
Secure and Efficient Skyline Queries on Encrypted Data

Jinfei Liu [Member, IEEE],
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322.

Juncheng Yang [Member, IEEE],
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322.

Li Xiong [Member, IEEE],
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322.

Jian Pei [Fellow, IEEE]
School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

Abstract

Outsourcing data and computation to cloud server provides a cost-effective way to support large

scale data storage and query processing. However, due to security and privacy concerns, sensitive

data (e.g., medical records) need to be protected from the cloud server and other unauthorized

users. One approach is to outsource encrypted data to the cloud server and have the cloud server

perform query processing on the encrypted data only. It remains a challenging task to support

various queries over encrypted data in a secure and efficient way such that the cloud server does

not gain any knowledge about the data, query, and query result. In this paper, we study the

problem of secure skyline queries over encrypted data. The skyline query is particularly important

for multi-criteria decision making but also presents significant challenges due to its complex

computations. We propose a fully secure skyline query protocol on data encrypted using

semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol,

which can be also used as a building block for other queries. Furthermore, we demonstrate two

optimizations, data partitioning and lazy merging, to further reduce the computation load. Finally,

we provide both serial and parallelized implementations and empirically study the protocols in

terms of efficiency and scalability under different parameter settings, verifying the feasibility of

our proposed solutions.

Keywords

Skyline; secure; efficient; parallel; semi-honest

For information on obtaining reprints of this article, please send to: reprints@ieee.org, and reference the Digital Object Identifier
below. Digital Object Identifier no. 10.1109/TKDE.2018.2857471

jinfei.liu@emory.edu.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/
dlib.

HHS Public Access
Author manuscript
IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

Published in final edited form as:
IEEE Trans Knowl Data Eng. 2019 July ; 31(7): 1397–1411. doi:10.1109/TKDE.2018.2857471.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.computer.org/publications/dlib
http://www.computer.org/publications/dlib

1 INTRODUCTION

As an emerging computing paradigm, cloud computing attracts increasing attention from

both research and industry communities. Outsourcing data and computation to cloud server

provides a cost-effective way to support large scale data storage and query processing.

However, due to security and privacy concerns, sensitive data need to be protected from the

cloud server as well as other unauthorized users.

A common approach to protect the confidentiality of outsourced data is to encrypt the data

(e.g., [15], [33]). To protect the confidentiality of the query from cloud server, authorized

clients also send encrypted queries to the cloud server. Fig. 1 illustrates our problem

scenario of secure query processing over encrypted data in the cloud. The data owner

outsources encrypted data to the cloud server. The cloud server processes encrypted queries

from the client on the encrypted data and returns the query result to the client. During the

query processing, the cloud server should not gain any knowledge about the data, data

patterns, query, and query result.

Fully homomorphic encryption schemes [15] ensure strong security while enabling arbitrary

computations on the encrypted data. However, the computation cost is prohibitive in

practice. Trusted hardware such as Intel’s Software Guard Extensions (SGX) brings a

promising alternative, but still has limitations in its security guarantees [10]. Many

techniques (e.g., [17], [38]) have been proposed to support specific queries or computations

on encrypted data with varying degrees of security guarantee and efficiency (e.g., by weaker

encryptions). Focusing on similarity search, secure k-nearest neighbor (kNN) queries, which

return k most similar (closest) records given a query record, have been extensively studied

[12], [20], [40], [42].

In this paper, we focus on the problem of secure skyline queries on encrypted data, another

type of similarity search important for multi-criteria decision making. The skyline or Pareto
of a multi-dimensional dataset given a query point consists of the data points that are not

dominated by other points. A data point dominates another if it is closer to the query point in

at least one dimension and at least as close to the query point in every other dimension. The

skyline query is particularly useful for selecting similar (or best) records when a single

aggregated distance metric with all dimensions is hard to define. The assumption of kNN

queries is that the relative weights of the attributes are known in advance, so that a single

similarity metric can be computed between a pair of records aggregating the similarity

between all attribute pairs. However, this assumption does not always hold in practical

applications. In many scenarios, it is desirable to retrieve similar records considering all

possible relative weights of the attributes (e.g., considering only one attribute, or an arbitrary

combination of attributes), which is essentially the skyline or the “pareto-similar” records.

Motivating Example.

Consider a hospital who wishes to outsource its electronic health records to the cloud and

the data is encrypted to ensure data confidentiality. Let P denote a sample heart disease

dataset with attributes ID, age, trestbps (resting blood pressure). We sampled four patient

records p1, …, p4 from the heart disease dataset of UCI machine learning repository [22] as

Liu et al. Page 2

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

shown in Table 1 a and Fig. 2. Consider a physician who is treating a heart disease patient q
= (41, 125) and wishes to retrieve similar patients in order to enhance and personalize the

treatment for patient q. While it is unclear how to define the attribute weights for kNN

queries (p1 is the nearest if only age is considered while p2, p3 are the nearest if only

trestbps is considered), skyline provides all pareto-similar records that are not dominated by

any other records. Skyline includes all possible 1NN results by considering all possible

relative attribute weights, and hence can serve as a filter for users. Given the query q, we can

map the data points to a new space with q as the origin and the distance to q as the mapping

function.1 The mapped records ti[j] = |pi[j] − q[j]| + q[j] on each dimension j are shown in

Table 1b and also in Fig. 2. It is easy to see that t1 and t2 are skyline in the mapped space,

which means p1 and p2 are skyline with respect to query q.

Our goal is for the cloud server to compute the skyline query given q on the encrypted data

without revealing the data, the query q, the final result set {p1, p2}, as well as any

intermediate result (e.g., t2 dominates t4) to the cloud. We note that skyline computation

(with query point at the origin) is a special case of skyline queries.

Challenges.

Designing a fully secure protocol for skyline queries over encrypted data presents significant

challenges due to the complex comparisons and computations. Let P denotes a set of n
tuples p1, ..., pn with m attributes and q denotes input query tuple. In kNN queries, we only

need to compute the distances between each tuple pi and the query tuple q and then choose

the k tuples corresponding to the k smallest distances. In skyline queries, for each tuple pi,

we need to compare it with all other tuples to check dominance. For each comparison

between two tuples pa and pb, we need to compare all their m attributes and for comparison

of each attribute p[j], there are three different outputs, i.e., pa[j] < (=, >) pb[j]. Therefore,

there are 3m different outputs for each comparison between two tuples, based on which we

need to determine if one tuple dominates the other. How to determine the 2m − 1 cases that

satisfy pa dominates pb efficiently while protecting intermediate results (e.g., whether two

attribute values are the same) is particularly challenging.

Such complex comparisons and computations require more complex protocol design in

order to carry out the computations on the encrypted data given an encryption scheme with

semantic security (instead of weaker order-preserving or other property-preserving

encryptions). In addition, the extensive intermediate result means more indirect information

about the data can be potentially revealed (e.g., which tuple dominates which other, whether

there are duplicate tuples or equivalent attribute values) even if the exact data is protected.

This makes it challenging to design a fully secure and efficient skyline query protocol in

which the cloud should not gain any knowledge about the data including indirect data

patterns.

1.Weuse pi[j] − q[j] in our running example for simplicity.

Liu et al. Page 3

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Contributions.

We summarize our contributions as follows.

• We study the secure skyline problem on encrypted data with semantic security

for the first time. We assume the data is encrypted using the Paillier

cryptosystem which provides semantic security and is partially homomorphic.

• We propose a fully secure dominance protocol, which can be used as a building

block for skyline queries as well as other queries, e.g., reverse skyline queries

[11] and k-skyband queries [34].

• We present two secure skyline query protocols. The first one, served as a basic

and efficient solution, leaks some indirect data patterns to the cloud server. The

second one is fully secure and ensures that the cloud gains no knowledge about

the data including indirect patterns. The proposed protocols exploit the partial

(additive) homomorphism as well as novel permutation and perturbation

techniques to ensure the correct result is computed while guaranteeing privacy.

We provide security and complexity analysis of the proposed protocols.

• Compared with our conference version [30], we present two new optimizations,

data partitioning and lazy merging, to further reduce the computation load. For

the data partitioning, we theoretically analyze the optimal number of partitions

given the number of points, the expected number of output skyline points, the

number of decomposed bits, and the number of dimensions. In addition, we

propose a lazy merging scheme that aims to reduce computation overhead due to

the smaller partition sizes at the later stage of the partitioning scheme.

• We also provide a complete implementation including both serial and

parallelized versions which can be deployed in practical settings. We empirically

study the efficiency and scalability of the implementations under different

parameter settings, verifying the feasibility of our proposed solutions.

Organization.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3

introduces background definitions as well as our problem setting. The security subprotocols

for general functions that will be used in our secure skyline protocol are introduced in

Section 4. The key subroutine of secure skyline protocols, secure dominance protocol, is

shown in Section 5. The complete secure skyline protocols are presented in Section 6. We

illustrate two optimizations to further reduce the computation load in Section 7. We report

the experimental results and findings in Section 8. Section 9 concludes the paper.

2 RELATED WORK

Skyline.

The skyline computation problem was first studied in computational geometry field [3], [25]

where they focused on worst-case time complexity. [23], [29] proposed output-sensitive

Liu et al. Page 4

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

algorithms achieving O(n log k) in worst-case where k is the number of skyline points which

is far less than n in general.

Since the introduction of the skyline operator by Börzsönyi et al. [5], skyline has been

extensively studied in the database field. Kossmann et al. [24] studied the progressive

algorithm for skyline queries. Different variants of the skyline problem have been studied

(e.g., subspace skyline [8], uncertain skyline [32] [36], group-based skyline [26], [28], [44],

skyline diagram [31]).

Secure Query Processing on Encrypted Data.

Fully homomorphic encryption schemes [15] enable arbitrary computations on encrypted

data. Even though it is shown that [15] we can build such encryption schemes with

polynomial time, they remain far from practical even with the state of the art

implementations [18].

Many techniques (e.g., [17], [38]) have been proposed to support specific queries or

computations on encrypted data with varying degrees of security guarantee and efficiency

(e.g., by weaker encryptions). We are not aware of any formal work on secure skyline

queries over encrypted data with semantic security. Bothe et al. [6] and their demo version

[7] illustrated an approach about skyline queries on so-called “encrypted” data without any

formal security guarantee. Another work [9] studied the verification of skyline query result

returned by an untrusted cloud server.

