
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Accelerated and Inexact Soft-Impute for
Large-Scale Matrix and Tensor Completion

Quanming Yao Member, IEEE and James T. Kwok Fellow, IEEE

Abstract—Matrix and tensor completion aim to recover a low-rank matrix / tensor from limited observations and have been commonly
used in applications such as recommender systems and multi-relational data mining. A state-of-the-art matrix completion algorithm is
Soft-Impute, which exploits the special “sparse plus low-rank” structure of the matrix iterates to allow efficient SVD in each iteration.
Though Soft-Impute is a proximal algorithm, it is generally believed that acceleration destroys the special structure and is thus not
useful. In this paper, we show that Soft-Impute can indeed be accelerated without comprising this structure. To further reduce the
iteration time complexity, we propose an approximate singular value thresholding scheme based on the power method. Theoretical
analysis shows that the proposed algorithm still enjoys the fast O(1/T 2) convergence rate of accelerated proximal algorithms. We also
extend the proposed algorithm to tensor completion with the scaled latent nuclear norm regularizer. We show that a similar “sparse
plus low-rank” structure also exists, leading to low iteration complexity and fast O(1/T 2) convergence rate. Besides, the proposed
algorithm can be further extended to nonconvex low-rank regularizers, which have better empirical performance than the convex
nuclear norm regularizer. Extensive experiments demonstrate that the proposed algorithm is much faster than Soft-Impute and other
state-of-the-art matrix and tensor completion algorithms.

Index Terms—Matrix Completion, Tensor Completion, Collaborative Filtering, Link Prediction, Proximal Algorithms

F

1 INTRODUCTION

MATRICES are common place in data mining appli-
cations. For example, in recommender systems, the

ratings data can be represented as a sparsely observed user-
item matrix [1]. In social networks, user interactions can
be modeled by an adjacency matrix [2], [3]. Matrices also
appear in applications such as image processing [4], [5], [6],
question answering [7] and large scale classification [8].

Due to limited feedback from users, these matrices are
usually not fully observed. For example, users may only
give opinions on very few items in a recommender system.
As the rows/columns are usually related to each other, the
low-rank matrix assumption is particularly useful to cap-
ture such relatedness, and low-rank matrix completion has
become a powerful tool to predict missing values in these
matrices. Sound recovery guarantee [9] and good empirical
performance [1] have been obtained.

However, directly minimizing the matrix rank is NP-
hard [9]. To alleviate this problem, the nuclear norm (which
is the sum of singular values) is often used instead. It is
known that the nuclear norm is the tightest convex lower
bound of the rank [9]. Specifically, consider an m×n matrix
O (without loss of generality, we assume that m ≥ n),
with positions of the observed entries indicated by Ω ∈
{0, 1}m×n, where Ωij = 1 if Oij is observed, and 0 other-
wise. The matrix completion tries to find a low-rank matrix

• Q. Yao is with 4Paradigm Inc, Beijing, China. E-mail: yaoquan-
ming@4Paradigm.com

• James T. Kwok is with the Department of Computer Science and Engi-
neering, Hong Kong University of Science and Technology, Clear Water
Bay, Hong Kong. E-mail: jamesk@cse.ust.hk.

X by solving following optimization problem:

min
X

1

2
‖PΩ(X −O)‖2F + λ‖X‖∗, (1)

where [PΩ(A)]ij = Aij if Ωij = 1, and 0 otherwise; and
‖·‖∗ is the nuclear norm. Though the nuclear norm is only a
surrogate of the matrix rank, there are theoretical guarantees
that the underlying matrix can be exactly recovered [9].

Computationally, though the nuclear norm is nons-
mooth, problem (1) can be solved by various optimization
tools. An early attempt is based on reformulating (1) as a
semidefinite program (SDP) [9]. However, SDP solvers have
large time and space complexities, and are only suitable for
small data sets. For large-scale matrix completion, singular
value thresholding (SVT) algorithm [10] pioneered the use
of first-order methods . However, a singular value decom-
position (SVD) is required in each SVT iteration. This takes
O(mn2) time and can be computationally expensive. In [11],
this is reduced to a partial SVD by computing only the
leading singular values/vectors using PROPACK (a variant
of the Lanczos algorithm) [12]. Another major breakthrough
is made by the Soft-Impute algorithm [13], which utilizes
a special “sparse plus low-rank” structure associated with
the SVT to efficiently compute the SVD. Empirically, this
allows Soft-Impute to perform matrix completion on the
entire Netflix data set. The SVT algorithm can also be viewed
as a proximal algorithm [14]. Hence, it converges with a
O(1/T) rate, where T is the number of iterations [15]. Later,
this is further “accelerated”, and the convergence rate is
improved to O(1/T 2) [11], [16]. However, Tibshirani [14]
suggested that this is not useful, as the special “sparse plus
low-rank” structure crucial to the efficiency of Soft-Impute
no longer exist. In other words, the gain in convergence rate

ar
X

iv
:1

70
3.

05
48

7v
2

 [
cs

.N
A

]
 2

5
A

ug
 2

01
8

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

is more than compensated by the increase in iteration time
complexity.

In this paper, we show that accelerating Soft-Impute is
indeed possible while still preserving the “sparse plus low-
rank” structure. To further reduce the iteration time com-
plexity, instead of computing SVT exactly using PROPACK
[11], [13], we propose an approximate SVT scheme based on
the power method [17]. Though the SVT obtained in each
iteration is only approximate, we show that convergence
can still be as fast as performing exact SVT. Hence, the
resultant algorithm has low iteration complexity and fast
O(1/T 2) convergence rate. To further boost performance,
we extend the post-processing procedure in [13] to any
smooth convex loss function. The proposed algorithm is
also extended for nonconvex low-rank regularizers, such as
the truncated nuclear norm [18] and log-sum-penalty [9].
which can give better Empirically, these nonconvex low-
rank regularizers have better performance than the convex
nuclear norm regularizer.

Besides matrices, tensors have also been commonly used
to describe the linear and multilinear relationships in the
data [4], [19], [20], [21]. Analogous to matrix completion,
tensor completion can also be solved by convex optimiza-
tion algorithms. However, multiple expensive SVDs on
large dense matrices are required [4], [20]. To alleviate this
problem, we demonstrate that a similar “sparse plus low-
rank” structure also exists when the scaled latent nuclear
norm [20], [22] is used as the regularizer. We extend the
proposed matrix-based algorithm to this tensor scenario.
The resulting algorithm has low iteration cost and fast
O(1/T 2) convergence rate. Experiments on matrix/tensor
completion problems with both synthetic and real-world
data sets show that the proposed algorithm outperforms
state-of-the-art algorithms.

Preliminary results of this paper have been reported in
a shorter conference version [23]. While only the square
loss is used in [23], here we consider more general smooth
convex loss functions. Moreover, we extend the proposed
algorithm to tensor completion and nonconvex low-rank
regularization. Besides, post-processing is proposed to boost
the recovery performance for matrix/tensor completion
with nuclear norm regularization. All proofs can be found
in Appendix A.

Notation. In the sequel, the transpose of vector/ matrix
is denoted by the superscript ·>, and tensors are denoted
by boldface Euler. For a vector x, ‖x‖1 =

∑
i |xi| is its

`1-norm, and ‖x‖ =
√∑

i x
2
i its `2-norm. For a matrix

X , σ1(X) ≥ σ2(X) ≥ . . . σm(X) are its singular values,
tr(X) =

∑
iXii is its trace, ‖X‖1 =

∑
i,j |Xij |, ‖X‖∞ is

its maximum singular value, and ‖X‖F = tr(X>X) the
Frobenius norm, ‖X‖∗ =

∑
i σi(X) the nuclear norm, and

span(X) is the column span of X . Moreover, I denotes the
identity matrix.

For tensors, we follow the notations in [19]. For a
D-order tensor X ∈ RI1×I2×···×ID , its (i1, i2, . . . , iD)th
entry is xi1i2...iD . Let ID\d =

∏D
j=1,j 6=d Ij , the mode-

d matricizations X〈d〉 of X is a Id × ID\d matrix with
(X〈d〉)idj = xi1i2···iD , and j = 1 +

∑D
l=1,l 6=d(il −

1)
∏l−1
m=1,m 6=d Im. Given a matrixA, its mode-d tensorization

A〈d〉 is a tensor X with elements xi1i2···iD = aidj , and j is

as defined above. The inner product of two tensors X and
Y is 〈X,Y〉 =

∑I1
i1=1 · · ·

∑ID
iD=1 xi1i2...iDyi1i2...iD , and the

Frobenius norm of X is ‖X‖F =
√
〈X,X〉.

For a convex but nonsmooth function f , the subgradi-
ent is g ∈ ∂f(x) where ∂f(x) = {u : f(y) ≥ f(x) +
u> (y − x) ,∀y} is its subdifferential. When f is differen-
tiable, we use ∇f for its gradient.

2 RELATED WORK

2.1 Proximal Algorithms
Consider minimizing composite functions of the form:

F (x) ≡ f(x) + g(x), (2)

where f, g are convex, and f is smooth but g is possibly non-
smooth. The proximal algorithm [24] generates a sequence
of estimates {xt} as

xt+1 = proxµg(zt) ≡ arg min
x

1

2
‖x− zt‖22 + µg(x),

where
zt = xt − µ∇f(xt), (3)

and proxµg(·) is the proximal operator. When f is ρ-
Lipschitz smooth (i.e., ‖∇f(x1) − ∇f(x2)‖ ≤ ρ‖x1 − x2‖)
and a fixed stepsize

µ ≤ 1/ρ (4)

is used, the proximal algorithm converges to the optimal
solution with a rate of O(1/T), where T is the number of
iterations [24]. By replacing the update in (3) with

yt = (1 + θt)xt − θtxt−1, (5)
zt = yt − µ∇f(yt), (6)

where θt+1 = t−1
t+2 , it can be accelerated to a convergence

rate of O(1/T 2) [15].
Often, g is “simple” in the sense that proxµg(·) can be

easily obtained. However, in more complicated problems
such as overlapping group lasso [25], proxµg(·) may be
expensive to compute. To alleviate this problem, inexact
proximal algorithm is proposed which allows two types of
errors in standard/accelerated proximal algorithms [26]: (i)
an error et in computing ∇f(·), and (ii) an error εt in the
proximal step, i.e.,

hµg(xt+1; zt) ≤ εt + hµg(proxµg(zt); zt), (7)

where
hµg(x; zt) ≡

1

2
‖x− zt‖2 + µg(x) (8)

is the proximal step’s objective. Let the dual problem of
minx hµg(x; zt) be maxw Dµg(w) where w is the dual vari-
able. The the duality gap is defined as ϑt ≡ hµg(xt+1; zt)−
D(wt+1) where wt+1 is the corresponding dual variable
of xt+1. Then εt is upper-bounded by the duality gap ϑt.
Thus, (7) can be ensured by monitoring ϑt. The following
Proposition shows that by decreasing et and εt sufficiently
fast, the convergence rate remains at O(1/T 2).

Proposition 2.1 ([26]). If ‖et‖ and
√
εt decrease as O(1/t2+δ)

for some δ > 0, the inexact accelerated proximal gradient
algorithm converges with a rate of O(1/T 2).

In the sequel, as our focus is on matrix completion, the
variable x in (2) will be a matrix X .

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

2.2 Soft-Impute

Soft-Impute [13] is a state-of-the-art algorithm for matrix
completion. At iteration t, let the current iterate be Xt. The
missing values in O are filled in as

Zt = PΩ(O) + PΩ⊥(Xt) = PΩ(O −Xt) +Xt, (9)

where Ω⊥ij = 1 − Ωij is the complement of Ω. The next
estimate Xt+1 is then generated by the singular value
thresholding (SVT) operator [10]

Xt+1 = SVTλ(Zt) ≡ arg min
X

1

2
‖X − Zt‖2F + λ‖X‖∗, (10)

which can be computed as follows.

