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D2HistoSketch: Discriminative and Dynamic
Similarity-Preserving Sketching of Streaming

Histograms
Dingqi Yang, Bin Li, Laura Rettig, and Philippe Cudré-Mauroux

Abstract—Histogram-based similarity has been widely adopted in many machine learning tasks. However, measuring histogram
similarity is a challenging task for streaming histograms, where the elements of a histogram are observed one after the other in an
online manner. The ever-growing cardinality of histogram elements over the data streams makes any similarity computation inefficient
in that case. To tackle this problem, we propose in this paper D2HistoSketch, a similarity-preserving sketching method for streaming
histograms to efficiently approximate their Discriminative and Dynamic similarity. D2HistoSketch can fast and memory-efficiently
maintain a set of compact and fixed-size sketches of streaming histograms to approximate the similarity between histograms. To
provide high-quality similarity approximations, D2HistoSketch considers both discriminative and gradual forgetting weights for similarity
measurement, and seamlessly incorporates them in the sketches. Based on both synthetic and real-world datasets, our empirical
evaluation shows that our method is able to efficiently and effectively approximate the similarity between streaming histograms while
outperforming state-of-the-art sketching methods. Compared to full streaming histograms with both discriminative and gradual
forgetting weights in particular, D2HistoSketch is able to dramatically reduce the classification time (with a 7500x speedup) at the
expense of a small loss in accuracy only (about 3.25%).

Index Terms—Similarity-Preserving Sketching, Histograms, Streaming Data, Concept Drift, Discriminative Weighting
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1 INTRODUCTION

H ISTOGRAMS are an important statistic reflecting the
empirical distribution of data. They have been widely

used not only as a popular data analysis and visualization
tool, but also as an important feature for measuring sim-
ilarities between data instances, such as color histograms
for images or word histograms for documents. As a result,
histogram-based similarity measures have been extensively
exploited in many classification and clustering tasks and for
various application domains, including image processing
[1], document analysis [2], social network analysis [3], and
business intelligence [4].

Despite its importance in machine learning, computing
histogram-based similarities is often difficult in practice,
particularly for data streams. In this study, we consider
streaming histograms, where the elements of a histogram are
observed over a data stream as shown in Fig. 1(a) in Section 3.
Streaming histograms can be used for a wide range of appli-
cations, such as solving range queries and similarity search
in a streaming database, change detection and classification
over data streams. In practice, streaming histograms are
often seen when online or offline businesses observe their
customers’ activity data. For example, a Point of Interest
(POI), such as a supermarket or a restaurant, may observe
a continuous data stream of visits from its customers and
consider to analyze the histogram of its customers’ visits. By
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measuring the similarity between two POIs based on such
histograms, one can build various high-quality applications.
For example, semantic place labeling [4] infers a POI’s type
based on the assumption that two POIs sharing similar
histograms of their customers probably belong to the same
type. However, it is challenging to measure the similarity
between such streaming histograms in practice, due to the
ever-increasing cardinality of the histogram elements over
time. In the above example, this corresponds to the case of
an ever-growing number of customers. The monotonically
increasing size of the streaming histograms makes any simi-
larity computation inefficient, which further makes learning
algorithms impractical.

To solve this problem, similarity-preserving data sketch-
ing (hashing) techniques [5] have been intensively stud-
ied in stream data processing [6], [7]. Their key idea is
to maintain a set of compact and fixed-size sketches for
the original data to approximate their similarity under a
certain measure. In the current literature, most existing data
sketching techniques [8], [9], [10], [11] consider the case of
streaming data instances, where complete data instances are
received one by one from a data stream (e.g., a stream of
images whose color histogram can be easily derived). In
contrast, a streaming histogram assumes that the elements
of a histogram describing an individual data instance are
continuously received in arbitrary order from a data stream
(e.g., the histogram of customers’ visits to a POI), which
departs from classical techniques that focus on sketching
complete data instances. Therefore, these methods cannot
be efficiently applied for sketching streaming histograms.

In this paper, we tackle the similarity-preserving data
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sketching problem for streaming histograms. Specifically, an
efficient similarity-preserving sketching method for stream-
ing histograms should allow for fast and memory-efficient
maintenance of the sketches. Fast maintenance requires
sketches of streaming histograms to be incrementally up-
datable. In other words, the new sketch of a streaming his-
togram should be incrementally computed from the former
sketch and the newly arrived element. Moreover, memory-
efficient maintenance requires the sketching method to create
a small and bounded memory overhead when computing
the sketches, which differs from existing sketching methods
that require a large set of random variables as in-memory
parameters [11], [12], [13], [14], where the size of these pa-
rameters is proportional to the cardinality of the histogram
elements. In addition, to maintain high-quality similarity-
preserving sketches, the following two issues should be
considered when measuring similarities.

First, as histogram elements are not all equally important
when measuring histogram-based similarity, discriminative
similarity should be considered, which refers to the simi-
larity that improves the discriminative capability of some
classification/clustering methods [15]. Specifically, in the
case of labeled histograms, a histogram element appear-
ing only in the histograms of a specific label has more
discriminative capability than one appearing uniformly in
all histograms. Taking the example of semantic place la-
beling where we want to classify POIs according to their
customers’ visiting patterns, it means that visits from users
having stronger preferences on visiting a specific type of
POIs are more discriminative. For static datasets, such a
discriminative similarity can be easily computed using var-
ious feature weighting methods [16] to give a higher weight
to more discriminative histogram elements. However, it is
not straightforward to incorporate such a discriminative
similarity in sketching streaming histograms, where dis-
criminative weights have to be updated over time, and more
importantly, to be incorporated in the sketches.

Second, as a common problem in data streams, concept
drift should also be taken into account for streaming his-
tograms, where the underlying distribution of a streaming
histogram changes over time in unforeseen ways. Taking
the example of customers’ visits to POIs, the customer
population of a restaurant may change abruptly if the
restaurant changes its type (e.g., from a Japanese restaurant
to a pizzeria), or gradually if it updates its menu. It is there-
fore critical to consider this issue in sketching streaming
histograms. The most common approach to handle concept
drift is forgetting the outdated data [17]. A typical solution
is gradual forgetting, where the streaming data are associated
with weights inversely proportional to their age [18]. Taking
exponential decay [19] as an example, the weight of a
histogram element decreases by a weight decay factor every
time when a new element is received from the data stream.
Although such a weighting process is easy to implement
when building a histogram from its streaming elements,
it is not straightforward to incorporate such weights dy-
namically in sketching streaming histograms. This problem
becomes even more challenging when further considering
the requirement of incrementally updatable sketching.

To address the above challenges, we introduce
D2HistoSketch, a similarity-preserving sketching method

for streaming histograms to approximate their Discriminative
and Dynamic similarity. D2HistoSketch is designed to effi-
ciently maintain a set of compact and fixed-sized sketches
over streaming histograms to approximate the similarity
between the histograms. Specifically, to measure the similar-
ity between histograms, our method focuses on normalized
min-max similarity, which has been proven to be an effective
similarity measure for nonnegative data in various appli-
cation domains [11]. To create a sketch from a histogram,
we borrow the idea from consistent weighted sampling
[20] that was originally proposed for approximating min-
max similarity for complete data instances. In addition,
we formally derive a memory-efficient sketching method
with few in-memory parameters. To efficiently maintain
the sketch over the streaming histogram elements, we first
adjust the original sketch to seamlessly incorporate both
discriminative weights and gradual forgetting weights, and
then incrementally compute the new sketch based on the
adjusted sketch and the incoming histogram element. Our
main contributions can be summarized as follows:

• To the best of our knowledge, this is the first work
considering the discriminative and dynamic similarity-
preserving sketching over streaming histograms.

• We design an efficient similarity-preserving sketch-
ing method for streaming histograms, D2HistoSketch,
which allows for fast and memory-efficient maintenance
of the sketches, where the sketches can be incrementally
updated with a small and bounded memory overhead.