The closely related work is secure kNN queries [12], [19], [20], [35], [37], [40], [42], [43]

which we discuss in more detail here. Wong et al. [40] proposed a new encryption scheme

called asymmetric scalar-product-preserving encryption. In their work, data and query are

encrypted using slightly different encryption schemes and all clients know the private key.

Hu et al. [20] proposed a method based on provably secure privacy homomorphism

encryption scheme. However, both schemes are vulnerable to the chosen-plaintext attacks as

illustrated by Yao et al. [42]. Yao et al. [42] proposed a new method based on secure Voronoi

diagram. Instead of asking the cloud server to retrieve the exact kNN result, their method

retrieve a relevant encrypted partition such that it is guaranteed to contain the kNN of the

query point. Hashem et al. [19] identified the challenges in preserving user privacy for group

nearest neighbor queries and provided a comprehensive solution to this problem. Yi et al.

[43] proposed solutions for secure kNN queries based on oblivious transfer paradigm.

Recently, Elmehdwi et al. [12] proposed a secure kNN query protocol on data encrypted

using Paillier cryptosystem that ensures data privacy and query privacy, as well as low (or

no) computation overhead on client and data owner using two non-colluding cloud servers.

Our work follows this setting and addresses skyline queries.

Other works studied kNN queries in the secure multi-party computation (SMC) setting [37]

(data is distributed between two parties who want to cooperatively compute the answers

without revealing to each other their private data), or private information retrieval (PIR)

setting [35] (query is private while data is public), which are different from our settings.

Liu et al. Page 5

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Secure Multi-party Computation (SMC).

SMC was first proposed by Yao [41] for two-party setting and then extended by Goldreich et

al. [16] to multi-party setting. SMC refers to the problem where a set of parties with private

inputs wish to compute some joint function of their inputs. There are techniques such as

garbled circuits [21] and secret sharing [2] that can be used for SMC. In this paper, all

protocols assume a two-party setting, but different from the traditional SMC setting.

Namely, we have party 𝒞1 with encrypted input and party 𝒞2 with the private key sk. The

goal is for 𝒞1 to obtain an encrypted result of a function on the input without disclosing the

original input to either 𝒞1 or 𝒞2.

3 PRELIMINARIES AND PROBLEM DEFINITIONS

In this section, we first illustrate some background knowledge on skyline computation and

dynamic skyline query, and then describe the security model we use in this paper. For

references, a summary of notations is given in Table 2.

3.1 Skyline Definitions

Definition 1 (Skyline).—Given a dataset P = {p1, …, pn} in m-dimensional space. Let pa

and pb be two different points in P, we say pa dominates pb, denoted by pa ≺ pb if for all j,
pa [j] ≤ pb [j], and for at least one j, pa [j] < pb [j], where pi[j] is the jth dimension of pi and
1 ≤ j ≤ m. The skyline points are those points that are not dominated by any other point in P.

Definition 2 (Dynamic Skyline Query) [11].: Given a dataset P = {p1, …, pn} and a query
point q in m-dimensional space. Let pa and pb be two different points in P, we say pa

dynamically dominates pb with regard to the query point q, denoted by pa ≺ pb, if for all j,
pa[j] − q[j] ≤ pb[j] − q[j] , and for at least one j, pa[j] − q[j] < pb[j] − q[j] , where pi [j] is

the jth dimension of pi and 1 ≤ j ≤ m. The skyline points are those points that are not
dynamically dominated by any other point in P.

The traditional skyline definition is a special case of dynamic skyline query in which the

query point is the origin. On the other hand, dynamic skyline query is equivalent to

traditional skyline computation if we map the points to a new space with the query point q
as the origin and the absolute distances to q as mapping functions. So the protocols we will

present in the paper also work for traditional skyline computation (without an explicit query

point).

Example 1.: Consider Table 1 and Fig. 2 as a running example. Given data points p1 to p4

and query point q, the mapped data points are computed as ti[j] = pi[j] − q[j] + q[j] . We see

that t1, t2 are the skyline in the mapped space, and p1, p2 are the skyline with respect to

query q in the original space.

3.2 Skyline Computation—Skyline computation has been extensively studied as we

discussed in Section 2. We illustrate an iterative skyline computation algorithm (Algorithm

1) which will be used as the basis of our secure skyline protocol. We note that this is not the

Liu et al. Page 6

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

most efficient algorithm to compute skyline for plaintext compared to the divide-and-

conquer algorithm [25]. We construct our secure skyline protocol based on this algorithm for

two reasons: 1) the divide-and-conquer approach is less suitable if not impossible for a

secure implementation compared to the iterative approach, 2) the performance of the divide-

and-conquer algorithm deteriorate with the “curse of dimensionality”.

The general idea of Algorithm 1 is to first map the data points to the new space with the

query point as origin (Lines 1–3). Given the new data points, it computes the sum of all

attributes for each tuple S(ti) (Line 6) and chooses the tuple tmin with smallest S(ti) as a

skyline because no other tuples can dominate it. It then deletes those tuples dominated by

tmin. The algorithm repeats this process for the remaining tuples until an empty dataset T is

reached.

Algorithm 1.

Skyline Computation

Input: A dataset P and a query q.

Output: Skyline of P.

1 for i = 1 to n do

2 for j = 1 to m do

3 ti[j] = pi[j] − q[j] ;

4 while the dataset T is not empty do

5 for i = 1 to size of dataset T do

6 S ti = ∑ j = 1
m ti[j];

7 choose the tuple tmin with smallest S(ti) as a skyline;

8 add corresponding tuple pmin to the skyline pool;

9 delete those tuples dominated by tmin from T;

10 delete tuple tmin from T;

11 return skyline pool;

Example 2.—Given the mapped data points t1, …, t4, we begin by computing the attribute

sum for each tuple as S(t1) = 16, S(t2) = 7, S(t3) = 9, and S(t4) = 19. We choose the tuple

with smallest S(ti), i.e., t2, as a skyline tuple, delete t2 from dataset T and add p2 to the

skyline pool. We then delete tuples t3 and t4 from T because they are dominated by t2. Now,

there is only t1 in T. We add p1 to the skyline pool. After deleting t1 from T, T is empty and

the algorithm terminates. p1 and p2 in the skyline pool are returned as the query result.

3.3 Problem Setting

We now describe our problem setting for secure skyline queries over encrypted data.

Consider a data owner (e.g., hospital, CDC) with a dataset P. Before outsourcing the data,

the data owner encrypts each attribute of each record pi[j] using a semantically secure

public-key cryptosystem. Fully homomorphic encryption schemes ensure strong security

while enabling arbitrary computations on the encrypted data. However, the computation cost

is prohibitive in practice. Partially homomorphic encryption is much more efficient but only

Liu et al. Page 7

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

provides partially (either additive or multiplicative) homomorphic properties. Among them,

we chose Paillier [33] mainly due to its additive homomorphic properties as we employ

significantly more additions than multiplications in our protocol. Furthermore, we can also

utilize its homomorphic multiplication between ciphertext and plaintext. We use pk and sk to

denote the public key and private key, respectively. Data owner sends Epk(pi[j]) for i = 1, ...,

n and j = 1, ..., m to cloud server 𝒞1.

Consider an authorized client (e.g., physician) who wishes to query the skyline tuples

corresponding to query tuple q = (q[1], ..., q[m]). In order to protect the sensitive query

tuple, the client uses the same public key pk to encrypt the query tuple and sends Epk(q) =

(Epk(q[1]), ..., Epk(q[m])) to cloud server 𝒞1.

Our goal is to enable the cloud server to compute and return the skyline to the client without

learning any information about the data and the query. In addition to guaranteeing the

correctness of the result and the efficiency of the computation, the computation should

require no or minimal interaction from the client or the data owner for practicality. To

achieve this, we assume there is an additional non-colluding cloud server, 𝒞2, which will

hold the private key sk shared by the data owner and assist with the computation. This way,

the data owner does not need to participate in any computation. The client also does not

need to participate in any computation except combining the partial result from 𝒞1 and 𝒞2
for final result. An overview of the protocol setting is shown in Fig. 3.

3.4 Security Model

Adversary Model.—We adopt the semi-honest adversary model in our study. In any multi-

party computation setting, a semi-honest party correctly follows the protocol specification,

yet attempts to learn additional information by analyzing the transcript of messages received

during the execution. By semi-honest model, this work implicitly assumes that the two cloud

servers do not collude.

There are two main reasons to adopt the semi-honest adversary model in our study. First,

developing protocols under the semi-honest setting is an important first step towards

constructing protocols with stronger security guarantees [21]. Using zero-knowledge proofs

[14], these protocols can be transformed into secure protocols under the malicious model.

Second, the semi-honest model is realistic in current cloud market. 𝒞1 and 𝒞2 are assumed

to be two cloud servers, which are legitimate, well-known companies (e.g., Amazon,

Google, and Microsoft). A collusion between them is highly unlikely. Therefore, following

the work done in [12], [27], [45], we also adopt the semi-honest adversary model for this

paper. Please see Security Definition in the Semi-honest Model and Paillier Cryptosystem in

the Appendix, which can be found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TKDE.2018.2857471.

Desired Privacy Properties.—Our security goal is to protect the data and the query as

well as the query result from the cloud servers. We summarize the desired privacy properties

below. After the execution of the entire protocol, the following should be achieved.

Liu et al. Page 8

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.ieeecomputersociety.org/10.1109/TKDE.2018.2857471
http://doi.ieeecomputersociety.org/10.1109/TKDE.2018.2857471

• Data Privacy. Cloud servers 𝒞1 and 𝒞2 know nothing about the exact data except

the size pattern, the client knows nothing about the dataset except the skyline

query result.

• Data Pattern Privacy. Cloud servers 𝒞1 and 𝒞2 know nothing about the data

patterns (indirect data knowledge) due to intermediate result, e.g., which tuple

dominates which other tuple.

• Query Privacy. Data owner, cloud servers 𝒞1 and 𝒞2 know nothing about the

query tuple q.

• Result Privacy. Cloud servers 𝒞1 and 𝒞2 know nothing about the query result,

e.g., which tuples are in the skyline result.