Lemma 2.2 ([10]). Let the SVD of a matrix Zt be UΣV >. Then,
SVTλ(Zt) ≡ U(Σ− λI)+V

> where [(A)+]ij = max(Aij , 0).

Let k̄t be the number of singular values in Zt that are
larger than λ. From Lemma 2.2, a rank-kt SVD, where
kt ≥ k̄t, is sufficient for computing Xt+1 in (10). In [13], this
rank-kt SVD is obtained by the PROPACK algorithm [12].
The most expensive steps in computing the SVD are matrix-
vector multiplications of the form Zu and v>Z , where
u ∈ Rn and v ∈ Rm. In general, the above multiplications
take O(mn) time and rank-kt SVD on Zt takes O(mnkt)
time.

However, to make Soft-Impute efficient, an important
observation in [13] is that Zt in (9) has a special “sparse plus
low-rank” structure, namely that PΩ(O −Xt) is sparse and
Xt is low-rank. Multiplications of the form Ztu and v>Zt
can then be efficiently performed as follows. Let the rank of
Xt be rt, and its SVD be UtΣtVt

>. Ztv can be computed as

Ztv = PΩ(O −Xt)v + UtΣt(Vt
>v). (11)

Constructing PΩ(O−Xt) takes O(rt‖Ω‖1) time, while com-
puting the products PΩ(O − Xt)u and UtΣt(Vt

>u) take
O(‖Ω‖1) and O(mrt) time, respectively. Similarly, u>Zt can
be computed as u>PΩ(O − Xt) + (u>Ut)ΣtVt

>. Thus, to
obtain the rank-k SVD of Zt, Soft-Impute needs only

O(kt‖Ω‖1 + rtktm) (12)

time, and one iteration costs

O((rt + kt)‖Ω‖1 + rtktm) (13)

time. Since the solution is low-rank, kt, rt � m, and (13) is
much faster than the O(mnkt) time for direct rank-kt SVD.

3 ACCELERATED INEXACT SOFT-IMPUTE

In this section, we describe the proposed matrix completion
algorithm. Tibshirani [14] suggested that acceleration is not
useful for Soft-Impute, as it destroys the essential “sparse
plus low-rank” structure. However, we will show that it can
indeed be preserved with acceleration. We also show that
further speedup can be achieved by using approximate SVT.

3.1 Soft-Impute as a Proximal Algorithm

In (1), let

f(X) =
1

2
‖PΩ(X −O)‖2F =

∑
(i,j)∈Ω

`(Xij , Oij), (14)

where ` is the loss function, and g(X) = λ‖X‖∗. The
proximal step in the (unaccelerated) proximal algorithm is

Xt+1 = proxµg(Zt) ≡ arg min
x

1

2
‖X − Zt‖2F + µλ‖X‖∗,

where Zt = Xt − µPΩ(Xt − O). Note that the square loss
`(Xij , Oij) ≡ 1

2 (Xij−Oij)2 in (1) is 1-Lipschitz smooth. The
following shows that f in (14) is also 1-Lipschitz smooth.

Proposition 3.1. If ` is ρ-Lipschitz smooth, f in (14) is also
ρ-Lipschitz smooth.

From (4), one can thus simply set µ = 1 for (1). We
then have Xt+1 = proxg(Zt) = SVTλ(Zt) which is the
same as (10). Hence, interestingly, Soft-Impute is a proximal
algorithm [14], and thus converges at a rate of O(1/T) [13].

3.2 Accelerating Soft-Impute

Since Soft-Impute is a proximal algorithm, it is natural to use
acceleration (Section 2.1). Recall that the efficiency of Soft-
Impute hinges on the “sparse plus low-rank” structure of
Zt, which allows matrix-vector multiplications of the form
Ztu and v>Zt to be computed inexpensively. To accelerate
Soft-Impute, from (5) and (6), we have to compute

proxg(Z̆t)=SVTλ(Z̆t)=arg min
X

1

2
‖X−Z̆t‖2F+λ‖X‖∗, (15)

where Yt = (1 + θt)Xt − θtXt−1, and

Z̆t = PΩ(O − Yt) + (1 + θt)Xt − θtXt−1. (16)

In the following, we show that Z̆t also has a similar “sparse
plus low-rank” structure.

Assume that Xt and Xt−1 have ranks rt and rt−1, and
their SVDs are UtΣtV

>
t and Ut−1Σt−1V

>
t−1, respectively.

Note that PΩ(O − Yt) is sparse, and (1 + θt)Xt − θtXt−1

has rank at most rt + rt−1. Similar to (11), for any v ∈ Rn,
we have

Z̆tv=PΩ(O−Yt)v+(1+θt)UtΣt(V
>
t v)−θtUt−1Σt−1(V >t−1v).

The first term takes O(‖Ω‖1) time while the last two terms
take O((rt−1 + rt)m) time, thus a total of O(‖Ω‖1 + (rt−1 +
rt)m) time. Similarly, for any u ∈ Rm, we have

u>Z̆t=u>PΩ(O−Yt)+(1+θt)(u
>Ut)ΣtV

>
t −θt(u>Ut−1)Σt−1V

>
t−1.

This takes O(‖Ω‖1 + (rt−1 + rt)m) time. The rank-kt SVD
of Z̆t can be obtained using PROPACK in

O(kt‖Ω‖1 + (rt−1 + rt)ktm) (17)

time. As the target matrix is low-rank, rt−1 and rt are much
smaller than n. Hence, (17) is much faster than the O(mnkt)
time required for a direct rank-kt SVD.

The accelerated algorithm has a slightly higher iteration
complexity than the unaccelerated one in (12). However, this
is more than compensated by improvement in the conver-
gence rate (from O(1/T) to O(1/T 2)), as will be empirically
demonstrated in Section 5.1.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

3.3 Approximating the SVT
Though acceleration preserves the “sparse plus low-rank”
structure, the proposed algorithm (and Soft-Impute) can still
be computationally expensive as the SVT in each iteration
uses exact SVD. In this section, we show that further
speedup is possible by using inexact SVD.

As SVT in (10) can be seen as a proximal step, one might
want to perform inexact SVT by monitoring the duality gap
as in Section 2.1. It can be shown that the dual of (15) is

max
‖W‖∞≤1

tr(W>Z̆t)−
λ

2
‖W‖2F , (18)

where W ∈ Rm×n is the dual variable.

Proposition 3.2 ([24]). Let the SVD of matrix Z̆t be UΣV >.
The optimal solution of (18) is W∗ = U min(Σ, λI)V >, where
[min(A,B)]ij = min(Aij , Bij).

Proposition 3.2 shows that a full SVD is required. This
takesO(m2n) time and is even more expensive than directly
using SVT (O(mnkt) time). Instead, the proposed approxi-
mation is motivated by the following Proposition.

Proposition 3.3. Let k̆t be the number of singular values in
Z̆t ∈ Rm×n larger than λ, and Q ∈ Rm×kt , where kt ≥ k̆t, be
orthogonal and contains the subspace spanned by the top k̆t left
singular vectors of Z̆t. Then, SVTλ(Z̆t) = QSVTλ(Q>Z̆t).

Since a low-rank solution is desired, kt can be much
smaller than m [13]. Thus, once we identify the span of Z̆t’s
top left singular vectors, we only need to perform SVT on
the much smaller Q>Z̆t ∈ Rkt×n (instead of Z̆ ∈ Rm×n).
The question is how to find Q. We adopt the power method
(Algorithm 1) [17], which is more efficient than PROPACK
[27]. Matrix Rt in Algorithm 1 is for warm-start.

Algorithm 1 PowerMethod(Z̆t, Rt, J) [17]

Require: Z̆t ∈ Rm×n, Rt ∈ Rn×kt , and the number of
iterations J ;

1: initialize Q0 = QR(Z̆tRt); // QR(·) is QR factorization
2: for j = 1, 2, . . . , J do
3: Qj = QR(Z̆t(Z̆

>
t Qj−1));

4: end for
5: return QJ .

Algorithm 2 shows the approximate SVT procedure.
Step 1 approximates the top kt left singular vectors of Z̆t
with Q. In steps 2 to 5, a much smaller and less expensive
(exact) SVT is performed on Q>Z̆t. Finally, SVTλ(Z̆t) is
recovered as X̃ = (QU)ΣV > using Proposition 3.3.

Algorithm 2 Approximating the SVT of Z̆t: approx-
SVT(Z̆t, Rt, λ, J)

Require: Z̆t ∈ Rm×n, Rt ∈ Rn×kt and λ ≥ 0;
1: Q = PowerMethod(Z̆t, Rt, J);
2: [U,Σ, V] = SVD(Q>Z̆t);
3: U = {ui | σi > λ};
4: V = {vi | σi > λ};
5: Σ = (Σ− λI)+;
6: return QU,Σ and V . // X̃ = (QU)ΣV

3.4 The Proposed Algorithm

We extend problem (1) by allowing the loss ` to be ρ-
Lipschitz smooth (e.g., logistic loss and squared hinge loss):

min
X

F (X) ≡
∑

(i,j)∈Ω

`(Xij , Oij) + λ‖X‖∗. (19)

Using (6), Z̆t = Yt − µ∇f(Yt) = Yt − µSt, where St is a
sparse matrix with

[St]ij =

{
d`((Yt)ij ,Oij)

d(Yt)ij
if (i, j) ∈ Ω

0 otherwise
. (20)

Using Proposition 3.1 and (4), the stepsize µ can be set as
1/ρ. The whole procedure is shown in Algorithm 3. The core
steps are 6–8, which performs approximate SVT. As in [28],
Rt is warm-started as QR([Vt, Vt−1]) at step 7. Moroever, as
in [29], we restart the algorithm if F (X) starts to increase
(step 10). For further speedup, λ is dynamically reduced
(step 3) by a continuation strategy [11], [13].

Algorithm 3 Accelerated Inexact Soft-Impute (AIS-Impute).
Require: partially observed matrix O, parameter λ.

1: initialize c = 1, X0 = X1 = 0, stepsize µ = 1/ρ, λ̂ > λ
and ν ∈ (0, 1);

2: for t = 1, 2, . . . , T do
3: λt = (λ̂− λ)νt−1 + λ;
4: Yt = Xt + θt(Xt −Xt−1), where θt = c−1

c+2 ;
5: Z̆t = Yt − µSt, with St in (20);
6: Vt−1 = Vt−1 − Vt(Vt>Vt−1), remove zero columns;
7: Rt = QR([Vt, Vt−1]);
8: [Ut+1,Σt+1, Vt+1] = approx-SVT(Z̆t, Rt, µλt, J);

// Xt+1 = Ut+1Σt+1V
>
t+1

9: if F (Xt+1) > F (Xt) then c = 1;
10: else c = c+ 1; end if
11: end for
12: return UT+1, ΣT+1 and VT+1.

3.5 Convergence and Time Complexity

In the following, we will show that the proposed
algorithm has a convergence rate of O(1/T 2). Let Xt+1 =
Ut+1Σt+1V

>
t+1 be the output of approx-SVT at step 8. Since

it only approximates SVTµλ(Z̆t), there is a difference (εt
in (7)) between the proximal objectives hµλ‖·‖∗(Xt+1; Z̆t)

and hµλ‖·‖∗(SVTµλ(Z̆t); Z̆t) after performing step 8, where
hµλ‖·‖∗(·; ·) is as defined in (8). The following shows that εt
decreases at a linear rate.

Proposition 3.4. Assume that (i) kt ≥ k̆t for all t and J = t;1

(ii) {F (Xt)} is upper-bounded. Then εt decreases to zero linearly.

