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Cross-domain Sentiment Encoding through
Stochastic Word Embedding

Yanbin Hao, Tingting Mu, Member, IEEE, Richang Hong, Member, IEEE,
Meng Wang, Senior Member, IEEE, Xueliang Liu, John Y. Goulermas, Senior Member, IEEE

Abstract—Sentiment analysis is an important topic concerning identification of feelings, attitudes, emotions and opinions from text. To
automate such analysis, a large amount of example text needs to be manually annotated for model training. This is laborious and
expensive, but the cross-domain technique is a key solution to reducing the cost by reusing annotated reviews across domains.
However, its success largely relies on the learning of a robust common representation space across domains. In the recent years,
significant effort has been invested to improve the cross-domain representation learning by designing increasingly more complex and
elaborate model inputs and architectures. We support that it is not necessary to increase design complexity as this inevitably consumes
more time in model training. Instead, we propose to explore the word polarity and occurrence information through a simple mapping
and encode such information more accurately whilst managing lower computational costs. The proposed approach is unique and takes
advantage of the stochastic embedding technique to tackle cross-domain sentiment alignment. Its effectiveness is benchmarked with
over ten data tasks constructed from two review corpora and it is compared against ten classical and state-of-the-art methods.

Index Terms—Cross domain, sentiment classification, word/document embedding, similarity matrix, stochastic neighbor embedding.
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1 INTRODUCTION

Sentiment classification plays a significant role in many
applications related to opinion mining and sentiment analy-
sis [1], such as opinion extraction and summarization [2],
[3], review spam identification [4], user feeling analysis
[5], contextual advertising [6], etc. The goal of sentiment
classification is to automatically identify the sentiment po-
larity of a given text object, for instance, in terms of being
positive, negative or neutral. Typical examples of such text
objects include product reviews, which are generated by
movie viewers, hotel customers, merchandise buyers, etc.
The emotional tendency modeled through identifying sen-
timent polarity of the reviews can serve as a succinct yet
informative indicator of the consumer attitude and opinion.
This can potentially result in not only improved efficiency
in the information sharing between the users, but also
improved business solutions and services.

Focusing on reviews of a target product, a standard
sentiment classifier can be built by training with a set of
annotated example reviews of this product. Here, annota-
tion refers to the process of assigning each review example
a ground-truth sentiment polarity label. The sentiment po-
larities of new reviews for the same product can then be
predicted by this trained classifier [7], [8]. Performance of
such a system heavily relies on the availability and quality
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of the labeled example reviews. However, the process of
manually annotating explosively growing online product
reviews is very expensive and can be impractical. Therefore,
there has been increasing interest on studying effective ways
of reusing labeled reviews across different products. This
is known as cross-domain sentiment classification, where
a domain is referred to as a collection of reviews for a
particular product.

A straightforward baseline approach for cross-domain
sentiment classification is to directly apply a classifier
trained using the labeled reviews of other products (source
domain) to classify reviews of the target product (target
domain), through comparing the words contained by the
reviews (e.g., the bag-of-word features). Such an approach
though, does not consider the fact that different sets of
words can be used to express sentiment for different types
of products. For example, people often use “excellent”,
“thrilling” and “boring” to express their opinions for books,
while use “compact”, “blurry” and “sharp” for electronics.
Because of this, a sentiment classifier trained using book re-
views performs poorly on classifying electronics reviews [9],
as it does not consider the change of words for expressing
sentiment across domains.

From the machine learning point of view, using different
sets of words to express sentiments in different domains,
is equivalent to training sentiment classifiers in different
feature spaces. To enable a classifier trained in a source
space to be usable in the target space, one effective solution
is to create an alignment between the spaces by exploiting
their shared and distinct characteristics. Previous research
pursued space alignment and correspondence through ana-
lyzing the sentiment words that are commonly used across
domains for expressing sentiments (known as pivots), and
also domain- and topic-specific words that are uniquely
associated to a particular domain [10]–[16]. Pivots behave
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as universal sentiment indicators and always carry the same
sentiment information in different domains while occurring
frequently in all domains; typical examples include “excel-
lent”, “well” and “disappointing”. Domain-specific words
are more specialized at expressing sentiments in a particular
domain. For instance, “sharp” is a domain-specific word
mostly used in kitchenware reviews, and “realistic” in video
game reviews. A typical strategy to establish space align-
ment is to map the original source and target spaces to a new
common space by using the pivots as a bridge [10], [17]. The
generated space aims at reduced mismatch in word usage
and reduced gap between domain-specific words across
domains. After embedding the reviews into the new space, a
sentiment classifier trained using the labeled source reviews
is expected to provide robust prediction performance for the
target reviews.

Some existing cross-domain approaches cannot achieve
effective domain transfer without supervision and require
a small amount of labeled reviews in the target domain to
boost the performance [10], [18], [19]. Some approaches [10],
[17], although they compute new representation vectors for
characterizing the reviews in the aligned space, are not ade-
quately robust to provide stable performance on their own.
These new representation vectors need to be combined with
the original bag-of-word vectors for improvement. More
recent works [11], [20] provide more effective ways of align-
ing word spaces of the source and target domains through
spectral embedding and projection techniques. These lead
to new review representations that can be independently
used for cross-domain sentiment classification. Lately, there
has also been rapid development of neural approaches for
cross-domain sentiment classification, achieving high classi-
fication accuracy [21]–[24].

