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Abstract

Outsourcing data and computation to cloud server provides a cost-effective way to support large 

scale data storage and query processing. However, due to security and privacy concerns, sensitive 

data (e.g., medical records) need to be protected from the cloud server and other unauthorized 

users. One approach is to outsource encrypted data to the cloud server and have the cloud server 

perform query processing on the encrypted data only. It remains a challenging task to support 

various queries over encrypted data in a secure and efficient way such that the cloud server does 

not gain any knowledge about the data, query, and query result. In this paper, we study the 

problem of secure skyline queries over encrypted data. The skyline query is particularly important 

for multi-criteria decision making but also presents significant challenges due to its complex 

computations. We propose a fully secure skyline query protocol on data encrypted using 

semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, 

which can be also used as a building block for other queries. Furthermore, we demonstrate two 

optimizations, data partitioning and lazy merging, to further reduce the computation load. Finally, 

we provide both serial and parallelized implementations and empirically study the protocols in 

terms of efficiency and scalability under different parameter settings, verifying the feasibility of 

our proposed solutions.
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1 INTRODUCTION

As an emerging computing paradigm, cloud computing attracts increasing attention from 

both research and industry communities. Outsourcing data and computation to cloud server 

provides a cost-effective way to support large scale data storage and query processing. 

However, due to security and privacy concerns, sensitive data need to be protected from the 

cloud server as well as other unauthorized users.

A common approach to protect the confidentiality of outsourced data is to encrypt the data 

(e.g., [15], [33]). To protect the confidentiality of the query from cloud server, authorized 

clients also send encrypted queries to the cloud server. Fig. 1 illustrates our problem 

scenario of secure query processing over encrypted data in the cloud. The data owner 

outsources encrypted data to the cloud server. The cloud server processes encrypted queries 

from the client on the encrypted data and returns the query result to the client. During the 

query processing, the cloud server should not gain any knowledge about the data, data 

patterns, query, and query result.

Fully homomorphic encryption schemes [15] ensure strong security while enabling arbitrary 

computations on the encrypted data. However, the computation cost is prohibitive in 

practice. Trusted hardware such as Intel’s Software Guard Extensions (SGX) brings a 

promising alternative, but still has limitations in its security guarantees [10]. Many 

techniques (e.g., [17], [38]) have been proposed to support specific queries or computations 

on encrypted data with varying degrees of security guarantee and efficiency (e.g., by weaker 

encryptions). Focusing on similarity search, secure k-nearest neighbor (kNN) queries, which 

return k most similar (closest) records given a query record, have been extensively studied 

[12], [20], [40], [42].

In this paper, we focus on the problem of secure skyline queries on encrypted data, another 

type of similarity search important for multi-criteria decision making. The skyline or Pareto 
of a multi-dimensional dataset given a query point consists of the data points that are not 

dominated by other points. A data point dominates another if it is closer to the query point in 

at least one dimension and at least as close to the query point in every other dimension. The 

skyline query is particularly useful for selecting similar (or best) records when a single 

aggregated distance metric with all dimensions is hard to define. The assumption of kNN 

queries is that the relative weights of the attributes are known in advance, so that a single 

similarity metric can be computed between a pair of records aggregating the similarity 

between all attribute pairs. However, this assumption does not always hold in practical 

applications. In many scenarios, it is desirable to retrieve similar records considering all 

possible relative weights of the attributes (e.g., considering only one attribute, or an arbitrary 

combination of attributes), which is essentially the skyline or the “pareto-similar” records.

Motivating Example.

Consider a hospital who wishes to outsource its electronic health records to the cloud and 

the data is encrypted to ensure data confidentiality. Let P denote a sample heart disease 

dataset with attributes ID, age, trestbps (resting blood pressure). We sampled four patient 

records p1, …, p4 from the heart disease dataset of UCI machine learning repository [22] as 
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shown in Table 1 a and Fig. 2. Consider a physician who is treating a heart disease patient q 
= (41, 125) and wishes to retrieve similar patients in order to enhance and personalize the 

treatment for patient q. While it is unclear how to define the attribute weights for kNN 

queries (p1 is the nearest if only age is considered while p2, p3 are the nearest if only 

trestbps is considered), skyline provides all pareto-similar records that are not dominated by 

any other records. Skyline includes all possible 1NN results by considering all possible 

relative attribute weights, and hence can serve as a filter for users. Given the query q, we can 

map the data points to a new space with q as the origin and the distance to q as the mapping 

function.1 The mapped records ti[j] = |pi[j] − q[j]| + q[j] on each dimension j are shown in 

Table 1b and also in Fig. 2. It is easy to see that t1 and t2 are skyline in the mapped space, 

which means p1 and p2 are skyline with respect to query q.

Our goal is for the cloud server to compute the skyline query given q on the encrypted data 

without revealing the data, the query q, the final result set {p1, p2}, as well as any 

intermediate result (e.g., t2 dominates t4) to the cloud. We note that skyline computation 

(with query point at the origin) is a special case of skyline queries.

Challenges.

Designing a fully secure protocol for skyline queries over encrypted data presents significant 

challenges due to the complex comparisons and computations. Let P denotes a set of n 
tuples p1, ..., pn with m attributes and q denotes input query tuple. In kNN queries, we only 

need to compute the distances between each tuple pi and the query tuple q and then choose 

the k tuples corresponding to the k smallest distances. In skyline queries, for each tuple pi, 

we need to compare it with all other tuples to check dominance. For each comparison 

between two tuples pa and pb, we need to compare all their m attributes and for comparison 

of each attribute p[j], there are three different outputs, i.e., pa[j] < (=, >) pb[j]. Therefore, 

there are 3m different outputs for each comparison between two tuples, based on which we 

need to determine if one tuple dominates the other. How to determine the 2m − 1 cases that 

satisfy pa dominates pb efficiently while protecting intermediate results (e.g., whether two 

attribute values are the same) is particularly challenging.

Such complex comparisons and computations require more complex protocol design in 

order to carry out the computations on the encrypted data given an encryption scheme with 

semantic security (instead of weaker order-preserving or other property-preserving 

encryptions). In addition, the extensive intermediate result means more indirect information 

about the data can be potentially revealed (e.g., which tuple dominates which other, whether 

there are duplicate tuples or equivalent attribute values) even if the exact data is protected. 

This makes it challenging to design a fully secure and efficient skyline query protocol in 

which the cloud should not gain any knowledge about the data including indirect data 

patterns.

1.Weuse pi[ j] − q[ j]  in our running example for simplicity.

Liu et al. Page 3

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Contributions.

We summarize our contributions as follows.

• We study the secure skyline problem on encrypted data with semantic security 

for the first time. We assume the data is encrypted using the Paillier 

cryptosystem which provides semantic security and is partially homomorphic.

• We propose a fully secure dominance protocol, which can be used as a building 

block for skyline queries as well as other queries, e.g., reverse skyline queries 

[11] and k-skyband queries [34].

• We present two secure skyline query protocols. The first one, served as a basic 

and efficient solution, leaks some indirect data patterns to the cloud server. The 

second one is fully secure and ensures that the cloud gains no knowledge about 

the data including indirect patterns. The proposed protocols exploit the partial 

(additive) homomorphism as well as novel permutation and perturbation 

techniques to ensure the correct result is computed while guaranteeing privacy. 

We provide security and complexity analysis of the proposed protocols.

• Compared with our conference version [30], we present two new optimizations, 

data partitioning and lazy merging, to further reduce the computation load. For 

the data partitioning, we theoretically analyze the optimal number of partitions 

given the number of points, the expected number of output skyline points, the 

number of decomposed bits, and the number of dimensions. In addition, we 

propose a lazy merging scheme that aims to reduce computation overhead due to 

the smaller partition sizes at the later stage of the partitioning scheme.

• We also provide a complete implementation including both serial and 

parallelized versions which can be deployed in practical settings. We empirically 

study the efficiency and scalability of the implementations under different 

parameter settings, verifying the feasibility of our proposed solutions.

Organization.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 

introduces background definitions as well as our problem setting. The security subprotocols 

for general functions that will be used in our secure skyline protocol are introduced in 

Section 4. The key subroutine of secure skyline protocols, secure dominance protocol, is 

shown in Section 5. The complete secure skyline protocols are presented in Section 6. We 

illustrate two optimizations to further reduce the computation load in Section 7. We report 

the experimental results and findings in Section 8. Section 9 concludes the paper.

2 RELATED WORK

Skyline.

The skyline computation problem was first studied in computational geometry field [3], [25] 

where they focused on worst-case time complexity. [23], [29] proposed output-sensitive 
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algorithms achieving O(n log k) in worst-case where k is the number of skyline points which 

is far less than n in general.

