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Abstract—This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited

resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble

clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method forK-nearest

representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite

graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC,multiple U-SPEC

clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPECwhile maintaining high

efficiency. Based on the ensemble generation via multiple U-SEPC’s, a new bipartite graph is constructed between objects and base

clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC andU-SENChave

nearly linear time and space complexity, and are capable of robustly and efficiently partitioning 10-million-level nonlinearly-separable

datasets on a PCwith 64GBmemory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of

our algorithms. TheMATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669.

Index Terms—Data clustering, large-scale clustering, spectral clustering, ensemble clustering, large-scale datasets, nonlinearly

separable datasets
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1 INTRODUCTION

DATA clustering is a fundamental problem in the field of
data mining and machine learning [1], whose purpose

is to partition a set of objects into a certain number of homo-
geneous groups, each referred to as a cluster. Out of the large
number of clustering algorithms that have been developed,
spectral clustering in recent years has been gaining increas-
ing attention due to its promising ability in dealingwith non-
linearly separable datasets [2], [3], [4], [5]. However, a critical
limitation to conventional spectral clustering lies in its huge
time and space complexity, which significantly restricts its
application to large-scale problems.

Conventional spectral clustering typically consists
of two time- and memory-consuming phases, namely,

affinity matrix construction and eigen-decomposition. It
generally takes OðN2dÞ time and OðN2Þ memory to con-
struct the affinity matrix, and takes OðN3Þ time and OðN2Þ
memory to solve the eigen-decomposition problem [2],
where N is the data size and d is the dimension. As the
data size N increases, the computational burden of spec-
tral clustering grows dramatically. For example, given a
dataset with one million objects, the N �N affinity matrix
alone will consume 7450.58 GB of memory (with each
entry in the matrix stored as a double-precision value),
which prohibitively exceeds the memory capacity of a
general-purpose machine, not to mention the next phase
of eigen-decomposition.

To alleviate the huge computational burden of spectral
clustering, a commonly used strategy is to sparsify the affinity
matrix and solve the eigen-decomposition problem by some
sparse eigen-solvers [2]. The matrix sparsification strategy
can reduce the memory cost of storing the affinity matrix and
facilitate the eigen-decomposition, but it still requires the
computation of all entries in the original affinity matrix.
Besides matrix sparsification, another widely-studied strat-
egy is based on sub-matrix construction [3], [4]. The Nystr€om
method [3] randomly selects p representatives from the origi-
nal dataset and builds an N � p affinity sub-matrix. Cai et al.
[4] extended the Nystr€om method and proposed the land-
mark based spectral clustering (LSC) method, which per-
forms k-means on the dataset to get p cluster centers as the p
representatives. However, these sub-matrix based spectral
clustering methods [3], [4] are typically restricted by an
OðNpÞ complexity bottleneck,which has been a critical hurdle
for them to deal with extremely large-scale dataset where a
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larger p is often desired for achieving better approximation
[4]. Moreover, the clustering results of these methods heavily
rely on their one-shot approximation via the sub-matrix,
which places an unstable factor on their clustering robustness.
Despite the considerable efforts that have beenmade in recent
years [2], [3], [4], [5], it remains a highly challenging problem
how to enable spectral clustering to efficiently and robustly clus-
ter extremely large-scale datasets (which may even be nonli-
nearly separable) with rather limited computing resources.

In light of this, this paper focuses on scalability and robust-
ness of spectral clustering for extremely larger-scale datasets.
Specifically, this paper proposes two novel large-scale algo-
rithms, namely, ultra-scalable spectral clustering (U-SPEC)
and ultra-scalable ensemble clustering (U-SENC). In U-SPEC,
a new hybrid representative selection strategy is presented to
efficiently find a set of p representatives, which reduces the
time complexity of k-means based selection from OðNpdtÞ to
Oðp2dtÞ. Then, a fast approximation method for K-nearest
representatives are designed to efficiently build a sparse sub-
matrix with OðNp

1
2dÞ time and OðNp

1
2Þ memory. With the

sparse sub-matrix serving as the cross-affinity matrix, a bipar-
tite graph is constructed between thedataset and the represen-
tative set. By taking advantage of the bipartite graph structure,
the transfer cut [6] is utilized to solve the eigen-decomposition
problem with OðNKðK þ kÞ þ p3Þ time, where k is the num-
ber of clusters andK is the number of nearest representatives.
Finally, the k-means discretization is adopted to construct the
clustering result from a set of k eigenvectors, which takes
OðNk2tÞ time. As it generally holds that k;K � p � N , the
time and space complexity of our U-SPEC algorithm are
respectively dominated by OðNp

1
2dÞ and OðNp

1
2Þ. Further, to

go beyond the one-shot approximation of U-SPEC and pro-
vide better clustering robustness, the U-SENC algorithm is
proposed by integrating multiple U-SPEC clusterers into a
unified ensemble clustering framework, whose time and
space complexity are respectively dominated by OðNmp

1
2dÞ

and OðNp
1
2Þ. Extensive experiments have been conducted on

ten large-scale datasets (including five synthetic datasets and
five real datasets), which have shown the superiority of our
U-SPEC and U-SENC algorithms over the state-of-the-art in
terms of both clustering robustness and scalability.

To summarize, the main contributions of this paper are
listed as follows:

1) A hybrid representative selection strategy is pro-
posed to strike a balance between the efficiency of
random selection and the effectiveness of k-means
based selection.

2) A fast approximation method for K-nearest repre-
sentatives is designed, which is time- and memory-
efficient for constructing the sparse affinity sub-
matrix between objects and representatives.

3) A large-scale spectral clustering algorithm termed U-
SPEC is developed based on efficient affinity sub-
matrix construction and bipartite graph formulation.
Its time and space complexity are dominated by
OðNp

1
2dÞ and OðNp

1
2Þ respectively.

4) By integrating multiple U-SPEC clusterers, a new
large-scale ensemble clustering algorithm termed U-
SENC is developed, which significantly enhances the
robustness of U-SPEC while maintaining high scal-
ability. Its time and space complexity are dominated
byOðNmp

1
2dÞ andOðNp

1
2Þ respectively.

The notations that are used throughout the paper are
summarized in Table 1. The rest of the paper is organized as
follows. The related work on large-scale spectral clustering
and ensemble clustering is reviewed in Section 2. The pro-
posed U-SPEC and U-SENC algorithms are described in
Section 3. The experimental results are reported in Section 4.
Finally, the paper is concluded in Section 5.

2 RELATED WORK

In this section, we review the literature related to spectral
clustering and ensemble clustering, with special emphasis
on their recent large-scale extensions.

2.1 Spectral Clustering
Given a dataset of N objects, conventional spectral clustering
[2] first computes an N �N affinity matrix, in which each
entry corresponds to the similarity of two objects according
to some similarity metrics. Then, the eigen-decomposition is
performed on the graph Laplacian of the affinity matrix to
obtain the k eigenvectors associated with the first k eigenval-
ues. By embedding the datasets into the low-dimensional
space via the obtained k eigenvectors, the final clustering
can be achieved via k-means or some other discretization
techniques [2].

Although spectral clustering has shown promising advan-
tages in finding clusters of arbitrary shapes from complex
data, itsOðN3Þ time complexity andOðN2Þ space complexity
significantly restrict its application in large-scale tasks. To
alleviate the huge computational cost, some researchers spar-
sified the affinity matrix by consideringK-nearest neighbors
or �-neighbors, and then solved the eigen-decomposition
problem by some sparse eigen-solvers [2], which, however,
still requires the computation of all the entries in the original
affinitymatrix.