Using Propositions 2.1 and 3.4, convergence of the pro-
posed algorithm is provided by the following Theorem.

Theorem 3.5. The sequence {Xt} generated from Algorithm 3
converges to the optimal solution with a O(1/T 2) rate.

The basic operations in the power method are multipli-
cations of the form Z̆tu and v>Z̆t. The tricks in Section 3.2

1. In practice, we simply set J = 3 as in [28].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

can again be used for acceleration, and computing the
approximate SVT using Algorithm 2 takes only

O(kt‖Ω‖1 + (rt−1 + rt)ktm) (21)

time. This is slightly more expensive than (12), the time
for performing exact SVD in Soft-Impute. However, Soft-
Impute is not accelerated and has slower convergence than
Algorithm 3 (Theorem 3.5). The complexity in (21) is also
the same as (17). However, as will be demonstrated in
Section 5.1, approximate SVT is empirically much faster. The
cost of one AIS-Impute iteration is summarized in Table 1.
This is only slightly more expensive than (13) for Soft-
Impute.

TABLE 1
Iteration time complexity of Algorithm 3.

steps complexity
5 (construct St) O(rt‖Ω‖1)
6,7 (warm-start) O(nk2

t)
8 (approximate SVT) O(kt‖Ω‖1 + (rt−1 + rt) ktm)

total O((rt + kt)‖Ω‖1 + (rt−1 + rt + kt)ktm)

Table 2 compares Algorithm 3 with some existing al-
gorithms that will be empirically compared in Section 5.2.
Overall, Algorithm 3 enjoys fast convergence and low
iteration complexity.

3.6 Post-Processing
The nuclear norm penalizes all singular values equally. This
may over-penalize the more important leading singular val-
ues. To alleviate this problem, we post-process the solution
as in [13]. Note that only the square loss is considered in
[13]. Here, any smooth convex loss can be used.

Let the rank-k matrix obtained from Algorithm 3 be
X = UΣV >, where U = [ui] and V = [vi]. Let A(θ) =
UDiag(θ)V >. We undo part of the shrinkage on the singular
values by replacing X with A(θ∗), where

θ∗ = arg min
θ
φ(θ) ≡

∑
(i,j)∈Ω

`(A(θ)ij , Oij). (22)

When ` is the square loss, (22) has a closed-form solution
[13]. However, for smooth convex ` in general, this is not
possible and we optimize (22) using L-BFGS. The most
expensive step in each L-BFGS iteration is the computation
of the gradient ∇φ(θ) ∈ Rk, where [∇φ(θ)]i = u>i Bvi,
Bij =

d`(A(θ)ij ,Oij)
dA(θ)ij

if (i, j) ∈ Ω, and 0 otherwise. As S is
sparse, computing ∇φ(θ) only takes O(k‖Ω‖1) time where
k � n. Thus, one iteration of L-BFGS takes O(k‖Ω‖1) time,
which is not significant compared to the O((rt + kt)‖Ω‖1 +
(rt−1 + rt + kt)ktm) time in each AIS-Impute iteration
(Table 1). Moreover, L-BFGS has superlinear convergence
[38]. Empirically, it converges in fewer than 10 iterations.
These make post-processing very efficient.

3.7 Nonconvex Regularization
While post-processing alleviates the problem of over-
penalizing singular values, recently nonconvex regularizers
have been proposed to address this problem in a more direct
manner. In this section, we first show that the proposed
algorithm can be extended for truncated nuclear norm
regularization (TNNR) [18], which is a popular nonconvex

variant of the nuclear norm. Then we show that it can be
further extended for more general nonconvex regularizers.
Truncated Nuclear Norm. The optimization problem for
TNNR [18] can be written as

min
X

1

2
‖PΩ(X −O)‖2F + λ

m∑
i=r

σi(X), (23)

where r ∈ {1, . . . ,m}. Using DC programming [39], this is
rewritten as

min
X

max
A∈Rm×r,B∈Rn×r

1

2
‖PΩ(X−O)‖2F +λ‖X‖∗−λ tr(A>XB)

s.t. A>A = I, B>B = I. (24)

A,B and X are then obtained using alternative minimiza-
tion as

(Aτ+1, Bτ+1) = min
A>A=I,B>B=I

tr(A>XτB), (25)

Xτ+1 = min
X

1

2
‖PΩ(X −O)‖2F + λ‖X‖∗ (26)

− λ tr(A>τ+1XBτ+1).

Subproblem (25) has the closed-form solution Aτ+1 = Uτ
and Bτ+1 = Vτ [18], where UτΣτV

>
τ is the rank-r SVD of

Xτ . Subproblem (26) involves convex optimization with the
nuclear norm regularizer, and is solved by the accelerated
proximal gradient (APG) algorithm [15] in [18].

The proposed AIS-Impute can be used to solve (26) more
efficiently. LetXt−1 andXt be two consecutive iterates from
AIS-Impute. As in Section 3.2, in order to generate Xt+1, we
compute

Yt = (1 + θt)Xt − θtXt−1, (27)

Z̆t = Yt + µλAτ+1B
>
τ+1 − µPΩ(Yt −O).

Note that Yt + µλAτ+1B
>
τ+1 is low-rank and µPΩ(Yt − O)

is sparse. Thus, Z̆t again has the special “sparse plus low-
rank” structure which is key to AIS-Impute. Each AIS-
Impute iteration then takes O((rt + kt)‖Ω‖1 + (rt−1 + rt +
kt)ktm) time, which is much cheaper than the O(mnk) time
for APG.
Other Nonconvex Low-rank Regularizers. Assume that
the regularizer is of the form r(X) =

∑m
i=1 r̄ (σi(X)),

where r̄(α) is a concave and nondecreasing function on
α ≥ 0. This assumption is satisfied by the log-sum-
penalty [40], minimax concave penalty [41], and capped-
`1 norm [42]. The corresponding optimization problem is
minX

1
2‖PΩ(X − O)‖2F + λr(X). As in [18], using DC pro-

gramming, we obtain

Xτ+1 = min
X

1

2
‖PΩ(X−O)‖2F +λ

m∑
i=1

(wτ+1)iσi(X), (28)

[wτ+1]i = ∂̂r̄ (σi(Xτ)) , i = 1, . . . ,m, (29)

where ∂̂r̄ is the super-gradient [43] of r̄. Subproblem (29)
can be easily computed in O(m) time. As for (28), its regu-
larizer is a weighted nuclear norm. As r̄ is non-decreasing
and concave, (wτ+1)1 ≤ (wτ+1)2 ≤ · · · ≤ (wτ+1)m [6]. The
following Lemma shows that the proximal step in (28) has a
closed-form solution.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

TABLE 2
Comparison of AIS-Impute (Algorithm 3) with other algorithms. The algorithms in [28], [30], [31] involve solving some optimization subproblems

iteratively, and Ta is the number of iterations used. Moreover, integer Ts and c1, c2 ∈ (0, 1) are some constants.
algorithm iteration complexity rate

matrix factorization LMaFit [32] O(‖Ω‖1kt +mkt) —
ASD [33] O(‖Ω‖1kt +mkt) —

R1MP [34] O(‖Ω‖1 +mk2
t) O(cT1)

nuclear norm active subspace selection [28] O(‖Ω‖1k2
t Ta) O(cT−Ts

2)
minimization boost [31] O(‖Ω‖1t2Ta) O(1/T)

Sketchy [35] O(‖Ω‖1 +mk2
t) O(1/T)

TR [30] O(‖Ω‖1t2Ta) —
ALT-Impute [36] O(‖Ω‖1kt +mk2

t) O(1/T)

SSGD [37] O(mk2
t) O(1/

√
T)

AIS-Impute O((rt + kt)‖Ω‖1 + (rt−1 + rt + kt)mkt) O(1/T 2)

Lemma 3.6 ([5], [6]). Let the SVD of Z be UΣV > and
0 ≤ w1 ≤ w2 ≤ · · · ≤ wm. The solution of the proxi-
mal step minX

1
2‖X − Z‖2F + λ

∑m
i=1 wiσi(X) is given by

U [Σ− λDiag(w1, . . . , wm)]+ V
>.

Similar to the truncated nuclear norm, we have Z̆t =
PΩ(O−Yt)+Yt, where PΩ(O−Yt) is sparse and Yt (defined
in (27)) is low-rank. Hence, we again have the special
“sparse plus low-rank” structure. AIS-Impute algorithm can
still be used and one iteration takesO((rt+kt)‖Ω‖1+(rt−1+
rt + kt)ktm) time.

4 TENSOR COMPLETION

Complicated data objects can often be arranged as tensors.
In this section, we extend the proposed Algorithm 3 in
Section 3 from matrices to tensors.

4.1 Tensor Model

The nuclear norm can be defined on tensors in various ways.
The following two are the most popular.

Definition 4.1 ([20]). For a D-order tensor X, the over-
lapped nuclear norm is ‖X‖overlap =

∑D
d=1 λd‖X〈d〉‖∗,

and the scaled latent nuclear norm is ‖X‖scaled =
minX1,...,XD :

∑D
d=1 Xd=X

∑D
d=1 λd‖X

d
〈d〉‖∗. Here, λd ≥ 0’s are

hyperparameters.

The overlapped nuclear norm regularizer penalizes nu-
clear norms on all modes. When only several modes are low-
rank, decomposition with the scaled latent nuclear norm has
better generalization [20], [22]. In this paper, we focus on the
scaled latent nuclear norm regularizer.

Given a partially observed tensor O ∈ RI1×···×ID , with
the observed entries indicated by Ω ∈ {0, 1}I1×···×ID . The
tensor completion problem can be formulated as

min
X1,...,XD

F ([X1
t , . . . ,X

D
t]) (30)

≡
∑

(i1,...,iD)∈Ω

`(
D∑
d=1

Xdi1...iD ,Oi1...iD) +
D∑
d=1

λd‖Xd〈d〉‖∗.

The recovered tensor is X =
∑D
d=1 X

d. In [4], [20],
problem (30) is solved using ADMM [44]. However, the
ADMM update involves SVD in each iteration, which takes
O(
∏D
d=1 Id

∑D
d=1 Id) time and can be expensive.

4.2 Generalizing SVT
In (30), let

f([X1, . . . ,XD]) =
∑

(i1,...,iD)∈Ω

`(
D∑
d=1

Xdi1...iD ,Oi1...iD), (31)

g([X1, . . . ,XD]) =
D∑
d=1

λd‖Xd〈d〉‖∗. (32)

The iterates in Algorithm 3 are generated by SVT. As there
are multiple nuclear norms in (32), the following extends
SVT for this case.

As g in (32) is separable w.r.t. Xi’s, one can compute the
proximal step for each Xi separately [24]. Updates (5), (6) in
the APG become

Ydt = (1 + θt)X
d
t − θtXdt−1,

Z̆
d

t = Ydt − µSt = (1 + θt)X
d
t − θtXdt−1 − µSt, (33)

for d = 1, . . . , D, where St is a sparse tensor with

(St)i1...iD =

d`((Ŷt)i1...iD

,Oi1...iD
)

d(Ŷt)i1...iD

if (i1, . . . , iD) ∈ Ω

0 otherwise
, (34)

and Ŷt =
∑D
d=1 Y

d
t . Lemma 2.2 is also extended to

[X1
t+1, . . . ,X

D
t+1] = proxµg([Z̆

1

t , . . . , Z̆
D

t]) as follows.

Proposition 4.1. (Xdt+1)〈d〉 = SVTµλd‖·‖∗((Z̆
d

t)〈d〉).

The stepsize rule in (4) depends on the modulus of
Lipschitz smoothness of f , which is given by the following.