Comparing the domain adaption strategies used by var-
ious state-of-the-art techniques, we can see that, in addition
to the main task of sentiment classification, they usually
enhance their learning through preparing extra tasks like
detecting whether a pivot co-occurs with a domain-specific
word, whether the different versions of the same pivot word
in different domains possess similar enough representation
vectors, whether a review contains a pivot, or whether
the reviews from the source and target domains can be
distinguished in the representation space, and so on; we
refer to these as the auxiliary learning tasks. The learning
algorithms are mostly built on spectral approaches which
explore and preserve inherent data structure through matrix
decompositions [10], [11], [17], or neural networks which
directly learn the review representations through structured
processing of the content words based on different network
architectures and exhaustive training [21], [23]–[25].

We argue that instead of creating many auxiliary learn-
ing tasks and constructing complex models with elabo-
rate design and input configurations, satisfactory domain
adaptation can be achieved by preserving simple polarity
and occurrence information of words in reviews. These
are actually parts of the classical information utilized in
early cross-domain sentiment classification works, e.g., [10],
[17], that however failed to achieve good performance. We
support that the unsatisfactory performance of past en-
deavours were potentially caused by the employed spectral
approaches that were incapable of preserving accurately the

desired information in their embedding spaces. Similar ob-
servations on poor neighbor preservation ability of spectral
embeddings are also reported in the data visualization field
[26]. To tackle this issue, we propose a novel cross-domain
sentiment representation learning model with its design
inspired by the stochastic neighbor embedding method [27].
It is built upon a simple mapping architecture to ease the
computational cost, but we propose a more sophisticated
approach for optimizing the mapping variables to achieve
more accurate similarity structure preservation. Specifically,
it involves the following design elements:

• The mapping layer takes the standard word embed-
dings, which encode the word co-occurrence statis-
tics collected from a large corpus of general English
text, as the input, aiming at reducing the algorithm
introduced bias by taking advantage of general lan-
guage patterns.

• Various similarity structures between words and be-
tween reviews are explored, that result in multiple
conditional probability matrices encoding polarity,
co-occurrence and content information at both word
and document levels. These matrices are designed
to effectively capture the shared and distinct char-
acteristics of the source and target domains through
analyzing the special groups of pivots and domain-
specific words.

• A composite Kullback-Leibler divergence score is
designed to preserve these similarity structures in the
mapped embedding space realizing a multi-objective
optimization.

The experimental results show that our proposed approach
significantly improves the quality of the cross-domain rep-
resentations of both words and reviews, resulting in signif-
icantly improved sentiment classification performance. In
many cases, our performance is close to that of the state-
of-the-art deep learning techniques, but with much less
demanding training procedures.

The remaining of this paper is organized as follows.
Section 2 briefly reviews some representative works in the
field. Section 3 explains the proposed algorithm, including
pivot and domain-specific word selection, the construction
of the loss functions at both word level and document level,
as well as the multi-objective formulation and optimization
of the aggregate training objective function. Finally, Sec-
tion 4 compares and experimentally analyzes the proposed
method, while Section 5 concludes the work.

2 RELATED WORK

We briefly review the cross-domain sentiment classifica-
tion techniques relevant to our work, and some recent deep
learning approaches achieving state-of-the-art performance.
A recent survey on this topic can be found in [28] and a task
summary in [1]. One of the most classical works in cross-
domain sentiment classification is structural correspondence
learning (SCL) [10]. It first models the correlations between
the pivots and other word features by building a set of pivot
predictors, and then computes representation vectors for the
reviews based on the singular value decomposition of the
predictors’ weights. Another representative work is spectral
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feature alignment (SFA) [17], which maps the feature vector
of a review into an aligned space computed by performing
spectral embedding over the bipartite graph between the
domain-specific and domain-independent words (e.g., piv-
ots) built upon their co-occurrences.

Both SCL and SFA treat the computed representation
vectors for the reviews as the additional features to com-
plement their original bag-of-word vectors. This way of
augmenting the original feature vector with additional fea-
tures is referred to as feature expansion [14]. Another feature
expansion method for cross-domain sentiment classification
includes the topic and sentiment labels predicted for each
word to a joint sentiment-topic model as the additional
features [13]. Differently, the work in [14] includes a set of
base words selected from a sentiment-sensitive thesaurus
based on a ranking score as the additional features, where
the scores can be used as the feature values. Instead of
working with the direct co-occurrence counts, [29] obtains
additional features by modeling a distribution-based associ-
ation between a domain-independent word and a different
word in each domain, where additional feature prediction is
performed using a binary classifier.

In many cases, the representation vectors of the reviews
or the predictions made over the reviews can be directly
computed from the representation vectors of the words they
contain, e.g., by adopting approaches as suggested in [11],
[20], [30]. Therefore, development in cross-domain word
representation learning greatly facilitates review sentiment
analysis. There has been an increasing interest in this topic
where researchers attempt to pursue more effective ways
of reducing the mismatch between different domains while
maintaining the distinct characteristics of each domain. For
instance, the unsupervised cross-domain word represen-
tation learning [30] computes different versions of word
representations for different domains, but attempts to bring
the different versions close to each other for the pivots and
meanwhile distinguishes between domain-specific words in
terms of whether they appear in the local context of the
pivots. In order to generate stronger representation vectors
for the reviews, [11] improves their word representation
learning technique by studying effective feature mapping
rules by exploring not only information in the word space
but also local geometry and closeness structure between
friends, enemies and unlabeled reviews in the document
space. Building upon the skip-gram model [31], [32] first
learns word representations in the source domain using the
standard skip-gram model. Then the word representation
learning completes in the target domain using a modified
skip-gram model with a regularization term added to the
original loss. This work is similar to [11], [30] in the sense of
bringing closer the source and target representation pivot
vectors, but different in that such alignment is achieved
in a controlled manner through designing a significance
function. This function attempts to quantify the degree of
knowledge transfer from the source domain to the target
domain for each pivot. More recently, [20] proposes a pro-
jection method to modify the word representation vectors
precomputed by a standard word embedding technique.
Similar to other works, alignment of common words in
different domains is taken into account, but additionally, a
sentiment classification error is incorporated to the projec-