To avoid the computation of the full affinity matrix, the
sub-matrix based approximation has emerged as a powerful
and efficient tool for spectral clustering [3], [4], [5]. The
Nystr€om approximation [3] randomly selects p representa-
tives from the dataset and builds an N � p affinity sub-
matrix between the N objects and the p representatives. The
sub-matrix construction takesOðNpdÞ time andOðNpÞmem-
ory, which are much lower than the full affinity matrix con-
struction. Although the random representative selection is
very efficient, it is often unstable with regard to the quality of
the selected representatives (see Fig. 1). Moreover, while it
has been shown that a larger p is often favorable for better
approximation [3], theOðNpÞmemory cost of the sub-matrix
construction can still be a critical bottleneck when dealing
with very large datasets. To address the potential instability
of random selection, Cai and Chen [4] proposed the LSC
algorithm, which first partitions the dataset into p clusters
via k-means and then uses the p cluster centers as the repre-
sentatives. With the N � p sub-matrix constructed, they fur-
ther sparsified it by preserving theK-nearest representatives
for each row and zeroing out the others [4]. Despite its prog-
ress over the previousmethods, there are still three computa-
tional bottlenecks in the LSC algorithm [4]. First, although
the k-means based selection often provides a better set of rep-
resentatives, it comes with the time complexity of OðNpdtÞ.
Second, the calculation of all possible entries in theN � p sub-
matrix is still required before the sparsification, which comes
with the time complexity of OðNpdÞ. Third, the computation
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of theK-nearest representatives for all objects comes with the
time complexity ofOðNpKÞ. More recently, instead of using p
representatives, He et al. [5] used Fourier features to represent
data objects in kernel space, and built an N � p sub-matrix
between the N objects and the p selected Fourier features,
upon which the efficient eigen-decomposition can be

performed. The time and space complexity of the fast explicit
spectral clustering (FastESC) algorithm in [5] are respectively
OðNpdþ p3Þ and OðNpÞ, which are still restricted by the
OðNpÞ complexity bottleneck. By incorporating a newly-
designed positive Euler kernel, Wu et al. [7] proposed the
Euler spectral clustering (EulerSC) method and proved that
the EulerSC is equivalent to the weighted positive Euler k-
means, which can be iteratively optimized with OðNdktÞ
time.However, EulerSC can only use the positive Euler kernel
to define the pair-wise similarity, and is not feasible for the
general spectral clustering formulation with other similarity
metrics. Moreover, its clustering robustness heavily relies on
the proper selection of the Euler kernel parameter, which is
difficult to find without prior knowledge.

2.2 Ensemble Clustering
Ensemble clustering has been a popular technique in recent
years, which aims to combine multiple base clusterings into
a better and more robust consensus clustering [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. The exist-
ing ensemble clustering algorithms can be mainly classified
into three categories.

The first category is the pair-wise co-occurrence based
methods [8], [9], [21]. Fred and Jain [8] proposed the evidence
accumulation clustering (EAC) method, which makes use of
the co-association matrix by considering the frequency of
pair-wise co-occurrence among multiple base clusterings.
With the co-association matrix treated as the similarity
matrix, the agglomerative clustering algorithms [1] were then
performed to obtain the consensus clustering. Iam-On et al.
[9] presented the weighted connected triple (WCT) method,
which extends the EACmethod by refining the co-association
matrix via the common neighborhood information between
clusters.

The second category is the graph partitioning based
methods [11], [12], [18], [22]. Strehl and Ghosh [18] trans-
formed the multiple base clusterings into a hypergraph
representation, based on which three graph partitioning
based ensemble clustering methods were presented. Fern
and Brodley [22] built a bipartite graph structure by treating
both base clusters and data objects as graph nodes, and then
partitioned the graph via the METIS algorithm [23].

The third category is the median partition based methods
[17], [24], which cast the ensemble clustering problem into an
optimization problem that aims to find a median clustering
(or partition) by maximizing the similarity between this clus-
tering and the multiple base clusterings. Franek and Jiang
[24] formulated the median partition problem into a Euclid-
ianmedian problem and solved it by theWeiszfeld algorithm
[25]. Huang et al. [17] cast the median partition problem into
a binary linear programming problem and solved it by the
factor graphmodel.

TABLE 1
Summary of Notations

X A dataset of N objects
xi The i-th object in X
N Number of objects in X
d Dimension
t Number of iterations in the k-means method
k Number of clusters in the clustering result
p0 Number of candidate representatives
p Number of representatives
R The set of representatives
ri The i-th representatives inR
RC The set of rep-clusters
rci The i-th rep-cluster inRC
yi Center of rci
z1 Number of rep-clusters inRC
z2 Average number of objects in each rep-cluster
K Number of nearest representatives
K0 Candidate neighborhood size around a representative
Distðxi; rcjÞ Distance between object xi and rep-cluster rcj
G A bipartite graph between X andR
B Cross-affinity matrix of graphG.
bij The ði; jÞ-th entry of B
E Full affinity matrix of graphG
L Graph Laplacian of graphG
D Degree matrix of graphG
ui The i-th eigenvector of graphG
gi The i-th eigenvalue of graphG
GR A small graph withR as the node set
ER Affinity matrix of graphGR
LR Graph Laplacian of graphGR
DR Degree matrix of graphGR
vi The i-th eigenvector of graphGR
�i The i-th eigenvalue of graphGR
DX Diagonal matrix with its ði; iÞ-th entry being the

sum of the i-th row of B
T Transition probability matrix
P The ensemble ofm base clusterings
pi The i-th base clustering in P
m Number of base clusterings in P
U-SPECi The clusterer to generate the i-th base clustering
Ri The set of representatives in U-SPECi

rij The j-th representatives inRi

ki Number of clusters in pi

kmin Minimum number of clusters in a base clustering
kmax Maximum number of clusters in a base clustering
t Random variable in [0, 1]
C Set of all clusters in P
Ci The i-th cluster in C
kc Number of clusters in C
~G A bipartite graph between X and C
~B Cross-affinity matrix of graph ~G.
~bij The ði; jÞ-th entry of ~B
~ui The i-th eigenvector of graph ~G
~DX Diagonal matrix with its ði; iÞ-th entry being the

sum of the i-th row of ~B
GC A small graph with C as the node set
EC Affinity matrix of graphGC
LC Graph Laplacian of graphGC
DC Degree matrix of graphGC
~vi The i-th eigenvector of graphGC
~�i The i-th eigenvalue of graphGC

Fig. 1. Comparison of the representatives produced by (a) random
selection, (b) k-means based selection, and (c) hybrid selection.
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These ensemble clustering algorithms have shown
their advantages in improving clustering accuracy and
robustness. However, due to the efficiency bottleneck,
most of them are not suitable for very large-scale applica-
tions. Recently some efforts have been made to (partially)
address the scalability problem for ensemble clustering.
To reduce the problem size, Huang et al. [11] exploited
the microcluster representation, which maps the N data
objects onto N 0 microclusters (N 0 � N). Then, the set of
microclusters are treated as the primitive objects, based
on which two novel algorithms, i.e., the probability trajec-
tory accumulation (PTA) and the probability trajectory
based graph partitioning (PTGP), are proposed. Wu et al.
[10] transformed the ensemble clustering problem into a
k-means based consensus clustering (KCC) framework,
which significantly facilitated the computation of the con-
sensus function. Liu et al. [15] proved that the spectral
clustering of the co-association matrix is equivalent to an
instance of weighted k-means clustering, and presented
the spectral ensemble clustering (SEC) algorithm. While
there are two phases in ensemble clustering (i.e., ensem-
ble generation and consensus function), these algorithms
[10], [11], [15] generally focus on the efficiency of the con-
sensus function. In ensemble generation, they mostly
exploited k-means to produce m base clusterings [10],
[11], [15]. Note that the time complexity of ensemble gen-
eration by k-means is OðNmdktÞ, which can still be com-
putationally expensive when dealing with very large-
scale datasets. Moreover, the performance of k-means
may significantly deteriorate when handling nonlinearly
separable datasets, which has a critical influence on the
robustness of the ensemble clustering algorithms. Unlike
the common practice that typically exploits multiple
k-means clusterers as base clusterers, the proposed U-
SENC algorithm integrates a diverse set of large-scale U-
SPEC clusterers into a highly efficient ensemble clustering
framework, which for the first time, to our knowledge,
simultaneously tackles the scalability and nonlinear sepa-
rability issues in both the ensemble generation and con-
sensus function phases in ensemble clustering.

3 PROPOSED FRAMEWORK

In this section, we describe the proposed U-SPEC and U-
SENC algorithms in Sections 3.1 and 3.2, respectively.

3.1 Ultra-Scalable Spectral Clustering (U-SPEC)
To deal with extremely large-scale datasets, the proposed U-
SPEC algorithm complies with the sub-matrix based formu-
lation [3], [4] and aims to break through the efficiency
bottleneck of previous algorithms via three phases. Specifi-
cally, in the first phase, we present a hybrid representative
selection strategy to strike a balance between the efficiency
of the random selection and the effectiveness of the k-means
based selection. In the second phase, we develop a coarse-
to-fine method to efficiently approximate the K-nearest rep-
resentatives for each data object, and construct a sparse
affinity sub-matrix between theN objects and the p represen-
tatives. In the third phase, the N � p sub-matrix is inter-
preted as a bipartite graph, which can be efficiently
partitioned to obtain the final clustering result. These three
phases of U-SPEC will be described in Sections 3.1.1, 3.1.2,
and 3.1.3, respectively.

