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Reducing Uncertainty of Schema Matching via
Crowdsourcing with Accuracy Rates
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Abstract—Schema matching is a central challenge for data integration systems. Inspired by the popularity and the success of
crowdsourcing platforms, we explore the use of crowdsourcing to reduce the uncertainty of schema matching. Since crowdsourcing
platforms are most effective for simple questions, we assume that each Correspondence Correctness Question (CCQ) asks the crowd
to decide whether a given correspondence should exist in the correct matching. Furthermore, members of a crowd may sometimes
return incorrect answers with different probabilities. Accuracy rates of individual crowd workers are probabilities of returning correct
answers which can be attributes of CCQs as well as evaluations of individual workers. We prove that uncertainty reduction equals to
entropy of answers minus entropy of crowds and show how to obtain lower and upper bounds for it. We propose frameworks and
efficient algorithms to dynamically manage the CCQs to maximize the uncertainty reduction within a limited budget of questions. We
develop two novel approaches, namely “Single CCQ” and “Multiple CCQ”, which adaptively select, publish and manage questions. We
verify the value of our solutions with simulation and real implementation.

Index Terms—crowdsourcing, uncertainty reduction, schema matching
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1 INTRODUCTION
1.1 Background and Motivation
Schema matching refers to finding correspondences between ele-
ments of two given schemata, which is a critical issue for many
database applications such as data integration, data warehousing,
and electronic commerce [35]. Figure 1 illustrates a running
example of the schema matching problem: given two relational
schemata A and B describing faculty information, we aim to
determine the correspondences (indicated by dotted lines), which
identify attributes representing the same concepts in the two. There
has been significant work in developing automated algorithms for
schema matching (please refer to [35] [40] [2] [1] for compre-
hensive surveys). Most approaches use linguistic, structural and
instance-based information. In general, it is still very difficult to
tackle schema matching completely with an algorithmic approach:
some ambiguity remains. This ambiguity is unlikely to be removed
because it is believed that typically “the syntactic representation
of schemata and data do not completely convey the semantics of
different databases” [27].

Given this inherent ambiguity, many schema matching tools
will produce not just one matching, but rather a whole set of
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Fig. 1. Example of Schema Matching Problem
TABLE 1

Uncertain Schema Matching
Possible Matchings probability

m1={ <(Professor)Name,[first name, last name] >,
<Position, Position>, <Gender,Sex>, .45
<(Department) Name, Department>}

m2={ <(Professor)Name,[first name, last name] >,
<Gender, Sex>, <(Department) Name, Department>} .3

m3={ <(Department)Name, first name>, <Position, Position>
<Gender,Sex >} .25

Correspondence probability
c1=<(Professor)Name,[first name, last name] > .75

c2=<Position, Position> .7
c3=<Gender,Sex > 1

c4=<(Department) Name, Department> .75
c5=<(Department)Name,first name> .25

possible matchings. In fact, there is even a stream of work
dealing with models of possible matchings, beginning with [8].
The matching tool can produce a result similar to the upper part of
Table 1, with one matching per row, associated with a probability
that it is the correct matching.

Given a set of possible matchings, one can create an integrated
database that has uncertain data, and work with this using any
of several systems that support probabilistic query processing
over uncertain data, such as [16] [6]. However, preserving the
uncertainty complicates query processing and increases storage
cost. So we would prefer to make choices earlier, if possible, and
eliminate (or reduce) the uncertainty to be propagated. It has been
suggested [33] that human insights are extremely conducive for
reducing the uncertainty of schema matching, so the correct
matching can be manually chosen by the user from among the
possible matchings offered by the system. In a traditional back-end
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database environment, where the human ‘user’ is a DBA, setting
up a new integrated database, such a system can work well.

However, in today’s world, with end-users performing increas-
ingly sophisticated data accesses, we have to support users who
are interested, say, in combining data from two different web
sources, and hence require an ‘ad hoc’ schema matching. Such
users may not be experts, and will typically have little knowledge
of either source schema. They may not even know what a schema
is. They are also likely to have little patience with a system that
asks them to make difficult choices, rather than just giving them
the desired answer. In other words, users may not themselves be a
suitable source of human insight to resolve uncertainty in schema
matching.

Fortunately, we have crowdsourcing technology as a promising
option today. Many recent works, such as [17], [18], [9] and [29],
have suggested leveraging the crowd to improve schema matching.
Platforms such as Amazon Mechanical Turk provide convenient
access to crowds. The data concerning an explicit problem can be
queried by publishing questions, named Human Intelligent Tasks
(a.k.a HITs). The work-flow of publishing HITs can be automated
with available APIs (e.g. REST APIs) [10]. To the extent that our
end-user is not an expert, the opinion of a crowd of other non-
experts is likely to be better than that of our end-user.
1.2 Problem Formulation and Contributions
It is well-known that crowdsourcing works best when tasks can be
broken down into very simple pieces. An entire schema matching
task may be too large a grain for a crowd – each individual may
have small quibbles with a proposed matching, so that a simple
binary question on the correctness of matchings may get mostly
negative answers, with each user declaring it less than perfect. On
the other hand, asking open-ended questions is not recommended
for a crowd, because it may be difficult to pull together a schema
matching from multiple suggestions. We address this challenge
by posing to the crowd questions regarding individual corre-
spondences for pairs of attributes, one from each schema being
matched. This much simpler question, in most circumstances, can
be answered with a simple yes or no. Of course, this requires that
we build the machinery to translate between individual attribute
correspondences and possible matchings. Fortunately, this has
been done before, in [8], and is quite simple: since schema
match options are all mutually exclusive, we can determine the
probability of each correspondence by simply adding up the
probabilities of matchings in which the correspondence holds.

Our problem then is to choose wisely the correspondences to
ask the crowd to obtain the highest certainty of correct schema
matching at the lowest cost. For schema matching certainty, we
choose entropy as our measure – we are building our system
on top of a basic schema-matching tool, which can estimate
probabilities for schema matches it produces. When the tool
obtains a good match, it can associate a high probability. When
there is ambiguity or confusion, this translates into multiple lower
probability matches, with associated uncertainty and hence higher
entropy.

Our first algorithm, called Single CCQ (CCQ is short for Cor-
respondence Correctness Question), determines the single most
valuable correspondence query to ask the crowd, given a set of
possible schema matchings and associated correspondences, all
with probabilities.

Intuitively, one may try a simple greedy approach, choosing
the query that reduces entropy the most. However, there are
three issues to consider. First, the correspondences are not all

independent, since they are related through candidate matchings.
So it is not obvious that a greedy solution is optimal. Second,
even finding the query that decreases entropy the most can be
computationally expensive. Third, we cannot assume that every
person in the crowd answers every question correctly – we have
to allow for wrong answers too. We address all three challenges
below.

Usually, we are willing to ask the crowd about more than
one correspondence, even if not all of them. We could simply
run Single CCQ multiple times, each time greedily resolving
uncertainty in the most valuable correspondence. However, we
can do better. For this purpose, we develop Multiple CCQ, an
extension of Single CCQ, that maintains k most useful questions
to ask the crowd, and dynamically updates questions according to
newly received answers.

In a previous conference paper [44], we addressed this problem
assuming crowds to be always correct. In this paper we consider
more realistic situations: (1) Each CCQ has a probability to be
answered correctly depending on the hardness of CCQ; (2) Each
crowd worker has a probability to answer a CCQ correctly, which
shows the trustworthiness of the worker. Therefore [44] can be
viewed as a special case of our paper (probabilities all equal to
1). Combining above two situations together, we could compute
the probabilities of CCQs to be answered correctly, and publish k
CCQs chosen by our model to crowds with accuracy rates.

To summarize, we have made following contributions,
1. In Section 3.1 and Section 4.1, we propose an entropy-based

model to formulate the uncertainty reduction caused by a single
CCQ and multiple CCQs, respectively.

2. For the Single CCQ approach, we propose an explicit
framework to choose a CCQ, and derive an efficient algorithm in
Section 3. We introduce an index structure and pruning technique
for efficiently finding the Single CCQ.

3. In Section 3.3 and 4.3, we prove for both Single CCQ
approach and Multiple CCQ approach that uncertainty reduction
equals to entropy of answer minus entropy of crowds. In Section
3.3 we give the property of uncertainty reduction for Single CCQ
approach. In Section 4.4 we obtain optimal upper and lower
bounds for Multiple CCQ approach.

4. For the Multiple CCQ approach, we prove its NP-hardness
in Section 4.5, and propose an efficient (1 + ε) approximation
algorithm, with effective pruning techniques in Section 4.6.

5. Section 5 reports and discusses the experimental study on
both simulation and real implementation. We review and compare
our solutions with related work in Section 6. In Section 7, we
conclude the paper and discuss future work.

2 PROBLEM STATEMENT
In this section, we give definitions related to the problem that we
are working on in this paper.
Definition 1 (Correspondence). Let S and T be two given
schemata. A correspondence c is a pair (As, At), where As and
At are two subsets of attributes from S and T respectively.