tion optimization objective function.
Deep learning models constitute another important

group of techniques for cross-domain sentiment classifi-
cation. Various neural network architectures are exploited
to compute the representation vectors for reviews, such
as, stacked auto-encoders (SAE) [33], [34], fully connected
neural networks [21], convolutional neural networks (CNN)
[25], and also recurrent neural networks (RNN) typically
with long short-term memory (LSTM) units [23]. To enhance
the expressive power of neural networks, there are various
works investigating the use of recently developed attention
and memory mechanisms [22], [24]. Additionally, a great
deal of effort has been invested on the design of effective
training methods for network optimization. Early works
[33], [34] follow the de-noising auto-encoder (DAE) training
[35] to obtain unified representation vectors for review in
both source and target domains in an unsupervised manner.
Subsequently, [21] proposes to replace the reconstruction
error with the multi-kernel variant of maximum mean dis-
crepancy to improve the DAE training, and further extends
it to supervised training by adding a sentiment classification
loss computed from the labeled reviews in the source do-
main. To achieve the goal of reducing the mismatch between
the source and target domains, various auxiliary learning
tasks are defined, in addition to classifying the labeled
reviews in the source domain. For instance, [25] trains the
network to predict whether a given sentence contains a
pivot using the other words. Another major auxiliary task
type is to distinguish the reviews in the source domain from
those in the target domain based on the learned review
representations. This task is usually taken into account by
designing additional loss functions and (or) by conducting
adversarial training [22]–[24], [36], [37].

3 PROPOSED METHOD

In general, the raw information we can directly collect
for each review (referred to as a document) is a bag-of-
words vector x = [x1, . . . , xn]T , where n denotes the total
number of words in the vocabulary, and xt the number
of occurrences that the tth word appears in this docu-
ment1. Cross-domain sentiment classification operates by
training a sentiment classifier using the labeled reviews
from the source domain, and the classifier is expected to
offer satisfactory classification performance for reviews in
the target domain. The key to achieving this, is to learn
robust representations (or called features) for reviews in
both domains, so that the classifier can be transferred across
domains without major performance loss.

3.1 Model Overview

Instead of learning representation vectors for both words
and reviews, we follow the approach of computing rep-
resentation vectors for reviews (referred to as document
embedding vectors) directly from the representation vectors
of words (referred to as word embedding vectors), with the

1. In this work, we simply use word frequencies to characterize each
document. Alternative features, such as the term frequency-inverse
document frequency (tf-idf) values can also be used.
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Fig. 1: Overall structure of the proposed cross-domain sentiment classification model, where BOW stands for ”bag-of-
words”.

benefit of reduced number of model parameters to opti-
mize. Specifically, letting et = [et1, . . . , etd]

T denote the d-
dimensional embedding vector of the tth word in the vocab-
ulary list, the document embedding vector z = [z1, . . . , zd]

T

is computed by

z =

∑n
t=1 xtet∑n
s=1 xs

. (1)

This is a weighted average of the word embedding vectors
{et}nt=1, where each element of x is used as the weight to
favor more frequently appeared words.

Subsequently, the problem is reduced to the learning of
{et}nt=1 that can optimally support cross-domain sentiment
classification; these vectors are referred to as the cross-
domain word embedding vectors. Other than learning these
vectors from scratch, a strategy similar to [20] is adopted.
We compute {et}nt=1 by modifying the standard word em-
beddings that are computed without considering domain
adaptation. Let wt = [wt1, . . . , wtk]T denote the standard
embedding vector of the tth word in the vocabulary list. A
single layer perceptron (SLP) is employed2 to modify wt,
resulting in the following cross-domain word embedding
vector

et = sigmoid
(

MTwt
)
, (2)

where M ∈ Rk×d denotes the perceptron weight matrix. As
pointed out in [17], word co-occurrence statistics provide
significant information for domain alignment. Therefore,
we choose the GloVe embeddings [38] as our wt, which
are computed from aggregated global word-to-word co-
occurrence statistics captured in a large corpus of general
English text.

The whole process can be expressed in matrix notation,
by letting E denote the n×d cross-domain word embedding
matrix with its rows storing {et}nt=1, and W the n × k
standard word embedding matrix with its rows storing
{wt}nt=1. Given N denoting the total number of reviews
in both domains, the N × n matrix X and N × d matrix

2. The results have shown that the proposed method equipped with
a simple but effective choice of SLP mapping is sufficient to obtain
satisfactory performance improvement (see results reported in Tables 1
and 2). However, we would like to mention that the proposed method is
general and can accommodate any type of continuous mapping of the
form et = φ(wt), such as ones based on alternative neural network
architectures and activation functions.

Z store in their rows the bag-of-words vectors {xi}Ni=1

and the document embedding vectors {zi}Ni=1, respectively.
Conversions between these matrices, equivalent to Eq. (1)
and Eq. (2), are given as

Z = Λ(X)−1XE, (3)
E = sigmoid(WM), (4)

where Λ(·) returns a diagonal matrix with diagonal ele-
ments being the row sums of the input matrix. In Fig-
ure 1 we present the main structure of our model, that
demonstrates mappings between the document embeddings
Z, cross-domain word embeddings E, and the standard
word embeddings W. The problem is finally reduced to the
learning of the optimal weight matrix M ∈ Rk×d that should
be tailored to cross-domain sentiment classification.

3.2 Alignment Loss in Word Space

A word selection process is first implemented to identify
a set of g pivots and a set of f domain-specific words from
all the words that appear in the corpus. A word alignment
loss is designed to embed the selected pivot and domain-
specific words in locations, such that distances between
them reflect their sentiment, co-occurrence and semantic
based similarities.