3.1.1 Hybrid Representative Selection

Let X ¼ fx1; x2; � � � ; xNg denote a dataset with N objects,
where xi 2 Rd is the ith object and d is the dimension. To cap-
ture the relationship between all objects inX , anN �N affin-
ity matrix can be constructed in conventional spectral
clustering [2], which consumes OðN2dÞ time and OðN2Þ
memory and is not feasible for large-scale datasets. To avoid
the computation of the full affinity matrix, the sub-matrix
representation is often adopted in the literature of large-scale
spectral clustering [3], [4]. The sub-matrix representation
generally exploits a set of representatives to encode the over-
all structure of the dataset. These representatives play a cru-
cial role in the sub-matrix representation, and can be selected
by random selection [3] or k-means based selection [4].
Though the random selection strategy [3] is highly efficient,
it suffers from the inherent randomness and may lead to a
set of low-quality representatives (see Fig. 1a). To deal with
the instability of random selection, the k-means based selec-
tion [4] first groups the entire dataset into p clusters via
k-means and then uses the p cluster centers as the representa-
tives. However, the k-means based selection brings in an
extra time cost of OðNpdtÞ, which restricts its feasibility for
very large-scale datasets.

In this paper, we propose a hybrid representative selec-
tion strategy, which is designed to find a balance between
the efficiency of random selection and the effectiveness of
k-means based selection. The process of the hybrid represen-
tative selection strategy is illustrated in Fig. 2. Different from
the k-means based selection which attempts to cluster the
entire dataset even when the data size N is extremely large,
the proposed hybrid selection strategy first randomly sam-
ples a set of p0 candidate representatives such that p <
p0 � N . Then, upon the p0 candidates, we perform the
k-means method to obtain p clusters and exploit the p cluster
centers as the set of representatives. Empirically, the number
of candidates p0 is suggested to be several times larger than p,
e.g., p0 ¼ 10p, so as to provide enough candidates while still
keeping p0 much smaller than N in large-scale datasets. For-
mally, we denote the set of selected representatives as

R ¼ fr1; r2; � � � ; rpg; (1)

where ri is the ith representative inR.
By introducing an intermediate stage of random pre-sam-

pling, the computational complexity of the k-means based
selection is reduced from OðNpdtÞ to Oðp2dtÞ. As illustrated
in Fig. 1, the set of representatives produced by the hybrid
selection can better reflect the data distribution than the ran-
dom selection while requiring much less computational cost
than the k-means based selection. To discuss this in more
detail, quantitative evaluation of the performance of the

Fig. 2. Illustration of hybrid representative selection. (a) The dataset. (b)
Randomly select p0 candidates (p0 > p). (c) Obtain p representatives
from p0 candidates via k-means.
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proposed hybrid selection strategy against random selection
and k-means based selectionwill be provided in Section 4.6.

3.1.2 Approximation ofK-Nearest Representatives

With the p representatives obtained, the next objective is to
encode the pair-wise relationship of the entire dataset via
the small set of representatives.

In the sub-matrix formulation of the Nystr€om algorithm
[3], the construction of theN � p affinity sub-matrix between
objects and representatives takes OðNpdÞ time and OðNpÞ
memory, which is the main efficiency bottleneck of the over-
all algorithm [3]. Given a dataset with ten million objects
and a set of one thousand representatives, the storage of
theN � p sub-matrix alone takes 74.51 GB of memory, while
the later manipulations of the sub-matrix even require more
memory consumption. Cai and Chen [4] proposed to spar-
sify the N � p affinity matrix by K-nearest representatives
(with K � p), which, however, still requires the computa-
tion of all the distances between the N objects and the p rep-
resentatives. Moreover, besides the calculation of the total of
Np entries, the sparsification step also consumes OðNpKÞ
time [4].

Before introducing our facilitation strategy, we first inves-
tigate the characteristics of the sparse sub-matrix betweenN
objects and p representatives, where each object is only con-
nected to its K-nearest representatives. It is obvious that
there are K non-zero entries in each row of the matrix, and
NK non-zero entries in the entire matrix. Assume we have
p ¼ 1; 000 and K ¼ 5, the proportion of the non-zero entries
in thematrix will be 0.5 percent. However, to exactly identify
such a small proportion of useful entries viaK-nearest repre-
sentatives, the entire matrix should first be calculated, which
unfortunately consists of 99.5 percent of intermediate entries.
To break the efficiency bottleneck, the key problem here is
how to significantly reduce the calculation of these interme-
diate entries when building the sub-matrix with K-nearest
representatives.

In this section, our aim is to alleviate the computational
cost of the exact K-nearest representative calculation [4]
by designing a time- and memory-efficient approximation
method. Though the K-nearest representative approxima-
tion problem and the classical K-nearest neighbor (K-NN)
approximation problem [26], [27], [28] have some character-
istics in common, they are faced with very different compu-
tational issues in actual applications. Different from the
conventional K-NN approximation scenarios, which mostly
deal with a general graph with an N �N affinity matrix, our
aim here is to find the K-nearest representatives in a heavily
imbalanced bipartite graphwith anN � p affinity sub-matrix,
where p is generally far smaller than N . This imbalanced
nature is crucial to our K-nearest representative approxima-
tion problem. On the one hand, it makes the conventional
K-NN approximationmethods [26], [27], [28] (which are typi-
cally designed for general graphs with N �N affinity matri-
ces) inappropriate here. On the other hand, it may as well
contribute to the design of our K-nearest representative
approximation strategy. To take advantage of the imbalanced
structure, it is intuitive to pre-process the graph on the side of
the p representatives and minimize the computation on the
other side of the N objects.

In particular, we present a new K-nearest representative
approximation method based on the coarse-to-fine mecha-
nism, and build the sparse affinity sub-matrix with OðNp

1
2dÞ

complexity. The main idea of our K-nearest representative
approximation is to first find the nearest region, then find the
nearest representative (denoted as rl) in the nearest region,
and finally find the K-nearest representatives in the neigh-
borhood of rl. To efficiently implement the approximation,
two preprocessing steps are required, that is

� Pre-step 1. The set of representatives are grouped into
z1 rep-clusters via k-means (with z1 � p). The time
complexity is Oðpz1dtÞ.

� Pre-step 2. For each representative inR, itsK0-nearest
neighbors are computed and stored (with K0 > K).
The time complexity is Oðp2ðdþK0ÞÞ.

In pre-step 1, each rep-cluster consists of a certain num-
ber of representatives, and can be regarded as a local region
of the representative set (see Fig. 3b). Formally, the obtained
z1 rep-clusters are denoted as

RC ¼ frc1; rc2; � � � ; rcz1g; (2)

where rci is the ith rep-cluster in RC. Given an object xi 2 X
and a rep-cluster rcj 2 RC, their distance is defined as the
distance between xi and the center of rcj. That is

Distðxi; rcjÞ ¼ kxi � yjk; (3)

yj ¼ 1

jrcjj
X
rl2rcj

rl; (4)

where jrcjj denotes the number of representatives in the
rep-cluster rcj and kxi � yjk computes the euclidean dis-
tance between two vectors xi and yj.

With the distance between objects and rep-clusters
defined, for each object xi 2 X , we approximately find its
K-nearest representatives according to three main steps:

Step 1 Find the nearest rep-cluster of xi, denoted as rcj.
Step 2 Find the nearest representative of xi inside the rep-

cluster rcj, denoted as rl.
Step 3 Out of rl and its K0-nearest neighbors, find the

K-nearest representatives of xi.

More details are illustrated in Fig. 3. For a dataset with N
objects, the time cost of step 1 isOðNz1dÞ. The time cost of step

Fig. 3. Approximate K-nearest representatives. (a) The representative
set R and an object xi 2 X . (b) Partition the representatives into several
rep-clusters. (c) Compute the distances between xi and all the rep-
cluster centers. (d) Find the nearest rep-cluster rcj. (e) Compute the dis-
tances between xi and all the representatives in rcj. (f) Find the nearest
rl 2 rcj. (g) Compute the distances between xi and the representatives
in the K0-nearest neighborhood of rl (K

0 > K). (h) Obtain the approxi-
mateK-nearest representatives (K ¼ 3).
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2 is OðNz2dÞ ¼ OðNðp=z1ÞdÞ, where z2 ¼ p=z1 denotes the
average size of the rep-clusters. The time cost of step 3 is
OðNK0dþNK0KÞ. It is obvious that z1 þ p=z1 reaches itsmin-
imum when z1 ¼ z2 ¼ p

1
2. Thus, to minimize the cost, z1 ¼

bp1
2c is used in thiswork,where b�cdenotes the floor of a value.