Since the introduction of the skyline operator by Börzsönyi et al. [5], skyline has been 

extensively studied in the database field. Kossmann et al. [24] studied the progressive 

algorithm for skyline queries. Different variants of the skyline problem have been studied 

(e.g., subspace skyline [8], uncertain skyline [32] [36], group-based skyline [26], [28], [44], 

skyline diagram [31]).

Secure Query Processing on Encrypted Data.

Fully homomorphic encryption schemes [15] enable arbitrary computations on encrypted 

data. Even though it is shown that [15] we can build such encryption schemes with 

polynomial time, they remain far from practical even with the state of the art 

implementations [18].

Many techniques (e.g., [17], [38]) have been proposed to support specific queries or 

computations on encrypted data with varying degrees of security guarantee and efficiency 

(e.g., by weaker encryptions). We are not aware of any formal work on secure skyline 

queries over encrypted data with semantic security. Bothe et al. [6] and their demo version 

[7] illustrated an approach about skyline queries on so-called “encrypted” data without any 

formal security guarantee. Another work [9] studied the verification of skyline query result 

returned by an untrusted cloud server.

The closely related work is secure kNN queries [12], [19], [20], [35], [37], [40], [42], [43] 

which we discuss in more detail here. Wong et al. [40] proposed a new encryption scheme 

called asymmetric scalar-product-preserving encryption. In their work, data and query are 

encrypted using slightly different encryption schemes and all clients know the private key. 

Hu et al. [20] proposed a method based on provably secure privacy homomorphism 

encryption scheme. However, both schemes are vulnerable to the chosen-plaintext attacks as 

illustrated by Yao et al. [42]. Yao et al. [42] proposed a new method based on secure Voronoi 

diagram. Instead of asking the cloud server to retrieve the exact kNN result, their method 

retrieve a relevant encrypted partition such that it is guaranteed to contain the kNN of the 

query point. Hashem et al. [19] identified the challenges in preserving user privacy for group 

nearest neighbor queries and provided a comprehensive solution to this problem. Yi et al. 

[43] proposed solutions for secure kNN queries based on oblivious transfer paradigm. 

Recently, Elmehdwi et al. [12] proposed a secure kNN query protocol on data encrypted 

using Paillier cryptosystem that ensures data privacy and query privacy, as well as low (or 

no) computation overhead on client and data owner using two non-colluding cloud servers. 

Our work follows this setting and addresses skyline queries.

Other works studied kNN queries in the secure multi-party computation (SMC) setting [37] 

(data is distributed between two parties who want to cooperatively compute the answers 

without revealing to each other their private data), or private information retrieval (PIR) 

setting [35] (query is private while data is public), which are different from our settings.
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Secure Multi-party Computation (SMC).

SMC was first proposed by Yao [41] for two-party setting and then extended by Goldreich et 

al. [16] to multi-party setting. SMC refers to the problem where a set of parties with private 

inputs wish to compute some joint function of their inputs. There are techniques such as 

garbled circuits [21] and secret sharing [2] that can be used for SMC. In this paper, all 

protocols assume a two-party setting, but different from the traditional SMC setting. 

Namely, we have party 𝒞1 with encrypted input and party 𝒞2 with the private key sk. The 

goal is for 𝒞1 to obtain an encrypted result of a function on the input without disclosing the 

original input to either 𝒞1 or 𝒞2.

3 PRELIMINARIES AND PROBLEM DEFINITIONS

In this section, we first illustrate some background knowledge on skyline computation and 

dynamic skyline query, and then describe the security model we use in this paper. For 

references, a summary of notations is given in Table 2.

3.1 Skyline Definitions

Definition 1 (Skyline).—Given a dataset P = {p1, …, pn} in m-dimensional space. Let pa 

and pb be two different points in P, we say pa dominates pb, denoted by pa ≺ pb if for all j, 
pa [j] ≤ pb [j], and for at least one j, pa [j] < pb [j], where pi[j] is the jth dimension of pi and 
1 ≤ j ≤ m. The skyline points are those points that are not dominated by any other point in P.

Definition 2 (Dynamic Skyline Query) [11].: Given a dataset P = {p1, …, pn} and a query 
point q in m-dimensional space. Let pa and pb be two different points in P, we say pa 

dynamically dominates pb with regard to the query point q, denoted by pa ≺ pb, if for all j, 
pa[ j] − q[ j] ≤ pb[ j] − q[ j] , and for at least one j, pa[ j] − q[ j] < pb[ j] − q[ j] , where pi [j] is 

the jth dimension of pi and 1 ≤ j ≤ m. The skyline points are those points that are not 
dynamically dominated by any other point in P.

The traditional skyline definition is a special case of dynamic skyline query in which the 

query point is the origin. On the other hand, dynamic skyline query is equivalent to 

traditional skyline computation if we map the points to a new space with the query point q 
as the origin and the absolute distances to q as mapping functions. So the protocols we will 

present in the paper also work for traditional skyline computation (without an explicit query 

point).

Example 1.: Consider Table 1 and Fig. 2 as a running example. Given data points p1 to p4 

and query point q, the mapped data points are computed as ti[ j] = pi[ j] − q[ j] + q[ j] . We see 

that t1, t2 are the skyline in the mapped space, and p1, p2 are the skyline with respect to 

query q in the original space.

3.2 Skyline Computation—Skyline computation has been extensively studied as we 

discussed in Section 2. We illustrate an iterative skyline computation algorithm (Algorithm 

1) which will be used as the basis of our secure skyline protocol. We note that this is not the 
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most efficient algorithm to compute skyline for plaintext compared to the divide-and-

conquer algorithm [25]. We construct our secure skyline protocol based on this algorithm for 

two reasons: 1) the divide-and-conquer approach is less suitable if not impossible for a 

secure implementation compared to the iterative approach, 2) the performance of the divide-

and-conquer algorithm deteriorate with the “curse of dimensionality”.

The general idea of Algorithm 1 is to first map the data points to the new space with the 

query point as origin (Lines 1–3). Given the new data points, it computes the sum of all 

attributes for each tuple S(ti) (Line 6) and chooses the tuple tmin with smallest S(ti) as a 

skyline because no other tuples can dominate it. It then deletes those tuples dominated by 

tmin. The algorithm repeats this process for the remaining tuples until an empty dataset T is 

reached.

Algorithm 1.

Skyline Computation

Input: A dataset P and a query q.

Output: Skyline of P.

1 for i = 1 to n do

2  for j = 1 to m do

3   ti[ j] = pi[ j] − q[ j] ;

4 while the dataset T is not empty do

5  for i = 1 to size of dataset T do

6   S ti = ∑ j = 1
m ti[ j];

7   choose the tuple tmin with smallest S(ti) as a skyline;

8   add corresponding tuple pmin to the skyline pool;

9   delete those tuples dominated by tmin from T;

10   delete tuple tmin from T;

11 return skyline pool;

Example 2.—Given the mapped data points t1, …, t4, we begin by computing the attribute 

sum for each tuple as S(t1) = 16, S(t2) = 7, S(t3) = 9, and S(t4) = 19. We choose the tuple 

with smallest S(ti), i.e., t2, as a skyline tuple, delete t2 from dataset T and add p2 to the 

skyline pool. We then delete tuples t3 and t4 from T because they are dominated by t2. Now, 

there is only t1 in T. We add p1 to the skyline pool. After deleting t1 from T, T is empty and 

the algorithm terminates. p1 and p2 in the skyline pool are returned as the query result.

3.3 Problem Setting

We now describe our problem setting for secure skyline queries over encrypted data. 

Consider a data owner (e.g., hospital, CDC) with a dataset P. Before outsourcing the data, 

the data owner encrypts each attribute of each record pi[j] using a semantically secure 

public-key cryptosystem. Fully homomorphic encryption schemes ensure strong security 

while enabling arbitrary computations on the encrypted data. However, the computation cost 

is prohibitive in practice. Partially homomorphic encryption is much more efficient but only 
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provides partially (either additive or multiplicative) homomorphic properties. Among them, 

we chose Paillier [33] mainly due to its additive homomorphic properties as we employ 

significantly more additions than multiplications in our protocol. Furthermore, we can also 

utilize its homomorphic multiplication between ciphertext and plaintext. We use pk and sk to 

denote the public key and private key, respectively. Data owner sends Epk(pi[j]) for i = 1, ..., 

n and j = 1, ..., m to cloud server 𝒞1.