3.2.1 Pivot and Domain-Specific Word Selection

Built upon [39], a two-stage pivot selection strategy is
applied, which also utilizes sentiment information offered
by the labeled documents from the source domain. Firstly,
the candidate pool of pivot words is pinned to a set of
common words that appear in more than θc documents in
each domain. Then, the pivot words are selected from the
candidate pool based on an entropy measure conditioned
on document sentiment polarity, as

H (wordi) = −
∑
y∈Y

log
count (wordi,Dy)

count(wordi,D)
, (5)

where Y denotes the total set of available sentiment labels,
e.g., Y = {positive, negative}, D denotes the total set of
labeled documents in the source domain, and Dy ⊂ D
contains documents labeled as class y ∈ Y . The measure
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count(·, ·) denotes the number of occurrences of the left ar-
gument (word) appearing in the right argument (document
set). According to the measure, the candidate words that
appear more frequently in one sentiment class but not in
the others, possess higher entropy values and are therefore
selected as pivot words.

The remaining words, referred to as the non-pivot
words, constitute the candidate pool of the domain-specific
words. As argued in [17], among the non-pivot words, those
that frequently co-occur with a pivot word in a domain, usu-
ally retain similarly rich sentiment information. Therefore,
for each pivot word, we select the top θk non-pivot words
that co-occur most frequently with it in each domain. By
examining different pivot words under different domains, a
total of f non-pivot words are selected and are treated as
the domain-specific words.

3.2.2 Pivot Polarity Graph

We introduce the concept of pivot polarity for the uni-
versal sentiment indicators. It represents the role of a pivot
in sentiment classification, and should remain unchanged
across domains. It is defined according to whether the
pivot is positively or negatively correlated with the review
sentiment. We propose to collect the pivot polarities by a
linear sentiment classifier3 y = aTx + b, where b is the
bias parameter and a the weight vector, trained with the
labeled reviews from the source domain each characterized
by its bag-of-words vector. The weight vector a suggests
the polarity information. Letting Li denote the polarity of
the ith pivot, we have

Li =


+1, if aIi > 0,
−1, if aIi < 0,

0, otherwise,
(6)

where Ii denotes the position of the ith pivot in the bag-of-
words vector. The quantity Li = +1 suggests this pivot is
positively correlated with the review sentiment, and Li =
−1 denotes a negative correlation, while Li = 0 suggests
lack of contribution to sentiment discrimination. Although
such information is learned in the source domain, it can be
safely transferred to the target domain due to the universal
role of pivots.

We encode the pivot polarity information using Eu-
clidean distances between the cross-domain word represen-
tation vectors, by locating pivots with the same polarity in
proximity to each other. For instance, the two pivots “ex-
cellent” and “well” with the same polarity will be mapped
closeby in the learned representation space. Such closeness
information can be stored in a pivot polarity graph. The g
pivots are its nodes, and the adjacency matrix RP = [r

(P )
ij ]

is defined as a binary one as

r
(P )
ij = max(0, LiLj). (7)

The truncation max(0, ·) makes sure that the negative re-
lationship between pivots with opposite polarities is not
encoded, because such information has been observed to
be less reliable.

3. In this work, we just use an l2-regularized logistic regression.

3.2.3 Co-occurrence Bipartitie Graph
Additionally, we consider the linkage between pivots

and domain-specific words. As explained in Section 3.2.1,
each domain-specific word is selected according to a pivot
by examining their overall co-occurrences in an entire do-
main. This necessitates a g × f binary link matrix RD =

[r
(D)
ij ] between the pivots and domain-specific words, where

r
(D)
ij =

{
1, if j θk⇒ i,
0, otherwise.

(8)

The notation j
θk⇒ i indicates that the jth domain-specific

word is among the top θk most co-occurring non-pivot
words of the ith pivot in a domain. The link matrix results
in a co-occurrence based bipartitie graph between the pivots
and domain-specific words. As before, we attempt to encode
such link information through Euclidean distances. When
two words are linked, they are to be mapped close to each
other in the embedding space. For instance, the distance
between the domain-specific word “sharp” and the pivot
“excellent” will be small in that space, as they co-occur
frequently in kitchenware reviews.

3.2.4 Stochastic Word Graph Preservation
In our model, we control the word locations in the

embedding space using the pivot polarity graph RP and the
co-occurrence bipartitie graph RD. Guided by RP , words
mapped close to each other in the embedding space most
likely share the same polarity. Further guided by RD , po-
larity information carried by the pivots is transferred to
the domain-specific words. For instance, “excellent ” and
“sharp” are close, and therefore “sharp” can inherit the po-
larity label of “excellent”. Below we explain how to achieve
this based on the stochastic neighbor embedding technique.

To simplify the notations, RP and RD are combined into
a single (g + f)× (g + f) binary matrix

R =

[
RP RD
RTD 0f×f

]
, (9)

where 0f×f denotes a zero matrix of size f × f . To improve
generalization, we further smoothen the binary matrix R
with word semantic information gathered from general
English text, by utilizing word similarities computed from
the standard word embedding vectors {wi}g+fi=1 . This results
in a modified similarity matrix R̂ = [r̂ij ] defined as

r̂ij =
αrij∑
t6=i rit

+ (1− α)pij , (10)

where

pij =
exp

(
−‖wi−wj‖22

2σ2
i

)
∑
t6=i

exp
(
−‖wi−wt‖22

2σ2
i

) . (11)

The parameter 0 ≤ α ≤ 1 controls the preference degree
over the hard polarity and co-occurrence links and the
soft semantic similarities, while σi controls how fast the
similarity between two vectors vanishes as their Euclidean
distance increases. We use the integer perplexity parameter
K to set σi. The value of σi that offers a Shannon entropy
−
∑
j 6=i pij log2 pij closest to log2K is used, where K can
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be interpreted as a smooth measure of the effective number
of neighbors [27].

