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Automated Influence Maintenance in Social
Networks: an Agent-based Approach

Weihua Li, Quan Bai, Minjie Zhang and Tung Doan Nguyen

Abstract—Social influence modelling and maximization appear significant in various domains, such as e-business, marketing, and
social computing. Most existing studies focus on how to maximize positive social impact to promote product adoptions based on static
network snapshots. Such approaches can only increase influence in a social network in short-term, but cannot generate sustainable or
long-term effects. In this research work, we study on how to maintain long-term influence in a social network and propose an
agent-based influence maintenance model, which can select influential nodes based on the current status in dynamic social networks
in multiple times. Within the context of our investigation, the experimental results indicate that multiple-time seed selection is capable of
achieving more constant impact than that of one-shot selection. We claim that influence maintenance is crucial for supporting,
enhancing and assisting long-term goals in business development. The proposed approach can automatically maintain long-lasting
impact and achieve influence maintenance.

Index Terms—Influence maintenance, influence diffusion, long-lasting influence, agent-based modelling
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1 INTRODUCTION

W ITH the prevalence and advancement of the Internet,
on-line social networks have become an important

and efficient channel for information propagation. The prop-
agation relies on one of the social phenomena, i.e., social
influence, indicating that one’s opinions or behaviours are
affected by his or her contactable neighbours in the so-
cial network [1], [2]. Influence message is a common and
concrete representation of social influence, which ‘travels’
rapidly through the network topologies via users’ sharing
and posting behaviours. By leveraging the power of social
influence, a great many business owners attempt to expand
the market and increase the brand awareness through the
‘word-of-mouth’ effect (or called viral marketing) [3]. In
recent years, influence maximization draws tremendous
attention to both researchers and domain experts. Influence
maximization attempts to identify a set of influential users
committed to spreading a piece of influence message to
their neighbours, such as adopting a product, expecting that
they can propagate influence and maximize the positive
impact across the entire network [4]. The selected group
of influencers is called seed set, and the seeding process is
named as seed selection.

From a business perspective, influence maximization
corresponds to short-term marketing effects, which tend to
cause sudden profit spikes that rarely last [5]. Whereas,
long-term marketing is typically more beneficial since it
emphasizes on long-term and sustainable business goals.
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Specifically, long-term influence can establish brand aware-
ness and continually produce results even years down the
road; thus, without having long-term marketing strategies,
short-term success may be short-lived [6]. Motivated by this
background, in this research, we aim to achieve constant
impact for long-term marketing by investigating the preser-
vation of a particular type of influential situation or status,
called influence maintenance.

There are many limitations for short-term (or even one-
shot) influence maximization when being utilized in real
business cases. First, it focuses on how to maximize the
influence of one-shot investment. Based on the risk man-
agement theory and best practice [7], with the same budget,
the multiple-time investment could enable a better business
strategy. In this way, the next action can be planned and
carried out based on the outcome of the previous invest-
ment. For example, in a stock market, very few investors
purchase stocks with all the money at only one time. Second,
a great many business owners intend to expand the lifespan
of influence, so that the brand awareness can be enhanced
and increased in the long run [8]. Influence maintenance not
only cares about the quantity of users being affected but also
considers constant influence impact.

Influence maintenance needs to be supported by a for-
mal influence diffusion model which possesses two at-
tributes: (1) the model is capable of capturing the temporal
feature of a social network; (2) the model can monitor
the status of a particular influence. On the other side, in
most existing on-line social media applications, information
cannot be delivered to the users directly, but cached in
individual’s message repository, pending for users to access.
The timeliness of a particular influence message becomes
an important factor to be considered. More specifically, an
individual reading list in on-line social networks, such as
Weibo1, is typically presented as a stack, which turns out

1. http://www.weibo.com
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to be last-post-first-read. Thus, the accessing priority of a
particular message keeps decreasing over time, and posting
or sharing behaviours are not supposed to be triggered
without reading it.

In [9], we conducted very preliminary research work on
modelling maintaining influence under a particular social
context. In this paper, we systematically elaborate and for-
mulate the influence maintenance problem, which tends to
maximize the constant impact of a particular influence by
considering time-series. Meanwhile, a decentralized influ-
ence propagation model, i.e., the Agent-based Timeliness
Influence Diffusion (ATID) model, is proposed. In the ATID,
the diffusion process is considered as a networked evolu-
tionary phenomenon, users are modelled as autonomous
agents, and each maintains its local information incorpo-
rating friendship affiliation list, message repository and
posting histories. Furthermore, we propose the Timeliness
Increase Heuristic (TIH) algorithm for solving the influence
maintenance problem. Extensive experiments are conducted
by using three real datasets. The experimental results show
that: (1) multiple-time selection can maintain influence
better than one-shot selection; and (2) the TIH algorithm
outperforms the other traditional seed selection algorithms
regarding maintaining influence in social networks; and
(3) seed-set variation is associated with both selection ap-
proaches and network properties. To summarize, the contri-
butions of this research work are as follows.

• We formally defined the influence maintenance prob-
lem. To the best of our knowledge, this is the first
literature describing the maintenance of influence
in on-line social networks, which is significantly
different from the adaptive influence maximization
problem (clarified in the related work).

• We proposed a novel decentralized influence diffu-
sion model to accommodate to the influence main-
tenance problem. The proposed model is capable of
capturing two major elements for maintaining long-
lasting influence, i.e., the temporal feature of a social
network and the status of a particular influence.

• We proposed a novel timeliness-based seed selection
algorithm to maximize the influence lifespan.

The rest of this paper is organized as follows. Section
2 reviews the literature related to this research work. Sec-
tion 3 introduces the preliminaries, formal definitions and
problem description. Section 4 systematically elaborates the
influence maintenance using the proposed decentralized
diffusion model, and the TIH algorithm is also described.
In Section 5, experimental results are presented to evaluate
the performance of the proposed model. Our conclusions
and future works are detailed in Section 6.

2 RELATED WORK

2.1 Adaptive Influence Maximization
A rich body of research works has been devoted to the
influence maximization problem over the past ten years
[4], [10]. The majority of these studies fall into either full-
feedback or non-feedback models [11]. In the former, all
the seeds are committed based on the networked features
or specific heuristics. Namely, there is no adaptive seed

selection policy applied. Whereas, the latter utilizes the
observations during the seeding process, where the rules for
identifying influencers are also known as adaptive policies.
Based on the full-feedback model, some researchers extend
the influence maximization problem by exploring the adap-
tive budget allocations [11], [12], [13]. Hatano et al. address
budget allocation for maximizing influence by considering
adaptive strategies [14]. Yang et al. model the continuous
influence maximization problem and devise a coordinate
descent framework [15]. Similarly, Rodriguez and Schölkopf
study influence maximization in continuous time diffusion
networks by developing INFLUMAX model that accounts
for the temporal dynamics underlying diffusion process
[16].

Our research work departs from the body of the studies
mentioned above mainly in two aspects. First, the existing
studies focus on investigating adaptive policies on the basis
of the concept of adaptive submodularity [11]. Whereas,
we concentrate on modelling the influence maintenance,
achieving a constant impact by considering the timeliness
degrees, though adaptive seeding algorithms are proposed
to accommodate to the model. Second, these research works
do not give a clear concept of time-series, and the networked
evolutionary trend driven by influences is not captured.
While, in this paper, the time-series can be presented and
the global observation of a social network status can be
captured since Agent-Based Modelling (ABM) [17], [18] has
been applied in our model.