Proposition 4.2. If ` is ρ-Lipschitz smooth, f in (31) is
√
Dρ-

Lipschitz smooth.

Proposition 3.3 can be used to reduce the size of (Z̆
d

t)〈d〉
in Proposition 4.1, and Algorithm 1 can be used to approx-
imate the underlying SVD. However, this is still not fast
enough. Assume that k̆dt singular values in (Z̆

d

t)〈d〉 are larger
than µλd, and rank-kdt SVD, where kdt ≥ k̆dt , is performed.
SVT on (Zdt)〈d〉 takes O(kdt

∏D
d=1 Id) time. As SVT has to

be performed on each mode, one iteration of APG takes
O(
∏D
d=1 Id

∑D
d=1 k

d
t) time, which is expensive.

4.3 Fast Approximate SVT with Special Structure
In Section 3.2, the special “sparse plus low-rank” structure
can greatly reduce the time complexity of matrix multipli-
cations. As Xdt−1,X

d
t are low-rank tensors and St is sparse,

Z̆
d

t in (33) also has the “sparse plus low-rank” structure.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

However, to generate Xdt+1 using Proposition 4.1, we need

to perform matrix multiplications of the form (Z̆
d

t)〈d〉v,
where v ∈ RID\d , and u>(Z̆t)〈d〉, where u ∈ RId . Unfolding
Z̆t takes O(

∏D
d=1 Id) time and can be expensive. In the

following, we show how this can be avoided.
To generate (Xdt+1)〈d〉, it can be seen from Proposition 4.1

and (33) that Xdt and Xdt−1 only need to be unfolded along
their dth modes. Hence, instead of storing them as ten-
sors, we store (Xdt)〈d〉 as its rank-rdt SVD Udt ΣdtV

d
t
>

, and
(Xdt−1)〈d〉 as its rank-rdt−1 SVD Udt−1Σdt−1V

d
t−1
>

. For any
v ∈ RID\d ,

(Z̆
d

t)〈d〉v = (1 + θt)U
d
t Σdt (V

d
t

>
v)

−θtUdt−1Σdt−1(V dt−1

>
v)− µ(St)〈d〉v.

The first two terms can be computed in O((Id + ID\d)(r
d
t +

rdt−1)) time. As St is sparse, computing the last term takes

O(‖Ω‖1) time. Thus, (Z̆
d

t)〈d〉v can be obtained in O(‖Ω‖1 +
(Id + ID\d)(r

d
t + rdt−1)) time. Similarly, for any u ∈ RId ,

u>(Z̆t)〈d〉 can be computed in O(‖Ω‖1 + (Id + ID\d)(r
d
t +

rdt−1)) time. Thus, performing approximate SVT on (Z̆
d

t)〈d〉,
with rank kdt ≥ k̆dt , using Algorithm 2 takes O(kdt ‖Ω‖1 +
kdt (Id+ID\d)(r

d
t+rdt−1)) time. Using Proposition 4.1, solving

the proximal step proxµg([Z̆
1

t , . . . , Z̆
D

t]) takes a total of

O(
D∑
d=1

kdt ‖Ω‖1 + kdt (Id + ID\d)(r
d
t + rdt−1)) (35)

time. As the target tensor is low-rank, rdt , k
d
t � Id for

d = 1, . . . , D. Hence, (35) is much faster than directly using
Proposition 4.1 (O(

∏D
d=1 Id

∑D
d=1 k

d
t) time).

4.4 The Proposed Algorithm
The whole procedure is shown in Algorithm 4. Unlike,
Algorithm 3, D SVTs have to be computed (steps 5-11) in
each iteration.

Analogous to Theorem 3.5, we have the following.

Theorem 4.3. Assume that (i) kdt ≥ k̆dt for d = 1, . . . , D,
all t and J = t; (ii) F ([X1

t , . . . ,X
D
t]) is upper bounded. The

sequence {[X1
t , . . . ,X

D
t]} generated from Algorithm 4 converges

to the optimal solution with a O(1/T 2) rate.

4.5 Post-Processing
As in Section 3.6, the nuclear norm regularizer in (30) may
over-penalize top singular values. To undo such shrink-
age and boost recovery performance, we also adopt post-
processing here. Let the tensor output from Algorithm 4
be X =

∑D
d=1 X

d, where Xd〈d〉 = UdΣd(V d)> has rank kd.
Define A(θ1, . . . , θD) =

∑D
d=1(UdDiag(θd)(V d)>)〈d〉. As in

(22), we replace X with A
(
θ1
∗, . . . , θ

D
∗
)
, where

[(θ1
∗)
>, . . . , (θD∗)>]> = arg min

θ1,...,θD
φ(θ1, . . . , θD), (36)

and

φ(θ1, . . . , θD) =
∑

(i1,...,iD)∈Ω

`(A(θ1, . . . , θD)i1...iD ,Oi1...iD).

Algorithm 4 AIS-Impute (tensor case).
Require: partially observed tensor O, parameter λ;

1: initialize c = 1, X1
0 = · · · = XD0 = 0, X1

1 = · · · =
XD1 = 0, step-size µ = 1/(

√
Dρ), λ̂ > maxd=1,...,D λd

and ν ∈ (0, 1);
2: for t = 1, 2, . . . , T do
3: θt = (c− 1)/(c+ 2);
4: construct the sparse observed tensor St from (34);
5: for d = 1, . . . , D do
6: (λd)t = (λ̂− λd)νt−1 + λd;
7: Z̆

d

t = (1 + θt)X
d
t − θtXdt−1 + µSt;

8: V dt−1 =V dt−1−V dt ((V dt)>V dt−1), remove zero columns;
9: Rdt = QR(

[
V dt , V

d
t−1

]
);

10:
[
Udt+1,Σ

d
t+1, V

d
t+1

]
= approx-SVT((Z̆

d

t)〈d〉, R
d
t , µ(λd)t, J);

// Xd〈d〉 = Udt+1Σdt+1(V dt+1)>

11: end for
12: if F ([X1

t+1, . . . ,X
D
t+1])>F ([X1

t , . . . ,X
D
t]) then c = 1;

13: else c = c+ 1; end if
14: end for
15: return Udt+1, Σdt+1, V dt+1 where d = 1, . . . , D.

As (36) is a smooth convex problem, L-BFGS is used
for optimization. Let Ud = [ud] and V d = [vd].
Then, ∇φ(θ1, . . . , θD) = [(w1)>, . . . , (wD)>]> where
wd = [wdi] ∈ kd, wdi = (udi)

>B〈d〉v
d
i , and

Bi1...iD =
d`(A([θ1,...,θD])i1...iD

,Oi1...iD)
dA([θ1,...,θD])i1...iD

if (i1, . . . , iD) ∈ Ω

and 0 otherwise. Computation of ∇φ(θ1, . . . , θD) takes
O(
∑D
d=1 k

d‖Ω‖1) time, which is comparable to the per-
iteration complexity of AIS-Impute in (35) and is very effi-
cient. Thus, each L-BFGS iteration is inexpensive. As for the
matrix case, empirically, L-BFGS converges in fewer than 10
iterations. These make post-processing very efficient.

5 EXPERIMENTS

In this section, we perform experiments on matrix comple-
tion (Sections 5.1-5.5) and tensor completion (Sections 5.6,
5.7). Experiments are performed on a PC with Intel Xeon E5-
2695 CPU and 256GB RAM. All algorithms are implemented
in Matlab.

5.1 Synthetic Data
In this section, we perform matrix completion experiments
with synthetic data. The ground-truth matrix has a rank of
5, and is generated as O = UV ∈ Rm×m, where the entries
of U ∈ Rm×5 and V ∈ R5×m are sampled i.i.d. from the
standard normal distribution N (0, 1). Noise, sampled from
N (0, 0.05), is then added. We randomly choose 15m log(m)
of the entries in O as observed. Half of them are used for
training, and the other half as validation set for parameter
tuning. Testing is performed on the unobserved (missing)
entries. We vary m in the range {250, 1000, 4000}.

The following proximal algorithms are compared: (i)
accelerated proximal gradient algorithm (denoted “APG”)
[11]: It uses PROPACK to obtain singular values that are
larger than λ; (ii) Soft-Impute [13]; (iii) AIS-Impute (the
proposed Algorithm 3); and (iv) AIS-Impute (exact): This

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

TABLE 3
Matrix completion results on the synthetic data. Here, sparsity is the proportion of observed entries, and post-processing time is in seconds.

NMSE
without post-processsing with post-processing rank post-processing time

m = 250 APG 0.0167±0.0007 0.0098±0.0001 5 0.01
(sparsity: 33.1%) Soft-Impute 0.0166±0.0007 0.0099±0.0001 5 0.01

AIS-Impute (exact) 0.0165±0.0007 0.0098±0.0001 5 0.01
AIS-Impute 0.0165±0.0007 0.0098±0.0001 5 0.01

m = 1000 APG 0.0165±0.0001 0.0090±0.0001 5 0.01
(sparsity: 10.4%) Soft-Impute 0.0170±0.0005 0.0097±0.0001 5 0.03

AIS-Impute (exact) 0.0166±0.0001 0.0093±0.0001 5 0.02
AIS-Impute 0.0166±0.0001 0.0092±0.0001 5 0.02

m = 4000 APG 0.0142±0.0002 0.0080±0.0001 5 0.05
(sparsity: 3.1%) Soft-Impute 0.0143±0.0003 0.0082±0.0002 5 0.18

AIS-Impute (exact) 0.0142±0.0002 0.0080±0.0001 5 0.11
AIS-Impute 0.0142±0.0002 0.0080±0.0001 5 0.13

is a variant of the proposed algorithm with exact SVT step
(computed using PROPACK).

Let X be the recovered matrix. For performance
evaluation, we use the (i) normalized mean squared error
NMSE = ‖PΩ⊥(X −UV)‖F /‖PΩ⊥(UV)‖F , and (ii) rank of
X . To reduce statistical variability, experimental results are
averaged over 5 repetitions.

Results2 are shown in Table 3. As can be seen, all
algorithms have similar NMSE performance, with Soft-
Impute being slightly worse. The plots of objective value
vs time and iterations are shown in Figure 1. In terms of
the number of iterations, the accelerated algorithms (APG,
AIS-Impute(exact) and AIS-Impute) are very similar and
converge much faster than Soft-Impute (which only has a
O(1/T) convergence rate). However, in terms of time, both
APG and Soft-Impute are slow, as APG does not utilize
the “sparse plus low-rank” structure and Soft-Impute has
slow convergence. AIS-Impute(exact) is consistently faster
than APG and Soft-Impute, as both acceleration and “sparse
plus low-rank” structure are utilized. However, AIS-Impute
is the fastest as it further allows inexact updates of the
proximal step. This also verifies our motivation of using the
approximate SVT in Section 3.3.

Table 3 also shows the NMSE results with post-
processing (Section 3.6). Compared to the time used by
the main algorithm (Figure 1), the post-processing time is
small and can be ignored. Thus, post-processing is always
performed in the sequel.

5.2 Recommender System

In this section, experiments are performed on two well-
known benchmark data sets, MovieLens and Netflix.
MovieLens. The MovieLens data set (Table 4) contains rat-
ings ({1, 2, 3, 4, 5}) of different users on movies. It has been
commonly used in matrix completion experiments [13], [28].
We randomly use 50% of the observed ratings for training,
25% for validation and the rest for testing.

TABLE 4
MovieLens data sets used in the experiments.

#users #movies # observed ratings
100K 943 1,682 100,000
1M 6,040 3,449 999,714
10M 69,878 10,677 10,000,054

We compare AIS-Impute with the two most popu-
lar low-rank matrix learning approaches [1], [9], namely,

2. The lowest and comparable results (according to the pairwise t-test
with 95% confidence) are highlighted.

(a) m = 250.