Preserving the similarity information contained by R̂ in
the embedding space can be achieved by maximizing the
matching degree between R̂ and an estimated similarity
matrix Qe = [q

(e)
ij ] from the mapped embeddings given as

q
(e)
ij =

exp
(
−‖ei − ej‖22

)∑
t 6=i exp (−‖ei − et‖22)

. (12)

This is an effective way of formulating the estimation Qe,
which computes the Euclidean distances between {ei}g+fi=1

and converts these to normalized similarities using a scaled
Gaussian. The Kullback-Leibler (KL) divergence ε(·, ·) can
then be employed to measure the matching degree between
the two matrices, resulting in our alignment loss function

LA(M) = ε(R̂,Qe) = 1
2

∑
i 6=j

r̂ij∑
t 6=i r̂it

log

 r̂ij∑
t 6=i r̂it

q
(e)
ij

 . (13)

The operation r̂ij∑
t 6=i r̂it

normalizes R̂ to have unit row sum
to match Qe in that respect, so that the two matrices de-
scribe conditional probability distributions. The smaller the
divergence is, the better the matching between R̂ and Qe is.

3.3 Neighbor Loss in Document Space
In addition to the word-level modeling as in the above

section, we further improve the learning by exploiting infor-
mation at the document level. We study the labeled reviews
from the source domain, unlabeled reviews from the source
domain, and the ones from the target domain separately,
with I(Sl), I(Su) and I(T) correspondingly denoting their
index sets. We also use Sl, Su and T as the superscript
symbols in all relevant notations for clarity. Three indi-
vidual neighboring graphs are constructed in Section 3.3.1
for reviews in I(Sl), I(Su) and I(T). A stochastic embedding
based loss function is developed in Section 3.3.2 to map
reviews that possess the same sentiment polarity and (or)
similar word content close to each other in the document
embedding space.

3.3.1 Document Neighboring Graphs
Firstly, we construct the neighboring graph for the la-

beled reviews from the source domain, utilizing the friend
and enemy concepts proposed in [40]. Its adjacency matrix is
denoted by S(Sl) = [s

(Sl)
ij ]. Among the objects that are within

a local neighborhood of each other, friends are regarded
those from the same class, whereas enemies the ones from
different classes. We use the cosine coefficient to compute
review similarity from their bag-of-words vectors, based on
which a κ-nearest-neighbor (κ-NN) search is performed to
identify friends and enemies. The friend reviews possess
not only similar word content but also the same sentiment
polarity, and are assigned the highest similarity value of 1.
The enemy reviews possess different sentiment polarity but
their word content is somehow similar, and are therefore
most likely boundary cases with challenging classification.
To enhance the class separability, we assign the lowest
similarity value of 0 to these enemy reviews, so that they can
be forcefully pulled away from each other in the document

embedding space. Between the non-friend and non-enemy
reviews, their original cosine similarities between 0 and 1
are assigned. This results in

s
(Sl)
ij =



1, if yi = yj , and reviews i, j
are undirected κ-NNs,

0, if yi 6= yj , and reviews i, j
are undirected κ-NNs,

cos(x(Sl)
i ,x

(Sl)
j ), otherwise,

(14)
where yi ∈ Y denotes the sentiment class label of the
corresponding review.

Then, we construct the neighboring graphs for the un-
labeled reviews from the source and target domains, sep-
arately, of which their adjacency matrices are denoted as
S(Su) = [s

(Su)
ij ] and S(T) = [s

(T)
ij ]. These graphs are con-

structed solely based on their word content, by computing
the cosine coefficient from their bag-of-words vectors, re-
sulting in

s
(Su)
ij = cos(x(Su)

i ,x
(Su)
j ), (15)

s
(T)
ij = cos(x(T)

i ,x
(T)
j ). (16)

3.3.2 Stochastic Document Graph Preservation

Similar to the word graph preservation in 3.2.4, we
attempt to preserve the review neighboring structures
encoded by S(Su), S(Su) and S(T) through designing a
document-level loss function. Because it is to be combined
with the word-level alignment loss to form a multi-objective
optimization problem, we need to modify S(Su), S(Su) and
S(T) so that they are in a scale comparable to the word
similarity matrix R̂.

Each cosine-based similarity is first converted to an
angular distance, and then a similar trick to that used in
Section 3.2.4 converts the distance value to a similarity value
through a scaled Gaussian. Taking the labeled reviews in the
source domain as an example, this gives the similarity

ŝ
(Sl)
ij =

exp

−
(

2
π cos−1

(
s
(Sl)
ij

))2

2σ2
i


∑
t6=i

exp

−
(

2
π cos−1

(
s
(Sl)
it

))2

2σ2
i

 . (17)

The value of σi is controlled by the perplexity parameter
K in a similar way as in Eq. (11), which is to find the
closest σi offering −

∑
j∈I(Sl),j 6=i ŝ

(Sl)
ij log2 ŝ

(Sl)
ij = log2K .

Similar conversions are followed for the other two docu-
ment sets, and the similarities are denoted by ŝ(Su)

ij and ŝ(T)
ij .

Finally, the three modified similarity matrices are denoted

by Ŝ
(Sl)

= [ŝ
(Sl)
ij ], Ŝ

(Su)
= [ŝ

(Su)
ij ] and Ŝ

(T)
= [ŝ

(T)
ij ].