Consider an authorized client (e.g., physician) who wishes to query the skyline tuples 

corresponding to query tuple q = (q[1], ..., q[m]). In order to protect the sensitive query 

tuple, the client uses the same public key pk to encrypt the query tuple and sends Epk(q) = 

(Epk(q[1]), ..., Epk(q[m])) to cloud server 𝒞1.

Our goal is to enable the cloud server to compute and return the skyline to the client without 

learning any information about the data and the query. In addition to guaranteeing the 

correctness of the result and the efficiency of the computation, the computation should 

require no or minimal interaction from the client or the data owner for practicality. To 

achieve this, we assume there is an additional non-colluding cloud server, 𝒞2, which will 

hold the private key sk shared by the data owner and assist with the computation. This way, 

the data owner does not need to participate in any computation. The client also does not 

need to participate in any computation except combining the partial result from 𝒞1 and 𝒞2
for final result. An overview of the protocol setting is shown in Fig. 3.

3.4 Security Model

Adversary Model.—We adopt the semi-honest adversary model in our study. In any multi-

party computation setting, a semi-honest party correctly follows the protocol specification, 

yet attempts to learn additional information by analyzing the transcript of messages received 

during the execution. By semi-honest model, this work implicitly assumes that the two cloud 

servers do not collude.

There are two main reasons to adopt the semi-honest adversary model in our study. First, 

developing protocols under the semi-honest setting is an important first step towards 

constructing protocols with stronger security guarantees [21]. Using zero-knowledge proofs 

[14], these protocols can be transformed into secure protocols under the malicious model. 

Second, the semi-honest model is realistic in current cloud market. 𝒞1 and 𝒞2 are assumed 

to be two cloud servers, which are legitimate, well-known companies (e.g., Amazon, 

Google, and Microsoft). A collusion between them is highly unlikely. Therefore, following 

the work done in [12], [27], [45], we also adopt the semi-honest adversary model for this 

paper. Please see Security Definition in the Semi-honest Model and Paillier Cryptosystem in 

the Appendix, which can be found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TKDE.2018.2857471.

Desired Privacy Properties.—Our security goal is to protect the data and the query as 

well as the query result from the cloud servers. We summarize the desired privacy properties 

below. After the execution of the entire protocol, the following should be achieved.
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• Data Privacy. Cloud servers 𝒞1 and 𝒞2 know nothing about the exact data except 

the size pattern, the client knows nothing about the dataset except the skyline 

query result.

• Data Pattern Privacy. Cloud servers 𝒞1 and 𝒞2 know nothing about the data 

patterns (indirect data knowledge) due to intermediate result, e.g., which tuple 

dominates which other tuple.

• Query Privacy. Data owner, cloud servers 𝒞1 and 𝒞2 know nothing about the 

query tuple q.

• Result Privacy. Cloud servers 𝒞1 and 𝒞2 know nothing about the query result, 

e.g., which tuples are in the skyline result.

4 BASIC SECURITY SUBPROTOCOLS

In this section, we present a set of secure subprotocols for computing basic functions on 

encrypted data that will be used to construct our secure skyline query protocol. All protocols 

assume a two-party setting, namely, 𝒞1 with encrypted input and 𝒞2 with the private key sk 

as shown in Fig. 3. The goal is for 𝒞1 to obtain an encrypted result of a function on the input 

without disclosing the original input to either 𝒞1 or 𝒞2. We note that this is different from 

the traditional two-party secure computation setting with techniques such as garbled circuits 

[21] where each party holds a private input and they wish to compute a function of the 

inputs. For each function, we describe the input and output, present our proposed protocol or 

provide a reference if existing solutions are available. Due to limited space, we omit the 

security proof which can be derived by the simulation and composition theorem in a 

straightforward way. Please see Secure Multiplication (SM), Secure Bit Decomposition 

(SBD), and Secure Boolean Operations in the appendix, available in the online supplemental 

material.

4.1 Secure Minimum and Secure Comparison

Secure minimum protocol and secure comparison protocol have been extensively studied in 

cryptography community [1], [13], [39] and database community [12], [45]. Secure 

comparison protocol can be easily adapted to secure minimum protocol, and vice versa. For 

example, if we set Epk(out) as the result of secure comparison Epk(Bool(a ≤ b)) known by 

cloud server 𝒞1 (it will be Epk (1) when a ≤ b and Epk(0) when a > b), 𝒞1 can get Epk(min(a, 

b)) by computing Epk(a * out + b * ¬out).

We analyzed the existing protocols and observed that both secure minimum (SMIN) 

algorithms [12], [45] from database community for selecting a minimum have a security 

weakness, i.e., 𝒞2 can determine whether the two numbers are equal to each other. We point 

out the security weakness in the appendix, available in the online supplemental material.

Therefore, we adapted the secure minimum/comparison protocols [39] from cryptography 

community in this paper. The basic idea of those protocols is that for any two l bit numbers a 
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and b, the most significant bit (zl) of z = 2l + a − b indicates the relationship between a and 

b, i.e., zl = 0 a < b . We list the secure minimum/comparison protocols we used in this 

paper below.

Secure Less Than or Equal (SLEQ).—Assume a cloud server 𝒞1 with encrypted input 

Epk(a) and Epk(b), and a cloud server 𝒞2 with the private key sk, where a and b are two 

numbers not known to 𝒞1 and 𝒞2. The goal of the SLEQ protocol is to securely compute the 

encrypted boolean output Epk(Bool(a ≤ b)), such that only 𝒞1 knows Epk(Bool(a ≤ b)) and 

no information related to a and b is revealed to 𝒞1 or 𝒞2.

Secure Equal (SEQ).—Assume a cloud server 𝒞1 with encrypted input Epk(a) and Epk(b), 

and a cloud server 𝒞2 with the private key sk, where a and b are two numbers not known to 

𝒞1 and 𝒞2. The goal of the SEQ protocol is to securely compute the encrypted boolean 

output Epk(Bool(a == b)), such that only 𝒞1 knows Epk(Bool(a == b)) and no information 

related to Bool(a == b) is revealed to 𝒞1 or 𝒞2.

Secure Less (SLESS).—Assume a cloud server 𝒞1 with encrypted input Epk(a) and 

Epk(b), and a cloud server 𝒞2 with the private key sk, where a and b are two numbers not 

known to 𝒞1 and 𝒞2. The goal of the SLESS protocol is to securely compute the encrypted 

boolean output Epk(Bool(a < b)), such that only 𝒞1 knows Epk(Bool(a < b)) and no 

information related to Bool(a < b) is revealed to 𝒞1 or 𝒞2. This can be simply implemented 

by conjunction from the output of SEQ and SLEQ.

Secure Minimum (SMIN).—Assume a cloud server 𝒞1 with encrypted input Epk(a) and 

Epk(b), and a cloud server 𝒞2 with the private key sk, where a and b are two numbers not 

known to both parties. The goal of the SMIN protocol is to securely compute encrypted 

minimum value of a and b, Epk(min(a, b)), such that only 𝒞1 knows Epk(min(a, b)) and no 

information related to a and b is revealed to 𝒞1 or 𝒞2. Benefiting from the probabilistic 

property of Paillier, the ciphertext of min(a, b), i.e., Epk(min(a, b)) is different from the 

ciphertext of a, b, i.e., Epk(a), Epk(b). Therefore, 𝒞1 does not know which of a or b is min(a, 

b). In general, assume 𝒞1 has n encrypted values, the goal of SMIN protocol is to securely 

compute encrypted minimum of the n values.

5 SECURE DOMINANCE PROTOCOL

The key to compute skyline is to compute dominance relationship between two tuples. 

Assume a cloud server 𝒞1 with encrypted tuples a = (a[1], …, a[m]), b = (b[1], …, b[m]) 

and a cloud server 𝒞2 with the private key sk, where a and b are not known to both parties. 
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The goal of the secure dominance (SDOM) protocol is to securely compute Epk(Bool(a ≺ b))

such that only 𝒞1 knows Epk(1) if a ≺ b, otherwise, Epk(0).

Protocol Design.

Given any two tuples a = (a[1], …, a[m]) and b = (b[1], …, b[m]), recall the definition of 

skyline, we say a ≺ b if for all j, a[j] ≤ b[j] and for at least one j, a[j] < b[j] (1 ≤ j ≤ m). If for 

all j, a[j] ≤ b[j], we have either a = b or a ≺ b. We refer to this case as a ⪯ b . The basic idea 

of secure dominance protocol is to first determine whether a ⪯ b, and then determine 

whether a = b.