The candidate neighborhood sizeK0 is suggested to be several
times larger thanK, which can be set toK0 ¼ 10K in practice.
Then, the total time complexity of the K-nearest representa-
tive approximation is OðNz1dþNðp=z1ÞdþNK0dþNK0KÞ,
which can be re-written as OðNðp12dþKdþK2ÞÞ. As K �
p � N , the dominant term in the complexity isOðNp

1
2dÞ.

With the K-nearest representatives of each object obta-
ined, a sparse N � p affinity sub-matrix can thereby be con-
structed. In this paper, the Gaussian kernel is used as the
similarity kernel. Thus the sparse affinity sub-matrix can be
represented as

B ¼ fbijgN�p; (5)

bij ¼ exp � kxi�rjk2
2s2

� �
; if rj 2 NKðxiÞ;

0; otherwise,

8<
: (6)

whereNKðxiÞ denotes the set ofK-nearest representatives of
xi and the kernel parameter s is set to the average euclidean
distance between the objects and theirK-nearest representa-
tives. Note that B is a sparse matrix which only containsNK
non-zero entries.

3.1.3 Bipartite Graph Partitioning

The affinity sub-matrix B reflects the relationship between
the objects in X and the representatives in R, which can be
naturally interpreted as a bipartite graph G ¼ fX ;R; Bg,
whereX [R is the node set andB is the cross-affinity matrix
(as shown in Fig. 4). By taking advantage of the bipartite
graph structure, the transfer cut [6] can thereby be used to
efficiently partition the graph and achieve the final clustering
result.

To start, if we view the graph G as a general graph with
N þ p nodes, then its full affinity matrix can be denoted as

E ¼ 0 B>

B 0

� �
: (7)

Spectral clustering seeks to partition the graph by solving
the following generalized eigen-problem [29]:

Lu ¼ gDu; (8)

where L ¼ D� E is the graph Laplacian and D 2 RðNþpÞ�

ðN þ pÞ is the degreematrix. By treatingG as a general graph,
it takes OððN þ pÞ3Þ time to solve the eigen-problem Eq. (8)
[30], which is not computationally feasible for very large-
scale datasets.

By exploiting the bipartite structure, we resort to the
transfer cut [6] to reduce the eigen-problem Eq. (8) on the
graph G (with N þ p nodes) to an eigen-problem on a much
smaller graph GR (with p nodes). Specifically, the graph GR
is constructed as GR ¼ fR; ERg, where R is the node set,
ER ¼ B>DX�1B is the affinity matrix (whose computation
takes OðNK2Þ time), and DX 2 RN�N is a diagonal matrix
with its ði; iÞth entry being the sum of the ith row of B. Let
LR ¼ DR � ER be the graph Laplacian, where DR 2 Rp�p

is the degree matrix of GR. Then, the generalized eigen-
problem on the graphGR can be represented as

LRv ¼ �DRv: (9)

It has been proved by Li et al. [6] that solving the eigen-
problem (8) on the graphG is equivalent to solving the eigen-
problem (9) on the graphGR. Let the first k eigen-pairs for the
eigen-problem (9) be denoted as fð�i; viÞgki¼1 with 0 ¼
�1 � �2 � � � � � �k < 1, and the first k eigen-pairs for the
eigen-problem (8) denoted as fðgi; uiÞgki¼1 with 0 ¼ g1 �
g2 � � � � � gk < 1. It has been shown that [6]

gið2� giÞ ¼ �i; (10)

ui ¼ hi

vi

� �
(11)

hi ¼ 1

1� gi

Tvi; (12)

where T ¼ D�1
X B is the transition probability matrix. It takes

Oðp3Þ time to compute the first k eigen-pairs for the eigen-
problem (9). As B is a sparse matrix with NK non-zero
entries, it takes OðNKÞ time to compute ui from vi according
to Eqs. (10), (11), and (12). Therefore, the total cost of com-
puting the first k eigenvectors for the eigen-problem (8) will
be OðNK2Þ þOðNKkÞ þOðp3Þ ¼ OðNKðK þ kÞ þ p3Þ.

With the eigen-problem solved, the obtained k eigenvec-
tors are stacked to form an ðN þ pÞ � k matrix. By treating
each row of this matrix as a new feature vector, the N rows
corresponding to theN original objects are used, uponwhich
the k-means discretization can be performed to obtain the
final clustering result with OðNk2tÞ time complexity.

3.1.4 Computational Complexity

In this section, we summarize the time and memory cost of
our U-SPEC algorithm.

The hybrid representative selection takes Oðp2dtÞ time.

The affinity construction takes OðNðp12dþKdþK2ÞÞ time.
The eigen-decomposition takesOðNKðK þ kÞ þ p3Þ time. The
k-means discretization takesOðNk2tÞ time.With consideration
to k;K � p � N , the overall time complexity of U-SPEC is
OðNðp12dþK2 þKkþKdþ k2tÞÞ, whereOðNp

1
2dÞ is the dom-

inant term. Table 2 provides a comparison of time complexity
of our U-SPEC algorithm against several other large-scale
spectral clustering algorithms.

Besides the time cost, the memory cost of U-SPEC can be
eitherOðNKÞ orOðNp

1
2Þ, which depends on the actual imple-

mentation of the K-nearest representative approximation.
As the K-nearest representative approximation for the N
objects are independent of each other, one strategy is to per-
form approximation for theN objects one after the other (i.e.,
in a serial processing manner), where the time cost is domi-
nated by the storage of the cross-affinity matrix with NK

Fig. 4. Illustration of the bipartite graphG.
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non-zero entries. Another strategy is to first construct an
affinity matrix between the N objects and the z1 ¼ bp12c rep-
cluster centers and then approximate the K-nearest repre-
sentatives for the N objects in a batch processing manner.
For somematrix-oriented software, such as MATLAB, it will
be much faster to perform the approximation in a batch proc-
essing manner (with optimized matrix computation) than in
a serial processing manner. To facilitate the matrix computa-
tion, our implementation of U-SPEC actually takes OðNp

1
2Þ

memory. Similarly, the LSC algorithm [4] also has a theoreti-
cally minimummemory cost ofOðNKÞ, but the implementa-
tion1 provided by the authors actually takes OðNpÞmemory,
which is also due to thematrix-computation consideration.

3.2 Ultra-Scalable Ensemble Clustering (U-SENC)
Starting from U-SPEC, this section proposes the U-SENC
algorithm to integrate multiple U-SPEC’s into a unified
ensemble clustering framework, aiming to further enhance
the clustering robustness while maintaining high efficiency.

3.2.1 Ensemble Generation via Multiple U-SPEC’s

Ensemble clustering has been a popular research topic in
recent years, due to its promising ability in enhancing clus-
tering robustness by incorporating multiple base clusterers
[10], [11], [12], [14], [15]. The general ensemble clustering
process consists of two phases. The first phase is the ensem-
ble generation, which involves producing a set of diverse
and high-quality base clusterings. The second phase is
the consensus function, which involves combining multiple
base clusterings into a better and more robust consensus
clustering.

In ensemble generation, the previous ensemble cluster-
ing algorithms mostly use the k-means method to generate
an ensemble of multiple base clusterings [10], [11], [12], [14],
[15]. Though k-means has the advantage of high efficiency,
it typically favors spherical distribution and lacks the ability
to properly partition nonlinearly separable datasets. Some
researchers have exploited the spectral clustering technique
in ensemble generation [31], [32], but the large computa-
tional cost of conventional spectral clustering significantly
restricts its feasibility for scalable applications.