• To provide high-quality similarity-preserving sketches
for downstream tasks, D2HistoSketch considers both
discriminative similarity that improves the discrimi-
native capability of the sketches for some classifica-
tion/clustering methods, and dynamic similarity that
adapts to concept drift by gradually forgetting outdated
histogram elements.

• We empirically evaluate our method on multiple clas-
sification tasks using both synthetic and real-world
datasets. Our results show that D2HistoSketch is able
to efficiently approximate discriminative and dynamic
similarity for streaming histograms. Compared to full
streaming histograms, D2HistoSketch is able to dra-
matically reduce the classification time (with a 7500x
speedup) at the expense of a modest loss in accuracy
(about 3.25%).

Compared to our previous work HistoSketch [14], in this
paper, we first formally derive a memory-efficient sketching
method with fewer in-memory parameters, which also al-
lows for faster sketch maintenance. We then add discrimina-
tive similarity for better similarity measurement. In partic-
ular, the new experiments we present show that compared
to our previous work our newly proposed D2HistoSketch
achieves both a higher classification accuracy (with a 2.78%
improvement on average) as well as faster sketch mainte-
nance (with a 5.9% improvement on processing speed).

The rest of the paper is organized as follows. Section
2 presents the related work. Section 3 first presents the
preliminary of our work. Afterwards, we present the pro-
posed D2HistoSketch method in Section 4. The experimental
evaluation is shown in Section 5. We conclude our work in
Section 6.
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2 RELATED WORK

As a key statistical tool in empirical data analysis, his-
tograms have been widely used not only as a popular
visualization of empirical data distribution [21], but also as a
feature to measure data similarity that is further exploited in
many machine learning tasks [1], [2], [3], [22], [23]. Although
the histogram of a static dataset can often be easily com-
puted, it is practically difficult to compute histograms for
data streams with typically unknown cardinality and which
thus require an unbounded amount of memory to main-
tain the histogram. In this context, count sketch [24] and
count-min sketch [25] and other online histogram building
methods [26] were proposed to approximate the frequency
table of elements (i.e., histograms) from a data stream with a
fixed-size data structure. However, the resulting sketches do
not preserve the similarity between different data streams.
This paper differs from the objective of the above sketching
methods by addressing the problem of similarity-preserving
sketching of data streams.

Similarity-preserving sketching [5] has been extensively
studied to efficiently approximate the similarity of high
dimensional data, such as graphs [27], images [28], [29]
and videos [30], [31]. Its basic idea is to maintain a set of
compact sketches of the original high dimensional data to
efficiently approximate their similarities, such as Jaccard [8],
[9], cosine [10], and min-max [4], [11], [12], [13], [20], [32]
similarities. These sketches can then enable many appli-
cations, particularly for information retrieval systems like
image or document search engines [28]. However, most of
the existing methods are designed to sketch complete data
instances, which are fundamentally different from stream-
ing histograms, where histograms are incrementally built
from the streams of its elements. More importantly, little at-
tention has been given on studying high-quality similarity-
preserving sketches, on which we put a particular focus in
this paper by considering both discriminative and dynamic
similarities.

Discriminative similarity refers to the similarity that
improves the discriminative capability of some classifica-
tion/clustering methods [15]. It has been widely used in
many machine learning applications. For example, discrim-
inative similarity has been shown to be able to significantly
improve the performance of various computer vision and
pattern recognition tasks [33]. In practice, discriminative
similarity can be computed using feature weighting tech-
niques, where a similarity function is parameterized with
discriminative weights [16] (e.g., entropy weights [34]).
Although it is easy to implement discriminative similarity
for static datasets, it is not straightforward to apply it to
similarity-preserving sketching of streaming histograms, as
such discriminative weights have to be dynamically recom-
puted over time, and more importantly, to be incorporated
in the sketches.

Dynamic adaptation to concept drift is a common prob-
lem in streaming data processing. It refers to the case
where the underlying statistical properties of the streaming
data change over time (often in unknown ways), which
further degrades the performance of learning algorithms
[35]. According to a recent survey on concept-drift, the most
popular approach to handling data streams with unknown

dynamics is forgetting outdated data [17]. Existing solutions
can be classified into two categories. First, the abrupt for-
getting approach selects a set of data for learning. A sliding
window is often used to select recent data. Although this ap-
proach is effective against abrupt drifts (in terms of the data
statistical properties), it is less applicable to gradual drifts
[36] as it gives the same significance to all selected pieces
of data while completely discarding all other data. Second,
the gradual forgetting approach assigns weights that are
inversely proportional to the age of the data [18], such as
exponential decay weights [19]. In this study, we advocate
the gradual forgetting approach to tackle the concept-drift
problem in streaming histograms. The histogram is built
with weighted elements from the streams, with weights
decreasing over time. Different from existing methods us-
ing gradual forgetting against concept drift, we consider
incorporating the gradual forgetting approach in similarity-
preserving sketching of streaming histograms.

Compared to our previous work HistoSketch [14],
this paper makes the following improvements. First,
we formally derive a memory-efficient sketching method
D2HistoSketch with few in-memory parameters, while our
previous work HistoSketch requires a large set of random
variables as in-memory parameters for sketching, where the
size of these parameters is proportional to the cardinality
of the histogram elements. Second, we consider both dis-
criminative and dynamic similarity in D2HistoSketch, while
HistoSketch only considers the dynamic adaptation to con-
cept drift. Finally, we conduct new experiments to further
validate D2HistoSketch; in particular, compared to our previous
work HistoSketch, our newly proposed D2HistoSketch achieves
both a higher classification accuracy (with a 2.78% improvement
on average) as well as faster sketch maintenance (with a 5.9%
improvement on processing speed).

3 PRELIMINARY AND PROBLEM FORMULATION

In this section, we first formally introduce streaming his-
tograms and then min-max similarity, followed by our prob-
lem definition of similarity-preserving sketching.

3.1 Streaming Histogram

We consider a streaming histogram computed over a data
stream of its elements xt where t ∈ N indicates the order
of the observed element in the stream. Element xt ∈ E are
observed one by one, where E refers to the set of all his-
togram elements observed in any streaming histograms so
far, which expands over time with new (unseen) histogram
elements. In other words, E can be regarded as the union
of histogram elements from all histograms observed so far.
Due to the streaming nature, the cardinality |E| is unknown
and continuously increases over time. A classical histogram
can then be represented as a vector V ∈ N|E|, where each
value Vi encodes the cumulative count of the corresponding
histogram elements i ∈ E , i.e., Vi =

∑
t 1xt=i, where 1cond

is an indicator function which is equal to 1 when cond is
true and 0 otherwise. Fig. 1(a) illustrates an example of a
classical streaming histogram.

To measure the discriminative and dynamic similarity
between streaming histograms, we build the histogram V
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from its weighted elements. Specifically, we assign a dis-
criminative weight and a gradual forgetting weight to each
streaming element to measure discriminative and dynamic
similarity between streaming histograms, respectively.

3.1.1 Streaming Histogram with Discriminative Weights

Each histogram element i is associated with a discriminative
weight wdi . Specifically, we assume that each histogram
is associated with a label l, where l ∈ L and L refers
to a set of labels for histograms. Taking the histogram of
customers’ visits to a POI as an example, a POI can be
associated with a category (label l) “fast food restaurant”,
and L refers to all possible POI categories here. To compute
the discriminative weight wdi for each histogram element i,
we leverage a widely used weighting function, i.e., entropy
weighting [34]. (We note that our approach is not limited
to any specific weighting function.) Specifically, we use
entropy weighting to empirically measure the uncertainty
of the labels when observing individual histogram elements.
For each histogram elements i in E , we compute its entropy
weight wdi as follows:

wdi = 1 +

∑
l∈L Pr[l, i] logPr[l, i]

log |L|
(1)

where Pr[l, i] is the probability that a histogram with ele-
ment i is labeled as l, l ∈ L. Higher values of wdi imply
higher degrees of discriminability for the corresponding
histogram element i. To calculate Pr[l, i], we maintain a
label frequency vector F l of size |E| for each label to record
the cumulative frequency of each histogram element in
E . With each incoming histogram element i, we update
F li accordingly. Thus, we are able to empirically compute
Pr[l, i] =

F l
i∑

l′∈L F
l′
i

at any time. Particularly, for each incom-

ing histogram element i, only the corresponding wdi needs
to be updated. In practice, F l is maintained in a count-min
sketch data structure for memory efficiency (we will discuss
it in Section 4.4).