The estimated review similarity in the document embed-
ding space can be obtained in a similar way to Eq. (12), but
using the document embedding vectors as the input. Let
Q(Sl) = [q

(Sl)
ij ], Q(Su) = [q

(Su)
ij ] and Q(T) = [q

(T)
ij ] denote the

three estimated similarity matrices for the three review sets.
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Taking the labeled reviews from the source domain as an
example, we have

q
(Sl)
ij =

exp
(
−‖z(Sl)

i − z(Sl)
j ‖22

)
∑
t6=i

exp
(
−‖z(Sl)

i − z(Sl)
t

∥∥∥2
2
)
. (18)

Identical approaches are followed for computing q
(Sl)
ij and

q
(T)
ij . The KL divergence scores are used to examine the

matching degrees between the estimated similarity matrices

Q(Sl), Q(Su) and Q(T) and the desired ones Ŝ
(Sl), Ŝ

(Su)
and

Ŝ
(T)

. This results in the following neighbor loss function

LN (M) = a1 ε(Ŝ
(Sl)
,Q(Sl)) + a2 ε(Ŝ

(Su)
,Q(Su))+

a3 ε(Ŝ
(T)
,Q(T)). (19)

where a1, a2, a3 ≥ 0 are balancing parameters controlling
the preference weights of the scores. Similar to Eq. (13), the
smaller the loss is, the better matching is implied.

3.4 Model Optimization
The optimization of M is based on a multi-objective for-

mulation combining the two proposed loss functionsLA(M)
and LN (M). By re-arranging the balancing parameters of
different terms to have more convenient hyper-parameter
control, we have the loss

L(M) = β1 LA(M) + β2 ε
(Sl)(M) + λ(1− β1 − β2) ε(Su)(M)

+ (1− λ)(1− β1 − β2) ε(T)(M) + µ
2 ‖M‖

2
F , (20)

where ε(Sl), ε(Su) and ε(T) are shorthands for ε(Ŝ
(Sl)
,Q(Sl)),

ε(Ŝ
(Su)

,Q(Su)) and ε(Ŝ
(T)
,Q(T)), β1, β2, λ ∈ [0, 1] are the

balancing parameters, ‖M‖2F is a Frobenius norm based
regularization term, and µ ≥ 0 its control parameter. The

matrices R̂, Ŝ
(Sl), Ŝ

(Su)
and Ŝ

(T)
are computed from the

known information including the standard word embed-
dings W, the bag-of-words review vectors X and the class
information of the labeled reviews in the source domain.
Qe, Q(Sl), Q(Su) and Q(T) are computed from the two cross-
domain embedding matrices E and Z, which are functions
of the weight matrix M. Figure 2 illustrates the information
resources used to build the optimization architecture.

The differentiability of the objective L(M) with respect
to M allows a gradient descent algorithm to search for the
optimal. For completeness, we list below the gradients in
matrix form for the four losses LA, ε(Sl), ε(Su) and ε(T) with
respect to M. Some basic operations are defined to simplify
the gradient formulations

L(A) = Λ(A)−A, (21)
D(A) = Λ(A)−1A, (22)
Γ(A) = A ◦ (1A −A), (23)

Υ (A,B) = A− B + AT − BT , (24)

for any matrices A and B of the same size, 1A a matrix of the
same size as A with unity values, and ◦ being the Hadamard
product. Following derivations similar to [27], we obtain

∂LA
∂M

= WT
w

(
(L(Υ(R̂,Qe))Ew) ◦ Γ(Ew)

)
, (25)
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Fig. 2: Optimizaton framework of the proposed cross-
domain sentiment classification model.

where Ww and Ew store the pre-trained and mapped word
embedding vectors for the pivot and domain-specific words
only. Similarly, the gradients of the other three scores are
computed as

∂ε(∗)

∂M
= WT

(
(DT (X(∗))L(Υ(Ŝ

(∗)
,Q(∗)))Z(∗)) ◦ Γ(E)

)
,

(26)
where the asterisk notationally represents the three cases for
Sl, Su and T. The regularization term gradient is simply

∂ ‖M‖2F
∂M

= 2M. (27)

To accelerate the training, the Delta-Bar-Delta algorithm
[41] is employed to adaptively modify the learning rate
during each iteration of the gradient descent update. At the
(t+ 1)th iteration, the modified learning rate η(t+1)

ij for the
ijth element of the matrix M = [mij ] is given by

η
(t+1)
ij =


η
(t)
ij + τ, if ∆̄

(ij)
t−1∆

(ij)
t > 0,

(1− ξ) η(t)
ij , if ∆̄

(ij)
t−1∆

(ij)
t < 0,

η
(t)
ij , otherwise,

(28)

where ∆
(ij)
t denotes the derivative ∂ε

∂mij
computed at the

tth iteration. An averaged approximation is computed from
the derivatives in the two previous iterations, according to

∆̄
(ij)
t−1 = (1− δ) ∆

(ij)
t−1 + δ∆

(ij)
t−2. (29)

The learning parameters τ, ξ, δ > 0 are chosen by the user
and follow the same setting as in [42]. The matrix ηt = [η

(t)
ij ]

stores all the learning rates for the weight parameters in the
tth iteration. Implementation of the proposed algorithm (we
refer to as CrossWord) is summarized in Algorithm 1.

The obtained solution for M results in a word embed-
ding space tailored to the cross-domain sentiment classi-
fication task, where document embedding vectors of the
reviews are computed and unify reviews in the source and
target domains in one common feature space. Working in
this feature space, a sentiment classifier trained in the source
domain is expected to be robust for predictions in the target
domain.
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Algorithm 1 Pseudocode of CrossWord.

Input: Bag-of-words matrix X for documents in the source
and target domains, sentiment class labels for the labeled
documents in the source domain, standard word embed-
ding matrix W.