(b) m = 1000.

(c) m = 4000.
Fig. 1. Convergence of objective value on the synthetic data. Left: vs
CPU time (in seconds); Right: vs number of iterations (note that AIS-
Impute(exact) and AIS-Impute overlap with each other).

factorization-based and nuclear-norm minimization meth-
ods. The factorization-based methods include (i) large scale
matrix fit (“LMaFit”) [32], which uses alternative minimiza-
tion with over-relaxation; (ii) alternative steepest descent
(“ASD”) [33], which uses alternating steepest descent; (iii)
rank-one matrix pursuit (“R1MP”) [34], which greedily
pursues a rank-one basis in each iteration. The nuclear-
norm minimization methods include (i) active subspace
selection (“active”) [28], which uses the power method in
each iteration to identify the active row and column sub-
spaces; (ii) a boosting approach (“boost”) [31], which uses a
variant of the Frank-Wolfe (FW) algorithm [45], with local
optimization in each iteration using L-BFGS; (iii) sketchy
decisions (“Sketchy”) [35], which is also a FW variant, and
uses random matrix projection [17] to reduce the space

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

TABLE 5
Results on the MovieLens data sets. Note that TR and APG cannot converge in 104 seconds on the 10M data set.

100K 1M 10M
RMSE rank RMSE rank RMSE rank

factorization LMaFit 0.896±0.011 3 0.827±0.002 6 0.819±0.001 12
ASD 0.905±0.055 3 0.826±0.004 6 0.816±0.002 12

R1MP 0.938±0.016 10 0.857±0.001 19 0.853±0.002 27
nuclear norm active 0.880±0.003 8 0.821±0.001 16 0.803±0.001 72
minimization boost 0.881±0.003 8 0.821±0.001 16 0.814±0.001 15

Sketchy 0.889±0.003 8 0.821±0.001 48 0.826±0.001 60
TR 0.884±0.002 8 0.820±0.001 20 — —

SSGD 0.886±0.011 8 0.849±0.006 16 0.858±0.014 45
APG 0.880±0.003 8 0.820±0.001 16 — —

Soft-Impute 0.881±0.003 8 0.821±0.001 16 0.803±0.001 72
ALT-Impute 0.882±0.003 8 0.823±0.001 16 0.805±0.001 45
AIS-Impute 0.880±0.003 8 0.820±0.001 16 0.802±0.001 72

(a) 100K. (b) 1M. (c) 10M.
Fig. 2. Testing RMSE vs CPU time (in seconds) on MovieLens data sets.

and per-iteration time complexities; (iv) second-order trust-
region algorithm (“TR”) [30], which alternates fixed-rank
optimization and rank-one updates; (vi) stochastic gradi-
ent descent (“SSGD”) [37], which is a stochastic gradient
descent algorithm; and (v) matrix completion based on
fast alternating least squares (“ALT-Impute”) [36], which
is a fast variant of Soft-Impute [13] that avoids SVD by
alternating least squares. For all algorithms, parameters are
tuned using the validation set. The algorithm is stopped
when the relative change in objectives between consecutive
iterations is smaller than 10−4.

For performance evaluation, as in [13], [28], we use (i) the
root mean squared error on the test set: RMSE = ‖PΩ̂(X −
Ô)‖F /(‖Ω̂‖1)

1
2 , where X is the recovered matrix, and the

testing ratings {Ôij} is indexed by the set Ω̂; and (ii) rank
of X . The experiment is repeated 5 times and the average
performance is reported.

Results are shown in Table 5. As can be seen, AIS-Impute
is consistently the fastest and has the lowest RMSE. On
MovieLens-10M, TR and APG are not run as they are too
slow. Figure 2 shows the testing RMSE with CPU time.
As can be seen, Boost, TR, SSGD and APG are all very
slow. Boost and TR need to solve an expensive subproblem
in each iteration; SSGD has slow convergence; while APG
requires SVD and does not utilize the “sparse plus low-
rank” structure for fast matrix multiplication. ALT-Impute
and LMaFit do not need SVT, and are faster than Soft-
Impute. However, their nonconvex formulations have slow
convergence, and are thus slower than AIS-Impute. Over-
all, AIS-Impute is the fastest, as it combines inexpensive
iteration with fast convergence.
Netflix. The Netflix data set contains ratings of 480,189 users
on 17,770 movies. 1% of the ratings matrix are observed. We
randomly sample 50% of the observed ratings for training,
and the rest for testing.

We only compare with active subspace selection, ALT-

Impute and Soft-Impute; while methods including boost,
TR, SSGD, APG are slow and not compared. LMaFit solves
a different optimization problem based on matrix factoriza-
tion, and has worse recovery performance than AIS-Impute.
Thus, it is also not compared. As in [13], several choices of
the regularization parameter λ are experimented.

Results are shown in Table 6. As in previous experi-
ments, the RMSEs and ranks obtained by the various algo-
rithms are similar. Figure 3 shows the plot of testing RMSE
versus CPU time. As can be seen, AIS-Impute is again much
faster.

TABLE 6
Results on the Netflix data set. The regularization parameter λ in (1) is
set as λ0/c, where λ0 = ‖PΩ(O)‖F . Soft-Impute with c = 30 is not run

as it is very slow.
RMSE rank

c = 10 active 0.894±0.001 3
ALT-Impute 0.900±0.006 3
Soft-Impute 0.893±0.001 3
AIS-Impute 0.893±0.001 3

c = 20 active 0.847±0.001 14
ALT-Impute 0.850±0.001 14
Soft-Impute 0.847±0.001 14
AIS-Impute 0.847±0.001 14

c = 30 active 0.820±0.001 116
ALT-Impute 0.825±0.001 116
AIS-Impute 0.820±0.001 116

5.3 Grayscale Images
In this section, we perform experiments on images from
[18] (Figures 4(a)-4(c)). The pixels are normalized to zero
mean and unit variance. Gaussian noise from N (0, 0.05) is
then added. In each image, 50% of the pixels are randomly
sampled as observations (half for training and another half
for validation). The task is to fill in the remaining 80% of the
pixels. The experiment is repeated five times.

Table 7 shows the testing RMSE and recovered rank. As
can be seen, nuclear norm minimization is better in terms
of RMSE (in particular, AIS-Impute, ALT-Impute, APG and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

(a) λ = λ0/10. (b) λ = λ0/20. (c) λ = λ0/30.
Fig. 3. Testing RMSE vs CPU time (in minutes) on the Netflix data set, with various values for the regularization parameter λ.

(a) rice (854 × 960). (b) tree (800 × 800). (c) wall (841 × 850).
Fig. 4. Grayscale images used for matrix completion. Their sizes are
shown in the bracket.
boost are the best), though they require the use of higher
ranks. Figure 5 shows the running time. As can be seen,
AIS-Impute is consistently the fastest.

Figure 6 compares the difference between recovered im-
ages from all algorithms and the clean one on image tree. As
can be seen, the difference on SSGD is the largest. Besides,
LMaFit, ASD, and R1MP and SSGD also have larger errors
than the rest. The observations on rice and wall are similar,
however, due to space limitation, we do not show them here.

5.4 Nonconvex Regularization
In the following, we first perform experiments on (i) syn-
thetic data, using the setup in Section 5.1 (with m = 250
and 1000); and (ii) the recommender data set MovieLens-
100K, using the setup in Section 5.2. Three nonconvex low-
rank regularizers are considered, namely, truncated nuclear
norm (TNN) [18], capped-`1 norm [42] and log-sum-penalty
(LSP) [40].

For TNN, we compare three solvers: (i) TNNR(APG):
the solver used in [18]; (ii) IRNN [6], which is a more
recent proximal algorithm for optimization with noncon-
vex low-rank matrix regularizers (including the TNN); and
(iii) the proposed AIS-Impute extension (denoted DC(AIS-
Impute)), which replaces the original APG solver in [18] for
the subproblem in TNNR with AIS-Impute. For capped-
`1 and LSP, two solvers are considered: (i) IRNN and (ii)
the proposed AIS-Impute extension. As a further baseline,
we also compare with (convex) nuclear norm regularization
with the AIS-Impute solver. Experiments are repeated five
times.

Results are shown in Table 8. As can be seen, the errors
obtained by nonconvex regularization (i.e., TNN, capped-`1
and LSP) are much lower than those from convex nuclear
norm regularization, illustrating the advantage of using
nonconvex regularization. The performance obtained by the
different nonconvex regularizers are comparable.

5.5 Link Prediction
Given a graph with m nodes and an incomplete adjacency
matrix O ∈ {±1}m×m, link prediction aims to recover a

low-rank matrixX ∈ Rm×m such that the signs ofXij ’s and
Oij ’s agree on most of the observed entries. This is a binary
matrix completion problem [3], and we use the logistic loss
`(Xij , Oij) ≡ log (1 + exp(−XijOij)) in (19).

Experiments are performed on the Epinions and Slashdot
data sets [3] (Table 9). Each row/column of the matrix O
corresponds to a user (users with fewer than two observa-
tions are removed). For Epinions, Oij = 1 if user i trusts
user j, and −1 otherwise. Similarly for Slashdot, Oij = 1
if user i tags user j as friend, and −1 otherwise. As can
be seen from previous sections, Boost, TR, SSGD, APG and
Soft-Impute are all slow, and thus they are not considered
here. Besides, LMaFit and ALT-Impute are designed for the
square loss. Thus, comparison is performed with (i) active
subspace selection; (ii) AIS-Impute; and (iii) AltMin: the
alternative minimization approach used in [3]. We use 80%
of the ratings for training, 10% for validation and the rest for
testing. LetX be the recovered matrix, and the test set {Ôij}
be indexed by the set Ω̂. For performance evaluation, we use
the (i) testing accuracy 1

‖Ω̂‖1

∑
(i,j)∈Ω̂ I(sign(Xij) = Ôij),

where I(·) is the indicator function; and (ii) the rank of
X . To reduce statistical variability, experimental results are
averaged over 5 repetitions.

Results are shown in Table 10 and Figure 8 shows the
testing accuracy with CPU time. As can be seen, active and
AIS-Impute have slightly better accuracies than AltMin, and
AIS-Impute is the fastest.

5.6 Tensor Completion: Synthetic Data

In this section, we perform tensor completion experiments
with synthetic data. The ground-truth data tensor (of size
m × m × 3) is generated as O = C ×1 A1 ×2 A2 ×3 A3,
where the elements of A1 ∈ Rm×3, A2 ∈ Rm×3, A3 ∈ R3×3

and the core tensor C ∈ R3×3 are all sampled i.i.d. from
the standard normal distribution N (0, 1), and ×k is the k-
mode product3. Thus, O is low-rank for the first two mode
but not for the third. Noise G, with elements sampled i.i.d.
from the normal distribution N (0, 0.05), is then added. A
total number of Ω = 45m log(m) random elements in O

are observed. Half of them are used for training, and the
other half for validation. On testing, we perform evaluation
on the unobserved entries and use the same criteria as in
Section 5.1, i.e., NMSE and recovered rank in each mode.

Similar to Section 5.1, we compare the following al-
gorithms: (i) APG; (ii) extension of Soft-Impute to tensor
completion, which is based on Section 4.2; (iii) the proposed

3. The k-mode product of a tensor X and a matrix A is defined as
X×k A =

(
X〈k〉A

)
〈k〉 [19].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

(a) rice. (b) tree. (c) wall.
Fig. 5. Testing RMSE vs CPU time (in seconds) on grayscale images.