Subsequently, we compute the histogram V ∈ R|E|>0

such that Vi is associated with its weighted wdi , i.e., Vi =∑
t w

d
i 1xt=i. Fig. 1(b) shows an example of a streaming

histogram with discriminative weights.

3.1.2 Streaming Histogram with Gradual Forgetting
Weights

Each streaming element xt is associated with a gradual
forgetting weight wgt , which is inversely proportional to its
age. To compute wgt , we adopt the exponential decay weight
[19], which is computed as follows:

wgt = e−λ(tn−t) (2)

where tn is the order of the latest histogram element re-
ceived from the stream and λ is the weight decay factor.

Subsequently, we compute the histogram V ∈ R|E|>0 such
that Vi is the weighted cumulative count of the correspond-
ing histogram elements i, i.e., Vi =

∑
t w

g
t 1xt=i. Fig. 1(c)

shows an example of a streaming histogram with gradual
forgetting weights.

(a) Classical histogram (unweighted) Vi =
∑
t 1xt=i

(b) Histogram with discriminative weights Vi =
∑
t w

d
i 1xt=i

(c) Histogram with gradual forgetting weights Vi =
∑
t w

g
t 1xt=i

(d) Histogram with both weights Vi =
∑
t w

d
i · w

g
t 1xt=i

Fig. 1. Illustration of the streaming histograms with different weights.
Left: The different histogram elements are assigned different colors,
and their heights indicate the corresponding weights. Right: The same
elements are accumulated to build the corresponding histogram.

3.1.3 Streaming Histogram with Both Weights
We combine both the discriminative and the gradual for-
getting weights to compute the histogram, Vi =

∑
t w

d
i ·

wgt 1xt=i. Fig. 1(d) shows an example of a streaming his-
togram with both weights.

3.2 Normalized Min-Max Similarity
To measure the similarity between streaming histograms,
we resort to normalized min-max similarity, which has been
shown to be an effective similarity measure for nonnegative
data. More precisely, Li [11] conducted an extensive study
on min-max similarity (named as min-max kernel in [11])
by comparing four kernels including linear kernel, min-max
kernel, normalized-min-max kernel and intersection kernel,
on different classification tasks over a sizable collection of
public datasets. The results illustrate the advantages of the
(normalized) min-max kernels. Formally, given two stream-
ing histograms V a and V b, the min-max similarity is defined
as follows:

SimMM (V a, V b) =

∑
i∈E min(V ai , V

b
i )∑

i∈E max(V ai , V
b
i )

(3)

As a histogram is often used to characterize the empirical
data distribution, we apply the sum-to-one normalization
before computing the similarity:∑

i∈E
V ai = 1,

∑
i∈E

V bi = 1. (4)

In that way, Eq. 3 becomes the normalized min-max similar-
ity, denoted by SimNMM .
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3.3 Problem Formulation

For streaming histograms, the ever-increasing cardinality |E|
makes the computation of the normalized min-max similar-
ity become inefficient. Therefore, we propose to maintain
two sketches Sa and Sb of size K (K � |E|) for V a

and V b, respectively, with the property that their collision
probability (i.e., Pr[Saj = Sbj ], where j = 1, 2, ...,K) is
exactly the normalized min-max similarity between V a and
V b:

Pr[Saj = Sbj ] = SimNMM (V a, V b) (5)

Then, the normalized min-max similarity between V a and
V b can be approximated by the Hamming similarity be-
tween Sa and Sb. The computation over S, which is com-
pact and of fixed size, is much more efficient than the one
over the full histogram V , which is a large, ever-growing
vector.

The problem tackled by this paper is how to create
and maintain the above similarity-preserving sketch S for
the streaming histogram V with both discriminative and
gradual forgetting weights in a fast and memory-efficient
manner.

4 D2HISTOSKETCH

Our D2HistoSketch is designed to efficiently maintain a set
of compact and fixed-size sketches for streaming histograms
with both discriminative and gradual forgetting weights,
in order to efficiently approximate their normalized min-
max similarities. In this section, we first present consistent
weighted sampling, which inspired our method. We then
describe our method for sketch creation, followed by the
proposed incremental sketch update process.

4.1 Consistent Weighted Sampling

Consistent weighted sampling was originally proposed to
approximate min-max similarity for complete and high di-
mensional data (e.g., a vector of large size) [11], [12], [13],
[20]. The basic idea is to generate data samples such that the
probability of drawing identical samples for a pair of vectors
is equal to their min-max similarity. A set of such samples
can then be regarded as a sketch of the input vector.

The first consistent weighted sampling method [20] was
designed to handle integer vectors. Specifically, taking a
classical histogram V ∈ N|E| as an example, it first uses
a random hash function hj to generate independent and
uniform distributed random hash values hj(i, f) for each
(i, f), where i ∈ E and f ∈ {1, 2, ..., Vi}, and then returns
(i∗j , f

∗
j ) = argmini∈E,f∈{1,2,...,Vi} hj(i, f) as one sample (i.e.,

one sketch element Sj). Note that the random hash function
hj depends only on (i, f), and maps (i, f) uniquely to
hj(i, f). By applyingK independent random hash functions
(j = 1, 2, ...,K), we generate sketch S (of size K) from V (of
arbitrary size). Following this process, the collision proba-
bility between two sketch elements (ia∗j , f

a∗
j ) and (ib∗j , f

b∗
j ),

which are generated from V a and V b, respectively, is proven
to be exactly the min-max similarity of the two vectors [20],
[32]:

Pr[(ia∗j , f
a∗
j ) = (ib∗j , f

b∗
j )] = SimMM (V a, V b) (6)

To improve the efficiency of the above method and allow
real vectors as input, Ioffe [12] later proposed an improved
method. Its key idea is that, rather than generating Vi differ-
ent random hash values (where Vi has to be an integer), it
directly generates one hash value ai,j (and its corresponding
f ∈ N, f ≤ Vi) for each i by taking Vi as the input of the
random hash value generation process. In such a case, Vi
can be any positive real number. Based on this method, Li
[11] further proposed to simplify the sketch by only keeping
i∗j rather than (i∗j , f

∗
j ), and empirically proved the following

property:

Pr[ia∗j = ib∗j ] ≈ Pr[(ia∗j , fa∗j ) = (ib∗j , f
b∗
j )] (7)

A short description of the method proposed in [11] is
presented in the following. To generate one sketch element
Sj (sample i∗j ), the method first draws three random vari-
ables offline as in-memory parameters: ri,j ∼ Gamma(2, 1),
ci,j ∼ Gamma(2, 1) and βi,j ∼ Uniform(0, 1), and then
computes

yi,j = exp

(
ri,j

(
b log Vi
ri,j

+ βi,jc − βi,j
))

(8)

ai,j =
ci,j

yi,j exp(ri,j)
(9)

The sketch element is then returned as Sj = argmini∈E ai,j .
Please refer to [11], [12] for more details and for the proof of
Eq. 6 and 7.

In this paper, we design a fast and memory-efficient
sketching process to handle streaming histograms with
both discriminative and gradual forgetting weights, where
V ∈ R|E|>0. Specifically, we propose a new approach to
directly compute ai,j , which has the following three highly
desirable properties:

1) The generated ai,j follows the exact same distribution
as the one generated using Eq. 9, which ensures the
correctness of our sketching method (i.e., Eq. 6 and Eq.
7 still hold).