Output: Perceptron weight matrix M.
Model parameters: Embedding dimension d, word selec-
tion parameters θc, θk, perplexity K, neighbor parameter
κ, relevance weight α, balancing parameters λ, β1, β2 and
regularization parameter µ.
Optimization parameters: Iteration number NT , learning
rate parameters τ , ξ, δ, and a momentum schedule ζ(t).
Word Selection: Select pivot and domain-specific words.
Initialization: Randomly initialize M and set ∆

(M)
0 = 0.

for t = 1 to NT do
Compute gradient ∂L

∂M

∣∣
t
.

Update the mapping matrix by

∆
(M)
t = ζ (t) ∆

(M)
t−1 − ηt ◦

∂L

∂M

∣∣∣∣
t

, (30)

Mt+1 = Mt + ∆
(M)
t . (31)

end for

4 EXPERIMENTS AND RESULTS

The experiments are performed under an unsupervised
setting in the target domain, by training a sentiment classi-
fier using only the labeled reviews from a source domain.
Performance is evaluated using query reviews from a tar-
get domain. Ten existing methods are compared with the
proposed one, each constructing representation vectors for
characterizing the reviews in a different way. Among the
competing methods, there are also three recently developed
neural approaches, referred to as mSDA, DANN and HATN.
A brief description of these competing methods is provided
below:
• Baseline1 uses a bag-of-word vector to characterize each
review, where no domain adaptation is involved.
• Baseline2 computes the document embedding vector for
each review by Eq. (1), where the standard word embedding
vectors trained by the GloVe model are used as et, thus no
domain adaptation is involved.
• SCL [10] constructs a concatenated representation vector
for each review, includes the original bag-of-word vector
and its projected vector learned to align the two domains.
• SFA [17] constructs a concatenated representation vector
for each review, which includes the original bag-of-word
vector and a mapped vector learned to align the domain-
specific words.
• SSE [11] computes the document embedding vector for
each review by Eq. (1), where its proposed sentiment sen-
sitive word embedding vectors are used as et to achieve
domain adaptation.
• BLSE [20] characterizes each review by averaging the
mapped word embeddings through two cross-domain pro-
jection matrices.
•MEDA [43] computes the document embedding vector for
each review by Eq. (1), where et is generated through an ef-
fective manifold feature learning method recently proposed

by computer vision researchers.
• mSDA [34] constructs a concatenated representation vec-
tor for each review, which includes the original bag-of-word
vector and hidden representation vectors computed by a
marginalized staked de-noising auto-encoder.
• DANN [37] builds an end-to-end domain adversarial
neural network, containing a sentiment classification layer
and a domain classification layer optimized by adversarial
training.
• HATN [24] builds an end-to-end hierarchical attention
transfer network, which transfers word and sentence level
emotion attentions across domains based on exploring char-
acteristics of pivots and non-pivot words.

4.1 Datasets and Experimental Setup

Two benchmark review datasets are used to evaluate
the cross-domain sentiment classification performance. The
DAT A dataset [44] contains product reviews collected from
the Amazon website (domain A), movie reviews from IMDb
(domain I) and restaurant reviews from Yelp (domain Y).
Two sentiment polarities are studied: positive and negative.
In each domain, there are 500 positive and 500 negative re-
view samples available. From this dataset, we construct the
six cross-domain sentiment classification tasks (expressed in
the form of source domain → target domain): A→I, A→Y,
I→A, I→Y, Y→A and Y→I.

The DAT B dataset [10] contains product reviews on
books (domain B), DVDs (domain D), electronics (domain
E) and kitchenware (domain K), which are all collected from
the Amazon website. Each review is awarded a rating score
between 0 and 5. Reviews rated above 3 are considered
positive, while below 3 negative. In each domain, there are
1,000 positive and 1,000 negative reviews, as well as thou-
sands of unrated reviews without sentiment class labels.
From this dataset, we construct the twelve cross-domain
sentiment classification tasks: B→D, B→E, B→K, D→B,
D→E, D→K, E→B, E→D, E→K, K→B, K→D and K→E.
In each domain, in addition to the 2,000 labeled reviews, we
randomly select another 2,000 unlabeled reviews to support
the representation learning.

4.1.1 Experimental Setup
To assess the upper bound of the classification perfor-

mance, a standard sentiment classifier is trained and tested
using the labeled documents from the target domain. To en-
able a performance comparison between the cross-domain
and standard sentiment classifiers, a hold-out strategy is
used. Following a data split scheme similar to those used
in previous works [11], [17], a randomly selected review
subset (100 positive and 100 negative from DAT A, and
200 positive and 200 negative from DAT B) is used as the
testing set in each target domain. The remaining reviews are
used to train the standard sentiment classifier when needed.
For the two neural approaches, mSDA and DANN, the top
5,000 uni-grams and bi-grams in the reviews are included
to the vocabulary list. For mSDA, its corruption level is set
to 0.5, and its resulting concatenated representation vector
is of 30,000 dimensions, including 5,000 original features
and 25,000 embedded features returned by its 5 hidden
layers. To implement HATN, the GloVe embeddings are
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TABLE 1: Comparison of sentiment classification accuracies
(%) for different methods using the DAT A dataset. The best
performance is boldfaced and the second best is underlined.