2.2 Dynamic Social Streams
Dynamics is one of the major features of social networks.
Users join and quit, and links are forming and vanishing
over time. The influence propagation tendencies among the
users also can be altered dramatically with the involve-
ment of any breaking news. Many research works have
been dedicated to the dynamic social streams, which aim
to investigate the possible solutions for real-time influence
maximization in a dynamic environment. Konstantin et al.
present STRIP, the first streaming method computing influ-
ence probabilities [19]. Subbian et al. propose an influence-
query framework to mine influencers in a time-sensitive
fashion from streaming social data [20]. Wang et al. propose
the Influential Checkpoints framework and a Sparse Influ-
ence Checkpoints framework to tackle the stream influence
maximization querying processing [21].

Whereas, nearly all the literature of dynamic social
streams still focus on the mining the influencers and en-
larging the global activation coverage, but fail to track the
status of any influence message. By contrast, the objective of
influence maintenance is set to maintain the popularity of a
particular influence message in a dynamic environment.

2.3 Influence Diffusion Modelling
Most researchers investigate influence diffusion and in-
fluence maximization problems based on two popularly
adopted influence diffusion models, i.e., Independent Cas-
cade (IC) model and Linear Threshold (LT) model [4]. Many
studies are conducted under various extended influence
diffusion models. Wang et al. propose the IMIC-OC model
to explain how users build opinions during the process of
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information spreading [22]. Goyal et al. research learning
influence probabilities in social networks based on the users’
past actions, and successfully predict the time by which a
user may be expected to perform an action [23]. Tang et al.
propose topical affinity propagation to model the topic-level
social influence and measure the strength quantitatively
[24]. Chen et al. formulate the influence maximization prob-
lem by focusing on the temporal factors based on the heat
diffusion model [25], a realistic model that simulates the
social influence in accordance with a physical phenomenon,
i.e., heat flow [26].

Most of the existing research works oversimplify the in-
fluence diffusion process, and the propagation models con-
centrate on the activation state of each individual. Whereas,
the users’ features and behaviours affecting the influence ac-
ceptance have not been considered. Moreover, the dynamic
status of influence messages over time is neglected. By con-
trast, the proposed ATID model for influence maintenance is
decentralized, focusing on modelling individuals’ personal-
ized traits and behaviours. Furthermore, the ATID is capable
of capturing the evolutionary network trend based on time-
series, as well as the status of influence messages.

2.4 Agent-based Modelling for Influence Diffusion

Agent-Based Modelling (ABM) has demonstrated many ad-
vantages in modelling complex systems, simulating con-
tinuous variations and analysing the trend of a particular
phenomenon [17], [18]. Moreover, it is more suitable for
exploring the macro world through defining a micro level
of a social system [27], [28]. Some researchers model the
influence diffusion in a social network by leveraging ABM.
Jiang et al. survey the influence diffusion in social networks
from a multi-agent perspective [29]. Li and Tang analyse
the group polarization based on ABM [30]. Van Maanen
and Van der Vecht propose a multi-disciplinary approach
for studying on-line social network influence [31]. Simi-
larly, Li et al. propose an agent-based influence diffusion
model, where the influence propagation demonstrates an
evolutionary process, and the model is applicable in a dy-
namic environment and functions even without the network
topology [32]. In their studies, the factors affecting the
activation cost are considered, including individual’s per-
sonalities, i.e., the degree of stubbornness, predisposition,
i.e., prior commitment level, and social pressure. Li et al.
exploit influence maximization using a novel decentralized
approach, i.e., the stigmergy-based influence maximization
model, where the influence propagation process is mod-
elled as ants crawling across the network topology [33].
However, the message timeliness feature has been ignored
in nearly all of these studies. With an exception, Han et
al. propose a novel algorithm for addressing the influence
maximization problem, which incorporates time delay for
timeliness, opportunistic selection for acceptance ratio and
broad diffusion for influence breadth [34]. Nevertheless,
their proposed BICOT model in [34] neglects the long-term
trend of a social network.

On the other side, most agent-based models for influence
diffusion are user-centred, which follow the rule that a
user activates users through direct interactions. The evident
disadvantages are reflected in two aspects, i.e., lacking the

model of influence instances and having difficult in esti-
mating the influence probabilities. The former fails to track
the state of influence; the latter shows a non-trivial task in
calculating the weight of influential links, i.e., the ‘cost’ of
activating one user by the neighbours [23], [35].

Different from the studies and models discussed above,
the proposed ATID model captures the properties of the in-
fluences existed in the same environment as that of the indi-
viduals’. Therefore, the observations of the disseminated in-
fluence messages can also be reflected from the ATID model.
Moreover, the influence activation is channelled through
accessing messages in the repository, which mitigates the
complexity of modelling the influential relationships among
the individuals.

3 PRELIMINARIES AND PROBLEM FORMULATION

3.1 Social Networks and Newsfeed
Most on-line social networks can be classified into two cate-
gories, depending on whether the newsfeed is re-organized.

First, some popular on-line social networks, such as
Facebook2, create personalized activity feeds for increased
interactions and content contributions [36]. For example,
Facebook previously employed the EdgeRank algorithm3 to
determine which stories appear as newsfeed for each user
by considering three original elements, i.e., affinity, weight
and time decay [37]. Therefore, to maximize the impact of
a particular influence, social media marketers need to stay
informed of the changes to the latest newsfeed algorithms.
Nowadays, newsfeed algorithms have become much more
sophisticated. For example, Facebook has begun to employ a
more complex ranking algorithm based on machine learning
[36], [37], [38]. In this sense, it is nearly impossible for
researchers to investigate the influence diffusion modelling
in such social networks, as the outcome is much dependent
on the newsfeed algorithms.

Second, on-line social networks, like WeChat4, enable
users to share daily moments with friends. The newsfeed
is generated instantly based on the timeline. Moreover, the
social interactions among the individuals, such as ‘com-
ments’ and ‘like’, are only visible if friendship connections
are established. Different from Facebook, such kind of social
networks allow duplicate messages propagating through
the network, and no newsfeed algorithms are applied.
Moreover, ‘posting a message’ or ‘forwarding a message’
can be regarded an influential behaviour, while ‘like’ and
‘comments’ weigh less due to the visibility and privacy
restrictions.

In this research, we mainly focus on the second category
of social networks and investigate influence maintenance,
where the timeliness degree of a message plays a pivotal
role in organizing the newsfeed.

3.2 Agent-based Influence Diffusion
ABM simulates the influence diffusion process by emphasiz-
ing individualized features and behaviours. Users in social
networks have been modelled as autonomous interactive

2. https://www.facebook.com/
3. http://edgerank.net/
4. http://www.wechat.com/en/
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(a) Social Network Graph (b) Agent-based Influene Diffusion Model (c) Influence Diffusion Facets

Fig. 1. General Idea of the Proposed Model

agents, and they have their interests and behaviours. Based
on the influence theory, homophily and influence are driven
by the users’ preferences. Thus, individuals have different
tendencies of reading and posting different types of topics
[39]. The messages wrapped with influence are supposed to
be delivered to the repository of corresponding recipients,
where the repository is filled with the influence messages
from the neighbours. Each agent has a different frequency
of accessing its repository. Based on agent’s preference and
message timeliness degree (see Definition 4), the agent de-
termines whether the information is to be shared with its
adjacent neighbours. If an agent is influenced (activated),
i.e., posting action is triggered, then, the influence mes-
sage reaches its neighbours’ repositories. Whereas, in the
recipient’s repository, the timeliness degree of this message
keeps decreasing over time, but this will be refreshed if the
repository owner is activated or the same message has been
received again.

