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Abstract—We consider a crowdsourcing platform where workers’ responses to questions posed by a crowdsourcer are used to
determine the hidden state of a multi-class labeling problem. As workers may be unreliable, we propose to perform sequential
questioning in which the questions posed to the workers are designed based on previous questions and answers. We propose a
Partially-Observable Markov Decision Process (POMDP) framework to determine the best questioning strategy, subject to the
crowdsourcer’s budget constraint. As this POMDP formulation is in general intractable, we develop a suboptimal approach based on a
g-ary Ulam-Rényi game. We also propose a sampling heuristic, which can be used in tandem with standard POMDP solvers, using our
Ulam-Rényi strategy. We demonstrate through simulations that our approaches outperform a non-sequential strategy based on error
correction coding and which does not utilize workers’ previous responses.

Index Terms—Crowdsourcing, collaborative computing, multi-class labeling, sequential question design, Ulam-Rényi game

1 INTRODUCTION

N a crowdsourcing platform, workers are given a task,

like classifying or labeling an object in a picture, to per-
form. The crowdsourcer then makes a final decision based
on the collective answers from all participating workers. For
example, in [1], crowdsourcing was used to produce tax-
onomies whose quality approaches that of human experts.
Crowdsourcing platforms like Amazon Mechanical Turk [2]
typically has many participating workers. The goal is to
make use of the abundance of workers to perform simple
but tedious microtasks that do not require much domain
expertise. However, workers may be highly unreliable [3],
[4]. Therefore, the microtasks are usually designed to be
simple binary questions [5]. In this paper, we use the terms
microtask and question interchangeably by assuming that
workers are always required to answer a question posed by
the crowdsourcer.

To improve the reliability of the final decision, various
inference algorithms and question allocation methods have
been proposed. For example, in [6], [7], the authors pro-
posed a task assignment scheme using a bipartite graph
to model the affinity of workers for different binary tasks
and an iterative algorithm based on belief propagation to
infer the final decision from the workers’ responses. In
[8], the authors proposed an iterative inference algorithm
based on a spectral method. They assumed that tasks have
different difficulties and workers have different reliabilities
using a generalized Dawid-Skene model [9]. A multi-class
labeling problem was considered in [10], in which an al-
location algorithm is developed to assign tasks to differ-
ent workers, and an inference method achieving an order-
optimal redundancy-accuracy trade-off was developed. Re-
dundancy here refers to assigning the same task to multiple
workers and using a majority voting rule to infer the final
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answer. Some researchers have considered asking additional
gold questions inserted amongst the actual work tasks to
determine the reliability of workers [11]. In [12], the authors
presented a strategy to improve workers’ reliability by
teaching them classification rules. Several incentive strate-
gies to motivate workers to participate in crowdsourcing
have been studied in [13], [14]. However, how to design the
microtasks or questions for the workers has not addressed
in the aforementioned works.

In this paper, we assume that the crowdsourcer wishes to
solve an M-ary multi-class labeling problem. From coding
theory [15], [16], we know that it is possible to reduce
the inference error through the use of error correction
codes. The reference [5] developed an algorithm called Dis-
tributed Classification Fusion using Error-Correcting Codes
(DCFECC) using error-correction coding to divide a single
multi-class labeling task into binary questions, which are
then assigned to the workers. The classification is then
done by performing a Hamming distance decoding of all
the workers” binary responses, which can be treated as the
noisy versions of a coded message. We note that DCFECC
is based on a non-feedback coding strategy. One can use
a feedback coding strategy to further reduce the misclas-
sification probability. In this paper, we consider the same
multi-class labeling problem as [5] but now allow questions
posed to the workers to depend on the workers’ previous
responses. Our goal is to develop a sequential approach
to design questions for the crowdsourcing platform. We
assume that at each questioning round, the crowdsourcer
asks a group of workers a g-ary question (with ¢ < M and
to be optimized), which we design based on the workers’
answers in previous rounds. The g-ary question is further
decomposed into binary questions for each worker using a
similar error correction coding approach as DCFECC.

We formulate the sequential g-ary question design prob-
lem as a Partially-Observable Markov Decision Process
(POMDP) [17]-[21], which is however intractable due to
its extremely large action space. This difficulty together



with the well-known curse of dimensionality [19], [20] in
POMDP makes optimally solving POMDP computationally
intractable. We therefore develop approximate methods to
solve the POMDP.

Our first strategy is to approximate the POMDP using a
g-ary Ulam-Rényi game [22]-[24]. This is an iterative game
in which one player chooses a state out of M possible states,
and another player asks the first player g-ary questions in
order to determine the state chosen. The questions are asked
sequentially, and a question at one iteration can be based
on the responses to the questions from previous iterations.
The first player may answer some of the questions posed
wrongly. The first player’s choice of the state corresponds
to the true state of our multi-class labeling problem, while
giving a wrong answer to a question corresponds to the
unreliability of a worker in our crowdsourcing platform. We
show how to find the best parameter ¢ in order to achieve
an optimal trade-off between the classification accuracy and
the number of iterations of questions required. As finding
the optimal strategy for a Ulam-Rényi game is in general
intractable, heuristics for solving a binary Ulam-Rényi game
have been proposed in [22], [23]. However, to the best of our
knowledge, strategies for a general g-ary Ulam-Rényi game
have been proposed only when the number of questions
allowed is sufficiently large. In this paper, we propose an
efficient heuristic, which is however suboptimal in general.