Remark: Here we consider correspondences between subsets
of S and T, which means c could be not only 1:1 matching, but
also n:m matching. For example in Table 1, c1 is a 2:1 matching.
Definition 2 (Possible Matching). Let S and T be two given
schemata. Possible matching mi = {c1, c2, . . . , c|mi|} is a set of
correspondences between S and T which satisfies that no attribute
participate in more than one correspondence.
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Remark: For example, in Table 1, m1,m2 and m3 are three
possible matchings. Note that not every set of correspondences is
a possible matching. In practice, possible matchings are generated
by schema matching tools with probabilities to be correct.
Definition 3 (Result Set). For two given schemata S and T, let
the result set R be the set of possible matchings generated by
some semi-automatic tool of schema matching, together with a
probability assignment function P : R → [0, 1]. Each matching
mi ∈ R has the probability P(mi) to be correct, and we have∑

mi∈R P(mi) = 1

Remark: In the example of Table 1, the set {m1,m2,m3}
is result set. In practice, schema matching tools may use some
threshold to eliminate possible matchings with very low prob-
ability, and return only a few higher probability candidates. If
such thresholding is performed, we ignore the low probability
matchings that are already pruned, and set their probability to zero.
We also mention that [29] discussed another way to establish the
probability of each matching.
Definition 4 (Correspondence Set). Let R be the result set for
two given schemata S and T, the correspondence set C is the set
of all correspondences contained by possible matchings in R, i.e.
C =

⋃
mi∈Rmi

Remark: Note that a correspondence can appear in more than
one possible matching, so for any correspondence c ∈ C , let P(c)
be the probability of c being in the correct matching, then

P(c) =
∑

mi∈R
c∈mi

P(mi) (1)

As a simple extension, for a set of correspondences U ⊆ C , let
P(U) be the probability that all correspondences of U are in the
correct matching, then

P(U) =
∑

mi∈R
U⊆mi

P(mi) (2)

For example in Table 1, {c1, c2, c3, c4, c5} is correspondence set.
Since c1 is in m1 and m2, P(c1) = 0.75.
Definition 5 (Uncertainty of Schema Matching). For two given
schemata S and T, given result set R and probability assignment
function P(), we measure the uncertainty of R with Shannon
entropy H(R) = −

∑
mi∈R P(mi) log P(mi)

Remark: Shannon entropy has been widely used in informa-
tion theory and many other fields since 1948 [39] to measure the
uncertainty, disorder or unpredictability of a system. Another way
to measure uncertainty is to use variance or covariance matrix. For
some special cases like Bernoulli distribution, Shannon entropy
has maximal value or minimal value when its variance is maximal
or minimal. A major reason for utilizing Shannon entropy as is
its non-parametric nature. The probability distribution of possible
matchings is very dynamic, depending not only on the given
schemata, but also on the schema matching tools. Entropy does
not require any assumptions about the distribution of variables.
Besides, entropy permits non-linear models, which is important
for categorical variables [21], such as possible matchings.
Definition 6 (Crowd’s Accuracy). Given a crowd worker W, the
crowd’s accuracy (or accuracy for short), denoted by PW ∈
[0.5, 1], is the probability that W correctly answers each HIT.

Remark: While some papers assume that crowdsourced an-
swers are 100% accurate, we adopt a more general error model,
which requires only that the answer returned by each crowd
worker is always correct with a probability no lower than 1/2.
This is a classical crowdsourcing model widely used by a stream

TABLE 2
Meanings of Symbols Used

Notation Description
ci, C, Qci correspondence, correspondence set, CCQ w.r.t ci
mi, |mi| a possible matching, number of elements in mi

P(ci) probability of ci being in the correct matching
P(mi) probability that mi is the correct matching

A or Aci the answer or the answer for correspondence ci
R, W , PW result set, a crowd worker, crowd’s accuracy

H(R), H(W ), H(A) entropy of result set, crowd, answer
∆HQc uncertainty reduction by publishing Qc

DA the domain of answers of k CCQs
H(DA) joint entropy of k answers
DU the domain of k correspondences

of works [5], [15], [23], [30]. Crowd workers may have different
accuracies for different domains. The accuracy for a domain can
be easily estimated with a set of sample HITs in which ground
truth is known. Before we ask a CCQ, we could assume that this
CCQ will be answered by a crowd with accuracy PW . Since we
do not know who will answer this CCQ, PW is likely to represent
the hardness of CCQ as an attribute of the correspondence.
Definition 7 (Entropy of Crowd). Given a crowd worker W and
its accuracy PW , the entropy of W is defined by

H(W ) = −PW logPW − (1− PW ) log (1− PW ) (3)

Given the crowd’s accuracy, H(W ) is a positive constant mea-
suring the randomness of the crowd’s behaviour.
Definition 8 (Correspondence Correctness Question). A Correspon-
dence Correctness Question (CCQ) asks whether a correspon-
dence is correct. The CCQ w.r.t a correspondence c is denoted as
Qc, where c ∈ C .

Remark: A running example where we calculate entropy and
conditional probability after we have an answer of CCQ is given
in Section 3.3.1.
Definition 9 (Entropy of Answer). Given result set R, probability
assignment function P(), and crowd’s accuracy PW ∈ [0.5, 1],
the entropy of answer A corresponding to question Qc is defined
by

H(A) = −P(A = Y ) log P(A = Y )− P(A = N) log P(A = N) (4)

where
P(A = Y ) = P(c)PW + (1− P(c)) (1− PW )

P(A = N) = (1− P(c))PW + P(c) (1− PW )
(5)

Definition 10 (Problem Statement). On two given schemata S and
T, let the result set R and probability assignment function P be
generated by some schema matching tools. Each CCQ is assumed
to be answered independently. Let B be the budget of the number
of CCQs to be asked to the crowd. Our goal is to maximize the
reduction of H(R) without exceeding the budget.

3 SINGLE CCQ APPROACH
In this section, we study how to choose a single CCQ well.
To be able to do this, we first address the formalization of
uncertainty reduction. Then we develop the Single CCQ Approach,
a framework to address the uncertainty reduction problem using
a sequence of Single CCQ. Compared with [44], we give a new
proof for uncertainty reduction under the condition of accuracy
probability PW ∈ [0.5, 1]. We prove the equivalent form of
uncertainty reduction and its property. Finally, we propose efficient
algorithms to implement the computations in this approach.
3.1 Formulation of Uncertainty Reduction
In order to design an effective strategy for manipulating CCQs,
it is essential to define a measurement to estimate the importance
of CCQs before they are answered. Since the final objective is
to reduce uncertainty, we use uncertainty reduction caused by
individual CCQs as the measurement. In the following, we provide
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the formulation of the uncertainty reduction in the context of the
Single CCQ Approach.

Let Qc be a CCQ w.r.t an arbitrary correspondence c. We
assume crowdsourcing workers provide answers independently
with accuracy PW ∈ [0.5, 1]. Since Qc is a Yes/No question,
we consider the answer A as a random variable following a
Bernoulli distribution. Firstly, we have DA = {Y,N} and P =
{P (A = Y ) ,P (A = N)}, where P(A = Y ) and P(A = N)
can be computed by Eq 5. We write P(Y ) and P(N) for short.
For two discrete random variables X and Y with p.m.f. function
p, the conditional entropy is defined by

H(Y |X) =
∑
x∈X

pX(x)H(Y |X = x)

= −
∑
x∈X

pX(x)
∑
y∈Y

pY (y|X = x) log pY (y|X = x)

Let ∆HQc
be the uncertainty reduction caused by Qc, we have

4HQc = H(R)−H (R|A) (6)
where

−H (R|A) = P(Y )
∑

mi∈R
[P (mi|Y ) log P (mi|Y )]

+ P(N)
∑

mi∈R
[P (mi|N) log P (mi|N)]

P(mi|Y ) =
P(mi)P(Y |mi)

PW P(c) + (1− PW ) (1− P(c))

P(mi|N) =
P(mi)P(N |mi)

PW (1− P(c)) + (1− PW )P(c)

(7)

The uncertainty reduction w.r.t a given Qc can be computed by
Eq 6 provided that we know the values for parameters: P(c),
P(mi), P(Y |mi) and P(N |mi). P(c) can be computed by Eq 1.
P(Y |mi) and P(N |mi) depend on if c is a correspondence
included in mi.

P(Y |mi) =

{
PW c ∈ mi

1− PW c /∈ mi
;

P(N |mi) =

{
1− PW c ∈ mi

PW c /∈ mi

(8)

Remark: The harmlessness of random answer If a worker
W randomly answers a CCQ Qc, i.e. PW = 0.5 and P(Y ) = 0.5,
it does not affect the uncertainty of schema matching. In other
word, by Eq 7, we have P(mi|Y ) = P(mi).

Eq 7 is applied recursively as multiple answers are received, to
take all of them into account. If multiple answers all agree, each
iteration will make the truth of cmore certain, whereas disagreeing
answers will pull the probability closer to the middle. In other
words, disagreements between workers are gracefully handled.
It is easy to perform the algebraic manipulations to show that,
for any two answers A1 and A2, we have P(mi|A1, A2) =
P(mi|A2, A1). This equation indicates that the result of adjust-
ment is independent of the sequence of the answers. In other
words, when we have a deterministic set of questions (CCQs),
it does not matter in what sequence the answers are used for
adjustment. In contrast, what matters is to determine the set of
CCQs to be asked, which is the core challenge addressed in this
paper.
3.2 Framework of Single CCQ
Having developed a technique to find the best Single CCQ, we
can place this at the heart of an approach to solve the schema
matching problem, as shown in Framework 1. The idea is to
greedily select the single CCQ in each iteration that will result
in the greatest reduction of uncertainty. We publish this CCQ;
when it is answered and returned with accuracy rate (line 4), we
adjust P(mi) by P(mi|A) (line 5), and then generate a new CCQ
(line 7&8).