In Figure 1, a toy example has been demonstrated, which
represents the general idea of our proposed model. Figure
1a shows an ordinary social network graph in traditional
influence diffusion models. Let vi be an initial influencer
who attempts to activate vj with a certain success rate.
While vj intends to influence its adjacent neighbour vk if
vj is activated by vi. Figure 1b describes our model from a
microscopic point of view. Individual’s influence activation
is achieved by accessing the repository. More specifically,
if a user is influenced (activated), the influence message
is supposed to be delivered to all the neighbours’ reposi-
tories. Meanwhile, this message is archived as one of the
sender’s historical records. From a macroscopic viewpoint,
apart from the topological structure of a social network, two
more factors are affecting the influence propagation, i.e., the
historical records and the repository, which is illustrated in
Figure 1c.

Since the individual’s activation is achieved through
reading influence messages in the repository, the user-user
influential relationship in this model does not directly affect
the influence acceptance. Namely, the model is developed
based on the assumption that the influence activation is
only driven by the existing messages in the repository and
past posting behaviours. Moreover, with consideration of

TABLE 1
Frequently Used Notations

Notation Description
vi user agent
msgp influence message
ϕ timeliness degree
r influence attenuation constant
λ the speed of influence decay
Rvi incoming message repository of vi
Hvi historical records of vi
A seed set
%msgp global activation coverage (GAC) of msgp
ξtnmsgp global timeliness degree (GTD) of msgp at tn
Ωmsgp global cumulative timeliness degree (GCTD) of msgp
∆Ω incremental timeliness contribution
P (.) probability
g(.) timeliness gain

different activation cost for each agent, the model would
become a rather complicated one.

The detailed modelling will be elaborated in Section 4.
Before moving on to the technical parts of this paper, we
summarise the frequently used notations in Table 1.

3.3 Formal Definitions
Definition 1: A user agent vi, (vi ∈ V ) is defined as a vertex
in a social network G = (V,E), where V = {v1, ..., vn}
denotes a set of agents and E represents a set of edges,
E = {eij |1 ≤ i, j ≤ n}, i, j ∈ N+, {vi, vj} ⊆ V . vi has a
neighbour set Γ (vi). If agent vj is a neighbour of vi, then
{eij} ⊆ E, vj ∈ Γ (vi). While, Evi indicates the edge set
connected with vi, where Evi = {eij |vi 6= vj ∧ vj ∈ Γ (vi)}.
|V | and |E| denote the cardinality of agents and edges
respectively. The affiliation information is maintained by
each agent locally. In addition, agent vi has a binary state
s
msgp
vi towards a particular influence message msgp (see

Definition 3), where smsgpvi ∈ {0, 1}, representing inactive
and active, respectively.

Definition 2: Environment εvi is an ego network
representing the local influence diffusion context or the
local view of a particular agent vi. The environment of vi is
denoted by using a four-tuple, εvi = (Γ (vi), Evi , Rvi , Hvi),
where Rvi and Hvi represent the repository and historical
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records of vi, respectively (see Definitions 4 and 5). Each
agent is capable of accessing all the resources in its
environment.

Definition 3: Influence message msgp is defined as a
particular piece of information sent from one person to
his or her contactable recipients, affecting their opinions
or behaviours. It is a common and concrete representation
of social influence in on-line social networks. In the
current settings, each influence message msgp belongs to a
particular topic τx, i.e., msgp ∈ τx. If agent vi is influenced
after accessing msgp, then s

msgp
vi := 1; meanwhile, vi

attempts to deliver the influence message to the repositories
of neighbours Γ (vi).

Definition 4: Timeliness degree of an influence message is
a real value, describing the position of an influence message
in a user’s repository at a particular time. Timeliness degree
not only reflects the status of the influence message, but also
implies whether a specific piece of news arrives at a suitable
time. In reality, it happens more than often that users check
the friend-circle or moments update right after a message
has been posted. Subsequently, this influence message has
a higher chance to draw the user’s attention than that of
the others. Mathematically, we define the timeliness degree
of message msgp in vi’s repository at time tm using the
notation ϕ(vi,msgp, tm).

Inspired by the behaviour analysis approach introduced
in [40], [41], we assume that the effect of influence satisfies
the principle of natural decay; thus, the exponential decay,
i.e., e−r , can be leveraged to describe the attenuation of in-
fluence, where r denotes the attenuation constant. Suppose
message msgp has been delivered to vi’s repository at tb,
then the timeliness degree is formulated in Equation 1.

ϕ(vi,msgp, tm) = e−r·(m−b) (1)

The timeliness degree of any message equals to 1 when
arriving at the repository, i.e., m = b, and starts to decrease
over time. Therefore, the speed of influence decay λ is
described in Equation 2, which shows the speed is gradually
slowing down.

λ = ϕ(vi,msgp, tm−1)− ϕ(vi,msgp, tm)

= e−r·(m−1−b) − e−r·(m−b)

= (er − 1) · e−r·(m−b),m ≥ b
(2)

We assume msgp is supposed to be ignored by agent
vi after time te, subject to e ∈ N, e > m − b and
ϕ(vi,msgp, te) ≥ σ(msgp), where σ(msgp) denotes the
valid timeliness degree threshold of msgp. Likewise, the
higher timeliness degree, the greater probability that the
influence message can be accessed by the user when visiting
the repository.

Definition 5: Repository Rtmvi =< r1, r2, ..., rn > refers to a
cached container of agent vi at time step tm. It incorporates
all the valid incoming messages from neighbours Γ (vi)
to agent vi. Each agent has a different frequency of
accessing the repository. An element in Rtmvi can be
represented as a three-tuple, i.e., rk = (vj ,msgp, ϕ), where

vj denotes the agent who posts the influence message msgp,
vj ∈ Γ (vi) ∪ {vi} and ϕ ≥ σ(msgp). For simplification
purposes, we regard ϕ as the timeliness degree of the
corresponding message at tm, which is equivalent to
ϕ(vi,msgp, tm).

Definition 6: Historical records refer to past outgoing
influence messages delivered from a particular user to the
neighbours. Historical records Hvi = {txn1, txn2, ..., txnn}
is defined as a collection of user vi’s past sharing
transactions, i.e., posted messages. An element of Hvi

can be denoted by a three-tuple, i.e., txnn = (msgp, ϕ, tm),
where ϕ represents the message timeliness degree when
posted (clarified in Definition 5), ϕ ≥ σ(msgp). While,
tnow refers to the current time step, and ∆t describes the
valid lifespan of a transaction, tnow − tm ≤ ∆t. Given
tnow − tm > ∆t, the corresponding transaction is supposed
to be removed from the collection. Historical records Hvi is
also an implication of agent vi’s interests or preferences.

3.4 Problem Description
Influence maintenance in this paper is defined as the process
of preserving a particular type of influential situation or the
status of influence being preserved. The concept is derived
from influence maximization. Specifically, given a finite
budget k (seed set size) and a limited time span [t0, tm], an
investment (seed selection) occurs once every n time steps,
thus, the investment time steps I = {tN×n|N ∈ N∧N×n <
m}, where tN×n represents a particular seed selection point.
There are |I| times of investment considered for maintaining
the influence.

Influence maintenance aims to find a solution of identify-
ing the seed set AtN×n

for each time step tN×n to maximize
the influence lifespan of msgp. Thus, the selected seed set A
is a collection of seeds identified from each investment time
step, i.e., A = {At|t ∈ I} and∑

t∈tN×n

|At| = k (3)

We assume that the same amount of seeds are sup-
posed to be selected for each selection point, and any seeds
cannot be selected more than once. In other words, given
{Ai, Aj} ⊆ A, |Ai| = |Aj |, Ai ∩Aj = ∅.