Furthermore, based on our proposed Ulam-Rényi strat-
egy, we further propose an action sampling strategy for the
POMDP to sample a small subset of actions so that standard
POMDP solvers like PBVI [18], [19] and POMCP [20] can
be used. Simulations suggest that this sampling strategy is
better that uniform sampling.

A preliminary version of this paper appears in [25].
In that conference paper, we introduced and presented a
preliminary heuristic strategy for solving a g-ary Ulam-
Rényi game, and applied that to a related crowdsourcing
problem. In this paper, we have formulated our crowdsourc-
ing problem as a POMDP, further refined our Ulam-Rényi
strategy, and proposed a sampling strategy for use with
POMDP solvers. More extensive simulation results are also
included in this paper.

The rest of this paper is organized as follows. In Sec-
tion 2, we present our system model and assumptions,
and formulate the crowdsourcing problem as a POMDP. In
Section 3, we introduce the Ulam-Rényi game, and develop
anovel heuristic to solve it. We then apply this strategy to an
approximation of our POMDP formulation. In Section 4, we
describe our new action sampling strategy for traditional
POMDP solvers. In Section 5, we present simulations to
compare the performance of our approaches with other
strategies. Section 6 concludes the paper.

Notations: In this paper, we use [a, b] to denote the set of
integers {a,a+1,...,b}, and a} to denote (a;, a;+1, - .., a; ).
The notation p(z | y) represents the conditional probability
of the random variable x given y, where y can be a random
variable or an event. We assume that all random variables
and events are defined on a common probability space with
probability measure P and expectation operator E.

2 PROBLEM FORMULATION

Consider a crowdsourcing platform that allows a crowd-
sourcer to pose questions or tasks to workers on the plat-
form. In this paper, a crowdsourcer wishes to solve a
M-ary multi-class labeling problem: determine a hidden
state H € S = [1, M] with the help of groups consisting
of N workers each. For example, the crowdsourcer may
wish to classify an image of a dog into one of M = 9
breeds: Dachshund, Irish Water Spaniel, Afghan Hound,
Bull Terrier, Westie, Alaskan Malamute, American Pit Bull
Terrier, Fox Terrier and Rough Collie. In this case, we have
S ={1,2,...,9}, where each state corresponds to a particular
dog breed in the order listed. However, since workers may
not be experts in such image classification tasks, and can
only answer simple multiple choice questions, the crowd-
sourcer asks each group of workers a sequence of g-ary
questions, where ¢ € [2,M]. A g-ary question can be
represented as a g-tuple T = (11,7T»,...,T,) , where the
sets T, j € [1,¢q|, are pairwise disjoint subsets of S. The ¢-
tuple is interpreted as a question of the form “Which one
of the sets 11, ...,T, does H belong to?”. At each iteration,
the g-ary question posed is designed based on the responses
from previous iterations. Each g-ary question is assigned to
the whole group of N workers, and is further broken down
into simpler microtasks that are assigned to each individual
worker within the group.

For a concrete illustration, consider again the example
of classifying an image of a dog into one of nine breeds as
described above. Suppose that the crowdsourcer uses tenary
(g = 3) questions. Then the question, “Does the dog in the
image have drop, erect or half-erect ears?”, can be repre-
sented as the tenary tuple T = ({1,2,3},{4,5,6},{7,8,9})
since {1, 2, 3} corresponds to breeds with drop ears, {4, 5,6}
corresponds to breeds with erect ears, and {7,8,9} corre-
sponds to breeds with half-erect ears. The crowdsourcer
then assigns this question to the first group of workers.
Suppose that he receives the answer “The dog has drop
ears”, then his next question could be “Does the dog in the
image have smooth, curly, or long and straight fur?”, which
can be represented as T = ({1,4,7},{2,5,8},{3,6,9}). By
iteratively asking different questions to groups of workers,
the crowdsourcer is able to narrow down the exact dog
breed in the image.

2.1 Binary Microtasks with Code Matrix

Suppose a g-ary question T is posed to a worker group g,
consisting of N workers randomly chosen from the worker
pool. Let y, 1, € [1, ¢] be the opinion or response of a worker
k € [1,N] in the group if he is posed the question T. We
assume that each worker £ has an associated reliability A, 1,
drawn independently from a common distribution, with
mean fi,. Let Ay = (A\g)0_,. Conditioned on H and A,,
we assume that workers’ responses are independent from
each other, and the response of worker £ in group g has the
following probability mass function:

itHeT, .,
otherwise.