4 BASIC SECURITY SUBPROTOCOLS

In this section, we present a set of secure subprotocols for computing basic functions on

encrypted data that will be used to construct our secure skyline query protocol. All protocols

assume a two-party setting, namely, 𝒞1 with encrypted input and 𝒞2 with the private key sk

as shown in Fig. 3. The goal is for 𝒞1 to obtain an encrypted result of a function on the input

without disclosing the original input to either 𝒞1 or 𝒞2. We note that this is different from

the traditional two-party secure computation setting with techniques such as garbled circuits

[21] where each party holds a private input and they wish to compute a function of the

inputs. For each function, we describe the input and output, present our proposed protocol or

provide a reference if existing solutions are available. Due to limited space, we omit the

security proof which can be derived by the simulation and composition theorem in a

straightforward way. Please see Secure Multiplication (SM), Secure Bit Decomposition

(SBD), and Secure Boolean Operations in the appendix, available in the online supplemental

material.

4.1 Secure Minimum and Secure Comparison

Secure minimum protocol and secure comparison protocol have been extensively studied in

cryptography community [1], [13], [39] and database community [12], [45]. Secure

comparison protocol can be easily adapted to secure minimum protocol, and vice versa. For

example, if we set Epk(out) as the result of secure comparison Epk(Bool(a ≤ b)) known by

cloud server 𝒞1 (it will be Epk (1) when a ≤ b and Epk(0) when a > b), 𝒞1 can get Epk(min(a,

b)) by computing Epk(a * out + b * ¬out).

We analyzed the existing protocols and observed that both secure minimum (SMIN)

algorithms [12], [45] from database community for selecting a minimum have a security

weakness, i.e., 𝒞2 can determine whether the two numbers are equal to each other. We point

out the security weakness in the appendix, available in the online supplemental material.

Therefore, we adapted the secure minimum/comparison protocols [39] from cryptography

community in this paper. The basic idea of those protocols is that for any two l bit numbers a

Liu et al. Page 9

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and b, the most significant bit (zl) of z = 2l + a − b indicates the relationship between a and

b, i.e., zl = 0 a < b . We list the secure minimum/comparison protocols we used in this

paper below.

Secure Less Than or Equal (SLEQ).—Assume a cloud server 𝒞1 with encrypted input

Epk(a) and Epk(b), and a cloud server 𝒞2 with the private key sk, where a and b are two

numbers not known to 𝒞1 and 𝒞2. The goal of the SLEQ protocol is to securely compute the

encrypted boolean output Epk(Bool(a ≤ b)), such that only 𝒞1 knows Epk(Bool(a ≤ b)) and

no information related to a and b is revealed to 𝒞1 or 𝒞2.

Secure Equal (SEQ).—Assume a cloud server 𝒞1 with encrypted input Epk(a) and Epk(b),

and a cloud server 𝒞2 with the private key sk, where a and b are two numbers not known to

𝒞1 and 𝒞2. The goal of the SEQ protocol is to securely compute the encrypted boolean

output Epk(Bool(a == b)), such that only 𝒞1 knows Epk(Bool(a == b)) and no information

related to Bool(a == b) is revealed to 𝒞1 or 𝒞2.

Secure Less (SLESS).—Assume a cloud server 𝒞1 with encrypted input Epk(a) and

Epk(b), and a cloud server 𝒞2 with the private key sk, where a and b are two numbers not

known to 𝒞1 and 𝒞2. The goal of the SLESS protocol is to securely compute the encrypted

boolean output Epk(Bool(a < b)), such that only 𝒞1 knows Epk(Bool(a < b)) and no

information related to Bool(a < b) is revealed to 𝒞1 or 𝒞2. This can be simply implemented

by conjunction from the output of SEQ and SLEQ.

Secure Minimum (SMIN).—Assume a cloud server 𝒞1 with encrypted input Epk(a) and

Epk(b), and a cloud server 𝒞2 with the private key sk, where a and b are two numbers not

known to both parties. The goal of the SMIN protocol is to securely compute encrypted

minimum value of a and b, Epk(min(a, b)), such that only 𝒞1 knows Epk(min(a, b)) and no

information related to a and b is revealed to 𝒞1 or 𝒞2. Benefiting from the probabilistic

property of Paillier, the ciphertext of min(a, b), i.e., Epk(min(a, b)) is different from the

ciphertext of a, b, i.e., Epk(a), Epk(b). Therefore, 𝒞1 does not know which of a or b is min(a,

b). In general, assume 𝒞1 has n encrypted values, the goal of SMIN protocol is to securely

compute encrypted minimum of the n values.

5 SECURE DOMINANCE PROTOCOL

The key to compute skyline is to compute dominance relationship between two tuples.

Assume a cloud server 𝒞1 with encrypted tuples a = (a[1], …, a[m]), b = (b[1], …, b[m])

and a cloud server 𝒞2 with the private key sk, where a and b are not known to both parties.

Liu et al. Page 10

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The goal of the secure dominance (SDOM) protocol is to securely compute Epk(Bool(a ≺ b))

such that only 𝒞1 knows Epk(1) if a ≺ b, otherwise, Epk(0).

Protocol Design.

Given any two tuples a = (a[1], …, a[m]) and b = (b[1], …, b[m]), recall the definition of

skyline, we say a ≺ b if for all j, a[j] ≤ b[j] and for at least one j, a[j] < b[j] (1 ≤ j ≤ m). If for

all j, a[j] ≤ b[j], we have either a = b or a ≺ b. We refer to this case as a ⪯ b . The basic idea

of secure dominance protocol is to first determine whether a ⪯ b, and then determine

whether a = b.

The detailed protocol is shown in Algorithm 2. For each attribute, 𝒞1 and 𝒞2 cooperatively

use the secure less than or equal (SLEQ) protocol to compute Epk(Bool(a[j] ≤ b[j])). And

then 𝒞1 and 𝒞2 cooperatively use SAND to compute Φ = δ1 ∧ , …, ∧ δm . If Φ = Epk(1), it

means a ⪯− b, otherwise, a ⋠ b . We note that, the dominance relationship information Φ is

known only to 𝒞1 in ciphertext. Therefore, both 𝒞1 and 𝒞2 do not know any information

about whether a ⪯ b .

Algorithm 2.

Secure Dominance Protocol

Input: 𝒞1 has Epk(a), Epk(b) and 𝒞2 has sk.

Output: 𝒞1 gets Epk(1) if a ≺ b, otherwise, 𝒞1 gets Epk(0).

1 𝒞1 and 𝒞2:

2 for j = 1 to m do

3 𝒞1 gets δ j = Epk(Bool(a[j] ≤ b[j])) by SLEQ;

4 use SAND to compute Φ = δ1 ∧ …, ∧ δm;

5 𝒞1:

6 compute α = Epk(a[1]) × , …, × Epk(a[m]);

7 compute β = Epk(b[1]) × , …, × Epk(b[m]);

8 𝒞1 and 𝒞2:

9 𝒞1 gets σ = Epk(Bool(α < β)) by employing SLESS;

10 𝒞1 gets Ψ = σ ∧ Φ as the final dominance relationship using SAND;

Next, we need to determine if a ≠ b . Only if a ≠ b, then a ≺ b . One naive way is to employ

SEQ protocol for each pair of attribute and then take the conjunction of the output. We

propose a more efficient way which is to check whether S(a) < S(b), where S(a) is the

attribute sum of tuple a. If S(a) < S(b), then it is impossible that a = b. As the algorithm

shows, 𝒞1 computes the sum of all attributes

α = Epk(a[1] + … + a[m]) and β = Epk(b[1] + … + b[m]) based on the additive homomorphic

Liu et al. Page 11

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

property. Then 𝒞1 and 𝒞2 cooperatively use SLESS protocol to compute

σ = Epk(Bool(α < β)) . Finally, 𝒞1 and 𝒞2 cooperatively use SAND protocol to compute the

final dominance relationship Ψ = σ ∧ Φ which is only known to 𝒞1 in ciphertext.

Ψ = Epk(1) means a ≺ b, otherwise, a ⊀ b .

Security Analysis.

Based on the composition theorem (Theorem 2), the security of secure dominance protocol

relies on the security of SLEQ, SLESS, and SAND, which have been shown in existing

works.

Complexity Analysis.

To determine a ⪯ b, Algorithm 2 requires O(m) encryptions and decryptions. Then to

determine if a = b, Algorithm 2 requires O(1) encryptions and decryptions. Therefore, our

secure dominance protocol requires O(m) encryptions and decryptions in total.

6 SECURE SKYLINE PROTOCOL

In this section, we first propose a basic secure skyline protocol and show why such a simple

solution is not secure. Then we propose a fully secure skyline protocol. Both protocols are

constructed by using the security primitives discussed in Section 4 and the secure dominance

protocol in Section 5.

As mentioned in Algorithm 1, given a skyline query q, it is equivalent to compute the

skyline in a transformed space with the query point q as the origin and the absolute distances

to q as mapping functions. Hence we first show a preprocessing step in Algorithm 3 which

maps the dataset to the new space. Since the skyline only depends on the order of the

attribute values, we use (pi[j] − q[j])2 which is easier to compute than pi[j] − q[j] as the

mapping function.1 After Algorithm 3, 𝒞1 has the encrypted dataset Epk(P) and Epk(T), 𝒞2
has the private key sk. The goal is to securely compute the skyline by 𝒞1 and 𝒞2 without

participation of data owner and the client.

Algorithm 3.

Preprocessing

Input: 𝒞1 has Epk(P), 𝒞2 has sk, and the client has q.

Output: 𝒞1 obtains the new encrypted dataset Epk(T).

1 Client:

2 send Epk(− q[1]), …, Epk(− q[m]) to 𝒞1;

3 𝒞1:

4 for i = 1 to n do

5 for j = 1 to m do

Liu et al. Page 12

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6 Epk tempi[j] = Epk pi[j] − q[j] = Epk pi[j] × Epk(− q[j]) mod N2;

7 𝒞1 and 𝒞2:

8 use SM protocol to compute Epk(T) = Epk t1 , …, Epk tn only known by 𝒞1, where

Epk ti = Epk ti[1] , …, Epk ti[m] and Epk ti[j] = Epk tempi[j] × Epk tempi[j] ;

6.1 Basic Protocol

We first illustrate a straw-man protocol which is straightforward but not fully secure (as

shown in Algorithm 4). The idea is to implement each of the steps in Algorithm 1 using the

primitive secure protocols. 𝒞1 first determines the terminal condition, if there is no tuple

exists in dataset Epk(T), the protocol ends, otherwise, the protocol proceeds as follows.