The detailed protocol is shown in Algorithm 2. For each attribute, 𝒞1 and 𝒞2 cooperatively 

use the secure less than or equal (SLEQ) protocol to compute Epk(Bool(a[j] ≤ b[j])). And 

then 𝒞1 and 𝒞2 cooperatively use SAND to compute Φ = δ1 ∧ , …, ∧ δm . If Φ = Epk(1), it 

means a ⪯− b, otherwise, a ⋠ b . We note that, the dominance relationship information Φ is 

known only to 𝒞1 in ciphertext. Therefore, both 𝒞1 and 𝒞2 do not know any information 

about whether a ⪯ b .

Algorithm 2.

Secure Dominance Protocol

Input: 𝒞1 has Epk(a), Epk(b) and 𝒞2 has sk.

Output: 𝒞1 gets Epk(1) if a ≺ b, otherwise, 𝒞1 gets Epk(0).

1 𝒞1 and 𝒞2:

2 for j = 1 to m do

3  𝒞1 gets δ j = Epk(Bool(a[ j] ≤ b[ j])) by SLEQ;

4 use SAND to compute Φ = δ1 ∧ …, ∧ δm;

5 𝒞1:

6 compute α = Epk(a[1]) × , …, × Epk(a[m]);

7 compute β = Epk(b[1]) × , …, × Epk(b[m]);

8 𝒞1 and 𝒞2:

9 𝒞1 gets σ = Epk(Bool(α < β)) by employing SLESS;

10 𝒞1 gets Ψ = σ ∧ Φ as the final dominance relationship using SAND;

Next, we need to determine if a ≠ b . Only if a ≠ b, then a ≺ b . One naive way is to employ 

SEQ protocol for each pair of attribute and then take the conjunction of the output. We 

propose a more efficient way which is to check whether S(a) < S(b), where S(a) is the 

attribute sum of tuple a. If S(a) < S(b), then it is impossible that a = b. As the algorithm 

shows, 𝒞1 computes the sum of all attributes 

α = Epk(a[1] + … + a[m]) and β = Epk(b[1] + … + b[m]) based on the additive homomorphic 
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property. Then 𝒞1 and 𝒞2 cooperatively use SLESS protocol to compute 

σ = Epk(Bool(α < β)) . Finally, 𝒞1 and 𝒞2 cooperatively use SAND protocol to compute the 

final dominance relationship Ψ = σ ∧ Φ which is only known to 𝒞1 in ciphertext. 

Ψ = Epk(1) means a ≺ b, otherwise, a ⊀ b .

Security Analysis.

Based on the composition theorem (Theorem 2), the security of secure dominance protocol 

relies on the security of SLEQ, SLESS, and SAND, which have been shown in existing 

works.

Complexity Analysis.

To determine a ⪯ b, Algorithm 2 requires O(m) encryptions and decryptions. Then to 

determine if a = b, Algorithm 2 requires O(1) encryptions and decryptions. Therefore, our 

secure dominance protocol requires O(m) encryptions and decryptions in total.

6 SECURE SKYLINE PROTOCOL

In this section, we first propose a basic secure skyline protocol and show why such a simple 

solution is not secure. Then we propose a fully secure skyline protocol. Both protocols are 

constructed by using the security primitives discussed in Section 4 and the secure dominance 

protocol in Section 5.

As mentioned in Algorithm 1, given a skyline query q, it is equivalent to compute the 

skyline in a transformed space with the query point q as the origin and the absolute distances 

to q as mapping functions. Hence we first show a preprocessing step in Algorithm 3 which 

maps the dataset to the new space. Since the skyline only depends on the order of the 

attribute values, we use (pi[j] − q[j])2 which is easier to compute than pi[ j] − q[ j]  as the 

mapping function.1 After Algorithm 3, 𝒞1 has the encrypted dataset Epk(P) and Epk(T), 𝒞2
has the private key sk. The goal is to securely compute the skyline by 𝒞1 and 𝒞2 without 

participation of data owner and the client.

Algorithm 3.

Preprocessing

Input: 𝒞1 has Epk(P), 𝒞2 has sk, and the client has q.

Output: 𝒞1 obtains the new encrypted dataset Epk(T).

1 Client:

2 send Epk( − q[1]), …, Epk( − q[m]) to 𝒞1;

3 𝒞1:

4 for i = 1 to n do

5  for j = 1 to m do
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6    Epk tempi[ j] = Epk pi[ j] − q[ j] = Epk pi[ j] × Epk( − q[ j]) mod N2;

7 𝒞1 and 𝒞2:

8 use SM protocol to compute Epk(T) = Epk t1 , …, Epk tn  only known by 𝒞1, where 

Epk ti = Epk ti[1] , …, Epk ti[m]  and Epk ti[ j] = Epk tempi[ j] × Epk tempi[ j] ;

6.1 Basic Protocol

We first illustrate a straw-man protocol which is straightforward but not fully secure (as 

shown in Algorithm 4). The idea is to implement each of the steps in Algorithm 1 using the 

primitive secure protocols. 𝒞1 first determines the terminal condition, if there is no tuple 

exists in dataset Epk(T), the protocol ends, otherwise, the protocol proceeds as follows.

Compute Minimum Attribute Sum.—𝒞1 first computes the sum of Epk(ti[j]) for 1 ≤ j ≤ 

m, denoted as Epk(S(ti)), for each tuple ti. Then 𝒞1 and 𝒞2 uses SMIN protocol such that 𝒞1
obtains Epk(S(tmin)).

Select the Skyline with Minimum Attribute Sum.—The challenge now is we need to 

select the tuple Epk(tmin) with the smallest Epk(S(ti)) as a skyline tuple. In order to do this, a 

naive way is for 𝒞1 to compute Epk(S(ti) − S(tmin)) for all tuples and then send them to 𝒞2. 

𝒞2 can decrypt them and determine which one is equal to 0 and return the index to 𝒞1. 𝒞1
then adds the tuple Epk(pmin) to skyline pool.

Eliminate Dominated Tuples.—Once the skyline tuple is selected, 𝒞1 and 𝒞2
cooperatively use SDOM protocol to determine the dominance relationship between 

Epk(tmin) and other tuples. In order to delete those tuples that are dominated by Epk(tmin), a 

naive way is for 𝒞1 to send the encrypted dominance output to 𝒞2, who can decrypt it and 

send back the indexes of the tuples who are dominated to 𝒞2. 𝒞1 can delete those tuples 

dominated by Epk(tmin) and the tuple Epk(tmin) from Epk(T). The algorithm continues until 

there is no tuples left.

Return Skyline Results to Client.

Once 𝒞1 has the encrypted skyline result, it can directly send them to the client if the client 

has the private key. However, in our setting, the client does not have the private key for better 

security. Lines 25 to 39 in Algorithm 4 illustrate how the client obliviously obtains the final 

skyline query result with the help of 𝒞1 and 𝒞2, at the same time, 𝒞1 and 𝒞2 know nothing 

about the final result. Consider the skyline tuples Epk(p1), …, Epk(pk) in skyline pool, where 

k is the number of skyline. The idea is for 𝒞1 to add a random noise ri[j] to each pi[j] in 

ciphertext and then sends the encrypted randomized values αi[j] to 𝒞2. 𝒞1 also sends the 

noise ri[j] to client. At the same time, 𝒞2 decrypts the randomized values αi[j] and sends the 
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result ri′[ j] to client. Client receives the random noise ri[j] from 𝒞1 and randomized values of 

the skyline points αi[j] from 𝒞2, and removes the noise by computing pi[ j] = ri′[ j] − ri[ j] for i 

= 1, …, k and j = 1, …, m as the final result.

Algorithm 4.

Basic Secure Skyline Protocol

Input: 𝒞1 has Epk(P), Epk(T) and 𝒞2 has sk.

Output: client knows the skyline query result.