2) The ai,j sampling process does not require the large
set of in-memory parameters ri,j , ci,j , βi,j where i ∈ E
and j = 1, 2, ...,K ; this makes our method memory-
efficient.

3) The created sketch S is invariant under uniform scaling
of V , which serves as a basis for the fast incremental
sketch update.

In the following, we first present our sketch creation
method, and then the incremental sketch update process.

4.2 Sketch Creation
Our sketch creation method borrows the idea of consistent
weighted sampling with real number inputs [11]. Different
from the original method, we propose a new approach
to compute ai,j . Specifically, the objective of the original
method is to sample yi,j such that log yi,j is uniformly dis-
tributed on [log Vi − ri,j , log Vi] conditioned on ri,j . Among
many possible formulations that can fulfill this distribution
requirement, the original formulation (Eq. 8) is specifically
designed to also sample the corresponding fj to obtain the
sketch element (i∗j , f

∗
j ) (where f = b log Vi

ri,j
+ βi,jc in [12]).

However, as proved in [11], f∗j can be ignored from the
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sketch (i∗j , f
∗
j ) (i.e., Eq. 7). In such a case, it is only necessary

to sample yi,j satisfying its distribution requirement, and
then compute the corresponding ai,j . In the following, we
first derive a simplified method to generate yi,j , based on
which we then derive a memory-efficient method to directly
compute ai,j .

First, we propose to compute yi,j as follows:

yi,j = exp(log Vi − ri,jβi,j) (10)

for which the following proposition holds.

Proposition 1. Eq. 10 generates yi,j following the same dis-
tribution as generated by Eq. 8, i.e., log yi,j follows a uniform
distribution on [log Vi − ri,j , log Vi] conditioned on ri,j .

Proof. Considering the variable log yi,j , Eq. 8 can be derived
as (we ignore the subscript (i, j) of r and β in the following
proof):

log yi,j = r

(
b log Vi

r
+ βc − β

)
= log Vi − r

((
log Vi
r

+ β

)
− b log Vi

r
+ βc

) (11)

where ( log Vi

r + β) − b log Vi

r + βc is the frac function of
log Vi

r + β, which returns its fractional part [37]. Since both
Vi and r are known, this frac function can be considered
as frac(β + C), where C = log Vi

r is a constant. Consider-
ing β ∼ Uniform(0, 1), this function actually returns the
fractional part of a variable following Uniform(C,C + 1),
which remains the same as Uniform(0, 1). In other words,
it is a uniform mapping from Uniform(0, 1) to itself. Sub-
sequently, we have frac( log Vi

r +β) ∼ Uniform(0, 1), which
can be replaced by β. Therefore, we obtain:

log yi,j = log Vi − rβ (12)

which is the same as in Eq. 10. Therefore, yi,j generated by
Eq. 10 follows the same distribution as generated by Eq. 8.

We introduce z = log yi,j and compute its Cumulative
Distribution Function (CDF) as follows:

Pr(Z < z) = Pr (log Vi − rβ < z)

= Pr

(
log Vi − z

r
< β

)
(13)

Considering β ∼ Uniform(0, 1), we obtain:

Pr(Z < z) = 1− log Vi − z
r

=
z − (log Vi − r)

log Vi − (log Vi − r)
(14)

which is the CDF of Uniform(log Vi − r, log Vi). This com-
pletes the proof.

Second, based on Proposition 1, we derive a memory-
efficient method to directly compute ai,j as follows:

ai,j =
− log β

Vi
(15)

for which the following proposition holds.

Proposition 2. Eq. 15 generates ai,j following the same distri-
bution as generated by Eq. 9.

Proof. As suggested by Proposition 1, we now use Eq. 10
to sample yi,j . Combining Eq. 10 with Eq. 9 and knowing
(1− β) and β both follow Uniform(0, 1), we obtain:

ai,j =
c · exp(−rβ)

Vi
(16)

Considering a new variable m = rβ, we can compute its
Probability Distribution Function (PDF) as:

fM (m) =

∫ 1

0+

1

β
fB(β)fR(

m

β
)dβ (17)

where fB(·) and fR(·) are the PDF of β ∼ Uniform(0, 1)
and r ∼ Gamma(2, 1), respectively. We further derive
fM (m) as follows:

fM (m) =

∫ 1

0+

1

β
· 1 · m

β
exp(−m

β
)dβ = exp(−m) (18)

We see that m = rβ follows the exponential distribution
Exp(1), and can then be sampled as m = − log β′, β′ ∼
Uniform(0, 1). Subsequently, Eq. 16 can be simplified as:

ai,j =
cβ′

Vi
(19)

It is worth noting that the numerator cβ′ follows the
same distribution as rβ ∼ Exp(1), as they are both the
multiplication of a variable from Uniform(0, 1) and a
variable from Gamma(2, 1). Therefore, cβ′ can be further
simplified as − log β′′ where β′′ ∼ Uniform(0, 1). We note
that as β, β′, β′′ ∼ Uniform(0, 1), we keep using only
β ∼ Uniform(0, 1) for the sake of simplicity for notations,
and obtain:

ai,j =
− log β

Vi
(20)

which is the same as Eq. 15. This completes the proof.

Proposition 2 ensures the correctness of our sketching
method (i.e., Eqs. 6 and 7). More importantly, our method
only requires the parameters βi,j ∼ Uniform(0, 1), which
can be efficiently generated using random hash functions
rather than being maintained as in-memory parameters.

4.2.1 Memory-Efficient Sketching Implementation
To efficiently generate βi,j in an online manner, we apply a
random hash function hj on i to obtain the corresponding
hash value hj(i), which follows a uniform distribution over
(0, 1). We then use hj(i) to replace βi,j . With K indepen-
dent random hash functions {hj |j = 1, 2, ...,K}, we can
compute ai,j in a memory-efficient manner as follows:

ai,j =
− log hj(i)

Vi
(21)

In summary, our memory-efficient method maintains
only K independent random hash functions {hj |j =
1, 2, ...,K}, rather than the large set of in-memory param-
eters ri,j , ci,j , βi,j whose size is proportional to the cardi-
nality of the histogram elements E . Alg. 1 shows the sketch
creation process. Note that we keep both the sketch S and
its hash values A (the latter will be used for incremental
sketch update). Fig. 2 shows the sketch creation process for
one sketch element Sj .
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Fig. 2. Creating one sketch element from histogram V with cardinality
|E| = 5 (i = 1, 2, ..., 5). By computing the hash value ai,j for each i, we
select the histogram element whose hash value is minimal as the sketch
element and also keep its corresponding hash value, i.e., (Sj = 3, Aj =
0.14).

Algorithm 1 Sketch creation
Input: Histogram V , Sketch length K , Independent ran-

dom hash functions {hj |j = 1, 2, ...,K}
Output: Sketch S and the corresponding hash values A

1: for j=1,2,...,K do
2: Compute ai,j =

− log hj(i)
Vi

3: Set sketch element Sj = argmini∈E ai,j
4: Set the corresponding hash value Aj = mini∈E ai,j
5: end for
6: return S and A

4.2.2 Intrinsic Connection to Consistent Weighted Sam-
pling with Integer Vectors
We now discuss its intrinsic connection to the original
consistent weighted sampling method with integer vector
inputs [20], and show that our method is indeed a general-
ization of the original method to real vectors inputs.

The original consistent weighted sampling method [20]
uses a random hash function hj to generate the hash values
hj(i, f) for each (i, f), where i ∈ E and f ∈ {1, 2, ..., Vi},
and then returns (i∗j , f

∗
j ) = argmini∈E,f∈{1,2,...,Vi} hj(i, f)

as one sample (i.e., one sketch element Sj). As suggested by
[11], the sketches can be simplified by keeping only i∗j and
discarding f∗j . By defining ĥj(i) = minf=1,2,...,Vi

hj(i, f),
one sample is then returned as i∗j = argmini∈E ĥj(i).

