware
hierarchical collaborative deep learning for POI recommendation,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 11, pp. 2537–2551, 2017.

[3] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel, “Lars*: An
efficient and scalable location-aware recommender system,” IEEE Trans.
Knowl. Data Eng., vol. 26, no. 6, pp. 1384–1399, 2014.

[4] J. Li, M. L. Yiu, and N. Mamoulis, “Efficient notification of meeting
points for moving groups via independent safe regions,” in ICDE, 2013.

[5] J. Jiang, H. Lu, B. Yang, and B. Cui, “Finding top-k local users in geo-
tagged social media data,” in ICDE, 2015.

[6] J. Li, T. Sellis, J. S. Culpepper, Z. He, C. Liu, and J. Wang, “Geo-
social influence spanning maximization,” IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 8, pp. 1653–1666, 2017.

[7] X. Wang, Y. Zhang, W. Zhang, and X. Lin, “Efficient distance-aware
influence maximization in geo-social networks,” IEEE Trans. Knowl.
Data Eng., vol. 29, no. 3, pp. 599–612, 2017.

[8] J. Fiorillo, “Twitter advertising: Pay-per-tweet,” URL:
http://www.wikinomics.com/blog/index.php/2009/04/22/twitter-
advertising-pay-per-tweet/, Access at, vol. 4, p. 12, 2010.

[9] M. J. Culnan, P. J. McHugh, and J. I. Zubillaga, “How large us companies
can use twitter and other social media to gain business value.” MIS
Quarterly Executive, vol. 9, no. 4, 2010.

[10] C. Zhang, L. Liu, D. Lei, Q. Yuan, H. Zhuang, T. Hanratty, and J. Han,
“Triovecevent: Embedding-based online local event detection in geo-
tagged tweet streams,” in KDD, 2017.

[11] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users:
real-time event detection by social sensors,” in WWW, 2010.

[12] Z. Cheng, J. Caverlee, and K. Lee, “You are where you tweet: A content-
based approach to geo-locating twitter users,” in CIKM, 2010.

[13] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in ICASSP, 2013.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convo-
lutions,” in CVPR, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[17] C. A. Davis Jr, G. L. Pappa, D. R. R. de Oliveira, and F. de L Arcanjo,
“Inferring the location of twitter messages based on user relationships,”
Transactions in GIS, vol. 15, no. 6, pp. 735–751, 2011.

[18] D. Jurgens, “That’s what friends are for: Inferring location in online
social media platforms based on social relationships.” ICWSM, vol. 13,
no. 13, pp. 273–282, 2013.

[19] D. Rout, K. Bontcheva, D. Preoţiuc-Pietro, and T. Cohn, “Where’s@
wally?: a classification approach to geolocating users based on their
social ties,” in HT, 2013.

[20] L. Backstrom, E. Sun, and C. Marlow, “Find me if you can: improving
geographical prediction with social and spatial proximity,” in WWW,
2010.

[21] J. McGee, J. Caverlee, and Z. Cheng, “Location prediction in social
media based on tie strength,” in CIKM, 2013.

[22] E. Rodrigues, R. Assunção, G. L. Pappa, R. Miranda, and W. Meira,
“Uncovering the location of twitter users,” in BRACIS, 2013.

[23] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang, “Towards social
user profiling: unified and discriminative influence model for inferring
home locations,” in SIGKDD, 2012.

[24] D. Jurgens, T. Finethy, J. McCorriston, Y. T. Xu, and D. Ruths, “Geolo-
cation prediction in twitter using social networks: A critical analysis and
review of current practice.” ICWSM, vol. 15, pp. 188–197, 2015.

[25] B. P. Wing and J. Baldridge, “Simple supervised document geolocation
with geodesic grids,” in ACL, 2011.

[26] S. Roller, M. Speriosu, S. Rallapalli, B. Wing, and J. Baldridge, “Super-
vised text-based geolocation using language models on an adaptive grid,”
in EMNLP, 2012.