The Global Timeliness Degree (GTD) ofmsgp at a particular
time step tn is represented as ξtnmsgp , which can be calculated
by using Equation 4. The popularity trend of a particular
influence message can be reflected by connecting the GTD
of the corresponding influence in each time step.

ξtnmsgp =
∑
vi∈V

ϕ(vi,msgp, tn) (4)

The overall effective influence lifespan of msgp in the
entire social network is evaluated by using Global Cumulative
Timeliness Degree (GCTD) of a specific time span [t0, tm], i.e.,
Ωmsgp , which can be derived by using Equation 5.

Ωmsgp =
tm∑
t0

ξtnmsgp =
tm∑
t0

∑
vi∈V

ϕ(vi,msgp, t) (5)
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The objective of influence maintenance is to maximize
Ωmsgp . Furthermore, the traditional influence effectiveness
evaluation metrics, i.e., Global Activation Coverage (GAC),
is taken into consideration as well. GAC of influence mes-
sage msgp is denoted using the notation %msgp , indicating
the number of users in the social network getting affected
or activated by msgp. It is formulated in Equation 6.

%msgp =
∑
vi∈V

|{vi|smsgpvi = 1}| (6)

4 INFLUENCE MAINTENANCE MODEL

4.1 The Agent-based Timeliness Influence Diffusion
(ATID) Model

The ATID model is a decentralized influence diffusion
model which utilizes the advantages offered by ABM. The
influence propagation in social networks demonstrates a
networked evolutionary pattern driven by individuals’ ac-
tions. In this model, each agent maintains its ego-network
and makes decisions of performing social activities based
on both timeliness degree of the influence message and its
preference.

There are many reasons to make a user to carry out
a social behaviour, such as influence from neighbours in
the same social networks, affected by any external events,
or the user actively posts some messages without getting
influenced by anybody [23]. In the proposed model, we
assume users deliberately post messages after influenced
by the neighbours, and each individual’s repository and
historical records contain enough evidence for statistical
analysis. Furthermore, each user agent (e.g., vi) has a dif-
ferent frequency of accessing its repository, i.e., freq(vi),
which can be calculated by using Equation 7. It can be seen
that freq(vi) is equivalent to the probability of vi accessing
a particular message msgp in its repository at time tm, i.e.,
Pf (vi,msgp, tm).

freq(vi) =Pf (vi,msgp, tm),

subject to ϕ(vi,msgp, tm) ≥ σ(msgp)
(7)

One important task of influence diffusion modelling is
to identify the probability of getting activated after reading
message msgp of topic τx at time tm, where the influence
probability may not remain constant independently of time
[23]. Therefore, in the proposed model, a user agent has
the capability of adapting its probability of posting message
msgp based on two major factors, i.e., the attention degree
of influence message msgp and the user preference derived
from the latest k posts. Therefore, the probability of user
agent vi posting message msgp at time tm can be estimated
in Equation 8:

P (msgp|Rtmvi , Hvi) = P (msgp|Rtmvi )P (τx|Hvi ,msgp ∈ τx)
(8)

In Equation 8, P (msgp|Rtmvi ) represents the attention
degree of influence message msgp in vi’s repository at
time tm, i.e., the probability of getting attracted by msgp,
which is associated with the message timeliness degree
ϕ(vi,msgp, tm). While P (τx|Hvi ,msgp ∈ τx) denotes the

probability of sharing topic τx at time tm on the basis of vi’s
past behaviours.

Thus, the attention degree of influence message msgp in
vi’s repository at time tm is formulated in Equation 9.

P (msgp|Rtmvi ) =

∑
rn∈Rtm

vi
∧rn.msg=msgp

ϕ(vrn , rn.msg, trn)∑
rn∈Rtm

vi

ϕ(vrn , rn.msg, trn)
,

(9)
where trn = tm− tn, tn denotes the time when the message
rn arrives the repository.

According to vi’s historical records, the probability of
sharing topic τx,msgp ∈ τx at time tm can be derived from
the weighted average of topic τx’s timeliness difference.
Specifically, if msgp has been posted when its timeliness
degree msgp.ϕ is low, this implies that the user is very in-
terested in the topic of msgp (i.e., msgp.τ ), and the message
timeliness degree will not significantly impact the chances
of posting such messages. Hence, P (τx|Hvi ,msgp ∈ τx)) is
represented in Equation 10.

P (τx|Hvi ,msgp ∈ τx)) =

∑
msgp∈τx

(1−msgp.ϕ)∑
msgq∈Hvi

(1−msgq.ϕ)
(10)

4.2 Diffusion Process under the ATID

Benefited from ABM, individual’s features, behaviours and
the local environment can be considered in the ATID. As
the ATID is a decentralized influence propagation model,
the diffusion algorithm under the ATID corresponds to an
agent’s response when accessing its repository. The diffu-
sion process in the ATID is described in Algorithm 1.

Algorithm 1 The Influence Diffusion Algorithm under the
ATID
Input: vi, tm,msgp,msgp ∈ τx
Output: vi’s social behaviour (posting / not)

1: Generate random decimal rand1
2: if rand1 ≤ freq(vi) ∧ Φ(msgp|Hvi) = 0 then
3: Compute P (msgp|Rtmvi ) using Equation 9
4: Compute P (τx|Hvi ,msgp ∈ τx)) using Equation 10
5: Compute P (msgp|Rtmvi , Hvi) using Equation 8
6: Generate random decimal rand2
7: if P (msgp|Rtmvi , Hvi) ≤ rand2 then
8: for ∀vj ∈ Γ (vi) ∪ {vi} do
9: R

tm+1
vj := Rtmvj ∪ {(vi,msgp, 1)}

10: end for
11: Hvi := Hvi ∪ {(msgp, ϕ, tm)}
12: end if
13: end if
14: for ∀rn ∈ Rtm+1

vi \ {(vi, τx, ϕ)} do
15: rn.ϕ := rn.ϕ− λ
16: end for

In Algorithm 1, the inputs incorporate user agent vi, time
tm, the influence message msgp and msgp’s corresponding
topic τx; while the output is vi’s social behaviour, i.e., post
msgp at time tm or not. Line 2 checks the precondition of
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sharing msgp, where Φ(msgp|Hvi) is an indicator function,
which returns 0 if msgp is not posted by vi before, and
1 otherwise. Lines 3-5 aim to compute the probability of
posting msgp by vi at tm. Lines 8-11 update the repositories
of agents in vi’s ego-network, as well as its own historical
records. Lines 14-16 demonstrate that the message timeli-
ness attenuation occurs in vi’s repository.

4.3 The Timeliness Increase Heuristic (TIH) Algorithm
There are some classic seed selection algorithms, such as
degree-based, greedy, random and Degree Discount Heuris-
tic (DDH) selections [4], [42]. These algorithms are devel-
oped based on either the node features or influence diffusion
models. More specifically, degree-based approach identifies
the influencers by considering the node degree. Greedy al-
gorithm attempts to reach the maximum influence marginal
gain in each selection, but it is not scalable. DDH extends
the rank-based algorithm that once a node is selected, the
degree of corresponding neighbours is deducted by one.
Random selection does not follow any heuristics, which
selects seeds randomly.