We now derive a new method to directly compute
ĥj(i) without involving f . The key idea is to directly
compute ĥj(i) from only one random hash value and
Vi, rather than Vi random hash values. Specifically, since
hj ∼ Uniform(0, 1), we compute the CDF of ĥj(i) as:

Pr[ĥj(i) ≤ p] = 1− (1− p)Vi (22)

for p ∈ (0, 1). We assume a random uniformly distributed
variable β ∼ Uniform(0, 1), and formulate its CDF Pr[β ≤
q] = q, q ∈ (0, 1) as:

Pr[β ≤ q] = Pr[β ≤ 1− (1− p)Vi ] = 1− (1− p)Vi (23)

where q = 1−(1−p)Vi is an invertible continuous increasing
function (p = 1 − Vi

√
(1− q)) over (0, 1). By applying the

change-of-variable technique on Eq. 23, we obtain:

Pr[1− Vi

√
(1− β) ≤ p] = 1− (1− p)Vi (24)

Since Eqs. 24 and 22 show the same CDF, ĥj(i)
can be obtained by ĥj(i) = 1 − Vi

√
(1− β). As (1 −

Fig. 3. Illustration of decreasing gradual forgetting weights (exponen-
tially) when a new histogram element xt+1 is received (former weights
are represented in gray)

β) ∼ Uniform(0, 1), the computation can be simplified to
ĥj(i) = 1− Vi

√
β. As we only care about the ordering of those

hash values, we can further simplify the computations via
a monotonic transformation, and obtain ĥj(i) =

− log β
Vi

. By
replacing β with a random hash value hj(i) (hj is a random
hash function), we obtain:

ĥj(i) =
− log hj(i)

Vi
(25)

which is the same as Eq. 21. In other words, ai,j is equal to
ĥj(i) = minf=1,2,...,Vi

hj(i, f) for integer V ∈ N|E|. There-
fore, our method can be regarded as a generalization of the
original consistent weighted sampling method to measure
the normalized min-max similarity with real V ∈ R|E|.

4.3 Incremental Sketch Update

Incremental sketch update requires that a new sketch S(t+
1) can be fast computed based on the former sketch S(t)
(with its corresponding hash values A(t)) and the incoming
histogram element xt+1. Specifically, when a new histogram
element xt+1 = i′ is received from the data stream, the
gradual forgetting weights of all existing elements of the his-
togram evolve by a factor of e−λ (as shown in Fig. 3), which
results in a uniform scaling of V . One of the key properties
of our sketch is that it is invariant under uniform scaling
of V , which allows us to perform the scaling by quickly
adjusting A only. Afterwards, as only the discriminative
weight of histogram element i′ is updated, we only need to
recompute Vi′ , and then its corresponding hash value ai′,j .
Finally, the new sketch S(t + 1) can be computed based
on the adjusted sketch S(t) (with A(t)) and the incoming
histogram element xt+1 = i′ (with ai′,j). In the following,
we first present the uniform scaling invariance property of
our sketch, and then the incremental update process.

Proposition 3. If sketch S (with its corresponding hash values
A) is created for V using Alg. 1, then for any positive constant γ,
S remains the sketch for γV with the corresponding hash values
1
γA.

Proof. Alg. 1 computes a sketch element S′j for γV as
follows:

a′i,j =
− log hj(i)

γVi
=

1

γ
ai,j (26)

S′j = argmin
i∈E

(
1

γ
ai,j

)
= argmin

i∈E
ai,j = Sj (27)

A′j = min
i∈E

1

γ
ai,j =

1

γ
min
i∈E

ai,j =
1

γ
Aj (28)

This completes the proof.
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Fig. 4. An example of incrementally updating one sketch element. I).
According to the scaling of the histogram, we keep the sketch invariant
Sj(t) = 3, and adjust its hash value from Aj(t) = 0.14 to Aj(t) · eλ =
0.147 (λ = 0.05 in this example). II). By adding the incoming histogram
element xt+1 = 2 (2 ∈ E) with weight wdi · 1 to the scaled histogram,
we recompute only the hash value for i = 2, i.e., a2,j = 0.143. III).
By selecting the minimum hash value between Aj(t) · eλ = 0.147 and
a2,j = 0.143, we update Sj(t+ 1) = 2 and Aj(t+ 1) = 0.143.

Proposition 3 serves as a basis for our incremental sketch
update process, which works as follows (for one sketch
element Sj):

I. When a new histogram element xt+1 = i′ is received,
we scale V (t) by a factor of e−λ, and adjust the sketch
according to Proposition 3, i.e., Sj(t) and Aj(t) · eλ.

II. We add the incoming histogram element i′ to the scaled
histogram. First, we update the discriminative weight
wdi according to the method described in Section 3.1.1.
Then, as the newest histogram element always has
gradual forgetting weight 1 (wgt = e−λ(tn−tn) = 1),
we add the incoming histogram element i′ with the
overall weightwdi ·1 to the scaled histogram: Vi′(t+1) =
Vi′(t) ·e−λ+wdi ·1 if i′ ∈ E . In case i′ /∈ E , we add i′ to E
and expand V to include Vi′(t+1) = wdi ·1. Afterwards,
we recompute only the hash value for i′, i.e., ai′,j .

III. By comparing the new hash value ai′,j with the ad-
justed hash value Aj(t) · eλ, we update the sketch
Sj(t+ 1) = i′ and Aj(t+ 1) = ai′,j if ai′,j < Aj(t) · eλ,
Sj(t+ 1) = Sj(t) and Aj(t+ 1) = Aj(t) · eλ otherwise.

Fig. 4 illustrates the incremental sketch update process
following the previous example shown in Fig. 2.

4.4 Implementation Details
Our incremental sketch update process requires to access
the former histogram V (t) to compute V (t+1). To maintain
such a streaming histogram V of an ever-increasing size, we
propose an extended count-min sketch model.

The classical count-min sketch [25] is a fixed-sized proba-
bilistic data structure Q (d rows and g columns) serving as a
frequency table of streaming elements. It uses d independent
random hash functions hl (l = 1, 2, ..., d) to map streaming
elements onto a range of 1, 2, ..., g (counters). Every time a
new element i is received, for each row l, its hash function

hl is applied to i to determine a corresponding column
hl(i), and then the counter Ql,hl(i) is increased by 1. To
get the estimated frequency at time t, the corresponding
hash function is applied to i to look up the corresponding
counter for each row. The estimate is then returned as
the minimum of all the probed counters across all rows,
i.e., Vi(t) = minlQl,hl(i). The estimated frequency error is
guaranteed [38] to be at most 2

g with probability 1− ( 12 )
d.

In our case of streaming histogram with both discrimi-
native and gradual forgetting weights, the cumulative fre-
quency (weights) of all historical histogram elements is
scaled with a factor e−λ (i.e., V (t) · e−λ) every time a
new element is received from the data streams. Therefore,
we extend the above count-min sketch method to consider
such decay weights as follows. First, before adding a new
element i from the data stream, we uniformly scale all
counters across all rows by that factor, i.e., Ql,hl(i)(t) · e−λ.
In such a way, for any histogram element i, its esti-
mated weighted cumulative count Vi(t) is also scaled to
minlQl,hl(i)(t)·e−λ = Vi(t)·e−λ, which corresponds exactly
to Step I in our sketch update process. Afterwards, we add
the new element with its corresponding weight wdi · 1, i.e.,
Ql,hl(i)(t + 1) = Vi(t) · e−λ + wdi · 1, which corresponds to
Step II in our sketch update process. As the aforementioned
estimated frequency error of count-min sketch depends only
on its structural parameter g and d, it is easy to see that the
estimated error does not change under this straightforward
extension, as a uniform scaling does not affect the data
structure itself. For the detailed proof of the estimated error,
please refer to [38]. In this study, we empirically set the
default parameters d = 10, g = 50 to guarantee an error
of at most 4% with probability 0.999 (see Section 5.2.4 for
more details).