TABLE 7
Matrix completion results on grayscale images. CPU time is in seconds.

rice tree wall
RMSE rank RMSE rank RMSE rank

factorization LMaFit 0.189±0.002 45 0.174±0.013 25 0.238±0.004 50
ASD 0.194±0.020 45 0.142±0.004 25 0.189±0.012 50

R1MP 0.207±0.001 54 0.159±0.002 53 0.175±0.001 58
nuclear norm active 0.176±0.002 100 0.130±0.002 71 0.150±0.002 101
minimization boost 0.176±0.004 94 0.130±0.002 60 0.149±0.002 93

Sketchy 0.186±0.007 89 0.134±0.002 41 0.157±0.008 88
TR 0.179±0.001 150 0.131±0.002 103 0.151±0.001 149

SSGD 0.447±0.058 96 0.424±0.037 60 0.463±0.023 96
APG 0.176±0.001 96 0.130±0.002 60 0.151±0.001 96

Soft-Impute 0.176±0.001 113 0.131±0.004 71 0.151±0.002 112
ALT-Impue 0.176±0.004 96 0.130±0.004 71 0.150±0.001 95
AIS-Impute 0.176±0.001 96 0.219±0.002 70 0.150±0.001 95

Fig. 6. Comparison on the difference between reconstructed images and the clean one on image tree.

TABLE 8
Comparison of nuclear norm regularization with various nonconvex regularizations.

NMSE RMSE
synthetic (m = 250) synthetic (m = 1000) MovieLens-100K

nuclear norm AIS-Impute 0.0098±0.0004 0.0092±0.0002 0.883±0.005
TNN TNNR(APG) 0.0081±0.0004 0.0073±0.0001 0.851±0.002

IRNN 0.0081±0.0004 0.0073±0.0001 0.853±0.004
DC(AIS-Impute) 0.0081±0.0004 0.0073±0.0002 0.851±0.002

capped-`1 IRNN 0.0089±0.0005 0.0074±0.0001 0.853±0.002
DC(AIS-Impute) 0.0081±0.0004 0.0073±0.0002 0.852±0.005

LSP IRNN 0.0083±0.0004 0.0076±0.0001 0.852±0.006
DC(AIS-Impute) 0.0081±0.0004 0.0073±0.0002 0.850±0.002

TABLE 9
Data sets for link prediction.

#rows #columns #signs
Epinions 84,601 48,091 505,074
Slashdot 70,284 32,188 324,745

TABLE 10
Performance on link prediction.

accuracy rank
Epinions active 0.939±0.002 12

AltMin 0.936±0.002 41
AIS-Impute 0.940±0.001 12

Slashdot active 0.844±0.001 16
AltMin 0.839±0.002 39

AIS-Impute 0.843±0.001 16

algorithm with exact SVD (AIS-Impute(exact)); and (iv) the

proposed algorithm which uses power method to approxi-
mate SVT (AIS-Impute).

As suggested in [22], we set (λ1, λ2, λ3) in the scaled
latent nuclear norm to (1, 1,

√
m√
3

)λ. Thus, the only tunable
parameter is λ, which is obtained by grid search using the
validation set. We also vary m in {125, 500, 2000}. Experi-
mental results are averaged over 5 repetitions.

Results on NMSE and rank are shown in Table 11. As
can be seen, APG, Soft-Impute, AIS-Impute(exact) and AIS-
Impute have comparable performance. The plots of objec-
tive value vs time and iterations are shown in Figure 9. In
terms of iterations, APG, AIS-Impute(exact) and AIS-Impute

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

(a) TNN. (b) capped-`1. (c) LSP.
Fig. 7. Convergence of testing RMSE vs CPU time (in seconds) on the MovieLens-100K data set.

TABLE 11
Tensor completion results on the synthetic data. Here, sparsity is the proportion of observed entries, and post-processing time is in seconds.

NMSE
no post-processing with post-processing rank post-processing time

m = 125 APG 0.0162±0.0015 0.0100±0.0006 3,3,0 0.1
(sparsity: 62.4%) Soft-Impute 0.0162±0.0014 0.0100±0.0005 3,3,0 0.1

AIS-Impute(exact) 0.0161±0.0015 0.0100±0.0005 3,3,0 0.1
AIS-Impute 0.0159±0.0011 0.0099±0.0004 3,3,0 0.1

m = 500 APG 0.0166±0.0007 0.0105±0.0004 3,3,0 0.1
(sparsity: 16.0%) Soft-Impute 0.0168±0.0007 0.0106±0.0004 3,3,0 0.1

AIS-Impute(exact) 0.0167±0.0006 0.0104±0.0003 3,3,0 0.1
AIS-Impute 0.0167±0.0007 0.0105±0.0003 3,3,0 0.1

m = 2000 APG 0.0162±0.0013 0.0105±0.0006 3,3,0 0.5
(sparsity: 3.9%) Soft-Impute 0.0168±0.0016 0.0109±0.0011 3,3,0 0.4

AIS-Impute(exact) 0.0161±0.0012 0.0104±0.0007 3,3,0 0.4
AIS-Impute 0.0161±0.0012 0.0104±0.0007 3,3,0 0.1

(a) Epinions. (b) Slashdot.
Fig. 8. Testing accuracy vs CPU time (in seconds) on the Epinions and
Slashdot data sets.

have similar behavior as they all have O(1/T 2) convergence
rate. These also agree with the matrix case in Section 5.1. In
terms of time, as APG does not utilize the “sparse plus low-
rank” structure, it is slower than AIS-Impute(exact) and AIS-
Impute. AIS-Impute is the fastest, as it has both fastO(1/T 2)
convergence rate and low per-iteration complexity.

Performance with post-processing in Section 4.5 is
shown in Table 11. As can be seen, it is very efficient and
improves NMSE. Thus, we always perform post-processing
in the sequel.

5.7 Multi-Relational Link Prediction
In this section, we perform experiments on the YouTube data
set [46]. It contains 15,088 users, and describes five types of
user interactions: contact, number of shared friends, number
of shared subscriptions, number of shared subscribers, and
the number of shared favorite videos. Thus, it forms a
15088×15088×5 tensor, with a total of 27, 257, 790 nonzero
elements. Following [3], we formulate multi-relational link
prediction as a tensor completion problem. As the obser-
vations are real-valued, we use the square loss in (30). Be-
sides AIS-Impute (Algorithm 4), we also compare with the
following state-of-the-art non-proximal-based tensor com-
pletion algorithms: (i) geometric nonlinear CG for tensor

(a) m = 125.

(b) m = 500.

(c) m = 2000.
Fig. 9. Convergence of objective value on the synthetic tensor data. Left:
vs number of iterations; Right: vs CPU time (in seconds).

completion (denoted “GeomCG”) [47]: a gradient descent
approach with gradients restricted on the Riemannian man-
ifold; (ii) An alternating direction method of multipliers
approach (denoted “ADMM(overlap)”) [20], which solves

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

the overlapping nuclear norm regularized tensor comple-
tion problem; (iii) fast low rank tensor completion (denoted
“FaLRTC”) [4]: It smooths the overlapping nuclear norm
and then solves the relaxed problem with accelerated gra-
dient descent; and (iv) tensor completion by parallel matrix
factorization (denoted “TMac”) [48]: An extension of LMaFit
[32] to tensor completion, which performs simultaneous
low-rank matrix factorizations to all mode matricizations.
YouTube Subset. First, we perform experiments on a small
YouTube subset, obtained by random selecting 1000 users
(leading to 12, 101 observations). We use 50% of the ob-
servations for training, another 25% for validation and the
remaining for testing. Let X be the recovered tensor, and the
testing ratings Ôij be indexed by the set Ω̂. For performance
evaluation, we use (i) the testing root mean squared error

RMSE =
√
‖PΩ̂(X− Ô)‖2F /‖Ω̂‖1; and (ii) rank of the un-

folded matrix in each mode. The experiments are repeated
five times.

Performance is shown in Table 12 and Figure 10(a) shows
the time comparison. ADMM(overlap) and FaLRTC have
similar recovery performance, but are all very slow due
to usage of the SVD. As the overlapping nuclear norm is
smoothed in FaLRTC, its cannot exactly recover a low-rank
tensor. TMac is fast, but has the worst recovery performance.
AIS-Impute enjoys fast speed and good recovery perfor-
mance.

TABLE 12
Results on the YouTube subset. The rank is for each mode.

RMSE rank
GeomCG 0.672±0.050 7, 7, 5

ADMM(overlap) 0.690±0.030 142, 142, 5
FaLRTC 0.672±0.032 1000, 1000, 5

TMac 0.786±0.027 4, 4, 0
AIS-Impute 0.616±0.029 33, 33, 0

Full YouTube Data. Next, we perform experiments on
the full YouTube data set with the same setup. As
ADMM(overlap) and FaLRTC are too slow, we only com-
pare with GeomCG, TMac and AIS-Impute. Experiments are
repeated five times.

Results are shown in Table 13, and Figure 10(b) shows
the time. TMac has much worse performance than GeomCG
and AIS-Impute. GeomCG is based on the (nonconvex)
Turker decomposition, and its convergence rate is unknown.
Moreover, its iteration time complexity has a worse de-
pendency on the tensor rank than AIS-Impute (

∏D
i=1 r

d
t vs∑D

i=1 r
d
t), and thus GeomCG becomes very slow when the

tensor rank is large. Overall, AIS-Impute has fast speed and
good recovery performance.

TABLE 13
Results on the full YouTube dataset. The rank is for each mode.

RMSE rank
GeomCG 0.388±0.001 51, 51, 5

TMac 0.611±0.007 10, 10, 0
AIS-Impute 0.369±0.006 70, 70, 0

6 CONCLUSION

In this paper, we show that Soft-Impute, as a proximal
algorithm, can be accelerated without losing the “sparse
plus low-rank” structure crucial to its efficiency. To fur-
ther reduce the per-iteration time complexity, we proposed

(a) data subset. (b) full data set.
Fig. 10. Testing RMSE vs CPU time on the Youtube data set.

an approximate-SVT scheme based on the power method.
Theoretical analysis shows that the proposed algorithm still
enjoys the fast O(1/T 2) convergence rate. We also extend
the proposed algorithm for low-rank tensor completion
with the scaled latent nuclear norm regularizer. Again, the
“sparse plus low-rank” structure can be preserved and a
convergence rate of O(1/T 2) can be obtained. The proposed
algorithm can be further extended to nonconvex low-rank
regularizers, which have better empirical performance than
the convex nuclear norm regularizer. Extensive experiments
on both synthetic and real-world data sets show that the
proposed algorithm is much faster than the state-of-the-art.

ACKNOWLEDGMENT

This research was supported in part by the Research Grants
Council of the Hong Kong Special Administrative Region
(Grant 614513).

REFERENCES

[1] Y. Koren, “Factorization meets the neighborhood: a multifaceted
collaborative filtering model,” in Proceedings of the 14th Interna-
tional Conference on Knowledge Discovery and Data Mining, 2008, pp.
426–434.

[2] M. Kim and J. Leskovec, “The network completion problem:
inferring missing nodes and edges in networks,” in Proceedings
of the 11st International Conference on Data Mining, 2011, pp. 47–58.

[3] K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. Dhillon, and A. Tewari,
“Prediction and clustering in signed networks: A local to global
perspective,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1177–1213, 2014.

[4] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 208–
220, 2013.

[5] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang, “Weighted
nuclear norm minimization and its applications to low level vi-
sion,” International Journal of Computer Vision, vol. 121, no. 2, pp.
183–208, 2017.

[6] C. Lu, J. Tang, S. Yan, and Z. Lin, “Nonconvex nonsmooth low
rank minimization via iteratively reweighted nuclear norm,” IEEE
Transactions on Image Processing, vol. 25, no. 2, pp. 829–839, 2016.

[7] Z. Zhao, L. Zhang, X. He, and W. Ng, “Expert finding for ques-
tion answering via graph regularized matrix completion,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 4, pp.
993–1004, 2015.