The rationale of developing TIH algorithm is clarified
as follows. Since influence maintenance is newly proposed,
no existing algorithms are exclusively designed for this
problem. We attempt to leverage the classic approaches
tailored from the influence maximization problem, and set
further improvement of the performance as one of the future
works. Based on the brief introduction of several state-
of-the-art seeding algorithms in the traditional influence
maximization problem, greedy selection is one of the funda-
mental algorithms, coming with a (1 − 1/e) approximation
guarantee. This results from properties of monotonicity
and sub-modularity that the spread function exhibits under
some diffusion models [4]. Meanwhile, DDH is a simple
and popular algorithm, which is developed based on the
fact that many of the most central nodes may be clustered;
thus, it is not necessary to target all of them [42].

Inspired by the key features of greedy algorithm and
the intuitiveness of DDH, we utilize the similar concepts
to maintain an influence. Namely, the influence fading-out
zone should be first targeted to achieve influence mainte-
nance, and each selection is conducted based on the assump-
tion that previous seed is selected. Therefore, TIH algorithm
is presented in Algorithm 2. For selecting each seed, the TIH
tends to search for the user v∗, who can bring the maximum
message timeliness gain, which is calculated in Equations 11
and 12.

v∗tm = argmax
vi

∑
vj∈{vi}∪Γ (vi)

g(vj ,msgp, tm) (11)

g(vj ,msgp, tm) = 1− ϕ(vj ,msgp, tm) (12)

In Equations 11 and 12, g(vj ,msgp, tm) denotes vj ’s
message timeliness gain if vi is selected as a seed. The
selection of the next seed is based on the assumption that
if previously identified seeds are selected. Thus, the TIH
selection is described in Algorithm 2.

The inputs include the social network G, the number of
seeds to be selected km, the time step tm and influence mes-
sage msgp; the output is the selected seed set at tm. Lines

Algorithm 2 The TIH Algorithm
Input: G = (V,E), km, tm,msgp
Output: Am

1: Initialize Am := ∅
2: for ∀vi ∈ V do
3: vi.ϕ

′ := vi.ϕ
4: end for
5: while |Am| < km do
6: for ∀vi ∈ V do
7: gsum(vi,msgp, tm) := 0
8: for ∀vj ∈ {vi} ∪ Γ (vi) do
9: g(vj ,msgp, tm) = 1− vj .ϕ′

10: gsum(vi,msgp, tm)+ = g(vj ,msgp, tm)
11: end for
12: end for
13: Find v∗ using Equation 11
14: Am := Am ∪ {v∗}
15: v∗.selected := true
16: for ∀vj ∈ {v∗} ∪ Γ (v∗) do
17: vj .ϕ

′ := 1
18: end for
19: end while

2-4 replicate all the user agents’ current timeliness degree of
msgp to a temporary variable. Lines 6-11 calculate the global
timeliness gain for all the users in G, in other words, this
evaluates the influence impact of each individual. Lines 12-
13 aim to find the most ‘beneficial’ user. Lines 15-16 update
the temporary timeliness variables of all the users in v∗’s
ego network with the assumption that if v∗ is activated
and selected as a seed. The worst-case time complexity of
the TIH algorithm is determined by Lines 5-8. As km is a
constant, the complexity is O(n2).

It can be seen that the seed set selected by TIH algo-
rithm is the local optimal solution, following the heuristic
that the largest timeliness fading-out zone should be firstly
targeted. Moreover, the TIH demonstrates its advantages in
maintaining the influence of a hypothesis message.
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∆Ω =
∑

vj∈{vi}∪Γ (vi)

tm+n∑
t=tm

ϕ′(vj ,msgp, t)− ϕ(vj ,msgp, t)

=
∑

vj∈{vi}∪Γ (vi)

(

tm+n∑
t=tm

ϕ′(vj ,msgp, t)−
tm+n∑
t=tm

ϕ(vj ,msgp, t))

=
∑

vj∈{vi}∪Γ (vi)

(
n∑
i=0

e−i·r −
n∑
i=0

e−(mj+i)·r)

=
∑

vj∈{vi}∪Γ (vi)

(
1− e−(n+1)·r

1− e−r
− 1− e−(n+1)·r

1− e−r
· e−mj ·r)

=
∑

vj∈{vi}∪Γ (vi)

1− e−(n+1)·r

1− e−r
· (1− e−mj ·r)

=
1− e−(n+1)·r

1− e−r
∑

vj∈{vi}∪Γ (vi)

(1− e−mj ·r)

=
1− e−(n+1)·r

1− e−r
∑

vj∈{vi}∪Γ (vi)

(1− ϕ(vj ,msgp, tm))

=
1− e−(n+1)·r

1− e−r
∑

vj∈{vi}∪Γ (vi)

g(vj ,msgp, tm)

(13)

Theorem 1. TIH is a kind of greedy algorithm.

Proof. Given current time step tm, and ϕ(vj ,msgp, tm) =
e−mj ·r , where mj denotes the time difference between
when msgp arrives and tm. If node vi has been selected
as a seed, the corresponding timeliness degree of node set
{vj |vj ∈ {vi}∪Γ (vi)} is supposed to be reset back to 1, i.e.,
ϕ′(vj ,msgp, tm) = 1. Therefore, the incremental timeliness
contribution of activating vj , i.e., ∆Ω can be derived using
Equation 13.

In Equation 13, n ∈ N, representing the difference
between the total time steps and the current time step,
and e−mj ·r denotes the timeliness degree of a particu-
lar message in vj ’s repository at tm according to Equa-
tion 1. It is obvious that 1−e−(n+1)·r

1−e−r is a coefficient,∑
vj∈{vi}∪Γ (vi)

g(vj ,msgp, tm) exactly corresponds to the
objective function of TIH algorithm in Equation 11. There-
fore, TIH is a kind of greedy algorithm.

Lemma 2. Let S be the seed set selected by TIH and S∗ be the
seed set that maximizes Ωmsgp . Ωmsgp(S) be the GCTD of msgp
with seed set S. Then Ωmsgp(S) ≥ (1 − 1/e) · Ωmsgp(S∗). In
other words, the theoretical guarantee for TIH in the influence
maintenance problem is 1− 1/e.

Proof. Let A be the initial seed set and X =< v1, v2, ..., vh >
be one of the paths activated by A. f(A) represents the
GCTD ofmsgp caused byA. fX(A) denotes the GCTD accu-
mulated by path X . Similar to the calculations in Equation
13, we have:

fX(A) =
h∑
j=1

tm+n∑
t=tm+j

g(vj ,msgp, t)

Fig. 2. One of the Overlapped Influence Diffusion Paths

, where g(vj ,msgp, tm) is defined in Equation 12, and 0 ≤
g(vj ,msgp, t) ≤ 1. It is easy to proof that fX(A) is sub-
modular. Hence:

f(A) =
∑

outcomes x

Prob|X| · fX(A)

, which is also sub-modular since the non-negative linear
combination of sub-modular functions is sub-modular. As
we clarified in Theorem 1 that TIH is a kind of greedy
algorithm. According to Theorem 2.4 in [4], we have f(A) ≥
(1− 1

e )f(A∗), where A∗ denotes the set that maximizes f(.)
over all k-element sets.

Let f(S) = Ωmsgp(S), the lemma is proofed.

4.4 Influence Maintenance Analysis

We analyse the influence maintenance by considering the
timeliness gain contributed by two seeds va and vb under
both scenarios, i.e., one-shot selection and multiple-time
selection, where the time discrepancy of selecting both users
is denoted by using m0. In the former, no time discrepancy
is presented, i.e., m0 = 0, while in the latter, m0 6= 0.

Suppose that enough time is given for the influence
decay, i.e., n → ∞, if any node is activated, the theoretical
timeliness gain would be 1/(1− e−r) according to Equation
13. If all the influence-diffusion paths of active users fail to
overlap with each other, the global timeliness gain of one-
shot selection would be the same as that of the multiple-time
selection. Whereas, in reality, this rarely happens. Therefore,
we consider the situation when the influence-propagation
paths cover same partial nodes with each other.