Compute Minimum Attribute Sum.—𝒞1 first computes the sum of Epk(ti[j]) for 1 ≤ j ≤

m, denoted as Epk(S(ti)), for each tuple ti. Then 𝒞1 and 𝒞2 uses SMIN protocol such that 𝒞1
obtains Epk(S(tmin)).

Select the Skyline with Minimum Attribute Sum.—The challenge now is we need to

select the tuple Epk(tmin) with the smallest Epk(S(ti)) as a skyline tuple. In order to do this, a

naive way is for 𝒞1 to compute Epk(S(ti) − S(tmin)) for all tuples and then send them to 𝒞2.

𝒞2 can decrypt them and determine which one is equal to 0 and return the index to 𝒞1. 𝒞1
then adds the tuple Epk(pmin) to skyline pool.

Eliminate Dominated Tuples.—Once the skyline tuple is selected, 𝒞1 and 𝒞2
cooperatively use SDOM protocol to determine the dominance relationship between

Epk(tmin) and other tuples. In order to delete those tuples that are dominated by Epk(tmin), a

naive way is for 𝒞1 to send the encrypted dominance output to 𝒞2, who can decrypt it and

send back the indexes of the tuples who are dominated to 𝒞2. 𝒞1 can delete those tuples

dominated by Epk(tmin) and the tuple Epk(tmin) from Epk(T). The algorithm continues until

there is no tuples left.

Return Skyline Results to Client.

Once 𝒞1 has the encrypted skyline result, it can directly send them to the client if the client

has the private key. However, in our setting, the client does not have the private key for better

security. Lines 25 to 39 in Algorithm 4 illustrate how the client obliviously obtains the final

skyline query result with the help of 𝒞1 and 𝒞2, at the same time, 𝒞1 and 𝒞2 know nothing

about the final result. Consider the skyline tuples Epk(p1), …, Epk(pk) in skyline pool, where

k is the number of skyline. The idea is for 𝒞1 to add a random noise ri[j] to each pi[j] in

ciphertext and then sends the encrypted randomized values αi[j] to 𝒞2. 𝒞1 also sends the

noise ri[j] to client. At the same time, 𝒞2 decrypts the randomized values αi[j] and sends the

Liu et al. Page 13

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

result ri′[j] to client. Client receives the random noise ri[j] from 𝒞1 and randomized values of

the skyline points αi[j] from 𝒞2, and removes the noise by computing pi[j] = ri′[j] − ri[j] for i

= 1, …, k and j = 1, …, m as the final result.

Algorithm 4.

Basic Secure Skyline Protocol

Input: 𝒞1 has Epk(P), Epk(T) and 𝒞2 has sk.

Output: client knows the skyline query result.

1 Compute minimum attribute sum;

2 𝒞1:

3 if there is no tuple in Epk(T) then

4 break;

5 for i = 1 to n do

6 Epk S ti = Epk ti[1] × … × Epk ti[m] mod N2;

7 𝒞1 and 𝒞2:

8 Epk S tmin = SMIN Epk S t1 , …, Epk S tn ;

9 Select the skyline with minimum attribute sum;

10 𝒞1:

11 for i = 1 to n do

12 αi = Epk S tmin
N − 1 × Epk S ti mod N2;

13
 αi′ = αi

ri mod N2, where ri ∈ ℤN
+;

14 send α′ to 𝒞2;

15 𝒞2:

16 decrypt α′ and tell 𝒞1 which one equals to 0;

17 𝒞1:

18 add the corresponding Epk(pmin) to the skyline pool;

19 Eliminate dominated tuples;

20 𝒞1 and 𝒞2:

21 use SDOM protocol to determine the dominance relationship between Epk(tmin) and other tuples;

22 delete those tuples dominated by Epk(tmin) and Epk(tmin);

23 GOTO Line 1;

24 Return skyline results to client;

25 𝒞1:

26 for i = 1 to k do

27 for j = 1 to m do

28 αi[j] = Epk pi[j] × Epk ri[j] mod N2, where ri[j] ∈ ℤN
+;

Liu et al. Page 14

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

29 send αi[j] to 𝒞2 and ri[j] to client for all i = 1, ..., k; j = 1, ..., m;

30 𝒞2:

31 for i = 1 to k do

32 for j = 1 to m do

33 ri[j]′ = Dsk αi[j] ;

34 send ri[j]′ to client;

35 Client:

36 receive ri[j] from 𝒞1 and ri[j]′ from 𝒞2;

37 for i = 1 to k do

38 for j = 1 to m do

39 pi[j] = ri[j]′ − ri[j];

6.2 Fully Secure Skyline Protocol

The basic protocol clearly reveals several information to 𝒞1 and 𝒞2 as follows.

• When selecting the skyline tuple with minimum attribute sum, 𝒞1 and 𝒞2 know

which tuples are skyline points, which violates our result privacy requirement.

• When eliminating dominated tuples, 𝒞1 and 𝒞2 know the dominance relationship

among tuples with respect to the query tuple q, which violates our data pattern

privacy requirement.

Algorithm 5.

Fully Secure Skyline Protocol

Input: 𝒞1 has Epk(P), Epk(T) and 𝒞2 has sk.

Output: 𝒞1 knows the encrypted skyline Epk(psky).

1 Order preserving perturbation;

2 𝒞1:

3 for i = 1 to n do

4 Epk S ti = Epk ti[1] × … × Epk ti[m] mod N2;

5 𝒞1 and 𝒞2:

6 for i = 1 to n do

7 Epk S ti = SBD Epk S ti ;

8 𝒞1:

9 for i = 1 to n do

10 Epk S ti = Epk S ti B
(1) , …, Epk S ti B

(l) ,

Liu et al. Page 15

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 Epk S ti B
(l + 1) , …, Epk S ti B

(l + logn) , where

 S ti B
(l + 1), …, S ti B

(l + logn)
 is the binary representation of an exclusive vale of [0, n − 1];

11
 Epk S ti = ∏γ = 1

l Epk S ti B
(γ) 2l − γ

mod N2;

12 𝒞1 and 𝒞2:

13 Epk S tmin = SMIN Epk S t1 , …, Epk S tn ;

14 𝒞1:

15 λ = Epk S tmin × Epk(MAX)−1 r mod N2, where ri ∈ ℤN
+;

16 send λ to 𝒞2;

17 𝒞2:

18 if Dsk(λ) = 0 then

19 break;

20 Select skyline with minimum attribute sum;

21 Epk psky , Epk tsky = FindOneSkyline
Epk(P), Epk(T), Epk S ti , Epk S tmin

 (Algorithm 6);

22 Eliminate dominated tuples;

23 𝒞1 and 𝒞2:

24 for i = 1 to n do

25 for γ = 1 to l do

26 Epk S ti B
(γ) = SOR V i, Epk S ti B

(γ) ;

27 𝒞1:

28 for i = 1 to n do

29
 Epk S ti = ∏γ = 1

l Epk S ti B
(γ) 2l − γ

mod N2;

30 𝒞1 and 𝒞2:

31 for i = 1 to n do

32 V i = SDOM Epk tsky , Epk ti ;

33 Lines 23–32;

34 GOTO Line 1;

To address these leakage, we propose a fully secure protocol in Algorithm 5. The step to

compute minimum attribute sum and return the results to the client are the same as the basic

protocol. We focus on the following steps that are designed to address the disclosures of the

basic protocol.

Liu et al. Page 16

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Select Skyline with Minimum Attribute Sum.—Once 𝒞1 obtains the encrypted

minimum attribute sum Epk(S(tmin)), the challenge is how to select the tuple Epk(tmin) with

the minimum sum Epk(S(tmin)) as a skyline tuple such that 𝒞1 and 𝒞2 know nothing about

which tuple is selected. We present a protocol as shown in Algorithm 6.

We first need to determine which S(ti) is equal to S(tmin). Note that this cannot be achieved

by the SMIN protocol which only selects the minimum value. Here we propose an efficient

way, exploiting the fact that it is okay for 𝒞2 to know there is one equal case (since we are

selecting one skyline tuple) as long as it does not know which one. 𝒞1 first computes

αi′ = Epk S ti − S tmin × ri , and then sends a permuted list β = π α′ to 𝒞2 based on a

random permutation sequence π. The permutation hides which sum is equal to the minimum

from 𝒞2 while the uniformly random noise ri masks the difference between each sum and

the minimum sum. Note that αi′ is uniformly random in ℤN
+ except when S(ti) − S(tmin) = 0,

in which case αi′ = 0. 𝒞1 decrypts βi, if it is 0, it means tuple i has smallest Epk(S(ti)).

Therefore, 𝒞2 sends Epk(1) to 𝒞1, otherwise, sends Epk(0).

Algorithm 6.

Find One Skyline

Input: 𝒞1 has encrypted dataset Epk(P), Epk(T), Epk(S(ti)), and Epk(S(tmin)), 𝒞2 has private key sk.

Output: 𝒞1 knows one encrypted skyline Epk(psky) and Epk(tsky).

1 𝒞1:

2 for i = 1 to n do

3 αi = Epk S tmin
N − 1 × Epk S ti mod N2;

4
 αi′ = αi

ri mod N2, where ri ∈ ℤN
+;

5 send β = π α′ to 𝒞2;

6 𝒞2:

7 receive β from 𝒞1;

8 for i = 1 to n do

9 βi′ = Dsk βi ;

10 if βi′ = 0 then

11 Ui = Epk(1);

12 else

13 Ui = Epk(0);

14 send U to 𝒞1;

15 𝒞1:

Liu et al. Page 17

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

16 receive U from 𝒞2;

17 V = π−1(U);

18 for i = 1 to n do

19 for j = 1 to m do

20 Epk ti[j]′ = SM V i, Epk ti[j] ;

21 Epk pi[j]′ = SM V i, Epk pi[j] ;

22 for j = 1 to m do

23 Epk t[j]′ = ∏i = 1
n Epk ti[j]′ mod N2;

24 Epk p[j]′ = ∏i = 1
n Epk pi[j]′ mod N2;

25 add Epk psky = Epk p[1]′ , …, Epk p[m]′ to skyline pool;

26 use Epk tsky = Epk t[1]′ , …, Epk t[m]′ to compare with other Epk(ti);

After receiving the encrypted permuted bit vector U as the equality result, 𝒞1 applies a

reverse permutation, and obtains an encrypted bit vector V, where one tuple has bit 1

suggesting it has the minimum sum. In order to obtain the attribute values of this tuple, 𝒞1
and 𝒞2 employ SM protocol to compute encrypted product of the bit vector and the attribute

values, Epk ti[j]′ and Epk pi[j]′ . Since all other tuples except the one with the minimum

sum will be 0, we can sum all Epk ti[j]′ and Epk pi[j]′ on each attribute and 𝒞1 can obtain

the attribute values corresponding to the skyline tuple.