1 Compute minimum attribute sum;

2 𝒞1:

3 if there is no tuple in Epk(T) then

4  break;

5 for i = 1 to n do

6  Epk S ti = Epk ti[1] × … × Epk ti[m] mod N2;

7 𝒞1 and 𝒞2:

8 Epk S tmin = SMIN Epk S t1 , …, Epk S tn ;

9 Select the skyline with minimum attribute sum;

10 𝒞1:

11 for i = 1 to n do

12  αi = Epk S tmin
N − 1 × Epk S ti mod N2;

13
 αi′ = αi

ri mod N2, where ri ∈ ℤN
+;

14 send α′ to 𝒞2;

15 𝒞2:

16 decrypt α′ and tell 𝒞1 which one equals to 0;

17 𝒞1:

18 add the corresponding Epk(pmin) to the skyline pool;

19 Eliminate dominated tuples;

20 𝒞1 and 𝒞2:

21 use SDOM protocol to determine the dominance relationship between Epk(tmin) and other tuples;

22 delete those tuples dominated by Epk(tmin) and Epk(tmin);

23 GOTO Line 1;

24 Return skyline results to client;

25 𝒞1:

26 for i = 1 to k do

27  for j = 1 to m do

28   αi[ j] = Epk pi[ j] × Epk ri[ j] mod N2, where ri[ j] ∈ ℤN
+;
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29 send αi[ j] to 𝒞2 and ri[j] to client for all i = 1, ..., k; j = 1, ..., m;

30 𝒞2:

31 for i = 1 to k do

32  for j = 1 to m do

33   ri[ j]′ = Dsk αi[ j] ;

34 send ri[ j]′ to client;

35 Client:

36 receive ri[j] from 𝒞1 and ri[ j]′ from 𝒞2;

37 for i = 1 to k do

38  for j = 1 to m do

39   pi[ j] = ri[ j]′ − ri[ j];

6.2 Fully Secure Skyline Protocol

The basic protocol clearly reveals several information to 𝒞1 and 𝒞2 as follows.

• When selecting the skyline tuple with minimum attribute sum, 𝒞1 and 𝒞2 know 

which tuples are skyline points, which violates our result privacy requirement.

• When eliminating dominated tuples, 𝒞1 and 𝒞2 know the dominance relationship 

among tuples with respect to the query tuple q, which violates our data pattern 

privacy requirement.

Algorithm 5.

Fully Secure Skyline Protocol

Input: 𝒞1 has Epk(P), Epk(T) and 𝒞2 has sk.

Output: 𝒞1 knows the encrypted skyline Epk(psky).

1 Order preserving perturbation;

2 𝒞1:

3 for i = 1 to n do

4  Epk S ti = Epk ti[1] × … × Epk ti[m] mod N2;

5 𝒞1 and 𝒞2:

6 for i = 1 to n do

7  Epk S ti = SBD Epk S ti ;

8 𝒞1:

9 for i = 1 to n do

10  Epk S ti = Epk S ti B
(1) , …, Epk S ti B

(l) ,
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 Epk S ti B
(l + 1) , …, Epk S ti B

(l + logn ) , where

 S ti B
(l + 1), …, S ti B

(l + logn )
 is the binary representation of an exclusive vale of [0, n − 1];

11
 Epk S ti = ∏γ = 1

l Epk S ti B
(γ) 2l − γ

mod N2;

12 𝒞1 and 𝒞2:

13 Epk S tmin = SMIN Epk S t1 , …, Epk S tn ;

14 𝒞1:

15 λ = Epk S tmin × Epk(MAX)−1 r mod N2, where ri ∈ ℤN
+;

16 send λ to 𝒞2;

17 𝒞2:

18 if Dsk(λ) = 0 then

19  break;

20 Select skyline with minimum attribute sum;

21 Epk psky , Epk tsky = FindOneSkyline
Epk(P), Epk(T), Epk S ti , Epk S tmin

 (Algorithm 6);

22 Eliminate dominated tuples;

23 𝒞1 and 𝒞2:

24 for i = 1 to n do

25  for γ = 1 to l do

26   Epk S ti B
(γ) = SOR V i, Epk S ti B

(γ) ;

27 𝒞1:

28 for i = 1 to n do

29
 Epk S ti = ∏γ = 1

l Epk S ti B
(γ) 2l − γ

mod N2;

30 𝒞1 and 𝒞2:

31 for i = 1 to n do

32  V i = SDOM Epk tsky , Epk ti ;

33 Lines 23–32;

34 GOTO Line 1;

To address these leakage, we propose a fully secure protocol in Algorithm 5. The step to 

compute minimum attribute sum and return the results to the client are the same as the basic 

protocol. We focus on the following steps that are designed to address the disclosures of the 

basic protocol.
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Select Skyline with Minimum Attribute Sum.—Once 𝒞1 obtains the encrypted 

minimum attribute sum Epk(S(tmin)), the challenge is how to select the tuple Epk(tmin) with 

the minimum sum Epk(S(tmin)) as a skyline tuple such that 𝒞1 and 𝒞2 know nothing about 

which tuple is selected. We present a protocol as shown in Algorithm 6.

We first need to determine which S(ti) is equal to S(tmin). Note that this cannot be achieved 

by the SMIN protocol which only selects the minimum value. Here we propose an efficient 

way, exploiting the fact that it is okay for 𝒞2 to know there is one equal case (since we are 

selecting one skyline tuple) as long as it does not know which one. 𝒞1 first computes 

αi′ = Epk S ti − S tmin × ri , and then sends a permuted list β = π α′ to 𝒞2 based on a 

random permutation sequence π. The permutation hides which sum is equal to the minimum 

from 𝒞2 while the uniformly random noise ri masks the difference between each sum and 

the minimum sum. Note that αi′ is uniformly random in ℤN
+ except when S(ti) − S(tmin) = 0, 

in which case αi′ = 0. 𝒞1 decrypts βi, if it is 0, it means tuple i has smallest Epk(S(ti)). 

Therefore, 𝒞2 sends Epk(1) to 𝒞1, otherwise, sends Epk(0).

Algorithm 6.

Find One Skyline

Input: 𝒞1 has encrypted dataset Epk(P), Epk(T), Epk(S(ti)), and Epk(S(tmin)), 𝒞2 has private key sk.

Output: 𝒞1 knows one encrypted skyline Epk(psky) and Epk(tsky).

1 𝒞1:

2 for i = 1 to n do

3   αi = Epk S tmin
N − 1 × Epk S ti mod N2;

4
  αi′ = αi

ri mod N2, where ri ∈ ℤN
+;

5 send β = π α′ to 𝒞2;

6 𝒞2:

7 receive β from 𝒞1;

8 for i = 1 to n do

9   βi′ = Dsk βi ;

10   if βi′ = 0 then

11     Ui = Epk(1);

12   else

13     Ui = Epk(0);

14 send U to 𝒞1;

15 𝒞1:
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16 receive U from 𝒞2;

17 V = π−1(U);

18 for i = 1 to n do

19   for j = 1 to m do

20     Epk ti[ j]′ = SM V i, Epk ti[ j] ;

21     Epk pi[ j]′ = SM V i, Epk pi[ j] ;

22 for j = 1 to m do

23   Epk t[ j]′ = ∏i = 1
n Epk ti[ j]′ mod N2;

24   Epk p[ j]′ = ∏i = 1
n Epk pi[ j]′ mod N2;

25 add Epk psky = Epk p[1]′ , …, Epk p[m]′  to skyline pool;

26   use Epk tsky = Epk t[1]′ , …, Epk t[m]′  to compare with other Epk(ti);

After receiving the encrypted permuted bit vector U as the equality result, 𝒞1 applies a 

reverse permutation, and obtains an encrypted bit vector V, where one tuple has bit 1 

suggesting it has the minimum sum. In order to obtain the attribute values of this tuple, 𝒞1
and 𝒞2 employ SM protocol to compute encrypted product of the bit vector and the attribute 

values, Epk ti[ j]′ and Epk pi[ j]′ . Since all other tuples except the one with the minimum 

sum will be 0, we can sum all Epk ti[ j]′ and Epk pi[ j]′  on each attribute and 𝒞1 can obtain 

the attribute values corresponding to the skyline tuple.

Order Preserving Perturbation.—We can show that Algorithm 6 is secure and correctly 

selects the skyline tuple if there is only one minimum. A potential issue is that multiple 

tuples may have the same minimum sum. If this happens, not only is this information 

revealed to 𝒞2, but also the skyline tuple cannot be selected (computed) correctly, since the 

bit vector contains more than one 1 bit. To address this, we employ order-preserving 

perturbation which adds a set of mutually different bit sequence to a set of values such that: 

1) if the original values are equal to each other, the perturbed values are guaranteed not 

equal to each other, and 2) if the original values are not equal to each other, their order is 

preserved. The perturbed values are then used as the input for Algorithm 6.

Concretely, given n numbers in their binary representations, we add a logn -bit sequence to 

the end of each Epk(S(ti)), each represents a unique bit sequence in the range of [0, n − 1]. 

This way, the perturbed values are guaranteed to be different from each other while their 

order is preserved since the added bits are the least significant bits. Line 10 of Algorithm 5 

shows this step. We note that we can multiply each sum Epk(S(ti)) by n and uniquely add a 

value from [0, n − 1] to each Epk(S(ti)), hence guarantee they are not equal to each other. 

This will be more efficient than adding a bit sequence, however, since we will need to 

perform the bit decomposition later in the protocol to allow bit operators, we run 
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decomposition by the SBD protocol for l bits in the beginning of the protocol rather than 

l + logn  bits later.