Suppose the influences disseminated from va and vb
can reach each other. In other words, path −−→va,b =<
va, v1, v2, ..., vn, vb > exists in the network, which is illus-
trated in Figure 2. Moreover, for simplification purpose, we
assume that the influence propagation probability remains
the same.

For any node vx in path −−→va,b, the corresponding ∆Ω
is explicitly determined by the time discrepancy of the
influences ∆T from two sources, va and vb, where ∆T is
associated with the number of nodes in between, i.e., n
and the time difference in activating va and vb, i.e., m0.
Hence, values of influence maintenance related parameters
are described in Table 2.

In Table 2, Tva is an n-tuple, having a finite ordered list of
n elements, where each element denotes the time step when
the influence initiated from va arrives at the corresponding
node, and the sequence implies the influence-diffusion path.
Meanwhile,∆T = (Tvb−Tva), where each element indicates
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TABLE 2
Influence Maintenance Parameters

v1 v2 ... vn

Tva d0 d0 + 1 ... d0 + n− 1

Tvb m0 + d0 + n− 1 m0 + d0 + n− 2 ... m0 + d0

∆T |m0 + n− 1| |m0 + n− 3| ... |m0 + n− (2n− 1)|

∆Ω
|m0+n−1|−1∑

i=0
e−ir

|m0+n−3|−1∑
i=0

e−ir ...
|m0+n−(2n−1)|−1∑

i=0
e−ir

the absolute value of the difference between the elements in
Tvb and Tva at the same position.

If ∆T is odd, ∆T starts from m0 + n − 1, decreasing
by 2 further down the influence-diffusion path, and begins
to increase by 2 for each hop when the value reaches 1.
Similarly, if ∆T is even, ∆T drops by 2 and then is added
by 2 after reaching 0. For example, given n = 6, we can
obtain the data in Table 3.

TABLE 3
Example: value variation of ∆T (n=6)

m0 (even) ∆T (odd)
0 (5, 3, 1, 1, 3, 5)
2 (7, 5, 3, 1, 1, 3)
4 (9, 7, 5, 3, 1, 1)
6 (11, 9, 7, 5, 3, 1)

m0 (odd) ∆T (even)
1 (6, 4, 2, 0, 2, 4)
3 (8, 6, 4, 2, 0, 2)
5 (10, 8, 6, 4, 2, 0)
7 (12, 10, 8, 6, 4, 2)

Apparently, in both scenarios where ∆T is even or odd,
merely one different element can be seen when m0 increases
by 2.

Lemma 3. ∀k ∈ N, ∆Ω(m0 = k + 2) > ∆Ω(m0 = k).

Proof.

∆Ω′ = ∆Ω(m0 = k + 2)−∆Ω(m0 = k)

=

|k+2+n−1|−1∑
i=0

e−ir −
|k−n+1|−1∑

i=0

e−ir

=

|k+n+1|−1∑
i=|k−n+1|

e−ir > 0, {n, k} ∈ N, n ≥ 1

According to Lemma 3, ∀k ∈ N, we have:

∆Ω(m0 = 0) < ∆Ω(m0 = 2) < ... < ∆Ω(m0 = 2k)

∆Ω(m0 = 1) < ∆Ω(m0 = 3) < ... < ∆Ω(m0 = 2k + 1)
(14)

Theorem 4. Multiple-time selection maintains a particular in-
fluence more effectively than that of one-shot selection.

Proof. Based on Equation 14, we only need to proof
∆Ω(m0 = 1) > ∆Ω(m0 = 0). Assume that the path length
between two active nodes has an equal chance to be even
or odd. In other words, P (n = 2h) = P (n = 2k + 1),
where k, h ∈ N. The values of ∆T and ∆Ω under different
parameters are listed and compared in Tables 4 and 5. Then
we can obtain Equations 15 and 16.

∆Ω(n = 2k + 1,m0 = 1)−∆Ω(n = 2h,m0 = 0)

= 2
2h∑
i=0

e−ir + ...+ 2
2k−2∑
i=0

e−ir +
2k∑
i=0

e−ir
(15)

∆Ω(n = 2h,m0 = 1)−∆Ω(n = 2k + 1,m0 = 0)

= −(
2h−1∑
i=0

e−ir + 2
2h+1∑
i=0

e−ir + ...+ 2
2k−1∑
i=0

e−ir)
(16)

Suppose h > k, then by adding Equation 15 to Equation
16, we can obtain:

(∆Ω(n = 2h,m0 = 1) +∆Ω(n = 2k + 1,m0 = 1))

− (∆Ω(n = 2k + 1,m0 = 0) +∆Ω(n = 2h,m0 = 0))

= e−2hr + ...+ e−2(2k−2)r + e−2kr

− (e−(2h+1)r + ...+ e−(2k−1)r)

= (e−2hr − e−(2h+1)r) + ...

+ (e−(2k−2)r − e−(2k−1)r) + e−2kr

> e−2kr > 0
(17)

The same proof can be applied when h ≤ k. Therefore,
∆Ω(m0 = 1) > ∆Ω(m0 = 0).

5 EXPERIMENTS AND ANALYSIS

We conducted three major experiments for this research
work. The first one aims to compare the difference in in-
fluence impact between one-shot and multiple-time invest-
ment. The second experiment evaluates the performance
of the TIH algorithm. In the third experiment, we further
compare one-shot selection against multiple-time selection
by exploring the variations of selected seeds based on the
ATID model.

5.1 Experiment Setup
Datasets. In the experiments, the following three datasets
are used.

• Ego-Facebook5 dataset, collected by McAuley et al.
using a Facebook application, which is archived
in Stanford Large Network Dataset Collection [43].
It contains profile and network data from 10 ego-
networks, consisting of 193 circles, 4,039 users and
88,234 edges.

5. http://snap.stanford.edu/data/egonets-Facebook.html
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TABLE 4
Value Comparison for ∆T and ∆Ω (n = 2h)

v1 ... vh vh+1 vh+2 ... v2h

∆T (n = 2h,m0 = 0) 2h− 1 1 1 3 2h− 1

∆Ω(n = 2h,m0 = 0)
2h−2∑
i=0

e−ir
0∑

i=0
e−ir

0∑
i=0

e−ir
2∑

i=0
e−ir

2h−2∑
i=0

e−ir

∆T (n = 2h,m0 = 1) 2h 2 0 2 2h− 2

∆Ω(n = 2h,m0 = 1)
2h−1∑
i=0

e−ir
1∑

i=0
e−ir 0

1∑
i=0

e−ir
2h−3∑
i=0

e−ir

TABLE 5
Value Comparison for ∆T and ∆Ω (n = 2k+1)

v1 ... vk vk+1 vk+2 ... v2k+1

∆T (n = 2k + 1,m0 = 0) 2k 2 0 2 2k

∆Ω(n = 2k + 1,m0 = 0)
2k−1∑
i=0

e−ir
1∑

i=0
e−ir 0

1∑
i=0

e−ir
2k−1∑
i=0

e−ir

∆T (n = 2k + 1,m0 = 1) 2k + 1 3 1 1 2k − 1

∆Ω(n = 2k + 1,m0 = 1)
2k∑
i=0

e−ir
2∑

i=0
e−ir

0∑
i=0

e−ir
0∑

i=0
e−ir

2k−2∑
i=0

e−ir

• Email-Enron6 dataset, which covers all the email
communication. It has been posted to the web by
the Federal Energy Regulatory Commission [44]. The
Enron email network has 36,692 nodes and 367,662
Edges. To diminish the computing time, we capture
a sub-graph with 10k nodes for the experiment.