Framework 1 Single CCQ
1: CONS ← 1 // consumption of the budget
2: Find and publish Qci that maximize ∆HQc //
3: while there exists a CCQ in the crowd, we constantly monitor the CCQ do
4: for answer Ai of Qci , accuracy rate PWi

do
5: ∀mi ∈ R Adjust the P(mi) by P(mi|A) //
6: if CONS < B then
7: Finding Qcj maximizing ∆HQc //
8: publish Qcj ,
9: CONS = CONS + 1

10: else
11: terminate (no more budget)
12: end if
13: end for
14: end while

In the framework of Single CCQ, one can see that an important
task is to find the CCQ with the highest uncertainty reduction
as soon as the probability distribution of R is adjusted (line 7).
We can formally pose this as a query as follows, and focus on
efficiently processing such a query in the rest of this section.
Definition 11 (Single CCQ Selection (SCCQS)). Given result
set R, probability assignment function P(), crowd’s accuracy
PW ∈ [0.5, 1], the Single CCQ Selection Query retrieves a CCQ
maximizing the uncertainty reduction ∆HQc in Eq 6.

3.3 Query Processing of SCCQS
Based on the formulation in Section 3.1, we are able to compute
the uncertainty reduction of each CCQ. So a naive approach of
selection is to traverse all the CCQs. Such traversal results in an
algorithm with time complexity O(|R|2|C|), i.e. the square of
the number of possible matchings multiplied by the number of
correspondences. This can be a very large number for complex
schema.

In this subsection, we first provide a lossless simplification,
by proving the uncertainty reduction is mathematically equivalent
to the entropy of the answer of a CCQ minus the entropy of the
crowd. Then, in order to further improve the efficiency, we propose
an index structure based on binary coding, together with a pruning
technique.
3.3.1 Simplification of Single CCQ Selection
When we need to determine a strategy of selecting CCQs, a very
intuitive idea is to prioritize the ones that we are more uncertain.
In case of Single CCQ, this idea suggests that we select the
CCQ with probability closest to 0.5. This idea is trivially correct
when all the correspondences are independent. However, with the
model of possible matchings, there are correlations among the
correspondences. Then, a non-trivial question is: should we still
pick the CCQ with probability closest to 0.5 with the presence of
correlation?

Interestingly, we discover that the answer is positive. By
Theorem 3.1, we prove that the uncertainty reduction ∆HQc

of a
correspondence c is equivalent to the entropy of the answer H(A)
minus the entropy of the crowd H(W ). In other words,for a fixed
PW , ∆HQc

is only determined by P(c). As a result, searching
for the CCQ that maximize ∆HQc

has the complexity decreased
to O(|R||C|), by computing P(c) for each c ∈ C . In addition,
Theorem 3.2 states that we only need to find the correspondence
that has probability closest to 0.5, based on the fact that ∆HQc

is a symmetric function of P(c), with symmetry axis P(c) = 0.5
and achieves maximum when P(c) = 0.5.
Theorem 3.1. Given result set R, probability assignment function
P(), crowd’s accuracy PW ∈ [0.5, 1], for correspondence c ∈ C ,
we have

∆HQc = H(A)−H(W )



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

where we recall ∆HQc
in Eq 6 and H(A), H(W ) are defined in

Eq 4, Eq 3.
Proof. Using Eq 7 into Eq 6, we have
4HQc

= H(R) +
∑

mi∈R
[P(mi)P(Y |mi) log P(mi)]

+
∑

mi∈R
[P(mi)P(Y |mi) log P (Y |mi)− P(mi)P(Y |mi) log P(Y )]

+
∑

mi∈R
[P(mi)P(N |mi) log P(mi) + P(mi)P(N |mi) log P (N |mi)]

−
∑

mi∈R
[P(mi)P(N |mi) log P(N)]

:= H(R) + J1 + J2 + J3 + J4 + J5 + J6

By Eq 8, we obtain that
J1 + J4 =

∑
mi∈R

P(mi) log P(mi) = −H(R)

and
J2 + J5

=
∑

mi∈R
c∈mi

P(mi)PW logPW +
∑

mi∈R
c/∈mi

P(mi) (1− PW ) log (1− PW )

+
∑

mi∈R
c/∈mi

P(mi)PW logPW +
∑

mi∈R
c∈mi

P(mi) (1− PW ) log (1− PW )

= −H(W ) (9)

Recall Eq 1. It follows that
J3 + J6

= −
∑

mi∈R
c∈mi

P(mi)PW log P(Y )−
∑

mi∈R
c/∈mi

P(mi) (1− PW ) log P(Y )

−
∑

mi∈R
c/∈mi

P(mi)PW log P(N)−
∑

mi∈R
c∈mi

P(mi) (1− PW ) log P(N)

= − [P(c)PW + (1− P(c)) (1− PW )] log P(Y )

− [(1− P(c))PW + P(c) (1− PW )] log P(N)

= H(A)

This completes the proof.
Theorem 3.2. The uncertainty reduction of single CQQ is always
non-negative for PW ∈ [0.5, 1]. For any two correspondence
c, c′ ∈ C , if |0.5−P(c)| ≤ |0.5−P(c′)| then ∆HQc

≥ ∆HQ′c
≥

0. In addition, ∆HQc
= 1− PW if P(c) = 0.5

Proof. By Theorem 3.1, ∆HQc
is a function of P(Y ) and PW .

P(Y ) is a function of P(c) and PW . We first consider
∂ 4HQc

∂P(Y )
= − log

P(Y )

1− P(Y )

We could obtain that
− log

P(Y )

1− P(Y )
= 0⇔ P(Y ) = 0.5

It is easy to check that ∆HQc
is a symmetric function of P(Y ),

with symmetry axis P(Y ) = 0.5. Besides, the function achieves
maximum ∆HQc

= 1 − H(W ) when P(A = Y ) = 0.5, and
is monotonic on [0, 0.5] (increasing) and [0.5, 1] (decreasing). We
also know that P(Y ) = P(c)PW + (1− P(c)) (1− PW ). So
P(Y ) is increasing w.r.t. P(c) and achieves the value 0.5 when
P(c) = 0.5 or PW = 0.5. Thus ∆HQc

achieves maximum 1 −
H(W ) when P(c) = 0.5. Secondly we consider
∂ 4HQc

∂PW
= (2P(c)− 1) log

P(c)− (2P(c)− 1)PW

(2P(c)− 1)PW − P(c) + 1
+ log

PW

1− PW

Since ∆HQc is a symmetric function of P(A = Y ), with
symmetry axis P(A = Y ) = 0.5 and P(A = Y ) is increasing
w.r.t. P(c), we choose P(c) = 0 and P(c) = 1 in order to obtain
minimum of ∆HQc . When P(c) = 0 or P(c) = 1, we have

∂4HQc

∂PW
= 0 and ∆HQc

= 0. Thus we prove that ∆HQc
is

non-negative.
Running Example (Selecting First Two CCQs): Now we il-

lustrate the process of selecting the first two CCQs in Framework 1
with the example of Table 1. In line 2, the first correspondence
to be asked is c2, since its probability is closest to 0.5 among
{c1, c2, c3, c4, c5}. Explicitly, ∆HQc2

= −0.7∗ log(0.7)−0.3∗
log(0.3) = 0.88. Suppose an answer “a = yes” is received from
a crowd worker, whose personal error rate is 1− PW = 0.2 (line
4). Then we conduct the adjustment according to Eq 7, and have
P(m1|a) = 0.58, P(m2|a) = 0.10 and P(m3|a) = 0.32. This
adjustment is referring to the first-time execution of line 5. Then,
in line 7, the next CCQ is to be selected. Note that, since the
probabilities of possible matchings are adjusted, probabilities of
correspondences should be recomputed by Eq 1: P(c1) = 0.68,
P(c2) = 0.9, P(c3) = 1, P(c4) = 0.68, P(c5) = 0.32.
Therefore, in line 7, we select the CCQ based on the updated
probabilities of correspondences, i.e. c1 would be selected. (There
is a tie among c1,c4 and c5, and we break the tie sequentially.)

3.3.2 Binary Coding and Pruning Techniques
One can see that a basic computation of our algorithm is to check
whether a given correspondence c is in a given possible matching
mi. Since the correspondences included in each possible matching
do not change with the value of overall uncertainty, we propose
to index R with a binary matrix MR, where element eij = 1(0)
representing cj ∈ mi(cj /∈ mi). Equipped with this index, we
apply a pruning technique derived from Theorem 3.2.

Now we illustrate the procedure of generating the correspon-
dence with probability closest to 0.5. For each cj , we traverse mi

and accumulate P(mi) if eij = 1. Let cbest so far be the best
correspondence so far, with probability P(cbest so far). Then, let
cj be the current correspondence, and Pacc be its accumulated
probability after reading some P(mi), then cj can be safely pruned
if we have Pacc − 0.5 ≥ |P(cbest so far)− 0.5|.

4 MULTIPLE CCQ APPROACH
A drawback of single CCQ is that only one correspondence
is resolved at a time. Each resolution, even if quick, requires
human time scales, and comes with some overhead to publish
the corresponding HIT and tear it down. Gaining confidence in a
single schema matching may require addressing many CCQs. The
time required to do this in sequence may be prohibitive.