In addition, we also use a classical count-min sketch to
store the label frequency vector F l, which is used to com-
pute the discriminative weights as described in Section 3.1.1.
For the sake of simplicity, we keep the same parameters as
the one we used for V .

4.5 Analysis of D2HistoSketch

4.5.1 Discussion on Error Bound
The original consistent weighed sampling technique [32]
have proven the correctness of Eq. 6, with its associated
error bound. However, this method takes only integer vec-
tors as input, and requires a sketch element (i∗j , f

∗
j ) which

prohibits its application to streaming histograms.
To handle streaming histograms, our proposed method

is based on the 0-bit consistent weighted sampling tech-
nique proposed by [11]. This technique is able to take
real vectors as input, and more importantly, the author
empirically proved Eq. 7, which serves as a fundamental
element of our method. However, as mentioned by the
author in [11], a rigorous proof of Eq. 7 turns out to
be a difficult probability problem, which is not given in
the original paper. In this study, we focus on designing
a sketching method for streaming histograms with both
discriminative and gradual forgetting weights, and we have
rigorous proven the correctness of our method by showing
its equivalence to the 0-bit consistent weighed sampling
technique (using Proposition 1 and 2). Then, our method
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has the same error bound as the 0-bit consistent weighed
sampling technique [11]. However, the further proof about
the 0-bit consistent weighed sampling technique and its
associated error bound remains a difficult problem, and is
outside the scope of our paper.

4.5.2 Time and Space Complexity Analysis
Time. Since our sketches are incrementally maintained, we
discuss the time complexity for each incoming histogram el-
ement from the data streams. Specifically, to update a sketch
of length K , we perform our incremental sketch update
process for allK sketch elements, which takesO(K) time. In
addition, we also need to retrieve/update the corresponding
count-min sketches for both V and F l (with d rows), which
takes O(d) time. The total time complexity for updating one
histogram element is hence O(K + d). Compared to our
previous work HistoSketch [14], our proposed method with
few in-memory parameters can compute sketches in a more
efficient way, showing a higher processing speed with an
improvement of 12.2% (see Section 5.3.4 for more detail).

Space. Each streaming histogram is represented by a
sketch of length K taking O(K) space. For the incremental
sketch update purpose, we store the raw streaming his-
togram V in a count-min sketch data structure (d rows
and g columns) taking O(dg) space. Subsequently, the total
space complexity is O(K+dg) for one streaming histogram.
Considering a set of n histograms with a set of L labels
(the label frequency vector F l stored in a count-min sketch
data structure with d rows and g columns), the total space
complexity is O(n · (K + dg) + L · (dg)). Note that our
space complexity is linear w.r.t. the number of histograms
n, and more importantly, that it is independent of the
ever-growing cardinality of streaming histogram elements
|E|. Compared to our previous work HistoSketch [14] that
requires in-memory parameters ri,j , ci,j , βi,j and thus has a
space complexity O(n · (K + dg) + L · (dg) +K · |E|), our
proposed memory-efficient method can dramatically reduce
the memory consumption in practice, as |E| is usually large
and growing over time. For example, in our experiments on
the NYC dataset (n = 3173,K = 100, L = 9, d = 10, g = 50
and |E| is about 2 million), the memory consumption of our
proposed method is only 1% of the memory required by our
previous work HistoSketch.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate D2HistoSketch on multiple clas-
sification tasks using both synthetic and real-world datasets.
In the following, we first present our experimental setup,
followed by the results on both types of datasets.

5.1 Experimental Setup
To evaluate the performance of our similarity-preserving
sketches, we perform classification tasks based on these
sketches in difference scenarios, which is a common evalua-
tion scheme for similarity preserving sketching methods [4],
[11], [13], [14]. Specifically, based on labeled streaming his-
tograms, we try to classify those histogram instances with-
out labels. We use a KNN classifier [39] which can always
take the most up-to-date training data (sketches) for classifi-
cation without maintaining a built classification model. Such

Fig. 5. Probability of streaming histogram elements generated from its
initial distribution for the synthetic dataset.

a property fits our case of classifying streaming histograms
with continuously incoming histogram elements, where the
sketches are continuously updated accordingly. In addition,
using a simple KNN classifier, we can put more focus on the
distance measures rather than classifiers. We empirically set
KNN to consider the five nearest neighbors. We consider the
following evaluation scenarios:

Synthetic Dataset. Synthetic data is widely used in
studying concept drift adaptation [19], [40]. The advantage
is that we can simulate different cases of concept drift in
streaming histograms with controllable parameters. Typical
methods of simulating data streams with concept drift often
use a moving hyperplane to generate a stream of complete
data instances [40]. However, it cannot be directly adopted
for streaming histograms, as the elements of a histogram
are observed in a streaming manner. Therefore, we design
our own data simulation method. Specifically, we con-
sider two Gaussian distributionsN (100, 20) andN (110, 20)
representing two classes of histograms, respectively. The
streaming histogram elements are then generated as the
nearest integers of the random numbers sampled from those
distributions. For each class, we simulate 500 histograms
with 1000 elements each. We then split the 500 histograms
to 50%-50% for training and the testing, respectively. The
histogram elements are generated in a random order. To
simulate concept-drift issues, we consider both abrupt and
gradual drift cases [19] in testing data.

• For abrupt drift, starting from 25% of streaming his-
togram elements, the testing data of one distribution
abruptly starts to receive the histogram elements gener-
ated from the other distribution, and also changes their
labels immediately.

• For gradual drift, from 25% to 35% of streaming his-
togram elements, the testing data of one distribution
gradually starts to receive the histogram elements gen-
erated from the other distribution with an increasing
probability (from 0 to 1). The labels of the testing data
also change gradually from one class to the other, i.e.,
from 0% to 100%.

Fig. 5 shows the probability of streaming histogram
elements generated from its initial distributions. Note that it
is complementary to the probability of histogram elements
generated from the other distribution.

POI Dataset. Our sketching method can be applied to
solve the problem of semantic place labeling [4], where we
want to infer a place’s category (e.g., supermarket or bar)
based on its customers’ visiting patterns (i.e., the streaming
histogram of its customers’ visits). The basic intuition is that
POIs of the different type usually have different temporal
visiting patterns, e.g., bars are mostly visited during the
night while museums are often visited during the day-
time. Previous studies have shown that considering user-
time pairs as histogram elements (i.e., fine-grained visiting



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 1
POI dataset statistics

Dataset New York City
(NYC)

Tokyo
(TKY)

Istanbul
(IST)

Number of check-ins 142,495 494,702 292,771
Number of POIs 3,174 2,993 3,120
Number of users 12,798 9,160 15,479

patterns) yields much higher accuracy than considering
only time (i.e., coarse-grained visiting patterns) [4]. We thus
consider fine-grained patterns in the following. Specifically,
for one user’s visit to a POI, we first map the visiting time
onto one of the 168 hours in a week period (discretization of
time), and then consider the user-time pair as a histogram el-
ement. With a large and continuously increasing number of
users over time, the cardinality of the streaming histogram
rapidly increases. More importantly, the visiting pattern of
a POI may change both abruptly (e.g., caused by the change
of POI type) and gradually (e.g., caused by the introduction
of new menu items in a restaurant).

To evaluate our method using this task, we use a dataset
from Foursquare provided by [3], [23], which has been
widely used to study the problems of semantic place la-
beling [4], [14] and POI recommendation [41], [42], [43]. The
dataset contains user check-in data on POIs for about two
years (from April 2012 to March 2014). Each check-in records
one visit of a user to a POI (with the associated category)
at a certain time. We randomly select 20% of the POIs as
unlabeled testing data and regard the rest as training data.
The classification is performed at the end of each month on
the second year (in order to avoid too few check-ins for some
POIs during the first year). The categories (labels) of POIs in
the dataset are classified by Foursquare into 9 root categories
(i.e., Arts & Entertainment, College & University, Food,
Great Outdoors, Nightlife Spot, Professional & Other Places,
Residence, Shop & Service, Travel & Transport), which are
further classified into 291 sub-categories. Without loss of
generality, we select three big cities, New York City, Tokyo
and Istanbul, for our experiments. Table 1 summarizes the
main characteristics of our dataset.