• Wiki-Vote7 dataset, which incorporates administra-
tor elections and votes history data from 3 January
2008. There are 2,794 elections with 103,663 total
votes and 7,066 users participating in the elections.
Nodes refer to Wikipedia users and edges represent
votes from one user to another [45].

System Setup. We simulate the social context by creating
a number of user agents based on the public datasets.
Each user agent manages its local information, including
a friendship list, a repository and historical records. We
assume a hypothesis influence message is supposed to be
maintained and each agent has a different tendency of
posting this message. In the meanwhile, the reporting agent
is responsible for monitoring the entire multi-agent system
and collecting global information. The system has three
types of states as follows:

• Evolve: user agents perform actions, incorporating
accessing the repository, reading the message and
making decisions (share the post or not) based on
both past experiences and timeliness degrees.

• Pause: the entire system pauses, and stops function-
ing temporarily. This state allows seed selection algo-
rithms to identify influential users and select seeds
based on the current network status. In other words,
further investment happens at this point. The system
evolution resumes as soon as the seed selection is
completed.

• Stop: All the user agents decompose, and the system
terminates.

6. https://snap.stanford.edu/data/email-Enron.html
7. https://snap.stanford.edu/data/wiki-Vote.html

TABLE 6
Experiment Parameters

Parameter Value(s)
Fixed time steps for seed selections 100
Fixed time steps in total 150
Number of seeds to be selected for each
selection points 25, 5, 1

The interval (time steps) of seed
selection 100, 20, 4

Seed set size 25
attenuation constant r 0.1
General action frequency of user agents
(times per second) 5

By setting up the system, the parameters for the
experiments are given in Table 6. We assume that the
observations of network evolution are within a fixed
interval, and the same amount of seeds are supposed to
be selected at each seed selection point. To reduce the
bias of measuring the performance of different strategies,
additional time steps, i.e., 50 time steps in our experiments,
are given after the final seed selection for the influence
dissemination and attenuation. Furthermore, the budget is
limited, in other words, the seed set size is limited. The
overall action frequency of user agents controls the speed
of network evolution.

Evaluation Metrics. As introduced in Section 3.4, three
major evaluation metrics are taken into consideration, i.e.,
GTD, GCTD and GAC, which have been explained and
formulated in Equations 4, 5 and 6, respectively. GCTD and
GAC were applied in both Experiment 1 and Experiment
2 for comparing the performance of different selection
strategies. GTD has been mainly utilized in Experiment 1
for tracking the variation of timeliness degree of a particular
influence message in different time steps. In Experiment
3, some distance indices were facilitated to measure the
variation of seed sets.
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Fig. 3. Rank-based (GCTD) Fig. 4. DDH Selection (GCTD) Fig. 5. TIH Selection (GCTD)

Fig. 6. Rank-based (GAC) Fig. 7. DDH Selection (GAC) Fig. 8. TIH Selection (GAC)

Fig. 9. Rank-based (GTD) Fig. 10. DDH Selection (GTD) Fig. 11. TIH Selection (GTD)

5.2 Experiment 1: One-shot vs multiple-time selection

Experiment 1 compares one-shot investment against the
multiple-time by facilitating different seed selection algo-
rithms, i.e., rank-based, DDH and the TIH selection. In
this experiment, the Ego-Facebook dataset is applied for
the explorations. The notations of selection approaches are
listed in Table 7.

TABLE 7
Notations of Selections

Notation Meaning
1× 25 One-shot selection, 25 seeds
5× 5 5-time selection, select 5 each time
25× 1 25-time selection, select 1 each time

As we can observe from Figures 3, 4 and 5 that multiple-
time selections can produce higher GCTD. The gap between
one-shot selection and multiple-time selection turns out to
be evident over time. 5 × 5 and 25 × 1 give pretty close
performance, but 25 × 1 shows slightly better, especially
after 100 time steps when the selections are completed. By
comparing the GAC in Figures 6, 7 and 8, the multiple-time
selection also outperforms the one-shot selection. One-shot

selection demonstrates a rapid influence activation cover-
age, but unfortunately it loses the leading position halfway.

Based on the results in Figures 3 - 8, we can observe that
with the same budget, increasing the frequency of invest-
ments generally carries out higher GCTD and GAC, subject
to additional time for influence diffusion and attenuation
provided. This is due to the reason that the last-round in-
vestment in multiple-time selections is not supposed to give
much credit without additional time for influence spread
and decay. The results also explicitly reveal that multiple-
time selections target the reward in the long-run, but may
yield short-term performance. If an organisation intends to
maintain an influence by considering both effectiveness and
time required for GCTD to reach a certain level, selection
strategies with extremely high frequencies (25 × 1 in our
experiment) may not be advocated, since it takes longer time
to reach the maximum GCTD. Whereas, 5 × 5 balances the
trade-off between time and GCTD, which is a better option
under such a scenario. The same rule also applies to GAC.

To drill down into the details, we explore timeliness
variations of the influence message after adopting differ-
ent selection strategies in Figures 9, 10 and 11. One-shot
selection has the highest starting point, but it declines faster
than that of 5× 5 and generally falls behind the others after
around 20 time steps. Obvious spikes can be observed in
multiple-time selections and appear to be more prominent
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in the TIH 5 × 5. Whereas, 25 × 1 demonstrates a different
pattern. It climbs to the peak point, which is higher than that
of the other two selection approaches, then falls gradually.
The organisation expects a sharp upward trend after each
investment. However, this is not guaranteed based on the
results. For example, no obvious increase can be observed
at time steps 60 and 20 of rank-based 5× 5 and DDH 5× 5,
respectively. In contrast, the TIH 5× 5 sees an evident spike
after each investment.

5.3 Experiment 2: The TIH Seed Selection Evaluation

Experiment 2 aims to evaluate the performance of the TIH
algorithm. We compare the proposed TIH algorithm against
state-of-the-art algorithms. Since the diffusion model is
probabilistic based, the results are obtained by averaging
multiple trials. To reduce the bias, we evaluate the TIH
algorithm by using the three datasets mentioned previously,
i.e., Ego-Facebook, Email-Enron and Wiki-Vote.

The experimental results are demonstrated in Table 8.
It can be seen that the TIH outperforms the others in all
the three datasets. By using any selection strategy, the TIH
performs the best in terms of GCTD and GAC.

Another intriguing finding from the experimental results
is concerning the relationship between GCTD and GAC.
More specifically, given the same budget, GCTD rises with
the increment of selection trails. In general, GAC gains when
GCTD increases. However, by adopting rank-based 25 × 1,
the GAC yields that of the 5 × 5, though GCTD rises.
This phenomenon implicitly shows that the outcome of
influence maintenance is not always in accordance with that
of the influence maximization. Whereas, the relationship
between GCTD and GAC tends to be affected by the applied
business strategies. In other words, the strategies created for
long-term marketing can possibly suppress the short-term
growth of the product adoptions.

5.4 Experiment 3: Seed Set Variation Analysis

With the same budget, different selection approaches in-
evitably produce different seed sets. To understand the
outcome of various strategies, in this experiment, we further
compare one-shot selection against multiple-time selection
by exploring the variations of selected seeds based on
the ATID model. The TIH algorithm has been applied for
the seeding procedures in three social networks mentioned
previously.