Ag.k
1_)‘g-,k
qg—1

p(yg,k | o, AZ) = { 1

Note that we have assumed that the distribution gen-
erating A, . depends only on the number ¢ of possible re-



sponses, and not on the specific question T. This is because
workers are typically non-experts without specific domain
knowledge of the labeling problem assigned. Furthermore,
we will typically assume in our simulations that p, is a de-
creasing function of g, i.e., workers become more unreliable
as the question posed becomes more complex. Indeed, it has
been observed that workers on crowdsourcing platforms
typically do not have enough expertise to answer non-
binary questions reliably [26]. Therefore, we first transform
the g-ary question posed to each worker group into binary
questions, which are then assigned to individual workers
within the group.

In the DCFECC approach proposed by [5], a code matrix
is designed to determine what questions are assigned to
each worker to solve a M-ary labeling problem. For N
workers, a code matrix is a M x N binary matrix, where each
column corresponds to a binary question for each worker,
and each row corresponds to a code for each state of the M-
ary labeling problem. The responses from all the NV workers
can then be viewed as a noisy version of one of the rows in
the code matrix, and a Hamming distance decoder is used
to decode for the hidden state H.

In our proposed approach, a g-ary question T =
(Th,...,Ty) is posed at each time to a worker group. We
can interpret this as a g-ary labeling problem, and let G, be
the corresponding ¢ x N code matrix generated by DCFECC
when applied to solving this g-ary labeling problem.

[Ur, set T}

4t worker’s decision rule

Fig. 1. Code matrix representation of the DCFECC approach

The j-th column of the code matrix G, represents the
binary question B = (By, By) posed to the j-th worker,
where By, = {l € [1,q] : G4(l,5) = k} for k = 0,1 and
G,(1,7) being the (1, 7)-th element of G,. Let u € {0,1}"
be the vector of responses from the N workers. The j-
th element in vector w is set as bit k if the j-th worker
decides that Bj, contains the correct class. As workers may
be unreliable, the responses from the N workers can be
viewed as a noisy version of one of the rows in G,. Using
the same decision rule in [15], we then decode w to 7; if
the I-th row of G, has the smallest Hamming distance to
u, with ties broken randomly. The set of responses whose
Hamming distance to the [-th row of G, is minimal is called
the decision region of 7;.

Under the worker reliability model (1), it is shown in [5]

that for any i = [iy,42,...,in] € {0,1}", we have

P(u=i|H eTy)

N
. , 1-
= H 1-— 15 + 2(Zj - 1) /Lquﬁj + _Mlq Z Gk’j s
j=1 q k#l
2

where Gy ; is the (I, j)-th element of Gy. Let o be the row

number of G, found by the Hamming distance decoder. We
have

plo| HeT) =) P(u=ilHEeT)CGW), ()

where

1
CO(D — { 81

with n; being the number of decision regions ¢ belongs
to. We call the ¢ x ¢ matrix P, whose (I, 0)-th element is
plo | H € T;), the performance matrix of the code matrix
G,. Similar to DCFECC, we choose the code matrix G, to

minimize Y7, >, plo | H € Ti)/q.

if ¢ is in the decision region of Tj,,
otherwise,

2.2 POMDP Formulation

We assume that no prior information about H is available.
Therefore, we choose a uniform prior over S for H. At each
time ¢, the crowdsourcer chooses an action a;: to either pose
a question to worker group g, or to stop and make a final
decision. Let 7 be the stopping time. Since most crowdsourc-
ing platforms like Amazon Mechanical Turk require the
crowdsourcer to financially compensate a worker for each
task he completes, the crowdsourcer’s expenditure increases
with increasing 7. Let b be the budget of the crowdsourcer
so that we have the constraint 7 < b. Let Q(q) be the set
of all g-tuples T. For each time ¢ < 7, the crowdsourcer
chooses a tuple a; € Q(q), poses it to the worker group g,
and fuses all the answers from the workers in group g to
obtain an answer o; € [1,¢|. The choice of the tuple a; is
determined by a policy ¢; : Q(¢)"! x [1,¢]""1 — Q(g).
At time 7, the action or decision a, is given by a decision
rule H : Q(q)™ ' x [1,¢]"! — S. Let R = IP’(I;T:H)

be the probability that the decision H is correct. We call
R the reliability of the strategy. We define a policy to be
(q,7, (6¢)I=}, H). Let the cost of each question posed be .
The aim of the crowdsourcer is to

max R —v(Er — 1)

4
subject to 7 € [1, ], @)

over all policies.
Let po(h) = 1/M forall h € S, and the belief at time ¢ be

pt(h):IP’(H:h}a’i,oﬁ),

for each i € S. It can be shown that R is a function of
pr = (pr(h))nes since the optimal decision rule at time 7, for
a given (q, 7, (¢¢)]_;) is to choose H = argmaxj,cs pr(h).
Thus, to solve (4), it suffices to keep track of the sufficient
statistics p; = (p¢(h))nes, which can be computed sequen-
tially via Bayes’ rule as



: q
if h € Uj:lTj7
otherwise.

p(ot|pt—1,at=T)
pi—1(h)

where p(o; | H = h,a; = T) is the (I, o)-th element of the
performance matrix P, if h € T}, and

pi(h) =

p(oi|H=h,a;=T)pi—_1(h)
®)

plog | pi—1,a; = T)
_ Zheujlej plos | H=h,a; = T)p;_1(h)
Zheu;l:lTj pi-1(h)