An alternative we consider in this section is to issue multiple
(k) CCQs simultaneously. Different workers can then pick up
these tasks and solve them in parallel, cutting down wall-clock
time. However, we pay for this by having some questions answered
that are not at the top of the list – we are issuing k good questions
rather than only the very best one.

Note that there are three possible states for a published CCQ:
(1) waiting - no one has accepted the question yet; (2) accepted
- someone in the crowd has accepted the question and is working
on it; (3) answered - the answer of the CCQ is available. What’s
more important, one can withdraw published CCQs that are still
at state waiting (e.g. forceExpireHIT in Mechanical Turk APIs)
[10]. In other words, publishing a CCQ does not necessarily
consume the budget. It is possible that a CCQ is published, and
then withdrawn before anyone in the crowd answers it. In such
case, the budget is not consumed. Because of the dependence
between correspondences, we can withdraw or replace some of
the published CCQs that are at “waiting” state. Equipped with this
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power, we propose the Multiple CCQ approach to dynamically
keep k best CCQs published at all times.

In the rest of this section, we provide the formulation and
framework of Multiple CCQs, by extending our results of Single
CCQ. Compared with our conference paper [44], we give new
proofs for uncertainty reduction under more general condition that
crowd workers have accuracy probabilities PWi

∈ [0.5, 1]. These
probabilities can show hardness of CQQs or how professional
workers are. Accuracy probabilities are assumed before we ask
CCQs and are returned with answers after we publish CCQs. They
can be totally different for different correspondences and different
crowd workers. We prove the uncertainty reduction equals to
joint entropy of answers minus sum of entropies of crowds.
We also show upper and lower bounds for uncertainty reduction.
Results in [44] can be viewed as a special case when workers are
always correct. Finally, we prove the NP-hardness of the multiple
CCQs selection problem, and propose an efficient approximation
algorithm with bounded error.
4.1 Formulating Uncertainty Reduction of Multiple
CCQ Approach
For a set of CCQs of size k - SQ = {Qc1 , Qc2 , ..., Qck}, Ac1 ,
Ac2 , ..., Ack denote answers of k CCQs given by k workers W1,
W2, ..., Wk with accuracy PW1

, PW2
, ..., PWk

. We want to derive
the uncertainty reduction caused by the aggregation of the answers
of these k CCQs. Let DA and PA be the domain and probability
distribution of answers respectively. Each element of DA is a
possible set of answers for k CCQs (a sequence of Y and N)
with a corresponding probability in PA. Then first we have

DA =
{
ai

∣∣∣ai =
{
A

(i)
c1 , A

(i)
c2 , ..., A

(i)
ck

}
, A

(i)
cj = Y or N

}
PA = {P (a1) ,P (a2) , ...,P (a2k )}

where |DA| = 2k. As we know, each correspondence ct has a
probability to show its ground truth, i.e. with P(ct) to be true
before crowds answer CCQs. We view U = {ct; t = 1, ..., k}
as a set of random variables which follow Bernoulli distribution
and take value True/False. Note that they are not independent and
their joint p.m.f. can be calculated by Eq 2. Let DU and PU

be the domain and probability distribution of {ct; t = 1, ..., k}
respectively. Each element of DU is a sequence of T and F with a
corresponding probability in PU . Thus we have

DU =
{
ui

∣∣∣ui =
{
c
(i)
1 , c

(i)
2 , ..., c

(i)
k

}
, c

(i)
t = T or F

}
PU = (P (u1) ,P (u2) , ...,P (u2k ))

(10)

where |DU | = 2k. By Eq 2, we have
P (ui) =

∑
mj∈R

t=1,...,k

∀c(i)t =T, ct∈mj

∀c(i)t =F, ct /∈mj

P(mj) (11)

Remark: Complexity We remark that in computation of all
P(ui), i = 1, ..., 2k, each P(mj), j = 1, ..., |R| will be used once
and only once. Therefore, the number of elements with positive
probability in DU is less than or equal to |R| and time complexity
of computing all P(ui) is bounded by O(k|R|).

Similar to Eq 6, we are able to to compute the uncertainty
reduction caused by the SQ, denoted by ∆HSQ

. We have
∆HSQ

= H(R)−H (R |Ac1 , ..., Ack )) (12)

= H(R) +
∑

ai∈DA

P(ai)
∑

mj∈R
[P(mj |ai) log P(mj |ai)]

= H(R) +
∑

mj∈R
ai∈DA

P(mj)P(ai|mj) log
P(mj)P(ai|mj)

P(ai)

Computation of P(ai): For one CQQ ci, Aci is the answer
given by a worker with accuracy PWi . WhenAci is Yes, ci may be

True and worker is correct, or ci is False and worker is incorrect.
It is easy to see that

P(Aci = Y ) = P(ci)PWi
+ (1− P(ci))

(
1− PWi

)
P(Aci = N) = (1− P(ci))PWi

+ P(ci)
(
1− PWi

)
For k CQQs, the answers in ai are denoted by A(i)

c1 , A(i)
c2 , ..., A(i)

ck .
Similarly, P(ai) can be computed by Eq 11.

P(ai) =

2k∑
j=1

P(uj)qij (13)

where
qij =

∏
t=1,...,k

c
(j)
t =T

A(i)
ct

=Y

PWt

∏
t=1,...,k

c
(j)
t =T

A(i)
ct

=N

(1− PWt )
∏

t=1,...,k

c
(j)
t =F

A(i)
ct

=Y

(1− PWt )
∏

t=1,...,k

c
(j)
t =F

A(i)
ct

=N

PWt

Computation of P(ai|mj): Similar to Single CCQ, Eq 8,
P(ai|mj) depends on whether correspondences are in the possible
matching mi. In definition 10 we assume that each CCQ is
answered independently. Therefore, given that mj is the correct
matching, we know the correct answers for k CCQs and answers
A

(i)
c1 , A(i)

c2 , ..., A(i)
ck are k independent Bernoulli random variables.

It follows that
P(ai|mj) =∏

t=1,...,k
ct∈mj

A(i)
ct

=Y

PWt

∏
t=1,...,k
ct∈mj

A(i)
ct

=N

(1− PWt )
∏

t=1,...,k
ct /∈mj

A(i)
ct

=Y

(1− PWt )
∏

t=1,...,k
ct /∈mj

A(i)
ct

=N

PWt

Running Example: In the example of Table 1, we assume two
CCQs c1 and c2 are answered by two workers with PW1

= 0.8
and PW2

= 0.6. Domains of correspondences and answers are
DU = {(T, T ), (T, F ), (F, T ), (F, F )}
DA = {(Y, Y ), (Y,N), (N,Y ), (N,N)}

Probability distribution for DU is given by Eq 11:
P(ui = (T, T )) = P(m1) = 0.45

P(ui = (T, F )) = P(m2) = 0.3

P(ui = (F, T )) = P(m3) = 0.25

P(ui = (F, F )) = 0

Probability distribution for DA is given by Eq 13: P(ai =
(Y, Y )) = 0.45PW1PW2 + 0.3PW1(1 − PW2) + 0.25(1 −
PW1

)PW2
= 0.342. Similarly, P(ai = (Y,N)) = 0.308,

P(ai = (N,Y )) = 0.198 and P(ai = (N,N)) = 0.152. Given
m1 is the correct matching, we know that c1 and c2 are T. Thus

P(ai = (Y, Y )|m1) = PW1
PW2

= 0.48

P(ai = (Y,N)|m1) = PW1
(1− PW2

) = 0.32

P(ai = (N,Y )|m1) = (1− PW1
)PW2

= 0.12

P(ai = (N,N)|m1) = (1− PW1
)(1− PW2

) = 0.08

4.2 Framework of Multiple CCQ
As shown in Framework 2, the best size-k set of CCQs are initially
selected and published with accuracy rates to show their hardness,
and then we constantly monitor their states. Whenever one or more
answers are available, three operations are conducted. First, all
CCQs at state “waiting” are withdrawn. Second, the probability
distribution is adjusted with the new answers (line 8&9). Last,
we regenerate and publish a set of CCQs that are currently most
contributive (lines 12&15). In general, we keep the best k CCQs
in the crowd, by interactively changing CCQs based on newly
received answers. Note that the number of CCQs may be less
than k when the budget is insufficient (line 14-16). The whole
procedure terminates when the budget runs out and all the CCQs
are answered (line 3).

In contrast with Single CCQ, the essential query of Multiple
CCQ is to find a group of k CCQs, which maximize the uncer-
tainty reduction. Formally, we have following definition:
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Framework 2 Multiple CCQ
1: CONS ← k // consumption of the budget
2: given initial accuracy rates for all correspondences, find and publish a set

of CCQs - SQ = {Qc1 , Qc2 , ..., Qck} that maximize ∆HSQ
//(See 4.1)

3: while there exists CCQs in the crowd, we constantly monitor the CCQs
do

4: if receive the one or more answers A1, A2, .. with accuracy
PW1

, PW2
, ... then

5: withdraw all the CCQs at waiting state
6: k′ ← the number of CCQs withdrawn
7: k′′ ← the number of answers received
8: for each Ai,PWi

do //Adjustment
9: ∀mi ∈ R Adjust the P(mi) by P(mi|A1, A2, ..) //

10: end for
11: if CONS + k′′ <= B then
12: find a set of CCQs - S′Q of size (k′ + k′′) that currently

maximize ∆HS′Q
//(See 4.1)

13: CONS = CONS + k′′

14: else // no sufficient budget for maintaining k CCQs
15: find a set of CCQs - S′Q of size (B − CONS) that currently

maximize ∆HS′Q
//(See 4.1)

16: CONS = B − k′

17: end if
18: ∀Q′ci ∈ S′Q publish Q′ci
19: end if
20: end while

Definition 12 (Multiple CCQ Selection (MCCQS)).
Given result set R, probability assignment function P(), and an
integer k, the multiple CCQ selection problem is to retrieve a set
of k CCQs, denoted by SQ, such that the uncertainty reduction,
∆HSQ

, is maximized.
One can see that, if we set k = B (recall B is the budget

of CCQs), the problem of MCCQS selects the optimal set of
correspondences at which to ask CCQs in order to maximize the
uncertainty reduction. Similar to [32] and [43], MCCQS itself is
an interesting and valuable optimization problem to investigate.