[27] J. Eisenstein, B. O’Connor, N. A. Smith, and E. P. Xing, “A latent
variable model for geographic lexical variation,” in EMNLP, 2010.

[28] J. Eisenstein, A. Ahmed, and E. P. Xing, “Sparse additive generative
models of text,” 2011.

[29] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiouliklis,
“Discovering geographical topics in the twitter stream,” in WWW, 2012.

[30] Y. Chen, J. Zhao, X. Hu, X. Zhang, Z. Li, and T.-S. Chua, “From interest
to function: Location estimation in social media.” in AAAI, 2013.

[31] K. Ryoo and S. Moon, “Inferring twitter user locations with 10 km
accuracy,” in WWW, 2014.

[32] B. Hecht, L. Hong, B. Suh, and E. H. Chi, “Tweets from justin bieber’s
heart: the dynamics of the location field in user profiles,” in CHI, 2011.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852764, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[33] Y. Qian, J. Tang, Z. Yang, B. Huang, W. Wei, and K. M. Carley,
“A probabilistic framework for location inference from social media,”
arXiv:1702.07281, 2017.

[34] H.-w. Chang, D. Lee, M. Eltaher, and J. Lee, “@ phillies tweeting from
philly? predicting twitter user locations with spatial word usage,” in
ASONAM, 2012.

[35] Z. Liu and Y. Huang, “Where are you tweeting?: A context and user
movement based approach,” in CIKM, 2016.

[36] H. Bo, P. Cook, and T. Baldwin, “Geolocation prediction in social media
data by finding location indicative words,” in COLING, 2012.

[37] B. Han, P. Cook, and T. Baldwin, “Text-based twitter user geolocation
prediction,” JAIR, vol. 49, pp. 451–500, 2014.

[38] W. Huang, I. Weber, and S. Vieweg, “Inferring nationalities of twitter
users and studying inter-national linking,” in HT, 2014.

[39] J. Mahmud, J. Nichols, and C. Drews, “Where is this tweet from?
inferring home locations of twitter users.” ICWSM, 2012.

[40] ——, “Home location identification of twitter users,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 5, no. 3, p. 47, 2014.

[41] Y. Ikawa, M. Enoki, and M. Tatsubori, “Location inference using mi-
croblog messages,” in WWW, 2012.

[42] R. Krishnamurthy, P. Kapanipathi, A. P. Sheth, and K. Thirunarayan,
“Knowledge enabled approach to predict the location of twitter users,” in
ESWC, 2015.

[43] Y. Yamaguchi, T. Amagasa, H. Kitagawa, and Y. Ikawa, “Online user lo-
cation inference exploiting spatiotemporal correlations in social streams,”
in CIKM, 2014.

[44] S. Kinsella, V. Murdock, and N. O’Hare, “I’m eating a sandwich in
glasgow: modeling locations with tweets,” in SMUC, 2011.

[45] D. Doran, S. Gokhale, and A. Dagnino, “Accurate local estimation of
geo-coordinates for social media posts,” arXiv:1410.4616, 2014.

[46] R. Priedhorsky, A. Culotta, and S. Y. Del Valle, “Inferring the origin
locations of tweets with quantitative confidence,” in CSCW, 2014.

[47] A. Zubiaga, A. Voss, R. Procter, M. Liakata, B. Wang, and A. Tsakalidis,
“Towards real-time, country-level location classification of worldwide
tweets,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 9, pp. 2053–2066,
2017.

[48] T. Palpanas and P. Paraskevopoulos, “Fine-grained geolocalisation of
non-geotagged tweets,” in ASONAM, 2015.

[49] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann, “Who, where,
when and what: discover spatio-temporal topics for twitter users,” in
SIGKDD, 2013.