The formulation in (4) can be viewed as a POMDP in
which we observe only the belief p; but not the hidden
state H at each time ¢. However, due to the large size
of the action space Q(g), solving this POMDP exactly is
intractable [19]. Furthermore, we need to optimize over
q € [2,M]. Most POMDP solvers, including PBVI [18],
[19] and POMCP [20], enumerate over all possible actions
to find the optimal action. When the action space is large,
such enumeration is no longer feasible. Several solvers [27]-
[29] have even been proposed for continuous action spaces
under some technical conditions. However, to the best of
our knowledge, there is no general POMDP solver for large
discrete action spaces. Therefore, in Section 3, we propose a
heuristic approach based on the Ulam-Rényi game to solve
(4). In addition, as part of this heuristic approach, we obtain
a sampling strategy to sample a small subset of actions from
Q(q), which can be used in tandem with traditional POMDP
solvers like PBVI and POMCP, in Section 4.

3 ULAM-RENYI GAME APPROACH

In this section, we first briefly introduce the concept of
a Ulam-Rényi game, and propose a novel mixed-integer
quadratic programming (MIQP) formulation to finding a
heuristic strategy for the Ulam-Rényi game. We then ap-
proximate our POMDP in (4) with a Ulam-Rényi game
and use our proposed Ulam-Rényi strategy to solve it.
Finally, we propose an action sampling approach based on
the Ulam-Rényi game, which can be used in tandem with
standard POMDP solvers.

3.1 A Heuristic Strategy for the ¢-ary Ulam-Rényi Game
In a (M, q,e) Ulam-Rényi game [22]-[24], a responder first
chooses a number H € S, and a questioner asks the re-
sponder a sequence of g-ary questions to determine H. The
responder is allowed to lie at most e times. The questioner
chooses his question at each step based on the previous
responses, and his goal is to determine /7 with the minimum
number of questions. The Ulam-Rényi game is similar to our
crowdsourcing problem: the questioner is our crowdsourcer,
while the responder is a group of workers. The difference is
that in our crowdsourcing formulation, the workers do not
know H a priori, therefore a wrong answer is modeled to
be stochastic and there is no upper limit e to the number
of wrong answers the workers can give. In the following,
we first give a brief overview of the Ulam-Rényi game and
present a heuristic strategy to solve it. We then apply this
strategy to our problem.

In a Ulam-Rényi game, we define a game status 0 =
(Ao, A1,...,Ae), where A;, i € [0,¢], are pairwise disjoint
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subsets of S. The set A; contains all states m € S that
are potentially H if the responder has lied exactly ¢ times.
The initial game status o is given by (S,0,...,0). At each
question, if the current status is o = (A, 41,...,4.) and
the answer to the question T = (T4,T1,...,T}) is j, where
Ty,..., T, are pairwise disjoint sets and U7_, T} = Uj_y4;,
then the game status is updated as:

O'j = (AO M Tj, (Ao\TJ) U (Al N Tj),
oy (Aemi\T) U (Ae N TY)). (6)

For example, in the (4, 2, 1) Ulam-Rényi game, the initial
status is 0 = ({1, 2, 3,4}, 0). Suppose the responder chooses
H =1 and the questioner’s first question is T = (T1,73)
where T7 = {1,2} and Tz = {3,4}. The responder can lie to
this question and answer “H is in 75", and the questioner
updates the game status o to ({3,4},{1,2}). This game
status tells the questioner that if H € {1,2}, then the
responder has lied once, whereas if H € {3,4}, then the
responder has not lied. Suppose the second question posed
to the responder is T = ({1, 3}, {2,4}). Since the responder
has already lied once, he can only give the answer “H is
in T1”. The game status then becomes o = ({3}, {1, 4}). Fi-
nally, if the questioner poses the question T = ({1}, {3,4})
followed by another question T = ({1},{3}), the game
status o = (0, {1}) is reached, at which point the questioner
determines that H = 1.

In general, it is intractable to find an optimal strategy
for a (M, q,e) Ulam-Rényi game [22], [30]. The reference
[31] proposed a search strategy that is near optimal when
the number of questions is sufficiently large. In the fol-
lowing, we propose a heuristic adaptive strategy. For each
i € [0,¢], let |A;| be the number of states in A;. Let
lo|= (|Aol, |A1],- - ., |Ael|), which is called the type of o [31].
Same as [30], we define the weight of an element x € A4; in
status o with w iterations left as

. e—1i w

Ww(l) = Z (k}) (q - 1)ka
k=0

and the weight of the status o as the cumulative weight of

all the elements in it, i.e.,

Vio(lol) = S Ai Wi ().
1=0

The weight W,,(7) of an element z € A; has an intuitive
interpretation: if # = H, then there are (%) (¢ — 1) ways for
the responder to lie £ times in the remaining w iterations,
so Wy (i) is the total number of ways of lying for the
responder. A game status o with high V,,(|o|) implies that
the responder has more ways to obfuscate the true state H,

making it more difficult for the questioner to determine H.