‘Eliminate Dominated Tuples.—Once the skyline tuple is selected, it can be added to 

the skyline pool and then used to eliminate dominated tuples. In order to do this, 𝒞1 and 𝒞2
cooperatively use SDOM protocol to determine the dominance relationship between 

Epk(tmin) and other tuples. The challenge is then how to eliminate the dominated tuples 

without 𝒞1 and 𝒞2 knowing which tuples are being dominated and eliminated. Our idea is 

that instead of eliminating the dominated tuples, we “flag” them by securely setting their 

attribute values to the maximum domain value. This way, they will not be selected as skyline 

tuples in the remaining iterations. Concretely, we can set the binary representation of their 

attribute sum to all 1s so that it represents the domain maximum. Since we added logn  bits 

to Epk S ti , the new Epk S ti , has l + logn  bits. Therefore, the maximum value 

MAX = 2l + logn − 1. To obliviously set the attributes of only dominated tuples to MAX, 

based on the encrypted dominance output Vi of the dominance protocol, 𝒞1 and 𝒞2
cooperatively employ SOR of the dominance boolean output and the bits of the S(ti). This 

way, if the tuple is dominated, it will be set to MAX. Otherwise, it will remain the same. If 

Epk(S(tmin)) = Epk(MAX), it means all the tuples are processed, i.e., flagged either as a 

skyline or a dominated tuple, the protocol ends.

Example 3.: We illustrate the entire protocol through the running example shown in Table 3. 

Please note that all column values are in encrypted form except columns π and β′. Given the 

mapped data points ti, 𝒞1 first computes the attribute sum Epk(S(ti)) shown in the third 

column. We set l = 5, 𝒞1 gets the binary representation of the attribute sum Epk S ti
Because n = 4, 𝒞1 obliviously adds the order-preserving perturbation log4 = 2 bits to the 

end of Epk S ti  respectively to get the new Epk(S(ti)) (shown in the sixth column). Then 

𝒞1 gets Epk(S(tmin)) = Epk(30) by employing SMIN.

The protocol then turns to the subroutine Algorithm 6 to select the first skyline based on the 

minimum attribute sum. 𝒞1 computes αi = Epk S ti − S tmin . Assume the random noise 

vector r = 3, 9, 31, 2  and the permutation sequence π = 2, 1, 4, 3 , 𝒞1 sends the encrypted 

permuted and randomized difference vector β to 𝒞2. After decrypting β, 𝒞2 gets β′ and then 

sends U to 𝒞1. 𝒞1 computes V by applying a reverse permutation. By employing SM with 

V, 𝒞1 computes Epk ti[1]′ , Epk ti[2]′ and Epk pi[1]′ , Epk pi[2]′ . After summing all 

column values, 𝒞1 adds Epk(psky) = (Epk(39), Epk(120)) to skyline pool and uses Epk(tsky) = 

(Epk(2), Epk(5)) to eliminate dominated tuples.

The protocol now turns back to the main routine in Algorithm 5 to eliminate dominated 

tuples. 𝒞1 and 𝒞2 use SOR with V to make Epk(S(tmin)) = Epk(127) and Epk(S(ti)) = 

Epk(S(ti)) for i ≠ min . Now, only Epk(S(tmin)) = Epk(S(t2)) has changed to Epk(127) which is 

Liu et al. Page 19

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



“flagged” as MAX. We emphasize that 𝒞1 does not know this value has changed because the 

ciphertext of all tuples has changed. Next, 𝒞1 and 𝒞2 find the dominance relationship 

between Epk(tsky) and Epk(ti) by SDOM protocol. 𝒞1 obtains the dominance vector V. Using 

same method, 𝒞1 flags Epk(S(t3)) and Epk(S(t4)) to Epk(127). The protocol continues until 

all are set to MAX.

Security Analysis.—Based on Theorem 1, the protocol is secure if the subprotocols are 

secure and the intermediate results are random or pseudo-random. We focus on the 

intermediate result here. From 𝒞1’s view, the intermediate result includes U. Because U is 

ciphertext and 𝒞1 does not have the secret key, 𝒞1 can simulate U based on its input and 

output. From 𝒞2’s view, the intermediate result includes β. β contains one Epk(0) and m − 1 

ciphertext of any positive value. After the permutation π of 𝒞1, 𝒞2 cannot determine where 

is the Epk(0). Therefore, 𝒞2 can simulate β based on its input and output. Hence the protocol 

is secure.

Computational Complexity Analysis.—The subroutine Algorithm 6 requires O(n) 

decryptions in Line 9, O(nm) encryptions and decryptions in Lines 20 and 21. Thus, 

Algorithm 6 requires O(nm) encryptions and decryptions in all. In Algorithm 5, Line 7 

requires O(nl) encryptions and decryptions. Line 10 requires O(n logn ) encryptions. Line 12 

requires O((l + logn )n) encryptions and decryptions. Line 26 requires O(l + logn )
encryptions and decryptions. Line 32 requires O(nm) encryptions and decryptions. Thus, 

this part requires O((l + logn )n + nm) encryptions and decryptions. Because this part runs k 
times, the fully secure skyline protocol requires O(k(l + logn ))n + knm) encryptions and 

decryptions in total.

7 PERFORMANCE ANALYSIS AND OPTIMIZATIONS

In this section, we illustrate two optimizations to further reduce the computation load. We 

first show a data partitioning optimization in Section 7.1, and then show a lazy merging 

optimization in Section 7.2.

7.1 Optimization of Data Partitioning

As shown in the previous section, the overall run time complexity depends on the number of 

points (n), the number of skyline points (k), the number of decomposed bits (l) which is 

determined by the domain of the attribute values, and the number of dimensions (m). A 

straightforward way to enhance the performance is to partition the input dataset into 

subdatasets and then we can use a divide-and-conquer approach to avoid unnecessary 

computations. Furthermore, the partitioning also allows effective parallelism.
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Algorithm 7.

Parallel Implementation via Data Partitioning

Input: A dataset P of n points in m dimensions.

Output: Skyline of P.

1   divide n points into s partitions and compute the skyline points in each partition;

2 set the state of all partitions as uncomputed;

3 np ← number of uncomputed partitions;

4 nt ← number of threads;

5 nit ← number of idle threads;

6 num ← number of computed and unmerged results;

7 while np > 0 or nit > 0 do

8  if np > 0 and nit > 0 then

9   assign one uncomputed partition to each idle thread;

10  else

11   if np == 0 and nit == nt − 1 and num == 0 then

12    break;

13   wait until at least one thread finishes;

14   set the state of computed partition as unmerged;

15   if num > 1 then

16    merge each two into one new partition;

17    set new partition state as uncomputed;

The basic idea of data partitioning is to divide the dataset into a set of initial partitions, 

compute the skyline in each partition, and then continuously merge the skyline result of the 

partitions into new partitions and compute their skyline, until all partitions are merged into 

the final result. This can be implemented with either a single thread (sequentially) or 

multiple threads (in parallel). We describe our data partitioning scheme in Algorithm 7. 

Given an input dataset, the number of partitions s is specified as one parameter. We will 

show how to calculate the optimal number of partitions in Subsection 7.1.1. We first divide 

the input data into s partitions and compute the skyline in each partition in Line 1, and then 

set the state of all partitions as uncomputed in Line 2. In Line 7, the algorithm continues 

with uncomputed partitions or idle threads. In Line 8, if there are some uncomputed 

partitions and there are some idle threads, we assign one uncomputed partition to each idle 

thread in Line 9. In Line 11, if there is no uncomputed partition (np == 0), all computed 

partitions are merged (num == 0), and there is only one working thread (nit == nt − 1), that 

means all partitions are computed and merged, the algorithm finishes. Otherwise, we wait 

until at least one thread finishes and set the state of computed partition which now only 

contains skylines in that partition as unmerged in Lines 13–14. In Line 15, if there are some 

computed and unmerged partitions, we merge each two into one new partition and set the 

state as uncomputed in Lines 16–17.

7.1.1 Discovery of Optimal Number of Partitions—In this subsection, we show 

how to calculate the optimal number of partitions for minimizing the total computation load 
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given an independent and identically distributed random dataset. We first show the theorem 

of the expected number of skyline points as follows.

Theorem 1 (Number of Skyline Points) [4].: Given an independent and identically 
distributed random dataset of n points in m dimensional space, the expected number of 
skyline points is O(lnm−1n).