To address this, we utilize multiple instances of U-SPEC
as the multiple base clusterers in our ensemble clustering
framework. To generate an ensemble ofm base clusterings, a
set of m U-SPEC clusterers are required, which are denoted
as U-SPEC1; U-SPEC2; � � � ; U-SPECm. The diversity which is
highly desired in ensemble generation is incorporated from
two aspects. First, the set of representatives for each base

clusterer is independently obtained by the hybrid selection
strategy. There are two components in hybrid selection, i.e.,
random pre-selection and k-means based post-selection,
both of which are non-deterministic and can bring in diver-
sity for the multiple base clusterers. Second, the number of
clusters for each base clustering is randomly selected to fur-
ther enhance the diversity. Formally, given the datasetX , the
set of p0 candidate representatives for the ith base clusterer
(i.e., U-SPECi) are randomly selected from X . Then the
k-means is used to partition the p0 candidates into p clusters.
After that, the p cluster centerswill be used as the set of p rep-
resentatives for U-SPECi, denoted as

Ri ¼ fri1; ri2; � � � ; ripg: (13)

With the representatives obtained, the sparse affinity sub-
matrix Bi for U-SPECi can be built between the dataset X
and the representative set Ri via fast approximation of
K-nearest representatives.

By treating X S Ri as the node set and Bi as the cross-
affinity matrix, the bipartite graph Gi is built and its first ki

eigenvectors are then computed via transfer cut [6]. Note
that the number of clusters ki is randomly selected as

ki ¼ btðkmax � kminÞc þ kmin; (14)

where t 2 ½0; 1� is a random variable and kmax and kmin are
respectively the upper bound and lower bound of the clus-
ter number. Then, the obtained ki eigenvectors are stacked
to form a new matrix, upon which the k-means is applied to
construct the base clustering result for U-SPECi. With the m
U-SPEC clusterers, the ensemble of m base clusterings can
be generated, which are represented as

P ¼ fp1;p2; � � � ;pmg; (15)

where pi denotes the ith base clustering.

3.2.2 Consensus Function with Bipartite Graph

Having obtained the set of multiple base clusterings, this
section presents the consensus function with bipartite graph
for obtaining the consensus clustering.

Each base clustering consists of a certain number of clus-
ters. For clarity, we denote the set of clusters in the ensem-
ble ofm base clusterings as

C ¼ fC1; C2; � � � ; Ckcg; (16)

where Ci is the ith cluster and kc is the total number of clus-
ters in P. It is obvious that kc ¼

Pm
i¼1 k

i.
By treating both objects and clusters as graph nodes, the

bipartite graph for the ensemble P is defined as

~G ¼ fX ; C; ~Bg; (17)

where X S C is the node set and ~B is the cross-affinity
matrix. In this bipartite graph, a (non-zero) edge exists
between two nodes if and only if one node is an object and
the other one is the cluster that contains it. Formally, the
cross-affinity matrix is constructed as follows:

~B ¼ f~bijgN�kc
; (18)

~bij ¼ 1; if xi 2 Cj;
0; otherwise.

�
(19)

TABLE 2
Comparison of the Time Complexity of

Several Large-Scale Spectral Clustering Methods

Method Representative
selection

Affinity
construction

Eigen-
decomposition

Nystr€om [3] / OðNpdÞ OðNpþ p3Þ
LSC-R [4] / OðNpdÞ OðNp2 þ p3Þ
LSC-K [4] OðNpdtÞ OðNpdÞ OðNp2 þ p3Þ
U-SPEC Oðp2dtÞ OðNp

1
2dÞ OðNKðK þ kÞ þ p3Þ

* The final k-means discretization is OðNk2tÞ for each method.

1. www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
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Inside the same base clustering, there is no intersection
between two different clusters, i.e., 8i0 6¼ j0, if Ci0 2 pi and
Cj0 2 pi, then Ci0

T
Cj0 ¼ ;. Obviously, each object belongs

to one and only one cluster in each base clustering, and thus
each object belongs exactly to m clusters in the ensemble of
m base clusterings. Therefore, there are exactly m non-zero
entries in each row of ~B. Although the cross-affinity matrix
~B is an N � kc matrix, it can be stored as a sparse matrix
with OðNmÞ memory, which corresponds to the exactly Nm
non-zero entries in ~B. Besides the memory cost, the time
cost of constructing the sparse matrix ~B is OðNmÞ.

As shown in Section 3.1.3, solving the eigen-problem for
the bipartite graph ~G can be equivalent to solving the eigen-
problem for a much smaller graph GC ¼ fC; ECg, that is

LC~v ¼ ~�DC~v; (20)

where EC ¼ ~B> ~DX
�1 ~B is the affinity matrix, ~DX 2 RN�N is a

diagonal matrix with its ði; iÞth entry being the sum of the ith
row of ~B, LC ¼ DC � EC is the graph Laplacian, and DC 2
Rkc�kc is the degreematrix ofGC.

Let ~v1; ~v2; � � � ; ~vk denote the first k eigenvectors for the
eigen-problem Eq. (20), which can be computed with a time
cost of Oðkc3Þ. Based on the k eigenvectors for GC, the first k
eigenvectors (denoted as ~u1; ~u2; � � � ; ~uk) for the bipartite
graph ~G can be computed with OðNmðmþ kÞÞ time (see
Eqs. (10), (11), and (12)). Finally, by stacking the k eigenvec-
tors to form a new matrix, the consensus clustering result in
U-SENC can be obtained by k-means discretization with
OðNk2tÞ time.

3.2.3 Computational Complexity

This section summarizes the time and memory cost of the
proposed U-SENC algorithm.

The ensemble generation of the U-SENC algorithm takes
OðNmðp12dþK2 þKkþKdþ k2tÞÞ time. The consensus
function of U-SENC takes OðNðm2 þmkþ k2tÞ þ kc

3Þ time.
With consideration to m; k;K � p � N , the dominant term
of the overall time complexity of U-SENC is OðNmp

1
2dÞ.

Meanwhile, the memory costs of the ensemble generation
and the consensus function of our U-SENC algorithm are
respectively OðNp

1
2Þ and OðNmÞ.

4 EXPERIMENTS

In this section, we conduct experiments on a variety of real
and synthetic datasets to compare the proposed U-SPEC and
U-SENC algorithms against several state-of-the-art spectral
clustering and ensemble clustering algorithms.

All experiments are conducted in Matlab 2016b on a PC
with an Intel i5-6600 CPU and 64 GB of RAM.

4.1 Datasets and Evaluation Measures
Our experiments are conducted on ten large-scale datasets
(including five real datasets and five synthetic datasets),
whose data sizes range from ten thousand to as large as
twenty million. Specifically, the five real datasets are PenDi-
gits [33], USPS [34], Letters [33], MNIST [34], and Covertype
[33]. The five synthetic datasets are Two Bananas-1M (TB-
1M), Smiling Face-2M (SF-2M), Concentric Circles-5M (CC-
5M), Circles and Gaussians-10M (CG-10M), and Flower-20M.
The details of the datasets are provided in Table 3 and Fig. 5.

To evaluate the clustering results by different algorithms,
two widely used evaluation measures are adopted, namely,
normalized mutual information (NMI) [18] and clustering
accuracy (CA) [35]. To rule out the factor of getting lucky occa-
sionally, in each experiment, every test method will be con-
ducted 20 times and their average NMI, CA, and time costs
will be reported. Note that larger values ofNMI andCA indi-
cate better clustering results.

4.2 Baseline Methods and Experimental Settings
In the experiments, we first compare our algorithms against
the classical k-means algorithm [36] as well as seven spectral
clustering algorithms (including the original algorithm and
six large-scale algorithms). The baseline spectral clustering
algorithms are listed as follows:

1) SC [2]: original spectral clustering.
2) ESCG [37]: efficient spectral clustering on graphs.
3) Nystr€om [3]: Nystr€om spectral clustering.
4) LSC-K [4]: landmark based spectral clustering using

k-means based landmark selection.
5) LSC-R [4]: landmark based spectral clustering using

random landmark selection.
6) FastESC [5]: fast explicit spectral clustering.
7) EulerSC [7]: Euler spectral clustering.
Besides these large-scale spectral clustering algorithms,

we also compare our algorithms against seven ensemble
clustering algorithms, which are listed as follows:

1) EAC [8]: evidence accumulation clustering.
2) WCT [9]: weighted connected triple method.