From Proposition 3.1 of [32], we have V,(|o]) =
>4 Vw-1(|o7|). Furthermore, since the responder lies at
most e times, Proposition 3.1 of [32] and Theorem 3.1 of
[30] show that the questioner is guaranteed to find H in w
questions only if V,,(Jo|) < ¢*. Consider the case where
Vw(lo|) = ¢* for some w. If the next question yields
Vw-1(lc7]) > ¢*~! for some j € [l,q], the responder
can answer j to prevent the questioner from finding H.
Therefore, the questioner should use a question T such that



Viw—1(]o7|) is approximately the same for all j € [1,g]. For
each j € [1,q], we let

T, = U T},
i=0

where Tj; = T; N A;, Ui_Tj; = A; and Tj;, j €
[1,q], are pairwise disjoint sets. We use |T}| to denote
(5005 [Tl - | Tel)-

We observe from our experiments that W, (7) is usually
much larger for smaller values of i. For example, when ¢ = 4
and e = 7, we have W1o(0) = 497,452 while W1o(7) = 1.
This suggests the following heuristic: We first determine the
value of |Tj ;| for small values of ¢ and then use |T} ;| with
larger values of i to even out the weights V,,_1(|c7|) for
jellql

Suppose |[Tjol,... |Tji-1|, for all j € [1,q] have
been determined. Subsequently for i € [0,¢], let |o]|=
(1A%, .. 147],|A74],0,...,0), where

|A]|= [ Aima |~ Ty [+ Tl

with |A_1|= |T}—1|= |T}+1|= 0. We propose to solve the
following optimization problem:

> (Var(lo]) = Va-i(lof)))?

Jil

min
(Tj,i)§ =1
q (7)
subject to [T} ;|€ [0, |A;]], Z\TH|: |A;].
i=1

Let V; = S0_t W1 (k)| AJ| =Wy 1(4)|Tji—1|- The objec-
tive function in (7) can be written as

D (Vi = Vit (Woa (i) = Waa (i 4 D) (T~ Tra)
gl
where W,,_1(e+1) = 0. Then, the optimization problem (7)
can be reformulated as a MIQP as follows:

1
min-=z"Fz + ¢’
z 2
subject to 17z = | A;| ®)
z; € [0, |Ail],j €[, 4]

where F € R7%7 has diagonal entries (¢ — 1) X (Wy,—1(%) —
Wy-1(i + 1)), and for j # k, its (j,k)-th entry is
Ww—1(i + 1) — Wy,_1(%). The vector ¢ € R? has j-th entry
¢; = Y171 (V; = Vi), and x; denotes the j-th entry of vector
x.

After obtaining the optimal (|7} |);e[1,q from solving
(8), A, is arbitrarily partitioned by randomly choosing |7} ;|
elements from it to form 7} ;. The above heuristic is pre-
sented in detail in Algorithm 1.

Let B(g,e) be the minimum number of questions re-
quired to determine H if at most e of the questions have
wrong responses. We propose a heuristic to compute B(q, €)
in Algorithm 2. The Ulam-Rényi game ends when the game
status contains only a single state. Given the initial game
status o = {S5,0,...,0} and the number of questions w,
we use Algorithm 1 to generate a g-ary tree whose depth
is w and root corresponds to the initial game status. Each
node in the tree corresponds to a game status. The j-th
child of a node o is the status 07 updated from answer j

5

Algorithm 1 Heuristic strategy for a (M, ¢, ¢) Ulam-Rényi
game.

Input: Current status o =
questions left.
Output: T
Let m denote the smallest index s.t |4,,|# 0. Let 6 =
mod (|Arn,|,q), and w = L%J.
for j =1to 6 do
Set | T} m|= w + 1.

(A07A17A2, N 7Ae)/ with w

end for
forj=§0+1toqgdo

Set | T} m|= w.
end for

Set |T;,;|=0forall j € [1,q) and i € [0,m — 1].
fori =m+ 1toedo
if |A;|# 0 then
Solve (8) to obtain an optimal x.
for j =1toqdo

Set |Tj,i|: ;.
end for
else
Set |T;,:|=0, forall j € [1,q].
end if
end for

For all i € [0, €], A; is arbitrarily partitioned by randomly
choosing |T} ;| elements from it to form T}, for all j €

[1,ql.

Algorithm 2 Heuristic to compute B(g, e).

Input: M,q,e
Output: B(q,e)
Set w = Npin(e) = min{n | M > 5_, (?) (q—1)7 < q"}.
while 1 do
Use Algorithm 1 to generate a g-ary Ulam-Rényi tree
whose depth is w and root is the initial status.
if every leaf node’s game status contains only one state
then
break;
else
w=w-+1;
end if
end while
return B(q,e) = w;

as defined in (6). To find B(q, €) then corresponds to finding
the minimum w that leads to a g-ary tree in which every
leaf node has a game status that contains only one state. We
initialize w as Niin(e) = min{n | M 37%_, (7;) (¢—1)7 < ¢}
since B(g,e) > Nmin(e) [30], [31]. We then increment w
by one each time until the game status at every leaf node
contains only one state. We call this a (M, ¢, e) Ulam-Rényi
tree. The above procedure is summarized in Algorithm 2.
To verify the performance of our heuristics, we compare
our estimated B(2,e) with that of the optimal (M,2,¢€)
Ulam-Rényi game strategy in [22], where M = 2™ is a
power of 2. (Note that finding optimal strategies for ¢ > 2
is an open problem.) The results are shown in Table 1, in
which the numbers in brackets indicate the values found by
[22] if our method differs from the optimal values. We see



that our algorithm computes B(2, e) correctly in most cases.