[8] J. Fan, Z. Tian, M. Zhao, and T. Chow, “Accelerated low-rank
representation for subspace clustering and semi-supervised classi-
fication on large-scale data,” Neural Networks, vol. 100, pp. 39–48,
2018.

[9] E. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, vol. 9,
no. 6, pp. 717–772, 2009.

[10] J.-F. Cai, E. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM Journal on Optimization,
vol. 20, no. 4, pp. 1956–1982, 2010.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[11] K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm
for nuclear norm regularized linear least squares problems,” Pacific
Journal of Optimization, vol. 6, no. 615-640, p. 15, 2010.

[12] R. Larsen, “Lanczos bidiagonalization with partial reorthogonal-
ization,” Department of Computer Science, Aarhus University,
DAIMI PB-357, 1998.

[13] R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral regularization
algorithms for learning large incomplete matrices,” Journal of
Machine Learning Research, vol. 11, pp. 2287–2322, 2010.

[14] R. Tibshirani, “Proximal gradient descent and accelera-
tion,” Lecture Notes, 2010, http://www.stat.cmu.edu/∼ryantibs/
convexopt-S15/lectures/08-prox-grad.pdf.

[15] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[16] S. Ji and J. Ye, “An accelerated gradient method for trace norm
minimization,” in Proceedings of the 26th International Conference on
Machine Learning, 2009, pp. 457–464.

[17] N. Halko, P.-G. Martinsson, and J. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approxi-
mate matrix decompositions,” SIAM Review, vol. 53, no. 2, pp.
217–288, 2011.

[18] Y. Hu, D. Zhang, J. Ye, X. Li, and X. He, “Fast and accurate matrix
completion via truncated nuclear norm regularization,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 9, pp. 2117–2130, 2013.

[19] T. Kolda and B. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[20] R. Tomioka, K. Hayashi, and H. Kashima, “Estimation of low-rank
tensors via convex optimization,” Department of Mathematical
Informatics, University of Tokyo, Tech. Rep. arXiv:1010.0789, 2010.

[21] E. Acar, D. Dunlavy, T. Kolda, and M. Mørup, “Scalable tensor
factorizations for incomplete data,” Chemometrics and Intelligent
Laboratory Systems, vol. 106, no. 1, pp. 41–56, 2011.

[22] K. Wimalawarne, M. Sugiyama, and R. Tomioka, “Multitask
learning meets tensor factorization: task imputation via convex
optimization,” in Advances in Neural Information Processing Systems,
2014, pp. 2825–2833.

[23] Q. Yao and J. T. Kwok, “Accelerated inexact soft-impute for fast
large-scale matrix completion,” in Proceedings of the 24th Interna-
tional Joint Conference on Artificial Intelligence, 2015, pp. 4002–4008.

[24] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and
Trends in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[25] L. Jacob, G. Obozinski, and J.-P. Vert, “Group lasso with overlap
and graph lasso,” in Proceedings of the 26th International Conference
on Machine Learning, 2009, pp. 433–440.

[26] M. Schmidt, N. Roux, and F. Bach, “Convergence rates of inexact
proximal-gradient methods for convex optimization,” in Advances
in Neural Information Processing Systems, 2011, pp. 1458–1466.

[27] K. Wu and H. Simon, “Thick-restart Lanczos method for large
symmetric eigenvalue problems,” SIAM Journal on Matrix Analysis
and Applications, vol. 22, no. 2, pp. 602–616, 2000.

[28] C.-J. Hsieh and P. Olsen, “Nuclear norm minimization via active
subspace selection,” in Proceedings of the 31st International Confer-
ence on Machine Learning, 2014, pp. 575–583.

[29] B. O’Donoghue and E. Candès, “Adaptive restart for accelerated
gradient schemes,” Foundations of Computational Mathematics, pp.
1–18, 2012.

[30] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre, “Low-rank opti-
mization with trace norm penalty,” SIAM Journal on Optimization,
vol. 23, no. 4, pp. 2124–2149, 2013.

[31] X. Zhang, D. Schuurmans, and Y.-L. Yu, “Accelerated training for
matrix-norm regularization: A boosting approach,” in Advances in
Neural Information Processing Systems, 2012, pp. 2906–2914.

[32] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factor-
ization model for matrix completion by a nonlinear successive
over-relaxation algorithm,” Mathematical Programming Computa-
tion, vol. 4, no. 4, pp. 333–361, 2012.

[33] J. Tanner and K. Wei, “Low rank matrix completion by alternating
steepest descent methods,” Applied and Computational Harmonic
Analysis, vol. 40, no. 2, pp. 417–429, 2016.

[34] Z. Wang, M. Lai, Z. Lu, W. Fan, H. Davulcu, and J. Ye, “Orthogonal
rank-one matrix pursuit for low rank matrix completion,” SIAM
Journal on Scientific Computing, vol. 37, no. 1, pp. A488–A514, 2015.

[35] A. Yurtsever, M. Udell, J. Tropp, and V. Cevher, “Sketchy decisions:
Convex low-rank matrix optimization with optimal storage,” in
Artificial Intelligence and Statistics, 2017, pp. 1188–1196.

[36] T. Hastie, R. Mazumder, J. Lee, and R. Zadeh, “Matrix completion
and low-rank SVD via fast alternating least squares,” Journal of
Machine Learning Research, vol. 16, pp. 3367–3402, 2015.

[37] H. Avron, S. Kale, V. Sindhwani, and S. Kasiviswanathan, “Effi-
cient and practical stochastic subgradient descent for nuclear norm
regularization,” in Proceedings of the 29th International Conference on
Machine Learning, 2012, pp. 1231–1238.

[38] J. Nocedal and S. Wright, Numerical optimization. Springer, 1999.
[39] L. An and P. Tao, “The DC (difference of convex functions)

programming and DCA revisited with DC models of real world
nonconvex optimization problems,” Annals of operations research,
vol. 133, no. 1-4, pp. 23–46, 2005.

[40] E. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by
reweighted `1 minimization,” Journal of Fourier Analysis and Ap-
plications, vol. 14, no. 5-6, pp. 877–905, 2008.

[41] C. Zhang, “Nearly unbiased variable selection under minimax
concave penalty,” sAnnals of statistics, vol. 38, no. 2, pp. 894–942,
2010.

[42] T. Zhang, “Analysis of multi-stage convex relaxation for sparse
regularization,” Journal of Machine Learning Research, vol. 11, pp.
1081–1107, 2010.

[43] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2009.

[44] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
pp. 1–122, 2011.

[45] M. Frank and P. Wolfe, “An algorithm for quadratic program-
ming,” Naval Research Logistics, vol. 3, no. 1-2, pp. 95–110, 1956.

[46] T. Lei, X. Wang, and H. Liu, “Uncoverning groups via heteroge-
neous interaction analysis,” in IEEE International Conference on Data
Mining, 2009, pp. 503–512.

[47] D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank
tensor completion by Riemannian optimization,” BIT Numerical
Mathematics, vol. 54, no. 2, pp. 447–468, 2014.

[48] Y. Xu, R. Hao, W. Yin, and Z. Su, “Parallel matrix factorization for
low-rank tensor completion,” Inverse Problems & Imaging, vol. 9,
no. 2, 2013.

[49] G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins
University Press, 2012.

Quanming Yao obtained his Ph.D from Com-
puter Science and Engineer Department of
Hong Kong University of Science and Technol-
ogy (HKUST) in 2018, and bachelor degree in
Electronic and Information Engineering from the
Huazhong University of Science and Technology
(HUST) in 2013. His research interests focus on
machine learning. Currently, he is a research sci-
entist in 4Paradigm Inc. (Beijing, China). He was
awarded as Qiming star of HUST in 2012, Tse
Cheuk Ng Tai research excellence prize from

HKUST in 2015 and Google PhD fellowship (machine learning) in 2016.

James T. Kwok received the PhD degree in
computer science from the Hong Kong Univer-
sity of Science and Technology in 1996. He was
with the Department of Computer Science, Hong
Kong Baptist University, Hong Kong, as an as-
sistant professor. He is currently a professor in
the Department of Computer Science and Engi-
neering, Hong Kong University of Science and
Technology. His research interests include ker-
nel methods, machine learning, example recog-
nition, and artificial neural networks. He received

the IEEE Outstanding 2004 Paper Award, and the Second Class Award
in Natural Sciences by the Ministry of Education, Peoples Republic
of China, in 2008. He has been a program cochair for a number of
international conferences, and served as an associate editor for the
IEEE Transactions on Neural Networks and Learning Systems and
Neurocomputing journal.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

APPENDIX A
PROOFS

A.1 Proposition 3.1
Proof. For any X,Y ∈ Rm×n,

‖∇f(X)−∇f(Y)‖2F

=
∑

(i,j)∈Ω

[
d`(Xij , Oij)

dXij
− d`(Yij , Oij)

dYij

]2

≤
∑

(i,j)∈Ω

ρ2(Xij − Yij)2 (37)

≤ ρ2‖X − Y ‖2F ,

where (37) follows from the fact that ` is ρ-Lipschitz smooth.
Thus, f(X) is ρ-Lipschitz smooth.

A.2 Proposition 3.3
Proof. First, we introduce the following theorem.

Theorem A.1 (Separation theorem [49]). Let A ∈ Rm×n and
B ∈ Rm×r with B>B = I . Then

σi
(
B>A

)
≤ σi(A), for i = 1, . . . ,min(r, n).

Let the SVD of Z be UΣV >. Z can then be rewritten as

Z =
[
Uk̆t ;U⊥

] [Σk̆t
Σ⊥

] [
Vk̆t ;V⊥

]>
, (38)

where Uk̆t contains the k̆t leading columns of U , and U⊥ the
remaining columns. Similarly, Σk̆t (resp. Vk̆t) contains the k̆t
leading eigenvalues (resp. columns) of Σ (resp. V). Then, let

ũi = Q>ui and ṽi = vi, (39)

where ui (resp. vi) is the ith column of U (resp. V). For
i = 1, · · · , k̆t, we have

ũ>i

(
Q>Z

)
ṽi = U>i

(
QQ>

)
ZVi

= U>i ZVi (40)
= σi(Z), (41)

where (40) is due to span(Uk̆t) ⊆ span(Q). Hence,

σi
(
Q>Z

)
= σi(Z), for i = 1, · · · , k̆t (42)

From Theorem A.1, by substituting Q = B and A = Z , we
have σi(Q>Z) ≤ σi(Z). Combining with (42), we obtain
that the rank-k̆t SVD of Q>Z is (Q>Uk̆t)Σk̆tV

>
k̆t

, with the
corresponding left and right singular vectors contained in
Q>Uk̆t and Vk̆t , respectively.

Again, by Theorem A.1, we have

σk̆t+1

(
Q>Z

)
≤ σk̆t+1(Z) ≤ µ.

Besides, using (38),

σi
(
Q>Z

)
= max

u,v
u
(
Q>Uk̆tΣk̆tV

>
k̆t

+Q>U⊥Σ⊥V
>
⊥

)
v.