TABLE 3
Description of the Real and Synthetic Datasets

Dataset #Object Dimension #Class

Real

PenDigits 10,992 16 10
USPS 11,000 256 10
Letters 20,000 16 26
MNIST 70,000 784 10
Covertype 581,012 54 7

Synthetic

TB-1M 1,000,000 2 2
SF-2M 2,000,000 2 4
CC-5M 5,000,000 2 3
CG-10M 10,000,000 2 11

Flower-20M 20,000,000 2 13

Fig. 5. Illustration of the five synthetic datasets. Note that only a 0.1 percent
subset of each dataset is plotted.
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3) KCC [10]: k-means based consensus clustering.
4) PTGP [11]: probability trajectory based graph

partitioning.
5) ECC [14]: entropy based consensus clustering.
6) SEC [15]: spectral ensemble clustering.
7) LWGP [12]: locally weighted graph partitioning.
There are several common parameters among the above-

mentioned algorithms. In our experiments, we comply with
the following experimental settings:

� The SC and ESCG methods need to take the N �N
affinity matrix as input. The affinity matrix is con-
structed using the same Gaussian kernel as Eq. (6)
withK-nearest neighbors.

� The U-SPEC, U-SENC, Nystr€om, LSC-K, and LSC-R
methods have a common parameter p. In the experi-
ments, p ¼ 1000 is used for these methods. Their per-
formances with varying p will be further evaluated
in Section 4.5.1.

� The U-SPEC, U-SENC, LSC-K, and LSC-R methods
have a common parameter K. In the experiments,
K ¼ 5 is used. Their performances with varying K
will be further evaluated in Section 4.5.2.

� For the seven ensemble clustering methods, the
base clusterings are generated by k-means as sug-
gested by their papers [8], [9], [10], [11], [12], [14],
[15]. The number of clusters in each base clustering
is randomly selected in [20,60]. The number of
base clusterings, i.e., m, is set to 20. Their perform-
ances with varying m will be further evaluated in
Section 4.5.3.

� The true number of classes on each dataset is used as
the number of clusters for all the test methods.

� Besides these common parameters, the other param-
eters in the baseline methods will be set as suggested
by the corresponding papers.

4.3 Comparison with Spectral Clustering Methods
In this section, we compare our U-SPEC and U-SENC
algorithms with several state-of-the-art large-scale spectral
clustering algorithms.

As the data sizes range from ten thousand to twenty mil-
lion, most of the baseline algorithms are not computationally
feasible for ten-million-level datasets. Specifically, we use
N/A to indicate the out-of-memory error in the results. As

TABLE 4
Average NMI (%) Scores (over 20 Runs) by Our Methods and the Baseline Spectral Clustering Methods

(The Best Score in Each Row is in Bold)

Dataset k-means SC ESCG Nystr€om LSC-K LSC-R FastESC EulerSC U-SPEC U-SENC

PenDigits 66.66	1:76 59.36	0:00 76.41	2:26 65.67	1:16 79.73	2:09 78.13	2:20 65.31	0:71 58.59	0:73 80.30	2:18 85.34	0:91

USPS 44.11	1:24 63.44	0:01 48.41	3:53 44.91	1:28 66.86	1:58 58.64	1:31 41.36	1:80 40.31	1:91 63.47	0:97 73.89	1:82

Letters 34.86	0:60 10.43	0:50 35.80	1:72 39.02	0:83 43.41	0:81 40.98	0:93 35.92	1:41 31.76	0:92 42.53	1:32 45.90	0:58

MNIST 48.91	2:00 74.07	0:00 55.75	4:62 47.78	1:17 73.97	1:46 62.16	2:22 43.44	1:85 8.93	1:22 67.43	1:55 75.02	0:81

Covertype 6.17	0:00 N/A N/A 6.93	0:07 6.75	0:10 6.69	0:12 9.15	1:00 0.01	0:00 6.97	0:16 9.13	1:21

TB-1M 25.71	0:00 N/A N/A 24.06	0:01 0.10	0:11 0.20	0:24 24.01	2:72 25.94	0:01 95.86	0:48 97.48	0:05

SF-2M 47.34	0:23 N/A N/A 46.66	0:02 66.45	6:15 58.34	6:92 52.03	0:95 47.35	2:19 75.59	2:12 77.02	2:32

CC-5M 0.00	0:00 N/A N/A N/A N/A N/A N/A 0.00	0:00 99.87	0:01 99.91	0:00

CG-10M 63.20	1:59 N/A N/A N/A N/A N/A N/A 16.19	0:21 78.82	1:61 89.57	3:96

Flower-20M 64.19	2:56 N/A N/A N/A N/A N/A N/A 26.61	0:86 86.86	2:05 92.47	2:45

Avg. score - N/A N/A N/A N/A N/A N/A 25.57 69.77 74.57
N-Avg. score - N/A N/A N/A N/A N/A N/A 33.94 91.71 99.98

Avg. rank - 5.90 6.00 5.20 3.70 4.60 5.20 6.00 2.50 1.10

* Note that N/A indicates the out-of-memory error.
** The k-means method is listed for reference only; it doesn’t participate in the comparison of the spectral methods.

TABLE 5
Average CA (%) Scores (over 20 Runs) by Our Methods and the Baseline Spectral Clustering Methods

(The Best Score in Each Row is in Bold)

Dataset k-means SC ESCG Nystr€om LSC-K LSC-R FastESC EulerSC U-SPEC U-SENC

PenDigits 71.57	3:12 56.44	0:00 77.21	3:81 71.13	2:07 83.07	3:21 81.82	3:17 69.97	1:15 65.85	1:87 84.17	3:26 88.56	0:61

USPS 47.25	2:57 62.74	0:02 53.47	3:94 51.09	1:93 68.42	2:39 60.78	2:18 48.80	1:76 47.79	2:41 63.76	1:35 78.17	3:05

Letters 28.15	0:97 12.42	0:46 30.37	1:75 32.05	0:91 35.45	1:34 33.86	1:13 29.32	1:51 28.08	1:44 35.71	1:47 37.74	1:06

MNIST 58.48	2:67 74.46	0:00 63.32	4:64 59.72	1:75 79.45	1:02 69.24	2:75 55.93	2:41 24.06	1:53 74.31	2:28 80.58	1:75

Covertype 49.05	0:00 N/A N/A 49.21	0:11 49.45	0:16 49.32	0:25 48.88	0:18 48.76	0:00 49.76	0:35 50.73	0:62

TB-1M 78.93	0:00 N/A N/A 78.04	0:01 51.54	1:13 52.09	1:58 77.97	1:52 79.04	0:00 99.55	0:06 99.75	0:01

SF-2M 74.33	2:14 N/A N/A 69.58	0:05 85.34	5:70 78.26	7:43 74.13	0:32 76.93	2:17 93.60	1:00 93.46	2:27

CC-5M 52.96	0:00 N/A N/A N/A N/A N/A N/A 52.96	0:00 99.99	0:00 99.99	0:00

CG-10M 63.14	2:42 N/A N/A N/A N/A N/A N/A 32.81	0:67 81.32	2:00 93.99	3:25

Flower-20M 60.85	3:33 N/A N/A N/A N/A N/A N/A 33.75	0:56 88.89	2:85 93.79	3:21

Avg. score - N/A N/A N/A N/A N/A N/A 49.00 77.11 81.68

N-Avg. score - N/A N/A N/A N/A N/A N/A 62.12 94.26 99.99

Avg. rank - 6.10 5.90 5.30 3.50 4.40 5.90 5.80 2.10 1.10
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shown in Tables 4 and 5, the SC and ESCG methods are not
able to handle the datasets large thanMNIST (which consists
of 70,000 objects), due to the memory consumption of con-
structing and manipulating the N �N affinity matrix. The
Nystr€om, LSC-K, LSC-R, and FastESC methods can at most
partition a dataset with two million objects, and cannot deal
with datasets larger than that. Out of the total of nine spectral
clustering methods, only three methods (i.e., U-SPEC, U-
SENC, and EulerSC) can deal with all of the benchmark data-
sets. As shown in Tables 4 and 5, our U-SENC and U-SPEC
methods achieve the best and the second best scores, respec-
tively, onmost of the ten benchmark datasets.

In Tables 4 and 5, we also provide the average score, nor-
malized average score (N-Avg. score), and average rank of
eachmethod across the ten datasets. To obtain the normalized
average score, the scores in each row will first be divided by
the maximum score in this row, where it is obvious that the
maximum score will become 100 percent. Then we take the
average of these normalized rows as the normalized average
score. Note that if a baseline method cannot process all the
datasets, it will not have the average score and normalized
average score information, but it will still have the average
rank information. For example, if only three methods are effi-
cient enough to process the CC-5M dataset, then all the other
infeasible methods will be treated as equally ranked in the
fourth position on this dataset. As shown in Tables 4 and 5,
our U-SENC method ranks in the first position on nine out of
the ten datasets, and achieves an average rank of 1.10 w.r.t.
both NMI and CA. Our U-SPEC method achieves an average

rank of 2.40 w.r.t. NMI and 2.00 w.r.t. CA. In terms of average
score and normalized average score, ourU-SENC andU-SPEC
methods also significantly outperform the othermethods.