Movielens Dataset. Our sketching method can also be
applied to predict movie genre based on users’ tagging
activity streams. Specifically, on a movie recommendation
platform, a user can add tags to a movie. Subsequently, we
characterize each movie using the histogram of user tagging
activities, where each user is a histogram element. Similar to
the case of POI dataset, we are then able to classify a movie
in to different genres based on its streaming histogram.

We use the MovieLens 20M Dataset provided by [44].
This dataset contains movie tagging activity about 10 years.
We select top 8 primary genres (i.e., “action”, “adventure”,
“animation”, “children”, “comedy”, “Crime”, “documen-
tary”, “Drama”), and keep only the tagging data on the
related movies. Finally, we obtain 24,394 movies, 7,622 users,
434,054 tagging activities. We randomly select 20% of the
movies as unlabeled testing data and regard the rest as
training data. The classification is performed at the end of
6th to 10th years.

(a) Abrupt drift (b) Gradual drift
Fig. 6. Performance on classification task.

5.2 Performance on Synthetic Dataset
In this section, we first show the effectiveness of
D2HistoSketch by comparing the classification performance
using different streaming histograms and their correspond-
ing sketches. Afterwards, we study the impact of the sketch
length K , the weight decay factor λ, and the count-min
sketch parameters in different scenarios.

5.2.1 Performance on classification task
To demonstrate the advantages of considering discrimina-
tive and gradual forgetting weights in streaming histograms
and the similarity-preserving sketches, we compare the
following four methods that keep the full histograms in
memory, and also their corresponding sketching methods.
We set sketch length K = 100 for all the sketching methods,
use entropy weighting for discriminative weights, and set
λ = 0.02 for gradual forgetting weights when applicable.
• Histogram-Classical: full histograms where the his-

togram’s elements are unweighted.
• Histogram-Discriminative: full histograms where the

histogram’s elements are assigned with discriminative
weights.

• Histogram-Forgetting: full histograms where the his-
togram’s elements are assigned with gradual forgetting
weights.

• D2Histogram: full histograms where the histogram’s
elements are assigned with both discriminative and
gradual forgetting weights.

• Sketch-Classical: our sketching method configured
with unweighted histogram elements (approximation
of Histogram-Classical).

• Sketch-Discriminative: the sketching method with only
discriminative weights (approximation of Histogram-
Discriminative), which is equivalent to POISketch [4].

• Sketch-Forgetting: the sketching method with
only gradual forgetting weights (approximation
of Histogram-Forgetting), which is equivalent to
HistoSketch [14].

• D2HistoSketch: our proposed sketching method with
both discriminative and gradual forgetting weights (ap-
proximation of D2Histogram).

Fig. 6 shows the classification accuracy over time (num-
ber of streaming elements per histogram) for both abrupt
and gradual drifts. First, comparing the accuracy of using
full histograms, we observe that our D2Histogram achieves
the best results overall. On one hand, considering gradual
forgetting weights can significantly reduce the recovery
time from concept drift. For example, in the case of abrupt
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(a) Abrupt drift (b) Gradual drift
Fig. 7. Impact of sketch length K.

drift (starting from 250th histogram elements), accuracy
recovers after receiving 450 and 150 elements for Histogram-
Discriminative and D2Histogram, respectively. On the other
hand, discriminative weights can effectively improve ac-
curacy outside of the period for concept drift adaptation
(i.e., before concept drift and after recovery from concept
drift). For example, for both cases of abrupt and gradual
drifts, D2Histogram shows a 2.6% improvement of accuracy
from Histogram-Forgetting. Second, among all the sketch-
ing methods, the proposed D2HistoSketch achieves the
best results, as it can efficiently approximate the similarity
between D2Histogram with both discriminative and grad-
ual forgetting weights. Specifically, D2HistoSketch quickly
adapts to concept drift (showing similar adaptation speed
as that of D2Histogram), and shows a significant accuracy
improvement of 7.9% compared to Sketch-Forgetting.

5.2.2 Impact of sketch length K
The sketch length K influences how well the sketch can
approximate the similarity with the original data. In this
experiment, by fixing the gradual forgetting weight decay
factor λ = 0.02, we vary the sketch length K within
[20, 50, 100, 200, 500, 1000] to investigate the performance
of our method. We also plot the results from Histogram-
Classical and D2Histogram as references.

Fig. 7 shows the classification accuracy over time in
both cases of abrupt and gradual drift. First, we observe
a positive impact of sketch length K on the classification
accuracy, i.e., larger values of K imply a higher accuracy,
as longer sketches can preserve more information and thus
better approximate the similarities of the D2Histogram. The
accuracy flattens out after K = 500 (D2HistoSketch with
K ≥ 500 are highly overlapped with D2Histogram), indi-
cating that a sketch of length 500 is sufficient for accurate
similarity approximation. Second, we find that the sketch
length K has no obvious impact on the adaptation speed,
which is actually controlled by the gradual forgetting weight
decay factor λ (we will discuss this in the next experiment).

5.2.3 Impact of weight decay factor λ
The weight decay factor λ balances the trade-off between the
concept drift adaptation speed and the similarity approxi-
mation performance. In this experiment, by fixing the sketch
length K = 100, we vary the weight decay factor λ within
[0, 0.005, 0.01, 0.02, 0.05, 0.1] to investigate the performance
of our method. We also compare our method with the
following two methods:
• Histogram-LatestK where the histogram is built with

the latest K histogram elements from the stream, which

(a) Abrupt drift (b) Gradual drift
Fig. 8. Impact of weight decay factor λ.

is a typical method for abrupt forgetting (i.e., sliding
window based concept-drift adaptation) [17]. It can also
be regarded as a sketching method in the sense that
the latest K histogram elements (unweighted) are the
sketches to represent the histogram.

• Histogram-LatestK-Discriminative where we fur-
ther incorporate discriminative weights (i.e., entropy
weights as for our method) into Histogram-LatestK.

Fig. 8 shows the classification accuracy over time in both
cases of abrupt and gradual drift. First, by comparing the
results of different weight decay factors, we observe clearly
the trade-off between the concept drift adaptation speed and
classification accuracy. On one hand, larger λ values imply
faster adaptation to concept drift, as the algorithm quickly
forgets outdated data (i.e., it puts lower weights on the
outdated data). On the other hand, larger values of λ lead
to lower classification accuracy, as the algorithm uses less
information from former histogram elements for sketching,
which leads to worse similarity approximation. Second,
compared to the two additional baselines, we find that
our D2HistoSketch-λ-0.05 outperforms Histogram-LatestK
by achieving higher accuracy and faster adaptation speed at
the same time. However, we found that Histogram-LatestK-
Discriminative shows comparable results to our method,
i.e., its adaptation speed is faster than D2HistoSketch-λ-
0.02 and slower than D2HistoSketch-λ-0.05 while its accu-
racy is lower than D2HistoSketch-λ-0.02 and higher than
D2HistoSketch-λ-0.05. Despite such similar results, there are
two obvious advantages of our methods: 1) D2HistoSketch
is able to balance the adaptation speed and the accuracy
under fixed-size sketches while Histogram-LatestK needs to
vary sketch length K to tune such trade-off; 2) our method
is much faster in similarity computation than Histogram-
LatestK-Discriminative, as the latter requires set operations
while D2HistoSketch only relies on Hamming distance.
For example, to classify one histogram using our testing
PC1, our method needs only 13ms while Histogram-LatestK
takes 152ms, which shows a 12x speedup.