[50] M. Dredze, M. Osborne, and P. Kambadur, “Geolocation for twitter:
Timing matters.” in HLT-NAACL, 2016.

[51] P. Paraskevopoulos and T. Palpanas, “Where has this tweet come from?
fast and fine-grained geolocalization of non-geotagged tweets,” Social
Network Analysis and Mining, vol. 6, no. 1, p. 89, 2016.

[52] F. Song and W. B. Croft, “A general language model for information
retrieval,” in CIKM, 1999.

[53] J. M. Ponte and W. B. Croft, “A language modeling approach to
information retrieval,” in SIGIR, 1998.

[54] C. Zhai and J. Lafferty, “A study of smoothing methods for language
models applied to ad hoc information retrieval,” in SIGIR, 2001.

[55] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1,
1988.

[56] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[57] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[58] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” arXiv:1409.2329, 2014.

[59] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distribut-
ed representations of words and phrases and their compositionality,” in
NIPS, 2013.

[60] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo, “Convo-
lutional LSTM network: A machine learning approach for precipitation
nowcasting,” in NIPS, 2015, pp. 802–810.

[61] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the
importance of initialization and momentum in deep learning.” ICML (3),
vol. 28, pp. 1139–1147, 2013.

[62] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting.” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[63] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop, coursera: Neural
networks for machine learning,” University of Toronto, Tech. Rep, 2012.

[64] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

Pengfei Li is a PhD student in computer science
with Zhejiang University, China. He received the
BSc degree in computer science from Zhejiang
University, in 2016. His research interests in-
clude machine learning and data mining.

Hua Lu is an associate professor in the De-
partment of Computer Science, Aalborg Univer-
sity, Denmark. He received the BSc and MSc
degrees from Peking University, China, and the
PhD degree in computer science from National
University of Singapore. His research interests
include database and data management, geo-
graphic information systems, and mobile com-
puting. He has served as PC cochair or vice
chair for ISA 2011, MUE 2011 and MDM 2012,
demo chair for SSDBM 2014, and PhD forum

cochair for MDM 2016. He has served on the program committees for
conferences such as ICDE, CIKM, DASFAA, ACM SIGSPATIAL, SSTD,
MDM, PAKDD, APWeb, and WAIM. He is a senior member of the IEEE.

Nattiya Kanhabua is a senior data scientist
at NTENT, Barcelona, Spain. Previously, she
was an assistant professor at the Department
of Computer Science, Aalborg University, Den-
mark. In addition, she was a postdoctoral re-
searcher at the L3S Research Center. Her re-
search interests are information retrieval, Web
and social media mining, and Web archiving.
In particular, she focus on the impacts of Web
dynamics on search, e.g., terminology evolution,
time-sensitive queries, and time-aware retrieval

and ranking. She has served on the program committees for confer-
ences such as WWW, CIKM, WSDM, SIGIR, JCDL, TPDL, and ECIR.

Sha Zhao is currently a Postdoctoral Research
Fellow of the College of Computer Science and
Technology, Zhejiang University. She received
the Best Paper Award of ACM UbiComp16.
Zhao visited the Human-Computer Interaction
Institute at Carnegie Mellon University as a
visiting PhD student from September 2015 to
September 2016. She received the Ph.D. de-
gree from Zhejiang University, Hangzhou, China,
in 2017. Her research interests include perva-
sive computing, mobile sensing, data mining,

and machine learning. For more information about her, please visit at
http://www.shazhao.net.

Gang Pan received B.Sc. and Ph.D. degrees
in computer science from Zhejiang University,
Hangzhou, China, in 1998 and 2004, respective-
ly. He is currently a Professor with the College
of Computer Science and Technology, Zhejiang
University. He was with the University of Cali-
fornia, Los Angeles, Los Angeles, CA, USA, as
a Visiting Scholar, from 2007 to 2008. He has
published more than 100 refereed papers. His
research interests include pervasive computing,
computer vision, and pattern recognition.