Order Preserving Perturbation.—We can show that Algorithm 6 is secure and correctly

selects the skyline tuple if there is only one minimum. A potential issue is that multiple

tuples may have the same minimum sum. If this happens, not only is this information

revealed to 𝒞2, but also the skyline tuple cannot be selected (computed) correctly, since the

bit vector contains more than one 1 bit. To address this, we employ order-preserving

perturbation which adds a set of mutually different bit sequence to a set of values such that:

1) if the original values are equal to each other, the perturbed values are guaranteed not

equal to each other, and 2) if the original values are not equal to each other, their order is

preserved. The perturbed values are then used as the input for Algorithm 6.

Concretely, given n numbers in their binary representations, we add a logn -bit sequence to

the end of each Epk(S(ti)), each represents a unique bit sequence in the range of [0, n − 1].

This way, the perturbed values are guaranteed to be different from each other while their

order is preserved since the added bits are the least significant bits. Line 10 of Algorithm 5

shows this step. We note that we can multiply each sum Epk(S(ti)) by n and uniquely add a

value from [0, n − 1] to each Epk(S(ti)), hence guarantee they are not equal to each other.

This will be more efficient than adding a bit sequence, however, since we will need to

perform the bit decomposition later in the protocol to allow bit operators, we run

Liu et al. Page 18

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

decomposition by the SBD protocol for l bits in the beginning of the protocol rather than

l + logn bits later.

‘Eliminate Dominated Tuples.—Once the skyline tuple is selected, it can be added to

the skyline pool and then used to eliminate dominated tuples. In order to do this, 𝒞1 and 𝒞2
cooperatively use SDOM protocol to determine the dominance relationship between

Epk(tmin) and other tuples. The challenge is then how to eliminate the dominated tuples

without 𝒞1 and 𝒞2 knowing which tuples are being dominated and eliminated. Our idea is

that instead of eliminating the dominated tuples, we “flag” them by securely setting their

attribute values to the maximum domain value. This way, they will not be selected as skyline

tuples in the remaining iterations. Concretely, we can set the binary representation of their

attribute sum to all 1s so that it represents the domain maximum. Since we added logn bits

to Epk S ti , the new Epk S ti , has l + logn bits. Therefore, the maximum value

MAX = 2l + logn − 1. To obliviously set the attributes of only dominated tuples to MAX,

based on the encrypted dominance output Vi of the dominance protocol, 𝒞1 and 𝒞2
cooperatively employ SOR of the dominance boolean output and the bits of the S(ti). This

way, if the tuple is dominated, it will be set to MAX. Otherwise, it will remain the same. If

Epk(S(tmin)) = Epk(MAX), it means all the tuples are processed, i.e., flagged either as a

skyline or a dominated tuple, the protocol ends.

Example 3.: We illustrate the entire protocol through the running example shown in Table 3.

Please note that all column values are in encrypted form except columns π and β′. Given the

mapped data points ti, 𝒞1 first computes the attribute sum Epk(S(ti)) shown in the third

column. We set l = 5, 𝒞1 gets the binary representation of the attribute sum Epk S ti
Because n = 4, 𝒞1 obliviously adds the order-preserving perturbation log4 = 2 bits to the

end of Epk S ti respectively to get the new Epk(S(ti)) (shown in the sixth column). Then

𝒞1 gets Epk(S(tmin)) = Epk(30) by employing SMIN.

The protocol then turns to the subroutine Algorithm 6 to select the first skyline based on the

minimum attribute sum. 𝒞1 computes αi = Epk S ti − S tmin . Assume the random noise

vector r = 3, 9, 31, 2 and the permutation sequence π = 2, 1, 4, 3 , 𝒞1 sends the encrypted

permuted and randomized difference vector β to 𝒞2. After decrypting β, 𝒞2 gets β′ and then

sends U to 𝒞1. 𝒞1 computes V by applying a reverse permutation. By employing SM with

V, 𝒞1 computes Epk ti[1]′ , Epk ti[2]′ and Epk pi[1]′ , Epk pi[2]′ . After summing all

column values, 𝒞1 adds Epk(psky) = (Epk(39), Epk(120)) to skyline pool and uses Epk(tsky) =

(Epk(2), Epk(5)) to eliminate dominated tuples.

The protocol now turns back to the main routine in Algorithm 5 to eliminate dominated

tuples. 𝒞1 and 𝒞2 use SOR with V to make Epk(S(tmin)) = Epk(127) and Epk(S(ti)) =

Epk(S(ti)) for i ≠ min . Now, only Epk(S(tmin)) = Epk(S(t2)) has changed to Epk(127) which is

Liu et al. Page 19

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

“flagged” as MAX. We emphasize that 𝒞1 does not know this value has changed because the

ciphertext of all tuples has changed. Next, 𝒞1 and 𝒞2 find the dominance relationship

between Epk(tsky) and Epk(ti) by SDOM protocol. 𝒞1 obtains the dominance vector V. Using

same method, 𝒞1 flags Epk(S(t3)) and Epk(S(t4)) to Epk(127). The protocol continues until

all are set to MAX.

Security Analysis.—Based on Theorem 1, the protocol is secure if the subprotocols are

secure and the intermediate results are random or pseudo-random. We focus on the

intermediate result here. From 𝒞1’s view, the intermediate result includes U. Because U is

ciphertext and 𝒞1 does not have the secret key, 𝒞1 can simulate U based on its input and

output. From 𝒞2’s view, the intermediate result includes β. β contains one Epk(0) and m − 1

ciphertext of any positive value. After the permutation π of 𝒞1, 𝒞2 cannot determine where

is the Epk(0). Therefore, 𝒞2 can simulate β based on its input and output. Hence the protocol

is secure.

Computational Complexity Analysis.—The subroutine Algorithm 6 requires O(n)

decryptions in Line 9, O(nm) encryptions and decryptions in Lines 20 and 21. Thus,

Algorithm 6 requires O(nm) encryptions and decryptions in all. In Algorithm 5, Line 7

requires O(nl) encryptions and decryptions. Line 10 requires O(n logn) encryptions. Line 12

requires O((l + logn)n) encryptions and decryptions. Line 26 requires O(l + logn)
encryptions and decryptions. Line 32 requires O(nm) encryptions and decryptions. Thus,

this part requires O((l + logn)n + nm) encryptions and decryptions. Because this part runs k
times, the fully secure skyline protocol requires O(k(l + logn))n + knm) encryptions and

decryptions in total.

7 PERFORMANCE ANALYSIS AND OPTIMIZATIONS

In this section, we illustrate two optimizations to further reduce the computation load. We

first show a data partitioning optimization in Section 7.1, and then show a lazy merging

optimization in Section 7.2.

7.1 Optimization of Data Partitioning

As shown in the previous section, the overall run time complexity depends on the number of

points (n), the number of skyline points (k), the number of decomposed bits (l) which is

determined by the domain of the attribute values, and the number of dimensions (m). A

straightforward way to enhance the performance is to partition the input dataset into

subdatasets and then we can use a divide-and-conquer approach to avoid unnecessary

computations. Furthermore, the partitioning also allows effective parallelism.

Liu et al. Page 20

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 7.

Parallel Implementation via Data Partitioning

Input: A dataset P of n points in m dimensions.

Output: Skyline of P.

1 divide n points into s partitions and compute the skyline points in each partition;

2 set the state of all partitions as uncomputed;

3 np ← number of uncomputed partitions;

4 nt ← number of threads;

5 nit ← number of idle threads;

6 num ← number of computed and unmerged results;

7 while np > 0 or nit > 0 do

8 if np > 0 and nit > 0 then

9 assign one uncomputed partition to each idle thread;

10 else

11 if np == 0 and nit == nt − 1 and num == 0 then

12 break;

13 wait until at least one thread finishes;

14 set the state of computed partition as unmerged;

15 if num > 1 then

16 merge each two into one new partition;

17 set new partition state as uncomputed;

The basic idea of data partitioning is to divide the dataset into a set of initial partitions,

compute the skyline in each partition, and then continuously merge the skyline result of the

partitions into new partitions and compute their skyline, until all partitions are merged into

the final result. This can be implemented with either a single thread (sequentially) or

multiple threads (in parallel). We describe our data partitioning scheme in Algorithm 7.

Given an input dataset, the number of partitions s is specified as one parameter. We will

show how to calculate the optimal number of partitions in Subsection 7.1.1. We first divide

the input data into s partitions and compute the skyline in each partition in Line 1, and then

set the state of all partitions as uncomputed in Line 2. In Line 7, the algorithm continues

with uncomputed partitions or idle threads. In Line 8, if there are some uncomputed

partitions and there are some idle threads, we assign one uncomputed partition to each idle

thread in Line 9. In Line 11, if there is no uncomputed partition (np == 0), all computed

partitions are merged (num == 0), and there is only one working thread (nit == nt − 1), that

means all partitions are computed and merged, the algorithm finishes. Otherwise, we wait

until at least one thread finishes and set the state of computed partition which now only

contains skylines in that partition as unmerged in Lines 13–14. In Line 15, if there are some

computed and unmerged partitions, we merge each two into one new partition and set the

state as uncomputed in Lines 16–17.

7.1.1 Discovery of Optimal Number of Partitions—In this subsection, we show

how to calculate the optimal number of partitions for minimizing the total computation load

Liu et al. Page 21

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

given an independent and identically distributed random dataset. We first show the theorem

of the expected number of skyline points as follows.

Theorem 1 (Number of Skyline Points) [4].: Given an independent and identically
distributed random dataset of n points in m dimensional space, the expected number of
skyline points is O(lnm−1n).

In the computational complexity analysis of fully secure skyline protocol, the time

complexity is O(kn(l + m + logn)) . According to Theorem 1, the expected output size of

input data with size n
s in m dimensional space is lnm − 1 n

s . Therefore, in this step, the

computation load required for each partition is lnm − 1 n
s × n

s × log n
s + m + l . Since we

have s partitions, the total computation load required is

s × lnm − 1 n
s × n

s × log n
s + m + l = n × lnm − 1 n

s × log n
s + m + l . This is the initial layer

of the computation, which we refer to layer0. We use 0 because the following layers have a

slightly different formula.