5.2.4 Impact of count-min sketch parameters

In this experiment, we study the impact of the count-min
sketch parameters on the classification performance. Specif-
ically, we study the classification accuracy of our method by
varying the number of rows d and the number of column g
within [5, 10, 20, 50, 100].

1. Intel Core i7-4770HQ@2.20GHz, 16GB RAM, Mac OS X, implemen-
tation using MATLAB v2014b.
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(a) Abrupt drift (b) Gradual drift
Fig. 9. Impact of count-min sketch parameters.

Fig. 9 shows the average classification accuracy outside
of the period for concept drift adaptation. We observe that
larger d and g can both lead to a higher accuracy, as they can
better approximate the frequency table of histogram V and
the label frequency vector F l. However, larger d and g will
also lead to higher time and space complexity as discussed
in Section 4.5.2. Therefore, as the accuracy flattens out after
d = 10, g = 50, we empirically set the count-min sketch
parameters d = 10, g = 50 for all the experiments.

5.3 Performance on Real-World Datasets
To evaluate our method using real-world datasets, we first
compare it with state-of-the-art approaches, and then show
its classification accuracy over time, followed by its runtime
performance.

5.3.1 Comparison with other methods
We compare D2HistoSketch with all aforementioned base-
lines. The sketch length K is empirically set to 100 for
all related methods. Fig. 10 plots the average classification
accuracy. First, we observe that D2Histogram yields the
highest accuracy, showing the effectiveness of consider-
ing both discriminative and gradual forgetting weights on
streaming histogram elements. Third, our D2HistoSketch
also outperforms other sketching methods by efficiently
approximating similarity between D2Histogram. In partic-
ular, D2HistoSketch can efficiently approximate the sim-
ilarity with only a small loss of classification accuracy
(e.g., about 3.25% for root POI categories on the NYC
dataset) compared to D2Histogram. Finally, D2HistoSketch
also outperforms Histogram-LatestK/Histogram-LatestK-
Discriminative, showing the effectiveness of gradual (rather
than abrupt) forgetting of historical data.

In addition, comparing the results between the POI
dataset and the Movielens dataset, we find that the im-
provement by considering gradual forgetting (either in his-
tograms and sketches) on Movielens dataset is smaller than
on POI dataset. It is due to the fact that concept-drift is
rarely observed in the Movielens dataset. In other words,
compared to POIs, a movie rarely changes its genre.

5.3.2 Classification accuracy over time
In this experiment, we study the classification accuracy of
our sketching method over time. We focus on the NYC
dataset with the 9 root levels of POI categories (Experiments
on the other datasets show similar results). In addition to
the randomly selection strategies of testing POIs, we further
consider only the POIs with category changes as testing
data, as the change of POI categories will likely lead to
concept drift (particularly of the abrupt kind). We keep the
same parameter setting as in the previous experiment.

Fig. 10. Comparison with other methods

(a) Random testing POIs (b) Category-changing POIs

Fig. 11. Classification performance over time

Fig. 11(a) shows the classification accuracy for each of
the 12 testing months. We observe that the accuracy of
all sketching methods slightly increases over time with
the accumulated histogram elements, as observing more
histogram elements leads to more accurate similarity mea-
surement of streaming histograms. In particular, compared
to other sketching methods, our D2HistoSketch achieves
consistently higher accuracy by considering both discrim-
inative and gradual forgetting weights.

Fig. 11(b) shows the same results on the testing POIs
with category changes only. We observe a larger im-
provement of considering gradual forgetting weights than
that in Fig. 11(a). For example, the accuracy gain of our
method over Sketch-Discriminative is 3.03% when testing
on category-changing POIs, while it is 2.13% when testing
on random POIs. This observation further shows the effec-
tiveness of our method at handling concept drift. Note that
as opposed to the synthetic dataset, we do not observe any
sudden drop of accuracy, as sets of POIs rarely change their
types simultaneously.

5.3.3 Runtime performance for classification
In this experiment, we investigate the runtime performance
of sketch-based classification. More precisely, we evaluate
the classification time w.r.t. sketch length K . We also com-
pare with Histogram-LatestK which can be regarded as a
sketching method as it keeps only the latest K histogram
elements.

Fig. 12(a) plots the KNN classification time (log scale)
on our test PC3. We observe that compared to the full his-
tograms (D2Histogram), using D2HistoSketch dramatically
reduces the classification time (with a 7500x speedup), since
the Hamming distance between sketches of size K (e.g.,
K=100 in previous experiments) can be much more effi-
ciently computed than the normalized min-max similarity
between the full histograms of much larger size |E| (e.g., |E|
is about 2 million for the NYC dataset). We also note that all
the sketching methods have similar classification time, as
they all compute the Hamming distance between vectors
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(a) Classification time (b) Processing speed
Fig. 12. Runtime performance

of size K . Compared to Histogram-LatestK, our method
also shows a 15x speedup, as Histogram-LatestK requires
set operations for similarity computation.

5.3.4 Runtime performance for sketch maintenance
In this experiment, we investigate the runtime performance
of sketch maintenance. We evaluate the streaming his-
togram processing speed w.r.t. sketch length K (as the time
complexity of maintaining D2HistoSketch mainly depends
on the sketch length K). Here we compare our method
with the following two methods: 1) HistoSketch-Original
[14] (considering gradual forgetting weights only) whose
sampling process is implemented with Eq 10 and 9 and
requires the large set of in-memory parameters ri,j , ci,j , βi,j ;
2) HistoSketch-Fast which is implemented with our effi-
cient sampling method as show in Eq. 21 and considering
gradual forgetting weights only (for a fair comparison with
HistoSketch-Original).

Fig. 12(b) shows the processing speed of streaming his-
togram elements. First, compared to HistoSketch-Original,
HistoSketch-Fast shows a higher processing speed (with
a 12.2% improvement over HistoSketch-Original). Note
that these two methods are equivalent in preserving sim-
ilarities of streaming histograms with gradual forgetting
weight only, and thus show exactly the same classification
performance. Therefore, our proposed sampling method
is more runtime-efficient than the sampling method in
HistoSketch-Original. Second, by adding the discriminative
weights, D2HistoSketch yields a slightly slower processing
speed than HistoSketch-Fast, but with higher classification
performance. Finally, compared to HistoSketch-Original,
D2HistoSketch can achieve a faster processing speed (with
a 5.9% improvement on average) and a higher classification
accuracy (with a 2.78% improvement on average) at the
same time.

We also find that the processing speed slightly decreases
with increasing sketch lengths for all the methods, as longer
sketches required a little more time to update. Moreover,
we believe that the processing speed of our method (about
2200 per second) is able to handle most real-world use
cases. For example, Foursquare check-in streams achieved
a peak-day record of 7 million check-ins/day in 2015 (about
81 check-ins/sec on average). In addition, our method can
be easily parallelized w.r.t. the number of histograms (i.e.,
number of POIs), as sketches of streaming histograms are
independently maintained from each other.

6 CONCLUSION AND FUTURE WORK

This paper introduces D2HistoSketch, a similarity-
preserving sketching method for streaming histograms

to efficiently approximate their Discriminative and Dy-
namic similarity. D2HistoSketch is designed to fast and
memory-efficiently maintain a set of compact and fixed-
sized sketches of streaming histograms to approximate their
normalized min-max similarity. To provide high-quality
similarity approximations, D2HistoSketch considers both
discriminative and gradual forgetting weights for similar-
ity measurement, and seamlessly incorporates them in the
sketches. Based on both synthetic and real-world datasets,
our empirical evaluation shows that our method is able
to efficiently and effectively approximate the similarity
between streaming histograms while outperforming state-
of-the-art sketching methods. Compared to full streaming
histograms with both discriminative and gradual forgetting
weights in particular, D2HistoSketch is able to dramatically
reduce the classification time (with a 7500x speedup) at the
expense of a small loss in accuracy only (about 3.25%).

As future work, we will explore the problem of sketch-
ing two-dimensional (bivariate) streaming histograms, and
apply our method to other application domains.
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