4.3 Simplification of Multiple CCQ Selection
In case of Single CCQ, considering each CCQ as a random
variable, we proved that the uncertainty reduction of a CCQ
is equivalent to entropy of answer minus entropy of crowd. In
Multiple CCQ, analogously, we are interested to find a relation
between uncertainty reduction and entropy for a size-k set of
CCQs. This is complex since the correspondences are correlated.

As shown in Theorem 4.1, under the assumption that crowds
give correct answers with accuracy probability, we prove that the
uncertainty reduction by a set of CCQs is equivalent to their joint
entropy (denoted by H(DA)) minus sum of entropies of crowds,
while in previous conference paper [44], the result can be viewed
as a special case of this result when crowds’ accuracies equal
to 1. Facilitated with this theorem, we could reduce MCCQS to
a special case of joint entropy maximization problem. Similarly
with definition 9, the joint entropy H(DA) of answers Ac1 , Ac2 ,
..., Ack w.r.t. CCQs Qc1 , Qc2 , ..., Qck are defined by

H(DA) = −
∑

ai∈DA

P(ai) log P(ai) (14)

where P(ai) can be computed by Eq 13.

Theorem 4.1. Given result set R, probability assignment function
P(), a set of CCQs SQ = {Qc1 , Qc2 , ..., Qck}, answers Ac1 ,
Ac2 , ..., Ack , accuracies of crowd workers PW1 , PW2 , ..., PWk

in
[0.5, 1], we have

∆HSQ
= H(DA)−

k∑
t=1

H(Wt)

Proof. By Eq 12, we have
∆HSQ

= H(R) +
∑

mj∈R
ai∈DA

P(mj)P(ai|mj) log P(mj)

+
∑

mj∈R
ai∈DA

[P(mj)P(ai|mj) log P(ai|mj)− P(mj)P(ai|mj) log P(ai)]

:= H(R) + J1 + J2 + J3

By definition 5, we have

J1 =
∑

mj∈R

 ∑
ai∈DA

P(ai|mj)

P(mj) log P(mj)

=
∑

mj∈R
P(mj) log P(mj) = −H(R)

By Eq 14, we have

J3 = −
∑

ai∈DA

 ∑
mj∈R

P(mj |ai)

P(ai) log P(ai)

= −
∑

ai∈DA

P(ai) log P(ai) = H(DA)

Given mi, Ac1 , ..., Ack are independent. For J2, by the property
of joint entropy of independent random variables, we have∑

ai∈DA

P(ai|mj) log P(ai|mj) = −H (Ac1,, ..., Ack |mj)

= −
k∑

t=1

H (Act |mj)

Therefore, similarly with Eq 9,

J2 = −
∑

mj∈R
P(mj)

k∑
t=1

H (Act |mj)

=

k∑
t=1

 ∑
mj∈R

P(mj)P(Act = Y |mj) log P(Act = Y |mj)

+
∑

mj∈R
P(mj)P(Act = N |mj) log P(Act = N |mj)


=

k∑
t=1

[PWt logPWt + (1− PWt ) log (1− PWt )] = −
k∑

t=1

H(Wt)

This completes the proof.

4.4 Upper bound and lower bound of Uncertainty Re-
duction
In this subsection, we show the upper and lower bounds for
H(DA), which can be applied to improve approximate algorithm.
We recall U = {ct; t = 1, ..., k}, DU , PU Eq 10 and P(ui)
Eq 11. Now we define joint entropy H(DU ) by

H(DU ) = −
∑

ui∈DU

P(ui) log P(ui) (15)

We remark that H(DU ) measures the uncertainty of k correspon-
dences, while H(DA) measures the uncertainty of answers for k
correspondences. Intuitively, this difference is caused by the fact
that crowds make mistakes. If PWi

= 1 for all i = 1, ..., k,
H(DU ) = H(DA).

As mentioned in subsection 4.1, the number of elements with
positive probability in DU is at most |R|. Time complexity of
computing all P(ui) is bounded by O(k|R|). However |DA| =
2k, by Eq 13, time complexity of computing all P(ai) will be
O(2k). Thus we hope to bound H(DA) by H(DU ).
Theorem 4.2. Under the assumption of Theorem 4.1, let

h(u)(DA) = min

{
H(DU ) +

k∑
t=1

H(Wt),−
k∑

t=1

log (1− PWt )

}
and
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h(l)(DA)

= max

{
−

k∑
t=1

logPWt , H(DU ) +

k∑
t=1

H(Wt)

+

k∏
t=1

PWt log

k∏
t=1

PWt +

(
1−

k∏
t=1

PWt

)
log

(
1−

k∏
t=1

PWt

)

−

(
1−

k∏
t=1

PWt

)
min

{
log(2k − 1), H(DU )

}}

We have
h(l)(DA) ≤ H(DA) ≤ h(u)(DA) (16)

Proof. Upper bound: By the chain rule of conditional entropy,
we have

H(DA) = H(DA, DU )−H(DU |DA)

= H(DA|DU ) + H(DU )−H(DU |DA)
(17)

where

H(DA|DU ) = −
∑

uj∈DU

P(uj)

 ∑
ai∈DA

P(ai|uj) log P(ai|uj)


Given uj , we know the true correspondences and false ones in U ,
thus Act , t = 1, ..., k are independent. We obtain that

H(DA|DU )

=
∑

uj∈DU

P(uj)

k∑
t=1

H (Act |uj)

= −
k∑

t=1

[
∑

uj∈DU

P(uj)P(Act = Y |uj) log P(Act = Y |uj)

+
∑

uj∈DU

P(uj)P(Act = N |uj) log P(Act = N |uj)]

= −
k∑

t=1

[
∑

uj∈DU

c
(j)
t =F

P(ui) (1− PWt ) log (1− PWt )

+
∑

uj∈DU

c
(j)
t =T

P(ui)PWt logPWt +
∑

uj∈DU

c
(j)
t =F

P(ui)PWt logPWt

+
∑

uj∈DU

c
(j)
t =T

P(ui) (1− PWt ) log (1− PWt )]

=

k∑
t=1

H(Wt)

Thus we get
H(DA) ≤ H(DU ) +

k∑
t=1

H(Wk) (18)

On the other hand, by definition of H(DA) Eq 14 and P(ai)
Eq 13, we have

H(DA) = −
2k∑
i=1

2k∑
j=1

P(uj)qij log P(uj)qij (19)

Note that
∑2k

j=1 P(uj) = 1, which means
∑2k

j=1 P(uj)qij is a
linear combination of qij , j = 1, 2, ..., 2k. It is easy to see that

2k∑
j=1

P(uj)qij ≥ min
j

qij =

k∏
t=1

(1− PWt )

where last equation holds because each PWt ∈ [0.5, 1]. Then we
have

H(DA) ≤ −
2k∑
i=1

2k∑
j=1

P(uj)qij log

k∏
t=1

(1− PWt ) = −
k∑

t=1

log (1− PWt )

Together with Eq 18, we achieve the upper bound.
Lower bound: The difference between H(DA) and H(DU )

is that crowds have probability to make mistakes. Inspired by this,

we consider the indicator function that crowds make at least one
mistake, i.e.

Y =

{
0 Answers are all correct

1 Crowds make mistake
(20)

Obviously, we have P(Y = 0) =
∏k

t=1 PWt
. In order to obtain

lower bound, it is sufficient to bound the term H(DU |DA) in
Eq 17. Thus we rewrite

H (DU |DA )

= H (DU |DA )−H (DU |DA, Y ) + H (DU |DA, Y )

= H (Y |DA )−H (Y |DA, DU ) + H (DU |DA, Y ) (21)
= H (Y |DA ) + H (DU |DA, Y )

≤ H (Y ) + H (DU |DA, Y )

= H (Y ) +
∑

ai∈DA

[P(ai, Y = 0)H (DU |ai, Y = 0 ) (22)

+ P(ai, Y = 1)H (DU |ai, Y = 1 )] (23)

where the second equation Eq 21 is obtained by chain rule of
entropy. Please note that when Y = 0, A(i)

ct = Y if c(i)t = T and
A

(i)
ct = N if c(i)t = F . Thus in Eq 22, we have

H (DU |ai, Y = 0 ) = 0

The entropy is maximized when each possible outcome has the
same probability. Since |DU | = 2k and when Y = 1, we know
that the number of possible outcome is 2k−1. Therefore in Eq 23,
we have

H (DU |ai, Y = 1 ) ≤ min
{
H(DU ), log

(
2k − 1

)}
Now we write
H (DU |DA )

≤ H (Y ) + min
{
H(DU ), log

(
2k − 1

)} ∑
ai∈DA

P(ai, Y = 1)

= H (Y ) + min
{
H(DU ), log

(
2k − 1

)}
P(Y = 1)

= −
k∏

t=1

PWt log

k∏
t=1

PWt −

(
1−

k∏
t=1

PWt

)
log

(
1−

k∏
t=1

PWt

)

+

(
1−

k∏
t=1

PWt

)
min

{
H(DU ), log

(
2k − 1

)}
Substitute this bound into Eq 17, we achieve that

H (DA) ≥ H(DU ) +

k∑
t=1

H(Wt) +

k∏
t=1

PWt log

k∏
t=1

PWt

+

(
1−

k∏
t=1

PWt

)
log

(
1−

k∏
t=1

PWt

)

−

(
1−

k∏
t=1

PWt

)
min

{
H(DU ), log

(
2k − 1

)}
On the other hand by Eq 19, we have

H(DA) ≥ −
2k∑
i=1

2k∑
j=1

P(uj)qij log

k∏
t=1

PWt = −
k∑

t=1

logPWt

This completes the proof.