Three evaluation metrics are adopted for measuring the
distance (referring to variation or dissimilarity) between any
two seed sets, i.e., Jaccard distance djcd(A1, A2), Dice dis-
similarity ddic(A1, A2) and sequential distance considering
the index of the elements dsqc(A1, A2), which are formu-
lated in Equations 18, 19 and 20, respectively. In these three
equations, A1 and A2 denote two different seed sets, having
the same cardinality, i.e., A1 6= A2, |A1| = |A2|. I(c|A1)
refers to the index of element c in set A1.

djcd(A1, A2) = 1− |A1 ∩A2|
|A1 ∪A2|

(18)

ddic(A1, A2) = 1− 2|A1 ∩A2|
|A1|+ |A2|

(19)

dsqc(A1, A2) =
1

|A1|
(

∑
c∈A1∩A2

|I(c|A1)− I(c|A2)|
|A1|

+ |A1 \A2|)

(20)
As the influence diffusion appears to be probabilistic-

based, different sets of the nodes could be selected by using
the same algorithm. To reduce the bias, results are averaged
over multiple trials. Figure 12 compares the variations of
the seed sets produced by using different strategies. It
explicitly shows that the seed-set variations between one-
shot selection and multiple-time selection appear to be more
prominent when having a higher frequency of selections.
Two multiple-time selection approaches, i.e., 5 × 5 and
25 × 1, share a larger overlapping seeds than that of one-
shot selection.

To investigate the correlations between network prop-
erties and seed-set variations, we list the detailed results
in Table 9, where ”Average Path Length” (APL) refers to
the average number of steps along the shortest paths for
all possible pairs of nodes. APL is one of the key metrics
to measure the transitivity of the network [46]. A shorter
APL generally indicates that less time is required for any
influence travelling from one node to another.

It can be seen from Table 9 that a greater average
path length corresponds to a higher seed-set variation. The
reason behind is that in shorter APL networks, influences
become relatively easier to reach any node, thus e−r·(m−b) in
Equation 1 appears to be lower as b shrinks. Subsequently,
timeliness gain turns out to be less prominent. Therefore,
based on Equations 11 and 12, the TIH algorithm has a
higher chance to carry out similar seed sets under such
circumstances.

5.5 Discussion
We simulated a social environment and the process of
influence maintenance in a social network. Through the
experiments, we demonstrated the advantages of applying
ATID to model the influence propagation process. Two
critical factors required by the influence maintenance can
be presented clearly in the ATID, i.e., the temporal feature
of the social network and the status of a particular influ-
ence. Furthermore, the seed-set variations are compared
after applying different selection approaches. We also eval-
uate the effectiveness of various seed-selection algorithms
in maintaining an influence. The TIH algorithm surpasses
some selected traditional selection algorithms by using three
different datasets.

More importantly, three empirical laws can be drawn
from the experimental results. (1) Given the same budget,
the multiple-time investment is generally more beneficial
for achieving the long-lasting influence of a particular
product than that of the one-shot investment. (2) Influence
maintenance is not always in accordance with that of the
influence maximization. In other words, sustaining a long-
term impact of a particular influence cannot ensure a large
fraction of activation coverage; the long-term marketing
strategies may hinder the profit spikes. (3) Seed-set variation
is not only associated with the frequency of selections, but
also affected by the network property. A greater average
path length of social networks leads to a higher seed-set
variations.
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TABLE 8
Seed Selection Performance Comparison

Social Network Algorithm Metrics One-shot
Selection 1× 25

Multiple-time
Selection 5× 5

Multiple-time
Selection 25× 1

Ego-Facebook TIH GCTD 195,951 207,115 209,675
Ego-Facebook TIH GAC 2,222 2,242 2,249
Ego-Facebook RANK GCTD 170,966 187,696 189,968
Ego-Facebook RANK GAC 1,996 2,124 2,118
Ego-Facebook DDH GCTD 181,994 190,653 205,774
Ego-Facebook DDH GAC 2,097 2,123 2,151
Ego-Facebook Random GCTD 168,733 175,899 188,300
Ego-Facebook Random GAC 1,889 1,988 2,003

Email Eron TIH GCTD 341,418 358,722 384,861
Email Eron TIH GAC 4,307 4,445 4,331
Email Eron RANK GCTD 328,026 352,744 362,992
Email Eron RANK GAC 4,082 4,391 4,365
Email Eron DDH GCTD 338,803 355,452 373,218
Email Eron DDH GAC 4,227 4,255 4,492
Email Eron Random GCTD 324,994 337,380 338,269
Email Eron Random GAC 4,181 4,189 4,196
Wiki Vote TIH GCTD 254,710 267,810 272,292
Wiki Vote TIH GAC 2,868 3,001 2,953
Wiki Vote RANK GCTD 247,659 264,417 267,213
Wiki Vote RANK GAC 2,826 2,944 2,878
Wiki Vote DDH GCTD 249,977 265,950 270,906
Wiki Vote DDH GAC 2,843 2,954 2,829
Wiki Vote Random GCTD 247,626 253,349 257,599
Wiki Vote Random GAC 2,813 2,843 2,824

TABLE 9
Network Properties and Seed Sets Variations

Dataset Average
Path Length

one-shot selection vs.
multiple-time selection 5× 5

one-shot selection vs.
multiple-time selection 25× 1

multiple-time selection 5× 5
vs. multiple-time selection 25× 1

Jaccard Dice Sequence Jaccard Dice Sequence Jaccard Dice Sequence
Email Enron 3.123 0.442 0.284 0.365 0.498 0.332 0.424 0.094 0.051 0.113
Wiki Vote 3.247 0.622 0.452 0.540 0.730 0.576 0.650 0.424 0.270 0.394
Ego-Facebook 3.693 0.768 0.624 0.631 0.792 0.656 0.668 0.477 0.315 0.383

Fig. 12. Seed Set Variation Comparison under Different Strategies
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6 CONCLUSIONS AND FUTURE WORK

In this paper, we systematically studied the influence main-
tenance problem, which targets the long-term and sustain-
able business goals. To the best of our knowledge, this paper
is the first full research work that characterizes the influence
maintenance in social networks. The distributed influence
diffusion model, i.e., the ATID, presented in this article can
also pave the way in exploring influence propagation social
pheromone, since it concentrates on modelling the agent’s
personalized traits and behaviours, tracking the temporal
feature of a social network, as well as the status of influence
messages. Many features of both individuals and influences
can be enabled in the ATID when analysing the social
influence diffusion phenomenon. We have also proposed
a novel seed selection algorithm, i.e., the TIH, which is
capable of maintaining long-term influence effectively. Ex-
tensive experiments are conducted, and the empirical results
show that the proposed model is capable of enhancing
long-term influence. Given the same budget and limited
time frame, multiple-time investment is superior to one-shot
investment in terms of influence maintenance. Moreover,
the experimental results also explicitly show that the TIH
performs better than the other traditional selection algo-
rithms by considering GCTD and GAC. We believe that our
findings can shed light on the understanding of influence
maintenance for long-term marketing.

In the future, we plan to free up the assumptions. Specif-
ically, we will try to explore the solutions for the situations,
where (1) the time step is not fixed; (2) for each investment,
the seed set size is not fixed; and (3) the seed selection point
can be a variant.

REFERENCES

[1] John C Turner. Social influence. Thomson Brooks/Cole Publishing
Co, 1991.

[2] Bertram H Raven. Social influence and power. Technical report,
CALIFORNIA UNIV LOS ANGELES, 1964.

[3] Young Kim and Jaideep Srivastava. Impact of social influence in e-
commerce decision making. In Proceedings of the ninth international
conference on Electronic commerce, pages 293–302. ACM, 2007.

[4] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the
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