TABLE 1
Estimated B(2, e) of the (M, 2, e) Ulam-Rényi game where M = 2.

e
M1 2 3 4 5 6 7 8
113 5 7 9 11 13 15 17
215 8 11 14 17 20 23 26
316 9 12 15 18 21 24 27
417 10 13 16 19 22 25 28
509 12 15 18 21 24 27 30
6 |10 13 16 19 22 25 28 31
7 |11 14 17 20 23 26 29 32
8§ |12 15 18 21 24 27 30 33
9 |13 17 20 23 26 29 32 35
10 |14 18 21 24 27 30 33 36
1115 19 22 25 28 31 34 37
12117 20 23 27 30 33 36 39
1318 21 25 28 31 34 37 40
1419 22 26 29 32 35 39(38) 42 (41)
15|20 24 27 30 34 37 40 43
16 |21 25 28 32 35 38 41 44

3.2 POMDP Approximation

We now approximate the POMDP in (4) using a (M, g, e)
Ulam-Rényi game, and optimize over (¢,e). For a given
(g,€), we treat the crowdsourcer as the questioner in the
(M, q,e) Ulam-Rényi game, and each group of workers as
the responder. We can think of the group of workers giving
an incorrect response after decoding via the code matrix
as the responder in the Ulam-Rényi game lying. However,
in our crowdsourcing problem, the worker groups are not
constrained to making at most e errors. Therefore, after
B(q, e) questions, the crowdsourcer is not guaranteed to in-
fer the correct hidden state H. Let R(qg, e) be the probability
that the crowdsourcer finds the correct H by applying our
proposed heuristic in Algorithm 1 iteratively till the game
status contains only a single state, which is then declared to
be the inferred hidden state H. Let B(g, ¢) be the maximum
number of iterations required as computed in Algorithm 2.
Then we have 7 < B(q,e) + 1.

Recall that P, is the performance matrix of the DCFECC
code matrix G, used to transform the g-ary question T into
binary microtasks for each worker. Let p = min;c,q) Py, .,
where P, ; is the (i,7)-th element of P, and denotes the
least probability that the question is answered correctly.
Since R(q,e) is the probability that all the worker groups
make at most e errors in at most B(q, e) questions, we have

. °. (B(g,e Ble)—
R(g.¢) > Rlg.c) = Y < i )> (1= )"0, @)
k=0
where the inequality follows from the fact that >y (7)(1—
p)F Q(sz) is a non-increasing function of x.

In place of the problem (4), we consider instead the

following optimization problem:

r%zzx L(g,e) = f?ﬂ(q, e) — ’YB(qa e)

subject to B(g,e) < b— 1, (10)

q € [2,M], e € [0,00).

Since the problem (10) is a discrete optimization problem,
it is in general computationally intractable to find the exact
optimum. For M that is not too large, the solution space
is relatively small and the solution can be found through
enumeration. For large }/, an integer programming method
like branch and bound [33], [34] or local search strategy [35]
can be used to find an approximate solution.

Let (¢*,€*) be the optimal solution of (10). We call the
(M, q*,e*) Ulam-Rényi game strategy found using Algo-
rithm 1 together with the use of the DCFECC code matrix
to transform the ¢*-ary questions into binary questions, the
Ulam-Rényi sequential questioning strategy (URSQS).

4 SAMPLING USING ULAM-RENYI TREE

To solve the POMDP (4) directly using standard POMDP
solvers is computationally expensive without using some
sampling strategy to reduce the size of the action space. A
typical sampling strategy is uniform random sampling. In
this section, we propose a new sampling strategy based on
the Ulam-Rényi tree.

Let Q denote the sampled subset of the action space,
where |Q] is predetermined. Let (¢*, e*) be the solution of
(10). To sample each action in Q, use Algorithm 2 to find a
(M, ¢*, e*) Ulam-Rényi tree. We then randomly sample |Q|
nodes in the tree, and include the corresponding questions
that generated these nodes into Q. We call this the Ulam-
Rényi tree (URT) sampling strategy.

5 SIMULATIONS AND PERFORMANCE EVALUATION

In this section, we perform simulations and compare the
performance of our proposed approaches with the non-
sequential DCFECC approach, and strategies found using
the standard POMDP solvers PBVI [18], [19] and POMCP
[20] with uniform sampling.