Before we proceed, we denote the number of layers excluding layer0 as nlayer. For each layer

i, we denote the number of partitions that needs to be computed as np,i, the size of a single

input partition as sizein,i, the output size of a single partition as sizeout,i, and the amount of

computation load as W layeri
. A visual graph about the layer structure is shown in Fig. 4. In

the ideal case, we have s = 2h partitions, where h is an integer. For each layer, we reduce the

number of partitions by merging two partitions to form a new partition which contains

skyline points of those two merged partitions. After h layers’ merging, we obtain only one

partition which is the final skyline result.

Number of Partitions and Layers.: To simplify the analysis, we assume the merging of two

partitions happens at the same layer (although mergings from different layers may happen at

the same time). As shown in Fig. 4, the datasets for layeri (i > 1) comes from the merging of

two computed partitions from layeri−1. Therefore, in layeri, the number of partitions (np,i) is
s

2i given the number of partitions in layer1 is s
2 . Meanwhile, layer0 has s partitions, layer1

has s
2 partitions, and the last layer has one partition, so the number of layers excluding layer0

(nlayer) is log s.

Output Size.: A partition in layeri is merged from 2i partitions in layer0. Therefore, the

expected output size of one partition at layeri corresponds to the expected output size of 2i

partitions in layer0. That is, in layeri, the expected output size of a single partition (sizeout,i)

is lnm − 1 2in
s .

Input Size.: In layeri, the size of each input partition (sizein,i) is twice of the single partition

output size from the last layer because it is the merging of two outputs from the last layer. In

Liu et al. Page 22

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

other words, sizein, i = 2 × sizeout, i − 1 = 2 × lnm − 1 2i − 1n
s . For example, the expected single

partition output size of layer0 is lnm − 1 n
s and the expected size of each input partition in

layer1 is 2 × lnm − 1 n
s .

Computation Load.: With np,i, sizein,i, and sizeout,i, we can obtain the general formula for

computation load of layeri (i ≠ 0) as W layeri
= np, i × sizeout, i × sizein, i × m + log sizein, i

according to the time complexity of our fully secure skyline protocol. And since we have

nlayer layers, the overall computation load is calculated as follows.

Wall = Wlayer0
+ ∑

1

nlayer
Wlayeri

= Wlayer0
+ ∑

1

nlayer
np, i × sizeout, i × sizein, i × m + log sizein, i

= n × lnm − 1 n
s × logn

s + m + l + ∑
i = 1

logs s

2i × lnm − 1 2in
s

× 2lnm − 1 2i − 1n
s × log 2lnm − 1 2i − 1n

s + m + l

Optimal Number of Partitions.: Without loss of generality, from now on, we assume n = 2u

and s = 2v, where u, v ∈ ℤ+ and 1 ≤ v < u . To find out the optimal number of partitions, our

goal is to minimize Wall against s or v. Because n = 2u and s = 2v, we have the computation

load W(v) corresponding to the number of partition s = 2v as follows.

W(v) = 2u × (u − v)m − 1 × lnm − 12 × (u − v + m + l)

+ ∑
i = 1

v
2v − i + 1 × (i + u − v)m − 1 × (i − 1 + u − v)m − 1

× ln2m − 22 × log 2 × (i − 1 + u − v)m − 1lnm − 12 + m + l

We denote the part after ∑ as WIv, i . Notice that WIv, i = WIv + 1, i + 1, we have

W(v + 1) − W(v) = Wlayer0, v + 1 − Wlayer0, v + ∑
i = 1

v + 1
WIv + 1, i − ∑

i = 1

v
WIv, i

= Wlayer0, v + 1 − Wlayer0, v + WIv + 1, 1

Liu et al. Page 23

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Notice that the minimal value of W lies at the position where W(v + 1) − W(v) changes from

negative to positive. Observe that in our setting, all variables can only be positive integer,

which means we need to find out the integer v such that f(v) = W(v + 1) − W(v) changes

from negative to positive. By letting x = u − v, we have

f (x) = WIv + 1, 1 + Wlayer0, v + 1 − Wlayer0, v

= 2v + 1 × (x)m − 1 × (x − 1)m − 1 × ln2m − 22

× log 2 × (x − 1)m − 1lnm − 12 + m + l

+ 2u × (x − 1)m − 1 × lnm − 12 × (x − 1 + m + l)

− 2u × xm − 1 × lnm − 12 × (x + m + l)

= 2ulnm − 12 × 21 − x × xm − 1 × (x − 1)m − 1 × lnm − 12

× log 2 × (x − 1)m − 1lnm − 12 + m + l

+ (x − 1)m − 1 × (x − 1 + m + l) − xm − 1 × (x + m + l))

To obtain the minimal value of f(x), we can ignore the preceding 2u lnm−12 which is always

positive. Then we can easily solve the problem to find out x where f(x) changes from

positive to negative given m and l.

For example, we set l = 20 in our experiments, if m = 2, then the minimal value of W(v) is

obtained at x = 1, i.e., u − v = 1. This actually corresponds to the case where each initial

partition has two data points. If m = 3, we have x = 6, i.e., u − v = 6. That is, for three

dimensional datasets, the optimal number of partitions is 2u−6 and each partition has 26

points.

7.2 Optimization of Lazy Merging

In this subsection, we show another optimization with lazy merging.

Lazy Merging.—In the hierarchical divide-and-conquer approach proposed in the last

subsection, results from any two computed partitions are merged immediately as a new

partition for computing skyline points. However, immediate merging might not be optimal in

the later stage of the program because it requires 1) more merging overhead and 2) more

unnecessary computations. In the later stage of the program, there are only a few points in

each partition. At this time, merging overhead is high compared to the computation time.

Therefore, we can employ lazy merging which incurs less merging overhead. Furthermore,

in the later stage of the program, those remaining points are likely to follow an anti-

correlated distribution as they are skyline points of a partition at a previous layer. For anti-

correlated dataset, data partitioning will incur more unnecessary computations. Consider an

extreme example, if all the remaining points are the final skyline points, all the computations

in each partition are unnecessary. Therefore, we can employ lazy merging to avoid those

unnecessary computations and delay the merging operation to a later time when more

computed results are ready.

Liu et al. Page 24

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Merging Timing.—With lazy merging, we can reduce running time if and only if the

timing for lazy merging is perfect. Merging too early (immediate merging) or merging too

late does not provide enough benefit or even jeopardizes the performance. As shown in the

last subsection, for a given dataset, we can calculate the optimal number of partitions, which

is related to the dataset size. For example, given l = 20 and m = 3, we have the number of

optimal partitions as n

26 , which effectively states that the optimal size of each partition

should be 26 = 64 in the initial layer. Therefore, in our algorithm, we heuristically wait until

the size of merged partitions reach 64 before sending it for computation in the previous

example. That is, there are at least 64 points in each partition (excluding the final partition

which contains the final skyline points) to compute the skyline points.

Security Analysis.—The cloud servers can tell if the subsets are skew or uniformly

distributed in the extreme case when the distribution of entire dataset is different from the

distribution of subsets based on the different number of returned skyline points from each

partition. However, the probability is very low because we randomly partition the dataset,

and the distribution of subsets should be very similar to the distribution of entire dataset.

Moreover, this attack can be easily fixed by returning all the tuples in each iteration. That is,

cloud servers 𝒞1 and 𝒞2 return all skyline tuples with true values and non-skyline tuples

with MAX values. In this way, the cloud servers cannot know the skyline distribution of

subsets, thus, the cloud servers cannot get any new information from the partitions.

8 EXPERIMENTS

In this section, we describe our experimental setup and optimized parallel system design.

For comparison purposes, we have implemented both protocols: the Basic Secure Skyline

Protocol (BSSP) in Section 6.1, and the Fully Secure Skyline Protocol (FSSP) in Section

6.2. Since there is no existing solution for secure skyline computation, we use the basic

approach as a baseline which is efficient but leaks some indirect data patterns to the cloud

server. We have also designed a parallel framework for effective reducing computation time

together with the two optimizations, data partitioning and lazy merging.

8.1 Experiment Setup

We implemented all algorithms in C with all multithreading using POSIX threads and all

communication using sockets. We ran single-machine-experiments on a machine with Intel

Core i7–6700K 4.0 GHz running Ubuntu 16.04. The distributed version was tested on a

cluster of 64 machines with Intel Core i7–2600 3.40 GHz running CentOS 6, which we will

provide more details in the next section. In our experiment setup, both 𝒞1 and 𝒞2 were

running on the same machine. The reported computation time is the total computation time

of the 𝒞1 and 𝒞2.

Datasets.—We used both synthetic datasets and a real NBA dataset in our experiments. To

study the scalability of our methods, we generated independent (INDE), correlated (CORR),

and anti-correlated (ANTI) datasets following the seminal work [5]. We also built a dataset

that contains 2384 NBA players who are league leaders of playoffs.2 Each player has five

Liu et al. Page 25

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

attributes that measure the player’s performance: Points (PTS), Rebounds (REB), Assists

(AST), Steals (STL), and Blocks (BLK).

Data Partitioning.—This procedure can be done either using single thread or multiple

threads. We conducted single thread experiment for verifying the optimal number of

partitions. And we refer to multithreading implementation as local parallelism. The

algorithm is shown in Algorithm 7.

To further demonstrate the scalability of our algorithm, we also implemented a distributed

version, which employs a manager-worker model. The manager distributes partitions to

workers, the workers compute the skyline points in any given dataset and return the results

to the manager, which works similarly as the local parallelism. The only difference is that

the manager could implement sophisticated load balancing algorithm to fully utilize the

computation resources. The overall data partitioning scheme is very similar to the existing

MapReduce approach. However, we didn’t employ existing MapReduce framework because

existing crypto library in Java does not satisfy our requirements.

Lazy Merging.—The lazy merging delays the merging operation until there are enough

results to form a partition with optimal size, which is detailed shown in Section 7.1.1. All

experiments using optimizations are conducted using 10 different independent and

identically distributed random datasets of size 512 and dimension 3 with three repeated runs

for each dataset.

8.2 Impact of Parameters

In this subsection, we evaluate our protocols by varying the number of tuples (n), the

number of dimensions (m), and the key size (K) on datasets of various distributions.