Table 6 reports the time costs of different methods on
the benchmark datasets. The U-SPEC shows superior effi-
ciency on most of the datasets, especially on the datasets
larger than one million. The U-SENC requires a larger time
cost than U-SPEC, but it still provides better scalability
than most of the baseline methods and scales well for ten-
million-level datasets due to its memory efficiency. As U-
SENC is a spectral clustering algorithm and also an ensem-
ble clustering algorithm, in the following, we will further
compare it with other state-of-the-art ensemble clustering
algorithms.

4.4 Comparison with Ensemble Clustering Methods
In this section, we compare our algorithms with several
state-of-the-art ensemble clustering algorithms.

Note that U-SPEC is not an ensemble clustering algo-
rithm; its clustering results are provided in Tables 7, 8, and
9 for reference only. As shown in Tables 7 and 8, our U-
SENC algorithm obtains the highest NMI and CA scores on
all of the ten datasets. In terms of average score across the
ten datasets, U-SENC achieves the best average NMI(%)
and CA(%) scores of 74.57 and 81.68, respectively while the
second best ensemble clustering method (i.e., LWGP) only
achieves average NMI(%) and CA(%) scores of 66.62 and
74.49, respectively. Similar advantages of U-SENC can also
be observed in the normalized average scores. In terms of

TABLE 6
Time Costs(s) of Our Methods and the Baseline Spectral Clustering Methods

Dataset k-means SC ESCG Nystr€om LSC-K LSC-R FastESC EulerSC U-SPEC U-SENC

PenDigits 0.06 7.37 1.63 1.98 1.25 0.49 0.73 1.47 1.01 19.13
USPS 0.32 9.56 9.63 1.92 1.70 0.75 0.94 8.20 1.59 29.17
Letters 0.72 3.85 7.74 2.69 3.89 2.88 1.86 23.39 1.44 21.44
MNIST 8.79 1,231.68 1,211.54 6.40 16.51 6.38 3.82 125.35 7.48 131.60
Covertype 13.19 N/A N/A 33.11 101.12 53.46 19.55 116.96 14.08 174.49
TB-1M 3.25 N/A N/A 105.15 109.23 35.92 21.79 6.27 10.47 318.29
SF-2M 31.26 N/A N/A 226.77 254.98 102.55 51.07 80.44 27.06 658.82
CC-5M 94.76 N/A N/A N/A N/A N/A N/A 132.35 46.65 1,726.40
CG-10M 281.84 N/A N/A N/A N/A N/A N/A 963.29 318.93 3,603.08
Flower-20M 579.06 N/A N/A N/A N/A N/A N/A 3,397.57 764.09 7,225.83

TABLE 7
Average NMI (%) Scores (over 20 Runs) by Our Methods and the Baseline Ensemble Clustering Methods

(The Best Score in Each Row is in Bold)

Dataset U-SPEC EAC WCT KCC PTGP ECC SEC LWGP U-SENC

PenDigits 80.30	2:18 76.31	2:70 77.69	2:54 58.92	3:47 75.58	2:26 57.64	4:14 47.07	7:53 77.54	1:87 85.34	0:91

USPS 63.47	0:97 59.02	1:69 58.40	2:15 49.24	2:98 59.63	1:76 48.89	1:80 39.00	3:83 57.55	1:78 73.89	1:82

Letters 42.53	1:32 37.19	0:50 36.59	0:95 33.64	1:03 38.09	0:66 34.59	0:68 31.81	2:01 37.09	0:75 45.90	0:58

MNIST 67.43	1:55 66.19	1:49 65.60	0:96 54.34	3:38 59.93	2:23 56.01	2:25 34.19	4:61 65.06	0:95 75.02	0:81

Covertype 6.97	0:16 N/A N/A 5.86	1:84 6.42	0:44 5.70	0:77 5.26	2:82 7.44	0:31 9.13	1:21

TB-1M 95.86	0:48 N/A N/A 23.36	1:62 34.20	2:51 26.91	2:13 10.62	4:64 96.80	1:90 97.48	0:05

SF-2M 75.59	2:12 N/A N/A 42.72	7:11 45.17	2:66 41.61	6:01 27.05	7:73 69.88	4:45 77.02	2:32

CC-5M 99.87	0:01 N/A N/A 33.36	12:65 0.41	0:86 31.62	14:99 17.05	6:90 98.18	7:75 99.91	0:00

CG-10M 78.82	1:61 N/A N/A 64.78	5:08 63.75	0:61 62.79	4:91 49.70	6:08 78.08	2:43 89.57	3:96

Flower-20M 86.86	2:05 N/A N/A 61.18	2:43 67.92	1:99 60.61	2:37 50.37	6:32 78.55	2:31 92.47	2:45

Avg. score - N/A N/A 42.74 45.11 42.64 31.21 66.62 74.57

N-Avg. score - N/A N/A 59.69 64.12 59.51 45.35 87.82 100.00

Avg. rank - 5.40 5.60 4.90 3.60 5.40 6.70 2.80 1.00

* The U-SPEC is listed for reference only; it doesn’t participate in the comparison of the ensemble methods.
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average rank, U-SENC obtains an average rank of 1.00 w.r.t.
both NMI and CA, while the second best method obtains an
average rank of 2.80 w.r.t. NMI and 2.90 w.r.t. CA.

In Table 9, the time costs of different ensemble clustering
methods are provided. As can be seen in Table 9, the proposed
U-SENC method has shown its advantage in efficiency over
the other ensemble clustering methods, especially on the
large-scale datasets whose data sizes go beyondmillions.

4.5 Parameters Analysis
In this section, we evaluate the performances of our algo-
rithms and several baseline algorithms with varying param-
eters. Because some important baseline methods (such
as Nystr€om, LSC-K, and LSC-R) can not go beyond two-
million-level datasets, in order to fairly test the influence of
some common parameters among them, we perform the
parameter analysis on four benchmark datasets, namely,
MNIST, Covertype, TB-1M, and SF-2M, which are the largest
four datasets whose sizes are no larger than two million.

4.5.1 Number of Representatives p

The parameter p denotes the number of representatives (or
landmarks), which is a common parameter in the sub-
matrix based spectral clustering methods, such as Nystr€om,
LSC-K, LSC-R, and our U-SPEC and U-SENC methods. As
can be seen in Table 10, a larger p generally leads to better
performance, but also brings in an increasing time cost. In
terms of NMI and CA, our U-SENC method consistently
outperforms the other methods with varying parameter p

on all of the four datasets. The LSC-K outperforms U-SPEC
on the MNIST dataset. But on all the other three datasets, U-
SPEC achieves better or significantly better NMI and CA
scores than LSC-K. In terms of computational cost, the LSC-

TABLE 8
Average CA (%) Scores (over 20 Runs) by Our Methods and the Baseline Ensemble Clustering Methods

(The Best Score in Each Row is in Bold)

Dataset U-SPEC EAC WCT KCC PTGP ECC SEC LWGP U-SENC

PenDigits 84.17	3:26 81.04	4:02 82.97	3:17 63.33	4:06 78.33	2:91 62.36	4:12 51.60	5:93 81.96	2:77 88.56	0:61

USPS 63.76	1:35 63.39	2:76 62.72	3:14 53.46	3:51 62.68	1:92 53.67	2:21 45.38	3:20 59.73	3:30 78.17	3:05

Letters 35.71	1:47 30.28	0:58 30.17	1:01 26.90	1:23 31.50	0:89 27.53	0:72 26.12	1:93 30.76	0:84 37.74	1:06

MNIST 74.31	2:28 73.12	2:73 70.73	1:76 59.86	5:11 65.06	2:75 61.18	3:58 43.13	4:88 71.98	1:67 80.58	1:75

Covertype 49.76	0:35 N/A N/A 49.54	0:58 49.11	0:30 49.68	0:40 49.86	0:94 49.50	0:28 50.73	0:62