Remark: When PWt = 1 for all t = 1, ..., k, we can check
that

h(l)(DA) = h(u)(DA) = H(DU ) = H(DA)

When PWt = 0.5 for all t = 1, ..., k, we can check that

h(l)(DA) = h(u)(DA) = k = H(DA)

Our result is optimal in the sense that lower bound equals to
upper bound in two extreme cases: When crowds always give
correct answers (PWt = 1) and when crowds always give random
answers without any consideration (PWt = 0.5).
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4.5 NP-hardness of Multiple CCQ Selection
By Theorem 4.1, searching a group of k CCQs with maximal
uncertainty reduction is equivalent to finding k CCQs with max-
imal joint entropy. It is known the joint entropy of a set of
random variables is a monotone sub-modular function. In general,
maximizing sub-modular functions is NP-hard. Concerning the
computation of the value of information, [20] shows that, for a
general reward function Rj (in our problem, Rj = ∆HSQ

), it is
NPPP − hard to select the optimal subset of variables even for
discrete distributions that can be represented by polytree graphical
models. NPPP −hard problems are believed to be much harder
than NPC or #PC problems. In the problem of multiple CCQ
selection, every variable is binary and their marginal distribution
is represented by a binary matrix. As a result, a naive traversal
would lead to an algorithm of O(|R||C|k) complexity, since the
searching space (i.e. the number of subsets to select) is always of
size Ck

|C|.
With the Theorem 4.3, we prove that Multiple CCQ Selection

is NP-hard. Encountering this NP-hardness, we propose a efficient
approximation algorithm based on the sub-modularity of joint
entropy.
Theorem 4.3. The Multiple CCQ Selection is NP-hard.
Proof. To reach the proof of Theorem 4.3, it is sufficient to prove
the NP-completeness of its decision version, Decision MCCQS
(DMCCQS), i.e. given result set R, probability assignment func-
tion P(), an integer k, and a value ∆H , decide whether one can
find a set SQ of k CCQs such that ∆HSQ

>= ∆H .
To reach the NP-completeness of DMCCQS, it is sufficient to

prove a special case of DMCCQS is NPC. First we let accuracy
rates equals to 1. Moreover we state the special case of DMCCQS
by adding the following constraint onR: for each way of partition-
ing R into two subsets S1 and S2, there exists a correspondence c
such that (∀mi ∈ S1, c ∈ mi) ∧ (∀mj ∈ S2, c /∈ mi). Equipped
with this constraint, we this reduce special case of DMCCQS to
the set partition problem.

The partition problem is the task of deciding whether a given
multiset of positive integers can be partitioned into two subsets S1

and S2 such that the sum of the numbers in S1 equals the sum of
the numbers in S2.

Transformation: Given a set partition problem with input
multiset S, let Sum =

∑
x∈S x. We create a possible matching

mi for each positive integer xi ∈ S, and assign its possibility
P(mi) = xi/Sum. Let the correspondences satisfy the con-
straint, and we set k = 1,∆H = − log(0.5) = 1 for DMCCQS.

(=⇒) If there is a yes-certificate for the set partition prob-
lem, then the R can be partitioned into two subsets, each with
aggregate probability 0.5. According to the constraint, the exists a
correspondence c with P(c) = 0.5. Then, selecting SQ = {Qc}
would achieve uncertainty reduction HSQ

= −0.5 log 0.5 −
0.5 log 0.5 = 1. Therefore,{Qc} serves as yes-certificate for the
special case of DMCCQS.

(⇐=) Assume there is yes-certificate for the special case of
DMCCQS when k = 1,∆H = − log(0.5) = 1. Since k = 1,
HSQ

is actually equivalent to Hc. Then by Theorem 3.2, there
exists a correspondence c such that P(c) = 0.5. Therefore, by the
constraint, there is a way to partition R into two subsets, each with
aggregate probability 0.5. Since the mapping from the positive
integers to the possible matchings is one-to-one, we obtain an yes-
certificate for the special case of DMCCQS.
4.6 Approximation Algorithm
It is known that the joint entropy of a set of random variables
is a monotone sub-modular function [20]. And the problem of

Fig. 2. Illustration of R Partitioning

selecting a k-element subset maximizing a monotone sub-modular
function can be approximated with a performance guarantee of
(1−1/e), by iteratively selecting the most uncertain variable given
the ones selected so far [19]. Formally, we have the optimization
function at the kth iteration:

X := arg max
Qck

∆H
Sk−1
Q ∪{Qck

} (24)

Let A(k−1) denote answers for Sk−1
Q . By the chain rule of

conditional entropy, we have
H
(
DA(k−1) , Ack

)
= H

(
DA(k−1)

)
+ H

(
Ack

∣∣DA(k−1)

)
Thus we only need to maximize the conditional entropy at each
iteration, i.e.

X := arg max
Ack

H
(
Ack

∣∣DA(k−1)

)
and
H
(
Ack

∣∣DA(k−1)

)
= −

∑
ai∈DA(k−1)

P(ai) [P (Ack = Y | ai) log P (Ack = Y | ai)

+P (Ack = N | ai) log P (Ack = N | ai)]

(25)

Eq 25 indicates that, at each iteration, we are searching
the most uncertain correspondence, given the correspondences
selected in previous iterations. In particular, after the (k − 1)th

iteration, the possible matchings are at most split into 2k−1

partitions, each of which corresponds to an element ai ∈ DA(k−1) .
We aim to find the kth correspondence, in order to further split
them to at most 2k partitions, such that then entropy of resulting
partitions is maximized. Figure 2 illustrates a partitioning of the
first two iterations. Motivated with this interpretation, we propose
to apply an in-memory index to maintain the list of partitions for
each iteration. One can see that each partition corresponding to ai
is essentially a set of possible matchings. In addition, also index
P(ai) associated with each partition.

As a result, the computation of H(Ack |DA(k−1)) for each
candidate correspondence is simply traversing the list of partitions.
Note the number of partitions is at most |R| (i.e. each partition
has only one possible matching), so the overall complexity is
upper bounded by O(k|R||C|). However, there is still room for
the further pruning of the search space. In the follows, we derive
four pruning techniques to avoid traversing all the partitions. Each
pruning indicates a condition that guarantees certain partitions are
unnecessary to be considered, hence speed up the overall compu-
tation. For simplicity, we just use the notation ai to represent the
partition corresponding to ai. Then, for the iteration, we have par-
titions a1, a2, ..., an with probabilities P(a1),P(a2), ...,P(an)
respectively. As follows, we present four pruning rules.
Pruning Rule 4.4. If a partition ai has only one matching, ai can
be safely pruned, i.e. we can remove ai from the list of partitions.

Pruning rule 4.4 utilizes the intuition that the correctness of
a possible matching m can be fully determined by the selected
correspondences, when m is the only one in its partition. In other
words, the remaining correspondences of m would not contribute
any more information, hence should not be selected.
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Pruning Rule 4.5. Let c be a candidate correspondence, then c
can be safely pruned (for the rest of the iterations), if all ai, one
of the following conditions are met for :(1) ∀mi ∈ ai, c ∈ mi,
(2)∀mi ∈ ai, c /∈ mi

Similar to Pruning rule 4.4, Pruning rule 4.5 indicates the
condition that the correctness of c can be determined by selected
correspondences.

Next, we introduce Pruning Rule 4.6 and 4.7, which derives
two non-trivial upper bounds, which enable effective pruning.
Pruning Rule 4.6. Let Hbest so far be the best value of
Eq 25 so far for the current iteration, then for the correspondence
c, let a1, a2, ..., am be the partitions c already traversed Let

H0 = −
m∑
i=1

P(ai) [P(Y |ai) log P(Y |ai) + P(N |ai) log P(N |ai)]

Then c can be pruned for the current iteration, if we have

Hbest so far −H0 ≤
n∑

j=m+1

P(aj) log
P(aj)

2

Proof. For the rest of partitions am+1, am+2, ..., an, the optimal
situation is they are all perfectly bisected, that is ∀i ∈ [m+ 1, n],
P(Y |ai) = P(N |ai) = 0.5. Therefore, their contribution to the
optimization function has a upper bound

n∑
j=m+1

P(aj) log
P(aj)

2

Pruning Rule 4.7. Let Hbest so far be the best value of
Eq 25 so far for the current iteration. For a correspondence c, let
H(Ac|DA(k−2)) be the conditional entropy computed from a
previous iteration. Then, c can be pruned for the current iteration
if

H
(
Ac

∣∣DA(k−2)

)
≤ Hbest so far

Proof. This pruning rule reflects the sub-modularity of the joint
entropy. Sk−2

Q is the set of CCQs selected in the previous iteration,
so Sk−2

Q ⊂ Sk−1
Q , where Sk−1

Q is the CCQs selected for the
current iteration. Then by sub-modularity, we have
H
(
DA(k−2) , Ac

)
−H

(
DA(k−2)

)
≥ H

(
DA(k−1) , Ac

)
−H

(
DA(k−1)

)
and equivalently, H (Ack |DA(k−2) ) ≥ H (Ack |DA(k−1) ),
which completes the proof.