We perform simulations using N = 10, and py = rq
We vary the number of classes M, the budget b, cost of each
question vy, and the parameter r, which controls the workers’
reliability via 11,. We choose 1, = rq~%2 to be a decreasing
function of g, as a worker’s reliability typically decreases
with increasing g [26]. The parameter 7 controls the workers’
general reliability. A larger r indicates that the workers
are more reliable. In each simulation, we perform 50,000
trials using URSQS, DCFECC, and the PBVI solver. Since
DCFECC is a non-sequential strategy, we assume that it
uses N (b— 1) workers, which is the maximum total number
of workers used by URSQS and the POMDP solvers. We
perform 2000 trials when using the POMCP solver since it
is significantly more computationally complex. To compare
the performances of different approaches, we compute the
empirical average, over all the trials, of the objective func-
tion in (4). For convenience, this average is referred to as the
average reward.

—-0.2



5.1 Comparison of Sampling Strategies

When using the standard POMDP solvers, we choose the
action space sample size |Q| according to the number of
classes M. For the PBVI solver, we also randomly sample a
finite set of beliefs, B.

The performance of PBVI depends on the size of B
relative to M. PBVI first computes the solutions for all
samples in B to approximate the solutions for the full belief
space. With denser belief samples, PBVI can converge to
the optimal value [18]. However, since the full belief space
grows exponentially with M, it becomes computationally
intractable for large M. Due to computation limits, we
are forced to reduce |B|/M for large M, leading to worst
performance compared to POMCP, which only considers the
current belief encountered in the process [17], [20].

The full action space Q also grows exponentially with
M. From Table 2, we observe that the performance of both
PBVI and POMCP deteriorate when |Q| is too small. In our
simulations, keeping within our computational limits, we
set the values of |Q| and |B| for different M as shown in
Table 3.

_TABLE 2
Average reward for different |Q| with M/ = 32, » = 0.75, b = 9,7 = 0.05
and URT sampling.

|Q| 2 50 100 300
PBVI 0.122 | 0.433 | 0.485 | 0.494
POMCP | 0.102 | 0.453 | 0.488 | 0.502
A TABLE 3
|Q| and |B| for different M.

M 8 16 32 64 128
|Q\ 100 200 300 300 300
\IB%| 2000 | 4000 | 6000 | 7000 | 8000

We now compare the performance of different sampling
strategies when used in tandem with PBVI and POMCP. We
vary M while setting » = 0.75, b = 9 and y = 0.05.

From Fig. 2, we observe that the URT sampling produces
a higher reward compared to uniform sampling for both
PBVI and POMCP. In particular, URT sampling significantly
outperforms uniform sampling when M is large. Therefore,
in the remaining simulations, we adopt the URT sampling
strategy when using PBVI and POMCP.

5.2 Varying M
We next fix r = 0.75, v = 0.05, b = 9, and vary the number

of classes M. The results are shown in Fig. 3. We observe
the following.

e When M is small, PBVI and POMCP with URT sam-
pling achieve better rewards than URSQS. When M is
large, the rewards for POMCP and URSQS are compa-
rable, while PBVI performs worse.

o DCFECC is a non-sequential strategy and has the worst
reward in most cases, since it does not make use of the
answers from earlier workers to help design questions
for the later workers.

0.8
Il POMCP (URT sampling)
— [ TPOMCP (Uniform sampling)
0.7+ [ [ PBVI (URT sampling)
[TIPVBI (Uniform sampling)
0.6 - —
T 05 —
% —m_
& 04l
&
o o
>
< 0.3

0.2+

0.1F

i

16 32 64 128
M

Fig. 2. Performance comparison between uniform sampling and URT
sampling with » = 0.75, b = 9, v = 0.05 and different M.

o We note that PBVI performs the worst when M = 128
is large. One reason for this phenomenon is that PBVI
is an offline approximate solver for POMDDP, suffering
from the curse of dimensionality as we have mentioned
above. Also, as the full action space Q grows expo-
nentially with M, sampling a small subset Q cannot
guarantee a good optimal solution. We observe that
POMCTP is better than PBVI when M is large.
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Fig. 3. Performance comparison between strategies with » = 0.75, b =
9, v = 0.05 and different M.

To compare the computation complexity of the different
methods under different M values, we perform experiments
on a setup with an Intel Xeon CPU E3-1226 v3 and 16GB



RAM. The computation time is divided into two parts:

(i) Offline computation: In all the methods, we first solve
(10) to find the optimal (¢*,e*) and then use Algo-
rithm 2 to construct a Ulam-Rényi tree. POMCP then
performs URT sampling and stores the sample points.
PBVI performs URT sampling and computes the solu-
tions for all the samples, and is thus the most com-
putationally expensive. URSQS does not require any
additional offline processing, and thus have the lowest
offline computation overhead. The computation times
are shown in Table 4.

(ii) Online computation: The average running time for each
method over multiple trials and for different M values
are shown in Table 5. We note that the computation
complexity for POMCP is significantly higher than the
other methods, although it produces the best aver-
age reward. PBVI has the lowest running time but
its performance deteriorates for large M. URSQS has
comparable performance as POMCP but much lower
computation time. Our experiments suggest that PBVI
with URT sampling is the recommended approach for
small M while URSQS is the recommended approach
for large M.