Impact of Number of Tuples n.—Fig. 6a, 6b, 6c, 6d show the time cost of different n on

CORR, INDE, ANTI, and NBA datasets, respectively. We observe that for all datasets, the

time cost increases approximately linearly with the number of tuples n, which is consistent

with our complexity analysis. While BSSP is very efficient, FSSP does incur more

computational overhead for full security. Comparing different datasets, the time cost is in

slightly increasing order for CORR, INDE, and ANTI, due to the increasing number of

skyline points of the datasets. The time for NBA dataset is low due to its small number of

tuples.

Impact of Number of Dimensions m.—Fig. 7a, 7b, 7c, 7d show the time cost of

different m on CORR, INDE, ANTI, and NBA datasets, respectively. For all datasets, the

time cost increases approximately linearly with the number of dimensions m. FSSP also

shows more computational overhead than BSSP. The different datasets show a similar

comparison as in Fig. 6. The time for NBA dataset is lower than the CORR dataset which

suggests that the NBA data is strongly correlated.

2.The data was extracted from http://stats.nba.com/leaders/all-time/?ls=iref:nba:gnav on 04/15/2015

Liu et al. Page 26

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://stats.nba.com/leaders/all-time/?ls=iref:nba:gnav

Impact of Encryption Key Size K.—Fig. 8a, 8b, 8c, 8d show the time cost with

different key size used in the Paillier cryptosystem on CORR, INDE, ANTI, and NBA

datasets, respectively. A stronger security indeed comes at the price of computation

overhead, i.e., the time cost increases significantly, almost exponential, when K grows.

Communication Overhead.—We also measured the overall time which includes

computation time reported earlier and the communication time between the two server

processes. Fig. 5 shows the computation and communication time of different n on INDE

dataset of FSSP. We observe that computation time only takes about one third of the total

time in this setting.

8.3 Effect of Optimizations

In this subsection, we evaluate the efficiency of our proposed two optimizations, data

partitioning and lazy merging.

Data Partitioning.—Fig. 9 shows the relationship between theoretical computation load

and real computation time. The theoretical computation load has an optimal value at the

partition 29–6 = 8, which indicates dividing the original dataset into 8 partitions will give the

smallest amount of computation load. Using ten datasets and three repeated runs for each

dataset, we obtained the real computation time, which perfectly matches the theoretical

computation load at the region with small number of partitions. With large number of

partitions, the experimental results deviate from theoretical derivations. The reason for the

deviation is that when the number of points in each partition is too small for large number of

partitions, the number of skyline points in each partition violates our assumption of data

distribution. For example, it is hard to say a dataset with only five points is an independent

and identically distributed random dataset. Therefore, computation time for each partition

does not follow our derivation. Furthermore, the large number of partitions will incur more

merging overhead.

Lazy Merging.—As yet another optimization, lazy merging plays an important role

especially when the number of partitions is large. In Fig. 10, we show the computation time

with and without lazy merging, respectively. It can be seen that overall with lazy merging,

the run time can be effectively reduced. The larger number of partitions, the larger number

of time difference, which is reasonable because the larger number of partitions, the larger

number of merging operations and more rounds of computation. We can also see that for one

partition (no partition) and two partitions, there is no time reduction, the reasons are that

there is no merging operation need for one partition and there is no lazy merging operation

for two partitions.

To summarize, both data partitioning and lazy merging have been proven effective and can

significantly reduce the computation time even using single thread.

8.4 Effect of Parallelism

In this subsection, we demonstrate the speedup of our protocol by using multithreading

(local parallelism) on independent and identically distributed random datasets with 512

Liu et al. Page 27

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

points and distributed computing with 64 commercial desktops (global parallelism) on

independent and identically distributed random datasets with 65536 points.

As shown in Fig. 11, if we use one machine with up to 4 threads, the protocol almost shows

a linear speedup. As the number of threads doubles, the computation time reduces to half.

However, as we further increase the number of threads, we only see sub-linear speedup. We

believe this is due to the small size of the dataset. In distributed computation experiments,

we employed 4, 8,16, 32, 64, and 128 threads, respectively. It is clear that at the beginning

the protocol shows a linear speedup. While the number of threads reaches 64, it switches to

sub-linear speedup again due to the small size of dataset. In both local and global

parallelism, we observe that the difference between with lazy merging and without lazy

merging is too small to be observed. In other words, when we have enough computation

power, lazy merging provides limited improvement, which is opposite to what we see in

single-thread experiment.

9 CONCLUSIONS

In this paper, we proposed a fully secure skyline protocol on encrypted data using two non-

colluding cloud servers under the semi-honest model. It ensures semantic security in that the

cloud servers knows nothing about the data including indirect data patterns, query, as well as

the query result. In addition, the client and data owner do not need to participate in the

computation. We also presented a secure dominance protocol which can be used by skyline

queries as well as other queries. Furthermore, we demonstrated two optimizations, data

partitioning and lazy merging, to further reduce the computation load. Finally, we presented

our implementation of the protocol and demonstrated the feasibility and efficiency of the

solution. As for future work, we plan to optimize the communication time complexity to

further improve the performance of the protocol.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This research is supported in part by the Patient-Centered Outcomes Research Institute (PCORI) under award
ME-1310–07058, the National Institute of Health (NIH) under award R01GM114612, and an NSERC Discovery
grant.

Biographies

Jinfei Liu is a joint postdoctoral research fellow with Emory University and the Georgia

Institute of Technology. His research interests include skyline queries, data privacy and

Liu et al. Page 28

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

security, and machine learning. He has published more than 20 papers in premier journals

and conferences including VLDB, ICDE, CIKM, and IPL. He is a member of the IEEE.

Juncheng Yang is a working toward the master’s degree at Emory University. His research

interests include computer security, database, smart cache in storage, and distributed system.

He has published more than 10 papers in premier conferences including ICDE and SoCC.

He is a member of the IEEE.

Li Xiong is a professor of computer science and biomedical informatics with Emory

University. She conducts research that addresses both fundamental and applied questions at

the interface of data privacy and security, spatiotemporal data management, and health

informatics. She has published more than 100 papers in premier journals and conferences

including the IEEE Transactions on Knowledge and Data Engineering, the Journal of the
American Medical Informatics Association, VLDB, ICDE, CCS, and WWW She currently

serves as associate editor for the IEEE Transactions on Knowledge and Data Engineering
(TKDE) and on numerous program committees for data management and data security

conferences. She is a member of the IEEE.

Jian Pei is currently a Canada research chair (Tier 1) in big data science and a professor

with the School of Computing Science, Simon Fraser University, Canada. He is one of the

most cited authors in data mining, database systems, and information retrieval. Since 2000,

he has published one textbook, two monographs, and more than 200 research papers in

refereed journals and conferences, which have been cited by more than 77,000 in literature.

He was the editor-in-chief of the IEEE Transactions of Knowledge and Data Engineering
(TKDE) in 2013–2016, and is currently a director of the Special Interest Group on

Knowledge Discovery in Data (SIGKDD) of the Association for Computing Machinery

(ACM). He is a fellow of the ACM and of the IEEE.

Liu et al. Page 29

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

REFERENCES

[1]. Baldimtsi F and Ohrimenko O, “Sorting and searching behind the curtain,” in Proc. Int. Conf.
Financial Cryptography Data Secur, 2015, pp. 127–146.

[2]. Beimel A, “Secret-sharing schemes: A survey,” in Proc. Int. Conf. Coding Cryptology, 2011, pp.
11–46.

[3]. Bentley JL, “Multidimensional divide-and-conquer,” Commun. ACM, vol. 23, no. 4, pp. 214–229,
1980.

[4]. Bentley JL, Kung HT, Schkolnick M, and Thompson CD, “On the average number of maxima in a
set of vectors and applications,” J. ACM, vol. 25, no. 4, pp. 536–543, 1978.

[5]. Börzsönyi S, Kossmann D, and Stocker K, “The skyline operator,” in Proc. 17th Int. Conf. Data
Eng.,, 2001, pp. 421–430.

[6]. Bothe S, Cuzzocrea A, Karras P, and Vlachou A, “Skyline query processing over encrypted data:
An attribute-order-preserving-free approach,” in Proc. 1st Int. Workshop Privacy Secuirty Big
Data, 2014, pp. 37–43.

[7]. Bothe S, Karras P, and Vlachou A, “eskyline: Processing skyline queries over encrypted data,”
Proc. VLDB Endowment, vol. 6, no. 12, pp. 1338–1341, 2013.

[8]. Chan CY, Jagadish HV, Tan K-L, Tung AKH, and Zhang Z, “Finding k-dominant skylines in high
dimensional space,” in Proc. ACM SIGMOD Conf., 2006, pp. 503–514.

[9]. Chen W, Liu M, Zhang R, Zhang Y, and Liu S, “Secure outsourced skyline query processing via
untrusted cloud service providers,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun.,
2016, pp. 1–9.

[10]. V. Costan and S. Devadas, “Intel sgx explained,” Technical report, Cryptology ePrint Archive,
Report 2016/086, 2016 [Online]. Available: http://eprint.iacr.org

[11]. Dellis E and Seeger B, “Efficient computation of reverse skyline queries,” in Proc. 33rd Int. Conf.
Very large Data Bases, 2007, pp. 291–302.

[12]. Elmehdwi Y, Samanthula BK, and Jiang W, “Secure k-nearest neighbor query over encrypted
data in outsourced environments,” in Proc. IEEE 30th Int. Conf. Data Eng, 2014, 664–675.

[13]. Erkin Z, Franz M, Guajardo J, Katzenbeisser S, Lagendijk I, and Toft T, “Privacy-preserving face
recognition,” in Proc. Int. Symp. Privacy Enhancing Technol. Symp., 2009, pp. 235–253.

[14]. Feige U, Fiat A, and Shamir A, “Zero-knowledge proofs of identity,” J. Cryptology, vol. 1, no. 2,
pp. 77–94, 1988.

[15]. Gentry C, “Fully homomorphic encryption using ideal lattices,” in Proc. 41st Annu. ACM Symp.
Theory Comput, 2009, pp. 169–178.

[16]. Goldreich O, Micali S, and Wigderson A, “How to play any mental game or A completeness
theorem for protocols with honest majority,” in Proc. ACM Symp. Theory Comput., 1989, pp.
218–229.

[17]. Hacigümüs H, Iyer BR, Li C, and Mehrotra S, “Executing SQL over encrypted data in the
database-service-provider model,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2002, pp.
216–227.

[18]. Halevi S and Shoup V, “Bootstrapping for helib,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptographic Tech., 2015, pp. 641–670.