At last we use Theorem 4.2 to show a pruning rule.
Pruning Rule 4.8. Given the selected correspondences Sk−1

Q in
previous (k-1)th iterations, two current potential selected corre-
spondences c1 and c2, correspondence c2 could be safely filtered
if these two correspondences satisfy

h(l)(DA(k−1) ∪Ac1 ) > h(u)(DA(k−1) ∪Ac2 )

5 EXPERIMENTAL RESULTS
We conducted extensive experiments to evaluate our approaches,
based on both simulation and real implementation. We focus
on evaluating two issues. First, we examine the effectiveness
of our two frameworks in reducing the uncertainty for possible
matchings. Second, we verify the correctness of our approaches,
by evaluating the precision and recall of the best matchings.
5.1 Experimental Setup
We adopt the schema matching tool OntoBuilder [11], [13], which
is one of the leading tools for schema matching. In particular,
we conduct our experiments on five datasets, each of which in-
cludes five schemata. The schemata are extracted from web forms
from different domains. We describe the characteristics of each
dataset in Table 3. By OntoBuilder, schemata are parsed into xml
schemata, and attributes refer to nodes with semantic information.
We conduct pairwise schema matching within each domain, so
there are totally 40 pairs of schemata (10 for each domain). In
OntoBuilder, four schema matching algorithms are implemented,
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Fig. 3. Single CCQ v.s. Random - Simulation
namely Term, Value, Composition and Precedence. For each pair
of schemata, we generate 400 unique possible matchings (100 for
each algorithm). In addition, each possible matching is associated
with a global score, which indicates the goodness of the matching.
We obtain the probabilities of matchings by normalizing the global
scores. The details of these algorithms can be found in [11].

5.2 Simulation
To evaluate the effectiveness of our two approaches, we first
conduct a simulation of the crowd’s behaviour, based on our
formulation in Section 3.1. First, we manually select the best
matching from the 400 possible matchings, and treat the selected
matching as the correct matching (i.e. ground truth). So for any
correspondence, its correctness depends on whether it is in the
selected matching. Second, for each published CCQ, we randomly
generate an accuracy rate PW ∈ [0.5, 1] following an uniform
distribution. Third, given a CCQ, we generate the correct yes-no
answer with probability PW (i.e. generate the wrong answer with
probability 1 − PW , and then return the answer and PW as the
inputs for adjustment (Section 3.1).

First, we present the effectiveness of Single CCQ approach
( Framework 1), by comparing its performance with randomly
selecting CCQs. We set the budget B = 50, and each CCQ is
generated after receiving the answer of the previous one. Figure 3
illustrates the average change of uncertainty (vertical axis) with
the number of answers of CCQs received (horizontal axis). With
the increase of number of CCQs, the uncertainty converges to zero
rapidly. From the experimental results, our proposed Single CCQ
approach (SCCQ) outperforms the random approach (Random)
significantly. Please note that all the results plotted in Section 5.2
and 5.3 are averages over 10 runs. The distribution is quite dense
within each domain, but diverse for different domains.

Next, we examine the performance of Multiple CCQ (Frame-
work 2). Recall that we need to constantly monitor the CCQs,
and update the CCQs whenever new answers are received. In
the simulation of conference paper [44], we check the states
of published CCQs every time unit. Each published CCQ is
initially at state “waiting”. For each time unit, each CCQ in state
“waiting” may change to “accepted” with probability P0 (remain
unchanged with probability 1−P0), where P0 is a random number
generated from (0, 0.5); and each CCQ at state “accepted” may
change to “answered” with probability P1 (remain unchanged with
probability 1 − P1), where P1 follows a Poisson distribution.
Figure 4 illustrates the performance of Multiple CCQ by varying
k, where we set the budget B = 50. Recall that k, a parameter
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TABLE 3
DATASETS

Notation Source No.of attributes
Hotel hotel searching websites 14-20

Aviation homepages of airline companies 12-18
BookStore the webpages of advanced

search in online book stores 13-21
ComplaintForm the complaint forms of

government websites 27-34
News news websites 43-60
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Fig. 4. Multiple CCQ with different k - Simulation

of Framework 2, represents the number of CCQ in the crowd.
Whenever a CCQ is answered, we dynamically updated the k
CCQs, to make sure the k CCQs are the best according to the all
received answers. In particular, when k=1, Framework 2 becomes
the Single CCQ approach. One can observe that the curves with
smaller k tend to have better performance in terms of reducing
uncertainty. In fact, the larger k is, the less advantage MCCQ has
comparing to a random selection. Recall each time we select k out
of |C| correspondences, and when k = |C|, MCCQ is the same as
random selection, i.e. select all of the correspondences we have.

As discussed in Section 4, the increase of k leads to less uncer-
tainty reduction (which is consistent with the result in Figure 4),
but improves the overall time efficiency. Since there are multiple
uncontrollable factors affecting the completion time of workers,
the time cost of the proposed approaches are hard to be simulated.
Nevertheless, we analyse the relation between k and the time cost
in the real-world implementation in Section 5.3.
5.3 Testing on Amazon Mechanical Turk
We implement our two approaches on Amazon Mechanical Turk
(AMT), which is a widely used crowdsourcing marketplace. Em-
powered with the Amazon Mechanical Turk SDK, we are able to
interactively publish and manage the CCQs. Each HIT of AMT
includes all the attributes of two schemata, one CCQ, and the
URLs of the source web-pages. Each HIT is priced US$0.05. One
can see that each HIT is essentially a CCQ. For the rest of this
section, the terms “HIT” and “CCQ” are exchangeable.

In analogy to the simulation, Figure 5 and Figure 6 illustrate
the performances of Single CCQ and Multiple CCQ respectively,
where we set the budget B = 50. In terms of uncertainty
reduction, one can see that the performance is basically consistent
with the simulation. A very important finding is that, in contrast
with the simulation, the uncertainty is likely to increase when the
first several CCQs are answered. The increase can happen when
a surprising answer is obtained, i.e. a yes answer is returned for
low-probability correspondence, or vice versa. This phenomenon
indicates that, the budget should be large enough to achieve
satisfactory reduction of uncertainty.

Hotel

0 10 20 30 40 50
0

2

4

6

8

10

Random
SCCQ

No. of CCQs

a
v

e
ra

g
e

 H
(R

S
)

Aviation

0 10 20 30 40 50
0

2

4

6

8

10

Random
SCCQ

No. of CCQs

a
v

e
ra

g
e

 H
(R

S
)

BookStore

0 10 20 30 40 50
0

2

4

6

8

10

Random
SCCQ

No. of CCQs

a
v

e
ra

g
e

 H
(R

S
)

ComplaintForm

0 10 20 30 40 50
0

2

4

6

8

10

Random
SCCQ

No. of CCQs

a
v

e
ra

g
e

 H
(R

S
)

Fig. 5. Single CCQ v.s. Random - on Amazon Mechanical Turk
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Fig. 6. Multiple CCQ with different k on Amazon Mechanical Turk

Another important finding is that, the uncertainty convergence
to zero in real implementation is much slower than that in the sim-
ulation. A possible reason is that, we use a Bernoulli distribution
to model the error rate of workers. But in reality, the error rate
follows a much complex distribution, which may be related to the
dataset.

Lastly, we present the overall time cost of Single CCQ and
Multiple CCQ approaches in the real implementations, where to-
tally 50 CCQs are published and answered. As shown in Figure 7,
the curves with larger k tend to have less time cost. Please note
that, the case of Single CCQ is indicated with k = 1. When
k is increased, we get faster initial reduction on uncertainty, but
the overall reduction tend to be limited. Actually, there are many
uncontrollable factors would affect the completion time, such as
the difficulty of the CCQs, the time of publication etc.
5.4 Data Quality
In this subsection, we verify the correctness of our approaches,
by evaluating the precision and recall of the best matching, i.e. the
possible matching with the highest possibility after the uncertainty
reduction. Precision is computed as the ratio of correct correspon-
dences out of the total number of correspondences in the correct
matching (ground truth). Recall is computed as the ratio of correct
correspondences out of the total number of correspondences in
the correct matching. Since the performances are very similar on
different datasets, we merge the four datasets into one, and present
the precision and recall averaged from 40 runs.