TABLE 4
Average offline computation times for different strategies with » = 0.75,
b =29,y = 0.05 and different M.

8 | 16 | 32 | 64 | 128

URSQS (s) | 386 | 651 | 1295 | 1492 | 2405

PBVI(s) | 518 | 1244 | 2645 | 3602 | 7065

POMCP (s) | 387 | 653 | 1300 | 1497 | 2411
TABLE 5

Average online computation times for different strategies with » = 0.75,
b =29, v = 0.05 and different M.

8 | 16 | 32 64 | 128
URSQS (ms) | 7.04 | 8.00 | 16.34 | 18.15 | 19.31

PBVI (ms) | 1.81 | 2.34 | 2.78 | 3.95 | 5.30
POMCP (s) | 30 | 124 | 259 | 295 | 352

5.3 Varying b

We next fix M = 32, r = 0.75, v = 0.5 and vary b, the
budget of the crowdsourcer. The results are shown in Fig. 4.
We observe the following;:

e When the budget b is relatively small, the rewards
for POMCP, PBVI and URSQS increase with increasing
budgets, as Fig. 4 depicts. This is because with larger
budgets, more questions can be assigned to the work-
ers, increasing the probability that the final decision is
correct.

o However, the reward is not a strictly increasing func-
tion of b. This is because the increasing cost resulting
from more questions undermines the gain in decision
accuracy R. When the budget b is sufficiently large,
as observed from the two cases, b = 13 and b = 17,
in Fig. 4, the reward stays almost constant, since both
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POMDP and URSQS tend to stop and make a decision
at a time before b steps.

o We observe the reward for DCFECC could even de-
crease with increasing b. This is because even decision
accuracy R increases with increasing number of ques-
tions, it’s not optimal to fully use the budgets b of the
crowdsourcer, i.e. to always declare at time b.

0.9
- % -URSQS
0.8} —e—POMCP | |
PBVI
--A-- DCFECC
0.7} ]
0.6
o
:
o
(3]
e
T
>
<
0.1+
0 I I
5 9 13 17

Fig. 4. Performance comparison between strategies with M = 32, r =
0.75, v = 0.05 and different b.

5.4 Varying vy

We next fix M = 32, r = 0.75, b = 9 and vary the cost «y
of posing a question. The results are shown in Fig. 5. We
can see that the reward decreases with increasing . This
is expected, since the larger cost will render the average
reward lower.

5.5 Varying r

We vary the parameter r in i, with fixed M = 32,b =9,
and v = 0.05. A larger r implies a larger j4, i.e., the workers
are more reliable. From Fig. 6, we observe that the reward
increases with increasing r, as the workers become more
reliable.

5.6 Optimality of URSQS

Finally, to verify the optimality of URSQS, we evaluate
URSQS against the following benchmarks:
e Lyrsas(q) = max. L(g,e), for ¢ € [2,M], and where
L(g, e) is the objective function of URSQS in (10) and
the maximization is over all e such that B(g,e) < b— 1.
e U*(q), for each ¢ € [2,M], is the maximum reward
achievable by our proposed Ulam-Rényi strategy in
Algorithm 1 over all e such that B (¢,e) <b—1.Thisis
found through an exhaustive search in each simulation
trial, and serves as a benchmark to measure how well
our URSQS formulation in (10) performs.
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We observe that in most of our experiments, Lyrsgs(q)
achieves its maximum at the same (g, e) as the maximum
of U*(q), similar to that shown in Fig. 7. However, in
some cases like Fig. 8, the maximum reward for URSQS is
different from the optimal reward given by U*(g), but not
significantly so. The average difference between the rewards
obtained by URSQS and U*(q) is 0.017.

6 CONCLUSION

We have developed sequential question design strategies
for crowdsourcing in which workers’ responses are used to
determine the hidden state of a multi-class labeling problem.
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Fig. 7. Performance comparison between different strategies with M =
128, r = 0.75, b = 9 and v = 0.05.
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Fig. 8. Performance comparison between different strategies with M =
32,r=0.75,b =13 and v = 0.05.

Our strategies allow the crowdsourcer to sequentially deter-
mine the question to pose to the workers, based on their
previous responses. We formulated the sequential design
as a POMDP, which maximizes a weighted function of the
probability of inferring the correct hidden state after fusing
the workers” responses, and the cost of posing additional
questions, subject to a budget constraint for the crowd-
sourcer. To overcome the intractability of the POMDP, we
have proposed design approaches based on the Ulam-Rényi
game. We have demonstrated through simulations that
when the number of hidden states is relatively large, our
approaches achieve good performance, with less computa-



tional complexity when compared with traditional POMDP
solvers.

In this paper, we have assumed that workers’ responses
are independent across questions and amongst the group of
workers. A future direction is to consider the case where
workers’ responses may not be independent, and to study
the joint optimization of what questions to pose to each
worker, and how to fuse their responses together. Workers’
previous responses to gold questions [11] can also be used
to infer their reliability, and to optimize the selection of
workers for particular questions. It would be of interest
to design a dynamic selection strategy that poses different
questions to different workers optimally at each step.
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