[19]. Hashem T, Kulik L, and Zhang R, “Privacy preserving group nearest neighbor queries,” in Proc.
13th Int. Conf. Extending Database Technol., 2010,489–500.

[20]. Hu H, Xu J, Ren C, and Choi B, “Processing private queries over untrusted data cloud through
privacy homomorphism,” in Proc. IEEE 27th Int. Conf. Data Eng., 2011, 601–612.

[21]. Huang Y, Evans D, Katz J, and Malka L, “Faster secure two-party computation using garbled
circuits,” in Proc. 20th USENIX Conf. Secur, 2011, pp. 35–35.

[22]. Janosi A, Steinbrunn W, Pfisterer M, and Detrano R, “Heart disease dataset, https://
archive.ics.uci.edu/ml/datasets/heart+disease,” in The UCI Archive, 1998.

[23]. Kirkpatrick DG and Seidel R, “Output-size sensitive algorithms for finding maximal vectors,” in
Proc. Symp. Comput. Geometry, 1985, pp. 89–96.

Liu et al. Page 30

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://eprint.iacr.org
https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/heart+disease

[24]. Kossmann D, Ramsak F, and Rost S, “Shooting stars in the sky: An online algorithm for skyline
queries,” in Proc. 28th Int. Conf. Very Large Data Bases, 2002, pp. 275–286.

[25]. Kung HT, Luccio F, and Preparata FP, “On finding the maxima of a set of vectors,” J. ACM, vol.
22, no. 4, pp. 469–476, 10 1975.

[26]. Li C, Zhang N, Hassan N, Rajasekaran S, and Das G, “On skyline groups,” in Proc. Conf. Inf.
Knowl. Manage., 2012, pp. 2119–2123.

[27]. Liu A, Zheng K, Li L, Liu G, Zhao L, and Zhou X, “Efficient secure similarity computation on
encrypted trajectory data,” in Proc. IEEE 31st Int. Conf. Data Eng., 2015, pp. 66–77.

[28]. Liu J, Xiong L, Pei J, Luo J, and Zhang H, “Finding pareto optimal groups: Group-based
skyline,” Proc. VLDB Endowment, vol. 8, no. 13, pp. 2086–2097, 2015.

[29]. Liu J, Xiong L, and Xu X, “Faster output-sensitive skyline computation algorithm,” Inf. Process.
Lett, vol. 114, pp. 710–713, 2014.

[30]. Liu J, Yang J, Xiong L, and Pei J, “Secure skyline queries on cloud platform,” in Proc. Int. Conf.
Data Eng., 2017, pp. 633–644.

[31]. Liu J, Yang J, Xiong L, Pei J, and Luo J, “Skyline diagram: Finding the voronoi counterpart for
skyline queries,” in Proc. Int. Conf. Data Eng., 2018.

[32]. Liu J, Zhang H, Xiong L, Li H, and Luo J, “Finding probabilistic k-skyline sets on uncertain
data,” in Proc. 24th ACM Int. Conf. Inf. Knowl. Manage., 2015, pp. 1511–1520.

[33]. Paillier P, “Public-key cryptosystems based on composite degree residuosity classes,” in Proc.
Adv. Cryptology, 1999, pp. 223–238.

[34]. Papadias D, Tao Y, Fu G, and Seeger B, “Progressive skyline computation in database systems,”
ACM Trans. Database Syst, vol. 30, no. 1, pp. 41–82, 2005.

[35]. Papadopoulos S, Bakiras S, and Papadias D, “Nearest neighbor search with strong location
privacy,” Proc. VLDB Endowment, vol. 3, pp. 619–629, 2010.

[36]. Pei J, Jiang B, Lin X, and Yuan Y, “Probabilistic skylines on uncertain data,” in Proc. 33rd Int.
Conf. Very Large Data Bases, 2007, pp. 15–26.

[37]. Qi Y and Atallah MJ, “Efficient privacy-preserving k-nearest neighbor search,” in Proc. 28th Int.
Conf. Distrib. Comput. Syst., 2008, pp. 311–319.

[38]. Song DX, Wagner D, and Perrig A, “Practical techniques for searches on encrypted data,” in
Proc. IEEE Symp. Secur. Privacy, 2000, pp. 44–55.

[39]. Veugen T, Blom F, de Hoogh SJA, and Erkin Z, “Secure comparison protocols in the semi-honest
model,” J. Sel. Topics Signal Process, vol. 9, no. 7, pp. 1217–1228, 2015.

[40]. Wong WK, Cheung DW, Kao B, and Mamoulis N, “Secure kNN computation on encrypted
databases,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2009, pp. 139–152.

[41]. Yao AC, “Protocols for secure computations (extended abstract),” in Proc. 23rd Annu. Symp.
Found. Comput. Sci., 1982, pp. 160–164.

[42]. Yao B, Li F, and Xiao X, “Secure nearest neighbor revisited,” in Proc. IEEE Int. Conf. Data Eng.,
2013, pp. 733–744.

[43]. Yi X, Paulet R, Bertino E, and Varadharajan V, “Practical k nearest neighbor queries with
location privacy,” in Proc. IEEE 30th Int. Conf. Data Eng., 2014, 640–651.

[44]. Yu W, Qin Z, Liu J, Xiong L, Chen X, and Zhang H, “Fast algorithms for pareto optimal group-
based skyline,” in Proc. ACM Conf. Inf. Knowl. Manage., 2017, pp. 417–426.

[45]. Zhu H, Meng X, and Kollios G, “Privacy preserving similarity evaluation of time series data,” in
Proc. Int. Conf. Extending Database Technol., 2014, pp. 499–510.

Liu et al. Page 31

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Secure similarity queries.

Liu et al. Page 32

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Dynamic skyline query.

Liu et al. Page 33

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Overview of protocol setting.

Liu et al. Page 34

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Layer structure (interResult is short for intermediate result).

Liu et al. Page 35

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Computation and communication time cost of different n(m = 2, K = 512).

Liu et al. Page 36

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
The impact of n(m = 2, K = 512).

Liu et al. Page 37

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
The impact of m(n = 1000, K = 512).

Liu et al. Page 38

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
The impact of K(n = 1000, m = 2).

Liu et al. Page 39

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Theoretical and experimental results.

Liu et al. Page 40

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
Computation time with and without lazy merging.

Liu et al. Page 41

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
Local parallelism and global parallelism.

Liu et al. Page 42

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 43

TABLE 1

Sample of Heart Disease Dataset

(a) Original data.

ID age trestbps

p1 40 140

p2 39 120

p3 45 130

p4 37 140

(b) Mapped Data.

ID age trestbps

t1 42 140

t2 43 130

t3 45 130

t4 45 140

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 44

TABLE 2

The Summary of Notations

Notation Definition

P dataset of n points/tuples/records

pi[j] the jth attribute of pi

q query tuple of client

n number of points in P

m number of dimensions

k number of skyline

l number of bits

K key size

pk/sk public/private key

a encrypted vector of the individual bits of a

a binary bit

(a)B
(i) the ith bit of binary number a

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 45

TA
B

L
E

 3

E
xa

m
pl

e
of

 A
lg

or
ith

m
 5

𝒞
1:

𝒞
2:

𝒞
1:

t i
(t

i[1
],

 t
i[2

])
S(

t i)
S

t i
pe

rt
.

S(
t i)

S(
t i)

 −
 S

(t
m

in
)

r
π

β′
U

V
(t

i[1
]′

, t
i[2

]′
)

(p
i[1

]′
, p

i[2
]′

)
S(

t i)
V

S(
t i)

t 1
(1

, 1
5)

16
1,

0,
0,

0,
0

1,
1

67
67

 −
 3

0
3

2
0

1
0

(0
, 0

)
(0

, 0
)

67
0

67

t 2
(2

, 5
)

7
0,

0,
1,

1,
1

1,
0

30
30

 −
 3

0
9

1
11

1
0

1
(2

, 5
)

(3
9,

 1
20

)
12

7
0

12
7

t 3
(4

, 5
)

9
0,

1,
0,

0,
1

0,
1

37
37

 −
 3

0
31

4
92

0
0

(0
, 0

)
(0

, 0
)

37
1

12
7

t 4
(4

, 1
5)

19
1,

0,
0,

1,
1

0,
0

76
76

 −
 3

0
2

3
21

7
0

0
(0

, 0
)

(0
, 0

)
76

1
12

7

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2020 July 01.

	Abstract
	INTRODUCTION
	Motivating Example.
	Challenges.
	Contributions.
	Organization.

	RELATED WORK
	Skyline.
	Secure Query Processing on Encrypted Data.
	Secure Multi-party Computation (SMC).

	PRELIMINARIES AND PROBLEM DEFINITIONS
	Skyline Definitions
	Definition 1 (Skyline).
	Definition 2 (Dynamic Skyline Query) [11].
	Example 1.

	Skyline Computation

	Algorithm 1.
	Problem Setting
	Security Model
	Adversary Model.
	Desired Privacy Properties.

	BASIC SECURITY SUBPROTOCOLS
	Secure Minimum and Secure Comparison
	Secure Less Than or Equal (SLEQ).
	Secure Equal (SEQ).
	Secure Less (SLESS).
	Secure Minimum (SMIN).

	SECURE DOMINANCE PROTOCOL
	Protocol Design.

	Algorithm 2.
	Security Analysis.
	Complexity Analysis.

	SECURE SKYLINE PROTOCOL
	Algorithm 3.
	Basic Protocol
	Compute Minimum Attribute Sum.
	Select the Skyline with Minimum Attribute Sum.
	Eliminate Dominated Tuples.

	Return Skyline Results to Client.

	Algorithm 4.
	Fully Secure Skyline Protocol

	Algorithm 5.
	Algorithm 6.
	PERFORMANCE ANALYSIS AND OPTIMIZATIONS
	Optimization of Data Partitioning

	Algorithm 7.
	Optimization of Lazy Merging
	Lazy Merging.
	Merging Timing.
	Security Analysis.

	EXPERIMENTS
	Experiment Setup
	Datasets.
	Data Partitioning.
	Lazy Merging.

	Impact of Parameters
	Impact of Number of Tuples n.
	Impact of Number of Dimensions m.
	Impact of Encryption Key Size K.
	Communication Overhead.

	Effect of Optimizations
	Data Partitioning.
	Lazy Merging.

	Effect of Parallelism

	CONCLUSIONS
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	TABLE 1
	TABLE 2
	TABLE 3