Figure 8 illustrates the quality of the best matching after
uncertainty reduction with budget B = 50. The suffixes “ S” and
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Fig. 7. Time Cost with different k on Amazon Mechanical Turk
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Fig. 8. Data Quality with Budget Constraint- Precision & Recall
“ R” represent the data obtained from the simulation and the real-
world implementation on AMT, respectively. B mainly depend on
how much money the HIT requester will pay for the task. In the
simulation, the precision and recall are almost 100%. In the real-
world implementation, 50 questions by SCCQ make precision and
recall over 90%, which are significantly better than that of the
“machine-only” methods when k is small. However, in the real
implementation, we find that when k is increased, the precision
and recall tend to be decreased dramatically. In particular, for
cases k = 8 and k = 16, the MCCQ is only slightly better
than the Composition. The reason is twofold: first, comparing to
SCCQ, there is averagely less information for selecting CCQs in
MCCQ; second, due to the NP-hardness, we are only able to select
CCQs that are near-optimal.

Recall that the motivation of MCCQ is to improve the time
efficiency. Therefore, we conducted another set of experiments
where time is the constraint, in order to investigate the relation
between k and data quality. Explicitly, we preform SCCQ and
MCCQ for 50 minutes, without any limit on the budget. The
precision and recall are demonstrated in Fig 9. From the ex-
perimental results, we conclude that the MCCQ with large k
has outstanding performance for time-constrained situations.
Therefore, we conclude that k should be set to a small value
when the budget is the main constraint; whereas a large value
is suggested for k if time-efficiency is the primary constraint.
5.5 New Experiments
With a more realistic model in this paper, we conduct experiments
of MCCQ again. In simulation, firstly we randomly generate
accuracy rates following uniform distribution on [0.5, 1] for all
correspondences as their hardness attribute. We publish k initial
CCQs with state “waiting”. We still check the states of published
CCQs every time unit. For each time unit, each CCQ in state
“waiting” may change to “accepted” with probability P0 and
each CCQ at state “accepted” may change to “answered” with
probability P1. Each answer is returned with an accuracy rate
PWi

as the trustworthiness of the crowd. Accuracy rates PWi

also follows uniform distribution on [0.5, 1]. We still set budget
B = 50 and Figure 10 shows the performance of Multiple
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Fig. 9. Data Quality with Time Constraint - Precision & Recall

Fig. 10. Multiple CCQ with different k - Simulation(New)

CCQ by varying k. Then in Figure 11 we apply our MCCQ
approach on Amazon Mechanical Turk. The difference between
new experiments and the old ones in [44] is that we consider
initial accuracy rates and different accuracy rates in each step.
In [44], assumption of theoretical results is that accuracy rates
equal to 1, while in experiments we chose accuracy rates less than
1. Moreover, in this paper we obtain optimal upper bound and
lower bound for entropy reduction, so that pruning rules are more
efficient. These are major reasons that our new choices for CCQs
are comparatively better in terms of entropy reduction with less
fluctuation.

At last we consider a new dataset with more attributes and we
set B = 70, k = 8. Let X be beta distribution Beta(2, 2). In
Figure 12, we try different distributions for PWi

. Line 1 shows
PWi

follows uniform distribution on [0.5, 1] with mean 0.75 and
variance 1/48. In Line 2, PWi

= 0.5X+0.5, thus PWi
∈ [0.5, 1]

with mean 0.75 and variance 1/80. In Line 3, PWi
= 0.4X+0.6,

thus PWi
∈ [0.6, 1] with mean 0.8 and variance 1/125. In line

4, PWi
= 0.6X + 0.4, thus PWi

∈ [0.4, 1] with mean 0.7 and
variance 9/500. Line 5 shows the result in AMT. Comparing first
four lines, we can see Line 3 perform best as PWi

has biggest
mean and smallest variance. Line 4 perform worst since in practice
we do not choose a crowd worse than 0.5.

6 RELATED WORK
6.1 Uncertainty in Schema Matching
The model of possible matching, namely “probabilistic schema
mappings”, was first introduced in [8]. In their work, algorithmic
approaches generate a set of matchings between two schemata,
with a probability attached to each matching. After the collection
of possible matchings is determined, the probability of each
correspondence can be computed by summing up the probabilities
of possible matchings in which the correspondence is included.
Later, Sarma et al. [37] used well-known schema matching
tools (COMA, AMC, CLIO, Rondo, etc.) to generate a set of
correspondences associated with confidence values between two
schemata. Then, the possible matchings are constructed from these
correspondences and data instances. A more intuitive method of
constructing possible matchings is proposed in [12]. In detail, [12]
generates top-k schema matchings by combining the matching
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Fig. 11. Multiple CCQ with different k on Amazon Mechanical Turk(New)

Fig. 12. MCCQ with different PWi

results generated by various matchers, and each of the k matchings
is associated with a global score. Then possible matchings are
constructed by normalizing the global scores. Additionally, the
model of possible matchings has been adopted in [14] as a core
foundation for answering queries in a data integration system
with uncertainty. Gal [11] used the top-K schema mappings from
a semi-automatic matchers to improve the quality of the top
mapping. [8] [14] and [34] were devoted to the parallel use
of uncertain schema matchings, and proposed new semantics of
queries.

The uncertainty in schema matching has been intensively
studied, primarily focusing on the query processing in the presence
of uncertainty. X.Dong et al. [8] concentrated on the semantics
and properties of probabilistic schema mappings. We assume
that a set of probabilistic schema matchings is provided by an
existing algorithm, such as one of those mentioned above. How
to efficiently process uncertain data is an orthogonal issue, which
has been well addressed, such as [16], [41], [42].

A probabilistic matching network model was established in
[29] to reduce uncertainty of schema matching. Authors devel-
oped pay-as-you-go reconciliation approach. Probabilities of cor-
respondences are defined in their model independently of schema
matching tools. [36] discussed schema matching prediction which
is an assessment mechanism to support schema matchers in the
absence of an exact match.

6.2 Crowdsourcing and Data Integration
Such as schema matching, some queries cannot be answered by
machines only. The recent booming up of crowdsourcing brings
us a new opportunity to engage human intelligence into the
process of answering such queries (see [7] [22] [3] as survey
for crowdsourcing). In general, [10] proposed a query processing
system using microtask-based crowdsourcing to answer queries.
Many classical queries are studied in the context of crowdsourced
database, including max [15], filtering [30], sorting [24] etc. In
[31], a declarative query model is proposed to cooperate with
standard relational database operators. In [4], crowdsourcing is
used for top-K query processing over uncertain data. As a typical
application related to data integration, [43] utilized a hybrid
human-machine approach on the problem of entity resolution. [26]
studied knowledge base semantic integration using crowdsourcing.

[25] engages crowdsourcing into schema matching. In particu-
lar, [25] proposed to enlist the multitude of users in the community
to help match the schemata in a Web 2.0 fashion. The difference
between our work and [25] is threefold: (1) From the conceptual
level, “crowd” in [25] refers to an on-line community (e.g. a
social network group); while we explicitly consider the crowd as
crowdsourcing platforms (e.g. Mechanical Turk). (2) The essential
output of [25] is determined by the “system builders”, which
means the end users still have to get involved in the process
of schema matching. (3) We focus on the optimization between
the cost (the number of CCQs) and performance (uncertainty
reduction).

6.3 Active Learning
Active learning is a form of supervised machine learning, in which
a learning algorithm is able to interact with the workers (or some
other information source) to obtain the desired outputs at new
data points. A widely used technical report is [38]. In particular,
[28], [45] proposed active learning methods specially designed for
crowd-sourced databases. Our work is essentially different from
active learning in two perspectives: (1) the role of workers in active
learning is to improve the learning algorithm (e.g. a classifier); in
this paper, the involvement of workers is to reduce the uncertainty
of given matchings. (2) The uncertainty of answers are usually
assumed to be given before generating any questions; in this
paper, the uncertainty of answers has to be considered after the
answers are received, since we cannot anticipate which workers
would answer our questions. To our best knowledge, there is no
algorithm in the field of active learning can be trivially applied to
our problem.

7 CONCLUSION AND FUTURE WORK
In this paper, we propose two novel approaches, namely Single
CCQ and Multiple CCQ, to apply crowdsourcing to reduce the
uncertainty of schema matching generated by semi-automatic
schema matching tools. These two approaches adaptively select
and publish the optimal set of questions based on new received
answers. Technically, we significantly reduce the complexity of
CCQ selection by proving that the expectation of uncertainty
reduction caused by a set of CCQs are mathematically equivalent
to the join entropy of answers minus entropy of crowds. In
addition, we obtain optimal bounds for uncertainty reduction,
prove NP-hardness of MCCQ Selection, and design an (1 + ε)
approximation algorithm, based on its sub-modular nature. One
challenge we overcome is to investigate difficulties of CCQs and
trustworthiness of crowd-sourced answers by accuracy rates of
crowds.

Uncertainty is inherited in many components in modern data
integration systems, such as entity resolution, schema matching,
truth discovery, name disambiguation etc. We believe that embrac-
ing crowdsourcing as a component of a data integration system
would be extremely conductive for the reduction of uncertainty,
hence effectively improve the overall performance. Our work
represents an initial solution towards automating uncertainty re-
duction of schema matching with crowdsourcing.

A future work regarding to MCCQ is that: in Theorem 4.1,
we distribute k CCQs to crowds each time. We obtain a formula
of uncertain reduction under the assumption that we take back
k answers. In reality, we do not know how many CCQs can be
answered. We may withdraw or replace some CCQs after a waiting
time. The choice of next k CCQs is best only when all k CCQs are
answered. Therefore investigating a more realistic and complete
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model with answer rates(a difficult CCQ may has a probability
that no one accept it) may further help reducing the matching
uncertainty.
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Fig. 13. screen shot of CCQ on AMT
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