In the computational complexity analysis of fully secure skyline protocol, the time 

complexity is O(kn(l + m + logn )) . According to Theorem 1, the expected output size of 

input data with size n
s  in m dimensional space is lnm − 1 n

s . Therefore, in this step, the 

computation load required for each partition is lnm − 1 n
s × n

s × log n
s + m + l . Since we 

have s partitions, the total computation load required is 

s × lnm − 1 n
s × n

s × log n
s + m + l = n × lnm − 1 n

s × log n
s + m + l . This is the initial layer 

of the computation, which we refer to layer0. We use 0 because the following layers have a 

slightly different formula.

Before we proceed, we denote the number of layers excluding layer0 as nlayer. For each layer 

i, we denote the number of partitions that needs to be computed as np,i, the size of a single 

input partition as sizein,i, the output size of a single partition as sizeout,i, and the amount of 

computation load as W layeri
. A visual graph about the layer structure is shown in Fig. 4. In 

the ideal case, we have s = 2h partitions, where h is an integer. For each layer, we reduce the 

number of partitions by merging two partitions to form a new partition which contains 

skyline points of those two merged partitions. After h layers’ merging, we obtain only one 

partition which is the final skyline result.

Number of Partitions and Layers.: To simplify the analysis, we assume the merging of two 

partitions happens at the same layer (although mergings from different layers may happen at 

the same time). As shown in Fig. 4, the datasets for layeri (i > 1) comes from the merging of 

two computed partitions from layeri−1. Therefore, in layeri, the number of partitions (np,i) is 
s

2i  given the number of partitions in layer1 is s
2 . Meanwhile, layer0 has s partitions, layer1 

has s
2  partitions, and the last layer has one partition, so the number of layers excluding layer0 

(nlayer) is log s.

Output Size.: A partition in layeri is merged from 2i partitions in layer0. Therefore, the 

expected output size of one partition at layeri corresponds to the expected output size of 2i 

partitions in layer0. That is, in layeri, the expected output size of a single partition (sizeout,i) 

is lnm − 1 2in
s .

Input Size.: In layeri, the size of each input partition (sizein,i) is twice of the single partition 

output size from the last layer because it is the merging of two outputs from the last layer. In 
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other words, sizein, i = 2 × sizeout, i − 1 = 2 × lnm − 1 2i − 1n
s . For example, the expected single 

partition output size of layer0 is lnm − 1 n
s  and the expected size of each input partition in 

layer1 is 2 × lnm − 1 n
s .

Computation Load.: With np,i, sizein,i, and sizeout,i, we can obtain the general formula for 

computation load of layeri (i ≠ 0) as W layeri
= np, i × sizeout, i × sizein, i × m + log sizein, i

according to the time complexity of our fully secure skyline protocol. And since we have 

nlayer layers, the overall computation load is calculated as follows.

Wall = Wlayer0
+ ∑

1

nlayer
Wlayeri

= Wlayer0
+ ∑

1

nlayer
np, i × sizeout, i × sizein, i × m + log sizein, i

= n × lnm − 1 n
s × logn

s + m + l + ∑
i = 1

logs s

2i × lnm − 1 2in
s

× 2lnm − 1 2i − 1n
s × log 2lnm − 1 2i − 1n

s + m + l

Optimal Number of Partitions.: Without loss of generality, from now on, we assume n = 2u 

and s = 2v, where u, v ∈ ℤ+ and 1 ≤ v < u . To find out the optimal number of partitions, our 

goal is to minimize Wall against s or v. Because n = 2u and s = 2v, we have the computation 

load W(v) corresponding to the number of partition s = 2v as follows.

W(v) = 2u × (u − v)m − 1 × lnm − 12 × (u − v + m + l)

+ ∑
i = 1

v
2v − i + 1 × (i + u − v)m − 1 × (i − 1 + u − v)m − 1

× ln2m − 22 × log 2 × (i − 1 + u − v)m − 1lnm − 12 + m + l

We denote the part after ∑ as WIv, i . Notice that WIv, i = WIv + 1, i + 1, we have

W(v + 1) − W(v) = Wlayer0, v + 1 − Wlayer0, v + ∑
i = 1

v + 1
WIv + 1, i − ∑

i = 1

v
WIv, i

= Wlayer0, v + 1 − Wlayer0, v + WIv + 1, 1
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Notice that the minimal value of W lies at the position where W(v + 1) − W(v) changes from 

negative to positive. Observe that in our setting, all variables can only be positive integer, 

which means we need to find out the integer v such that f(v) = W(v + 1) − W(v) changes 

from negative to positive. By letting x = u − v, we have

f (x) = WIv + 1, 1 + Wlayer0, v + 1 − Wlayer0, v

= 2v + 1 × (x)m − 1 × (x − 1)m − 1 × ln2m − 22

× log 2 × (x − 1)m − 1lnm − 12 + m + l

+ 2u × (x − 1)m − 1 × lnm − 12 × (x − 1 + m + l)

− 2u × xm − 1 × lnm − 12 × (x + m + l)

= 2ulnm − 12 × 21 − x × xm − 1 × (x − 1)m − 1 × lnm − 12

× log 2 × (x − 1)m − 1lnm − 12 + m + l

+ (x − 1)m − 1 × (x − 1 + m + l) − xm − 1 × (x + m + l) )

To obtain the minimal value of f(x), we can ignore the preceding 2u lnm−12 which is always 

positive. Then we can easily solve the problem to find out x where f(x) changes from 

positive to negative given m and l.

For example, we set l = 20 in our experiments, if m = 2, then the minimal value of W(v) is 

obtained at x = 1, i.e., u − v = 1. This actually corresponds to the case where each initial 

partition has two data points. If m = 3, we have x = 6, i.e., u − v = 6. That is, for three 

dimensional datasets, the optimal number of partitions is 2u−6 and each partition has 26 

points.

7.2 Optimization of Lazy Merging

In this subsection, we show another optimization with lazy merging.

Lazy Merging.—In the hierarchical divide-and-conquer approach proposed in the last 

subsection, results from any two computed partitions are merged immediately as a new 

partition for computing skyline points. However, immediate merging might not be optimal in 

the later stage of the program because it requires 1) more merging overhead and 2) more 

unnecessary computations. In the later stage of the program, there are only a few points in 

each partition. At this time, merging overhead is high compared to the computation time. 

Therefore, we can employ lazy merging which incurs less merging overhead. Furthermore, 

in the later stage of the program, those remaining points are likely to follow an anti-

correlated distribution as they are skyline points of a partition at a previous layer. For anti-

correlated dataset, data partitioning will incur more unnecessary computations. Consider an 

extreme example, if all the remaining points are the final skyline points, all the computations 

in each partition are unnecessary. Therefore, we can employ lazy merging to avoid those 

unnecessary computations and delay the merging operation to a later time when more 

computed results are ready.
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Merging Timing.—With lazy merging, we can reduce running time if and only if the 

timing for lazy merging is perfect. Merging too early (immediate merging) or merging too 

late does not provide enough benefit or even jeopardizes the performance. As shown in the 

last subsection, for a given dataset, we can calculate the optimal number of partitions, which 

is related to the dataset size. For example, given l = 20 and m = 3, we have the number of 

optimal partitions as n

26 , which effectively states that the optimal size of each partition 

should be 26 = 64 in the initial layer. Therefore, in our algorithm, we heuristically wait until 

the size of merged partitions reach 64 before sending it for computation in the previous 

example. That is, there are at least 64 points in each partition (excluding the final partition 

which contains the final skyline points) to compute the skyline points.

Security Analysis.—The cloud servers can tell if the subsets are skew or uniformly 

distributed in the extreme case when the distribution of entire dataset is different from the 

distribution of subsets based on the different number of returned skyline points from each 

partition. However, the probability is very low because we randomly partition the dataset, 

and the distribution of subsets should be very similar to the distribution of entire dataset. 

Moreover, this attack can be easily fixed by returning all the tuples in each iteration. That is, 

cloud servers 𝒞1 and 𝒞2 return all skyline tuples with true values and non-skyline tuples 

with MAX values. In this way, the cloud servers cannot know the skyline distribution of 

subsets, thus, the cloud servers cannot get any new information from the partitions.

8 EXPERIMENTS

In this section, we describe our experimental setup and optimized parallel system design. 

For comparison purposes, we have implemented both protocols: the Basic Secure Skyline 

Protocol (BSSP) in Section 6.1, and the Fully Secure Skyline Protocol (FSSP) in Section 

6.2. Since there is no existing solution for secure skyline computation, we use the basic 

approach as a baseline which is efficient but leaks some indirect data patterns to the cloud 

server. We have also designed a parallel framework for effective reducing computation time 

together with the two optimizations, data partitioning and lazy merging.