Since the first k̆t singular values are from the term
Q>Uk̆tΣk̆tVk̆t , then

σk̆t+1

(
Q>Z

)
= max

u,v
u>
(
Q>U⊥Σ⊥V

>
⊥

)
v ≤ µ. (43)

Then,

SVTµr(Q>Z)

= SVTµr
(
Q>Uk̆tΣk̆tV

>
k̆t

+Q>U⊥Σ⊥V
>
⊥

)
= SVTµr

(
Q>Uk̆tΣk̆tV

>
k̆t

)
+ SVTµr

(
Q>U⊥Σ⊥V

>
⊥

)
(44)

= SVTµr
(
Q>Uk̆tΣk̆tV

>
k̆t

)
. (45)

where (44) follows from thatQ>Uk̆t (resp. Vk̆t) is orthogonal
to QU⊥ (resp. V⊥). (43) shows that there are only k̆t singular
values in Q>Z larger than µ. Thus, SVTµrQ>U⊥Σ⊥V

>
⊥ = 0

and we get (45). Finally,

QSVTµr
(
Q>Z

)
= Q

(
Q>Uk̆tSVTµrΣk̆tV

>
k̆t

)
= Uk̆tSVTµr

(
Σk̆t

)
V >
k̆t

(46)

= SVTµr(Z), (47)

where (46) comes from span(Uk̆t) ⊆ span(Q); (47) comes
from that rank-k̆t SVD of Z is Uk̆tΣk̆tV

>
k̆t

and Z only has k̆t
singular values larger than µ.

A.3 Proposition 3.4

Before proof of Proposition 3.4, we first introduce some
Lemmas (Lemma A.2, A.4, A.3 and A.7) and Propositions
(Proposition A.5 and A.6).

Lemma A.2 ([10]). For any matrices A and B,
‖SVTλ(A)− SVTλ(B)‖F ≤ ‖A−B‖F .

Let Z∗t ≡ SVTµλ(Z̆t), βt ≡ ‖Z̆t‖F and ηt = σk+1(Z̆t)

σk(Z̆t)
.

Lemma A.3 ([17]). Let the input to Algorithm 1 be Z̆t, and
its top k left singular vectors be contained in Uk. Then, for j =
0, 1, 2, . . . ,

‖QjQj> − UkU>k ‖F ≤ η
j
tαt,

where αt = ‖Q0Q0
> − UkU>k ‖F and Q0 is the span of Z̆tRt.

Lemma A.4. For output X̃ = (QU)ΣV > from Algorithm 2, we
have ‖X̃ − Z∗t ‖F ≤ ‖UkU>k −QQ>‖Fβt.

Proof. From Proposition 3.3,

Z∗t − X̃ = SVTµλ(Z̆t)−QSVTµλ(Q>Z̆t)

= SVTµλ(UkU
>
k Z̆t)− SVTµλ(QQ>Z̆t).

Using Lemma A.2 and the Cauchy’s inequality,

‖X̃ − Z∗‖F = ‖SVTµλ(UkU
>
k Z̆t)− SVTµλ(QQ>Z̆t)‖F

≤ ‖(UkU>k −QQ>)Z̆t‖F
≤ ‖UkU>k −QQ>‖Fβt,

and result follows.

Proposition A.5. Let Gt ∈ ∂hµλ‖·‖∗(X̃; Z̆t), then ‖Gt‖F is
upper-bounded by a constant γt.

Proof. Let the reduced SVD of X̃ be UΣV > (only positive
singular values are contained). By the definition of subgra-
dient of the nuclear norm [9],

∂hµλ‖·‖∗(X̃; Z̆t) = X̃ − Z̆t + µλ(UV > +W),

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

where

W>U = 0, WV = 0, and ‖W‖∞ ≤ 1. (48)

Thus,

‖Gt‖F = ‖X̃ − Z̆t + µλ(UV > +W)‖F
≤ ‖X̃ − Z̆t‖F + µλ‖UV > +W‖F . (49)

For the first term in (49),

‖X̃ − Z̆t‖F
= ‖X̃ − Z∗t + Z∗t − Z̆t‖F
≤ ‖X̃ − Z∗t ‖F + ‖Z∗t − Z̆t‖F
= ‖Z∗t − Z̆t‖F + ‖Z∗t −QSVTµλ(Q>Z̆t)‖F
= ‖Z∗t − Z̆t‖F + ‖Z∗t − X̃‖F
≤ ‖Z∗t − Z̆t‖F + ‖UkU>k −QQ>‖Fβt (50)

≤ ‖Z∗t − Z̆t‖F + αtβt. (51)

Here, (50) follows from Lemma A.4, and (51) from
Lemma A.3. As ‖W‖∞ ≤ 1 from (48), thus

‖W‖F =

√√√√ m∑
i=1

σ2
i (W) ≤

√
m.

For the second term in (49), then

‖UV > +W‖F ≤
√

tr(U>UV >V) + ‖W‖F
≤
√
kt +

√
m ≤ 2

√
m. (52)

Combining (51) and (52), by Lemma A.3:

‖Gt‖F ≤ 2µλ
√
m+ ‖Z∗t − Z̆t‖F + αtβt. (53)

Since Z∗t is independent of X̃ , ‖Z∗t − Z̆t‖F is a constant.
Hence, ‖Gt‖F is upper bounded by

γt = 2µλ
√
m+ ‖Z∗t − Z̆t‖F + αtβt,

which a constant.

Proposition A.6. Assume that kt ≥ k̆t. Let hµλ‖·‖∗(X̃; Z̆t) be
as defined in (8). Then, for Algorithm 2, we have

hµλ‖·‖∗(X̃; Z̆t) ≤ hµλ‖·‖∗(Z
∗
t ; Z̆t) + αtβtγtη

J
t .

Proof. As h is convex,

hµλ‖·‖∗(X̃; Z̆t) ≤ hµλ‖·‖∗(Z
∗
t ; Z̆t) + tr((X̃ −Z∗t)>Gt) (54)

where Gt ∈ ∂hµλ‖·‖∗(X̃; Z̆t). Next, we bound the second
term on the r.h.s. of (54).

tr((X̃ − Z∗t)>Gt) ≤ ‖X̃ − Z∗t ‖F ‖Gt‖F
≤ γt‖X̃ − Z∗t ‖F (55)
≤ γtβt‖QQ> − UkU>k ‖F (56)
≤ ηJt (αtβtγt). (57)

Here, (55) follows from Proposition A.5; (56) from
Lemma A.4; and (57) from Lemma A.3. Result follows on
combining (54) and (57).

Lemma A.7. If {F (Xt)} is upper-bounded where F is the
objective at (19), then ‖Xt‖F from Algorithm 3 is upper-bounded.

Proof. As {F (Xt)} is upper bounded and note that

F (X)→ +∞⇔ ‖X‖F → +∞.

for (19), then {‖Xt‖F } is also upper bounded.

Now, we are ready to prove Proposition 3.4. As αt, βt
and γt only depend on Xt, from Lemma A.7, they are all
upper bounded. Let q = supt αtβtγt, and q < ∞ is a con-
stant. Then by Proposition A.6, and note that Algorithm 2
is run for t iterations at tth loop of Algorithm 3. Let
η = maxt ηt ∈ (0, 1), we have

hµλ‖·‖∗(Xt+1; Z̆t) ≤ hµλ‖·‖∗(Z
∗
t ; Z̆t) + εt.

Hence, εt = qηt decays at a linear rate.

A.4 Theorem 3.5
Proof. From Proposition 3.4, εt decays at a linear rate. More-
over, there is no error on the computation of gradient. Thus,
conditions in Proposition 2.1 are satisfied, and Algorithm 3
converges with a rate of O(1/T 2).

A.5 Proposition 4.1
Proof. Note that

min
X1,...,XD

1

2
‖[X1, . . . ,XD]− [Z̆

1

t , . . . , Z̆
D

t]‖2F +µ
D∑
d=1

λd‖Xd〈d〉‖∗

=
D∑
d=1

min
Xd

1

2
‖Xd − Z̆

d

t ‖2F + µλd‖Xd〈d〉‖∗,

=
D∑
d=1

min
Xd

1

2
‖Xd〈d〉 − (Z̆

d

t)〈d〉‖2F + µλd‖Xd〈d〉‖∗. (58)

The Xd’s in (58) are independent of each other, and

(SVTµλd
(Z̆

d

〈d〉))〈d〉=arg min
Xd

1

2
‖Xd〈d〉 − Z̆

d

〈d〉‖2F +µλd‖Xd〈d〉‖∗.

and thus result follows.

A.6 Proposition 4.2
Proof. For any X1, . . . ,XD , Y1, · · · ,YD , and let X̃ =∑D
d=1 X

d and Ỹ =
∑D
d=1 Y

d.

‖∇f([X1, . . . ,XD])−∇f([Y1, · · · ,YD])‖2F

=
∑

(i1,...,iD)∈Ω

[
d`(X̃i1...iD ,Oi1...iD)

dX̃i1...iD
− d`(Ỹi1...iD ,Oi1...iD)

dỸi1...iD

]2

≤
∑

(i1,...,iD)∈Ω

ρ2
(
X̃i1...iD − Ỹi1...iD

)2
≤ ρ2

∥∥∥X̃− Ỹ
∥∥∥2

F
,

where the first inequality comes from the ρ-Lipschitz
smoothness of `. Note that∥∥∥X̃− Ỹ

∥∥∥2

F
≤ D

D∑
d=1

‖Xd − Yd‖2F

= D‖[X1, . . . ,XD]− [Y1, . . . ,YD]‖2F .

We have

‖∇f([X1, . . . ,XD])−∇f([Y1, . . . ,YD])‖F
≤
√
Dρ‖[X1, . . . ,XD]− [Y1, . . . ,YD]‖F ,

and thus f is
√
Dρ-Lipschitz smooth.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 17

A.7 Theorem 4.3
Proof. From the definition of h in (8),

hµg
(

[X1
t+1, . . . ,X

D
t+1]; [Z̆

1

t , . . . , Z̆
D

t]
)

=
D∑
d=1

1

2

∥∥∥(Xdt+1)〈d〉 − (Z̆t)
d
〈d〉

∥∥∥2

F
+ µλd‖(Xdt+1)〈d〉‖∗,

=
D∑
d=1

hµλd‖·‖∗

(
(Xdt+1)〈d〉; (Z̆t)

d
〈d〉

)
. (59)

As proximal step is inexact in Algorithm 4, using Proposi-
tion A.6 on (59),

hµλd‖·‖∗

(
(Xdt+1)〈d〉; (Z̆t)

d
〈d〉

)
≤ hµλd‖·‖∗

(
(Wd
∗)〈d〉; (Z̆t)

d
〈d〉

)
+ (αd)t(βd)t(γd)t(ηd)

J
t ,

where (Wd
∗)〈d〉 = SVTµλd‖·‖∗

(
(Z̆t)

d
〈d〉

)
, and αd, βd, γd,

ηd are constants depending on (Z̆t)
d
〈d〉. Let (cd)t =

(αd)t(βd)t(γd)t. As J = t,

hµg
(

[X1
t+1, · · · ,XDt+1]; [Z̆

1

t , · · · , Z̆
D

t]
)

(60)

≤ hµg
(

[W1
∗, · · · ,WD

∗]; [Z̆
1

t , · · · , Z̆
D

t]
)

+
D∑
d=1

(cd)t(ηd)
t
t.

As F ([X1
t , . . . ,X

D
t]) is upper-bounded and

lim
‖Xd‖F→∞

F ([X1
t , . . . ,X

D
t]) =∞,

for any d = 1, . . . , D. Then, ‖Xdt ‖F for d = 1, . . . , D are also
upper-bounded. Thus,

q = sup
t

D∑
d=1

(cd)t <∞.

Let η = maxd,t((ηd)t) < 1. Together with (60), we have

hµg
(

[X1
t+1, . . . ,X

D
t+1]; [Z̆

1

t , . . . , Z̆
D

t]
)

≤ hµg
(

[W1
∗, . . . ,W

D
∗]; [Z̆

1

t , . . . , Z̆
D

t]
)

+ εt,

and the approximation error εt = qηt decays at a linear rate.
Moreover, there is no error on the computation of gradient.
Thus, the conditions in Proposition 2.1 are satisfied, and
Algorithm 4 converges with a rate of O(1/T 2).