TB-1M 99.55	0:06 N/A N/A 70.05	1:21 82.94	1:08 72.50	1:48 60.12	3:64 99.65	0:31 99.75	0:01

SF-2M 93.60	1:00 N/A N/A 67.12	5:41 73.46	1:76 66.90	6:15 55.91	5:71 88.71	3:28 93.46	2:27

CC-5M 99.99	0:00 N/A N/A 66.76	6:24 52.96	0:00 62.71	5:38 61.91	5:49 99.30	3:07 99.99	0:00

CG-10M 81.32	2:00 N/A N/A 66.96	5:60 63.36	1:26 64.74	6:80 58.19	4:69 81.95	3:93 93.99	3:25

Flower-20M 88.89	2:85 N/A N/A 57.78	3:37 63.83	2:34 56.69	2:35 50.70	5:02 81.37	2:69 93.79	3:21

Avg. score - N/A N/A 58.18 62.32 57.80 50.29 74.49 81.68
N-Avg. score - N/A N/A 72.48 77.98 72.22 63.53 90.54 100.00

Avg. rank - 5.40 5.60 5.00 4.20 5.00 6.30 2.90 1.00

TABLE 9
Time Costs(s) of Our Methods and the Baseline Ensemble Clustering Methods

Dataset U-SPEC EAC WCT KCC PTGP ECC SEC LWGP U-SENC

PenDigits 1.01 8.89 47.01 8.97 11.94 13.56 5.27 5.46 19.13
USPS 1.59 13.11 48.45 15.87 59.71 23.53 10.15 10.25 29.17
Letters 1.44 29.60 177.11 33.91 137.46 53.04 16.06 15.58 21.44
MNIST 7.48 576.71 3,435.19 315.58 2,205.18 417.10 260.96 259.91 131.60
Covertype 14.08 N/A N/A 954.89 7,919.02 1,482.43 712.84 685.89 174.49
TB-1M 10.47 N/A N/A 1,308.54 1,276.82 2,100.02 1,000.30 989.10 318.29
SF-2M 27.06 N/A N/A 2,908.34 2,493.99 4,714.16 2,160.46 2,105.82 658.82
CC-5M 46.65 N/A N/A 6,833.38 5,027.91 11,202.43 5,130.84 5,070.21 1,726.40
CG-10M 318.93 N/A N/A 17,344.29 11,578.11 27,492.40 10,938.88 10,700.38 3,603.08
Flower-20M 764.09 N/A N/A 34,869.83 21,198.87 54,913.10 21,696.29 21,378.63 7,225.83

TABLE 10
Average NMI (%), CA (%), and Time Costs(s) over 20 Runs by
Different Methods with Varying Number of Representatives p

* On the SF-2M dataset, LSC-K cannot handle 
 1400 representatives (or
landmarks), while Nystr€om cannot handle 
 1200 representatives (or land-
marks), due to the memory bottleneck.
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K and Nystr€om methods cannot deal with p 
 1; 400 repre-
sentatives on the SF-2M dataset with two million objects.
On the benchmark datasets, U-SPEC is overall the fastest
method with varying parameter p (as shown in Table 10).

4.5.2 Number of Nearest RepresentativesK

The parameter K denotes the number of nearest representa-
tives (or landmarks), which is a common parameter in LSC-
K, LSC-R, and our U-SPEC and U-SENC methods. Note that
the Nystr€om method doesn’t have such a parameter K, but
we still illustrate the performance of Nystr€om in Table 11
just to use Nystr€om as a benchmark here. As illustrated in
Table 11, on the MNIST dataset, U-SENC and LSC-K are
respectively the best and the second best methodsw.r.t. NMI
and CA, while U-SPEC is the third best method. On all of the
other three benchmark datasets, U-SENC and U-SPEC are
overall the best two methods w.r.t. both NMI and CA with
varying parameterK (as shown in Table 11).

4.5.3 Ensemble Sizem

The parameter m denotes the number of base clusterings,
which is a common parameter in all of the ensemble
clustering methods, including U-SENC as well as the
baseline ensemble clustering methods. Note that U-SPEC
is not an ensemble clustering method and doesn’t have
the parameter m, but we still illustrate the performance
of U-SPEC in Table 12 for reference only. As shown in
Table 12, U-SENC outperforms, or even significantly out-
performs, the other ensemble clustering methods w.r.t.
both NMI and CA on the benchmark datasets with vary-
ing ensemble size m. Meanwhile, U-SENC consistently
requires a lower computational cost than the other
ensemble clustering methods.

4.6 Influence of Representative Selection Strategies
In this section, we compare the performances of our
algorithms using different representative selection strate-
gies. Specifically, Table 13 illustrates the performances of
U-SPEC using hybrid selection (U-SPEC-H), U-SPEC using
random selection (U-SPEC-R), and U-SPEC using k-means
based selection (U-SPEC-K), whereas Table 14 illustrates the
performances of U-SENC using hybrid selection (U-SENC-

TABLE 11
Average NMI (%), CA (%), and Time Costs(s) over

20 Runs by Different Methods with Varying
Number of Nearest RepresentativesK

TABLE 12
Average NMI (%), CA (%), and Time Costs(s) over 20 Runs by

Different Methods with Varying Ensemble sizem

TABLE 13
TheNMI (%), CA (%), and TimeZcosts(s) by U-SPECUsing
Different Representative Selection Strategies (H: Hybrid

Selection;R: RandomSelection;K:K-means BasedSelection)

TABLE 14
The NMI (%), CA (%), and Time Costs(s) by U-SENC Using
Different Representative Selection Strategies (H: Hybrid

Selection; R: Random Selection; K:K-means Based Selection)
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H), U-SENC using random selection (U-SENC-R), and U-
SENCusing k-means based selection (U-SENC-K). As shown
in Tables 13 and 14, the random representative selection is
very efficient compared to k-means based selection, but
may degrade the clustering quality due to its inherent
instability. The k-means based selection generally leads to
better clustering quality than random selection, but brings
in a much larger computational cost. Compared to ran-
dom selection and k-means based selection, our hybrid
selection strategy strikes a balance between efficiency and
clustering robustness. It achieves comparable efficiency to
the random selection and significantly better efficiency
than the k-means based selection, and also yields compet-
itive clustering quality as compared to the k-means based
selection.

4.7 Influence of ApproximateK-Nearest Neighbors
In this section, we compare our algorithms using Approxi-
mate K-nearest representatives against using Exact K-near-
est representatives, where four variants are evaluated, i.e.,
U-SPEC(A), U-SPEC(E), U-SENC(A), and U-SENC(E). The
purpose of using approximate K-nearest representatives
(see Section 3.1.2) is to alleviate the time and memory
cost of the affinity sub-matrix construction while main-
taining the overall clustering quality. As shown in
Tables 15 and 16, using approximate K-nearest represen-
tatives can achieve comparable clustering quality (w.r.t.
NMI and CA) with using exact K-nearest representatives
while alleviating the computational cost. As our approxi-
mation of K-nearest representatives reduces the time
complexity from OðNpdÞ to OðNp

1
2dÞ, the improvement in

efficiency is more significant for high-dimensional data-
sets, such as the MNIST dataset, whose dimension is 784.
Even for the low-dimensional datasets, such as TB-1M
and SF-2M, the use of approximate K-nearest representa-
tives can still consistently reduce the time cost. Besides
the time efficiency, the approximate K-nearest representa-
tives also alleviate the memory burden. Specifically, on a
machine with 64 GB memory, the computation of conven-
tional K-nearest representatives can hardly go beyond
five million objects, whereas the proposed approximation
method for K-nearest representatives can scale well for
even ten-million-level datasets.

5 CONCLUSION

This paper proposes two large-scale clustering algorithms,
termed ultra-scalable spectral clustering and ultra-scalable
ensemble clustering, respectively. In U-SPEC, a new hybrid
representative selection strategy is designed to strike a bal-
ance between the efficiency of random selection and the
effectiveness of k-means based selection. Then a new approx-
imationmethod forK-nearest representatives is presented to
efficiently construct a bipartite graph between the original
data objects and the set of representatives, upon which the
transfer cut can be utilized to obtain the clustering result.
Starting from the U-SPEC algorithm, we further integrate
multiple U-SPEC clusterers into a unified ensemble cluster-
ing framework and propose the U-SENC algorithm. Specifi-
cally, multiple U-SPEC’s are exploited in the ensemble
generation phase to produce an ensemble of diverse and
high-quality base clusterings. The multiple base clusterings
are incorporated into a new bipartite graph, which treats
both objects and base clusters as graph nodes and is then effi-
ciently partitioned to achieve the final consensus clustering.
Extensive experiments have been conducted on ten large-
scale datasets, which demonstrate the scalability and robust-
ness of our algorithms.
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