8.1 Experiment Setup

We implemented all algorithms in C with all multithreading using POSIX threads and all 

communication using sockets. We ran single-machine-experiments on a machine with Intel 

Core i7–6700K 4.0 GHz running Ubuntu 16.04. The distributed version was tested on a 

cluster of 64 machines with Intel Core i7–2600 3.40 GHz running CentOS 6, which we will 

provide more details in the next section. In our experiment setup, both 𝒞1 and 𝒞2 were 

running on the same machine. The reported computation time is the total computation time 

of the 𝒞1 and 𝒞2.

Datasets.—We used both synthetic datasets and a real NBA dataset in our experiments. To 

study the scalability of our methods, we generated independent (INDE), correlated (CORR), 

and anti-correlated (ANTI) datasets following the seminal work [5]. We also built a dataset 

that contains 2384 NBA players who are league leaders of playoffs.2 Each player has five 
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attributes that measure the player’s performance: Points (PTS), Rebounds (REB), Assists 

(AST), Steals (STL), and Blocks (BLK).

Data Partitioning.—This procedure can be done either using single thread or multiple 

threads. We conducted single thread experiment for verifying the optimal number of 

partitions. And we refer to multithreading implementation as local parallelism. The 

algorithm is shown in Algorithm 7.

To further demonstrate the scalability of our algorithm, we also implemented a distributed 

version, which employs a manager-worker model. The manager distributes partitions to 

workers, the workers compute the skyline points in any given dataset and return the results 

to the manager, which works similarly as the local parallelism. The only difference is that 

the manager could implement sophisticated load balancing algorithm to fully utilize the 

computation resources. The overall data partitioning scheme is very similar to the existing 

MapReduce approach. However, we didn’t employ existing MapReduce framework because 

existing crypto library in Java does not satisfy our requirements.

Lazy Merging.—The lazy merging delays the merging operation until there are enough 

results to form a partition with optimal size, which is detailed shown in Section 7.1.1. All 

experiments using optimizations are conducted using 10 different independent and 

identically distributed random datasets of size 512 and dimension 3 with three repeated runs 

for each dataset.

8.2 Impact of Parameters

In this subsection, we evaluate our protocols by varying the number of tuples (n), the 

number of dimensions (m), and the key size (K) on datasets of various distributions.

Impact of Number of Tuples n.—Fig. 6a, 6b, 6c, 6d show the time cost of different n on 

CORR, INDE, ANTI, and NBA datasets, respectively. We observe that for all datasets, the 

time cost increases approximately linearly with the number of tuples n, which is consistent 

with our complexity analysis. While BSSP is very efficient, FSSP does incur more 

computational overhead for full security. Comparing different datasets, the time cost is in 

slightly increasing order for CORR, INDE, and ANTI, due to the increasing number of 

skyline points of the datasets. The time for NBA dataset is low due to its small number of 

tuples.

Impact of Number of Dimensions m.—Fig. 7a, 7b, 7c, 7d show the time cost of 

different m on CORR, INDE, ANTI, and NBA datasets, respectively. For all datasets, the 

time cost increases approximately linearly with the number of dimensions m. FSSP also 

shows more computational overhead than BSSP. The different datasets show a similar 

comparison as in Fig. 6. The time for NBA dataset is lower than the CORR dataset which 

suggests that the NBA data is strongly correlated.

2.The data was extracted from http://stats.nba.com/leaders/all-time/?ls=iref:nba:gnav on 04/15/2015
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Impact of Encryption Key Size K.—Fig. 8a, 8b, 8c, 8d show the time cost with 

different key size used in the Paillier cryptosystem on CORR, INDE, ANTI, and NBA 

datasets, respectively. A stronger security indeed comes at the price of computation 

overhead, i.e., the time cost increases significantly, almost exponential, when K grows.

Communication Overhead.—We also measured the overall time which includes 

computation time reported earlier and the communication time between the two server 

processes. Fig. 5 shows the computation and communication time of different n on INDE 

dataset of FSSP. We observe that computation time only takes about one third of the total 

time in this setting.

8.3 Effect of Optimizations

In this subsection, we evaluate the efficiency of our proposed two optimizations, data 

partitioning and lazy merging.

Data Partitioning.—Fig. 9 shows the relationship between theoretical computation load 

and real computation time. The theoretical computation load has an optimal value at the 

partition 29–6 = 8, which indicates dividing the original dataset into 8 partitions will give the 

smallest amount of computation load. Using ten datasets and three repeated runs for each 

dataset, we obtained the real computation time, which perfectly matches the theoretical 

computation load at the region with small number of partitions. With large number of 

partitions, the experimental results deviate from theoretical derivations. The reason for the 

deviation is that when the number of points in each partition is too small for large number of 

partitions, the number of skyline points in each partition violates our assumption of data 

distribution. For example, it is hard to say a dataset with only five points is an independent 

and identically distributed random dataset. Therefore, computation time for each partition 

does not follow our derivation. Furthermore, the large number of partitions will incur more 

merging overhead.

Lazy Merging.—As yet another optimization, lazy merging plays an important role 

especially when the number of partitions is large. In Fig. 10, we show the computation time 

with and without lazy merging, respectively. It can be seen that overall with lazy merging, 

the run time can be effectively reduced. The larger number of partitions, the larger number 

of time difference, which is reasonable because the larger number of partitions, the larger 

number of merging operations and more rounds of computation. We can also see that for one 

partition (no partition) and two partitions, there is no time reduction, the reasons are that 

there is no merging operation need for one partition and there is no lazy merging operation 

for two partitions.

To summarize, both data partitioning and lazy merging have been proven effective and can 

significantly reduce the computation time even using single thread.

8.4 Effect of Parallelism

In this subsection, we demonstrate the speedup of our protocol by using multithreading 

(local parallelism) on independent and identically distributed random datasets with 512 
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points and distributed computing with 64 commercial desktops (global parallelism) on 

independent and identically distributed random datasets with 65536 points.

As shown in Fig. 11, if we use one machine with up to 4 threads, the protocol almost shows 

a linear speedup. As the number of threads doubles, the computation time reduces to half. 

However, as we further increase the number of threads, we only see sub-linear speedup. We 

believe this is due to the small size of the dataset. In distributed computation experiments, 

we employed 4, 8,16, 32, 64, and 128 threads, respectively. It is clear that at the beginning 

the protocol shows a linear speedup. While the number of threads reaches 64, it switches to 

sub-linear speedup again due to the small size of dataset. In both local and global 

parallelism, we observe that the difference between with lazy merging and without lazy 

merging is too small to be observed. In other words, when we have enough computation 

power, lazy merging provides limited improvement, which is opposite to what we see in 

single-thread experiment.

9 CONCLUSIONS

In this paper, we proposed a fully secure skyline protocol on encrypted data using two non-

colluding cloud servers under the semi-honest model. It ensures semantic security in that the 

cloud servers knows nothing about the data including indirect data patterns, query, as well as 

the query result. In addition, the client and data owner do not need to participate in the 

computation. We also presented a secure dominance protocol which can be used by skyline 

queries as well as other queries. Furthermore, we demonstrated two optimizations, data 

partitioning and lazy merging, to further reduce the computation load. Finally, we presented 

our implementation of the protocol and demonstrated the feasibility and efficiency of the 

solution. As for future work, we plan to optimize the communication time complexity to 

further improve the performance of the protocol.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Secure similarity queries.
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Fig. 2. 
Dynamic skyline query.
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Fig. 3. 
Overview of protocol setting.
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Fig. 4. 
Layer structure (interResult is short for intermediate result).
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Fig. 5. 
Computation and communication time cost of different n(m = 2, K = 512).
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Fig. 6. 
The impact of n(m = 2, K = 512).
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Fig. 7. 
The impact of m(n = 1000, K = 512).
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Fig. 8. 
The impact of K(n = 1000, m = 2).
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Fig. 9. 
Theoretical and experimental results.
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Fig. 10. 
Computation time with and without lazy merging.
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Fig. 11. 
Local parallelism and global parallelism.
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TABLE 1

Sample of Heart Disease Dataset

(a) Original data.

ID age trestbps

p1 40 140

p2 39 120

p3 45 130

p4 37 140

(b) Mapped Data.

ID age trestbps

t1 42 140

t2 43 130

t3 45 130

t4 45 140
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TABLE 2

The Summary of Notations

Notation Definition

P dataset of n points/tuples/records

pi[j] the jth attribute of pi

q query tuple of client

n number of points in P

m number of dimensions

k number of skyline

l number of bits

K key size

pk/sk public/private key

a encrypted vector of the individual bits of a

a binary bit

(a)B
(i) the ith bit of binary number a
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