Tasks A→I A→Y I→A I→Y Y→A Y→I
(81.00) (79.50) (84.50) (79.50) (84.50) (81.00)

Baseline1 63.00 71.00 75.50 75.50 73.50 66.50
Baseline2 71.50 73.50 65.50 72.00 76.50 66.50
SCL0 55.50 62.50 61.50 54.50 62.00 57.50
SCL 66.00 73.00 76.00 75.00 74.00 66.50
SFA0 62.50 60.00 59.50 61.00 64.00 57.00
SFA1 66.00 68.50 77.00 75.00 73.00 67.00
SFA2 63.00 73.50 73.00 69.00 70.50 69.50
SSE 67.50 73.00 77.50 76.00 74.00 67.50
BLSE 77.00 76.50 75.50 72.50 77.00 75.50
MEDA0 77.50 72.50 77.50 79.00 79.50 73.50
MEDA1 75.00 74.50 77.00 79.00 80.00 76.50
Proposed 80.50 79.00 80.00 79.50 83.50 77.00

used to initialize the network. The dimensionality of the
GloVe word embedding space is k = 300, trained on the
general English corpus of Wikipedia 2014 and Cigaword 5.
Following the same setting as in SFA [17] and SSE [11], the
number of selected pivots is set to g = 200 for DAT A and
g = 500 for DAT B. The dimensionality of the learned cross-
domain word embedding space is set to d = 100, as it is
observed to be the optimal setting for most methods. The
sentiment classifier is trained using l2-regularized logistic
regression implemented using LIBLINEAR [45], with its
penalty (or coefficient) parameter set to c = 1.

The optimization parameters for our proposed Cross-
Word model are set to T = 500, η(0)ij = 0.1, τ = 0.4, ξ = 0.4,
δ = 0.2, and also

ζ(t) =

{
0.5, if t < 150,
0.8, otherwise,

following the gradient descent update setting recommended
in [42], [46]. The performance of CrossWord is not sensitive
to the setting of the regularization parameter µ, as long as
it is within a reasonable range, and therefore we fix it to
µ = 0.01, as suggested in [47]. We adopt the fixed setting
of θc = 5 (DAT A) and θc = 10 (DAT B) for selecting the
pivot word candidate pool, and K = 15 for the perplexity
parameter. We choose θk = 5, κ = 5, α = 0.3, λ = 0.8
for the other algorithm parameters based on parameter
tuning. The nearest neighbor number κ used by ε(Sl) for
identifying the friend and enemy documents is searched
within {5, 10} by setting β1 = 0 and β2 = 1. The two
algorithm parameters used by LA follow θk ∈ {5, 10}
and α ∈ {0, 0.1, 0.2, . . . , 0.9, 1} by setting β1 = 1 and
β2 = 0. The balancing parameter λ for controlling the
preference degree between the two unsupervised scores
ε(Su) and ε(T) is searched within {0, 0.2, . . . , 0.8, 1} under
the setting of β1 = β2 = 0. After determining the setting
of the other parameters, the two balancing parameters β1
and β2 are tuned first within {0, 0.2, . . . , 0.8, 1}. Then, β1
is further tuned within {0.05, 0.10, 0.15} and β2 within
{0.2(1−β1), 0.4(1−β1), 0.6(1−β1), 0.8(1−β1)}, for which
these fine-grained search ranges are set based on the previ-
ous rough tuning. During this process the other parameters
remain fixed to their selected values.

4.2 Comparison with Existing Approaches

We compare the cross-domain sentiment classification
performance of different methods in Tables 1 and 2, eval-
uated using the DAT A and DAT B datasets. The neural
network based methods are only experimented using the
larger dataset DAT B, because they usually offer superior
performance when learning from a large amount of training
samples. Each column of the table corresponds to a pair of
source and target domains (source → target). In addition
to the cross-domain performance, we also report the target
domain performance obtained by a standard supervised
learning within the target domain based on the bag-of-word
vectors. The reported performance is shown parenthesized
in the first row of each performance table. We report two
SFA performances for different parameter settings of the
logistic regression classifier: SFA1 has the same setting as
the ones used by all the other methods (c = 1), and
SFA2 follows a setting recommended in [17] (c = 10, 000).
We additionally report the performance of the document
representation vectors learned by SCL and SFA on their own
and without being combined with the bag-of-word vectors
using the classifier parameter c = 1, which are referred to
as SCL0 and SFA0, respectively. For MEDA, two embedding
dimensions are experimented, including the recommended
setting of 20 in [43] (referred to as MEDA0), and the same
setting of 100 as used by the proposed method (referred to
as MEDA1). In addition to experimenting with mSDA and
DANN separately, we report the performance of a stacked
network by connecting mSDA and DANN (referred to as
mSDA-DANN), where the hidden representation vectors
produced by mSDA is used as the input of DANN to boost
the performance.

Overall, the proposed CrossWord offers the best perfor-
mance amongst all the non-neural methods for almost all the
evaluated cross-domain tasks, and similarly good perfor-
mance to the top neural methods. In many tasks, CrossWord
offers significant performance improvement over the second
best method. Below, we summarize our observations related
to the comparison between different methods:
• Review documents from different domains can use differ-
ent sets of words to express the sentiment. Therefore, when
using word occurrences as features to characterize the doc-
uments, the replacement of training samples collected in the
target domain with those collected in a different domain can
cause significant performance drop. This is evidenced by the
difference between the first-row performance in parenthesis
and the Baseline1 performance. For example, there is an 18%
drop in B→E, as users use very different words to describe
their opinions on books and on electronic products.
• The GloVe technique is based on word co-occurrence
statistics. The resulting word vectors may be able to con-
struct alignment between words such as “sharp” (sentiment-
rich word in kitchenware reviews) and “thrill” (sentiment-
rich word in book reviews) as they have quite high chances
to co-occur with words such as “great”, “satisfactory” in a
very large corpus of general English text. Therefore, there is
a chance to obtain a performance improvement by enhanc-
ing the bag-of-word document vectors with the GloVe em-
beddings. As expected, Baseline2 offers performance gains
compared to Baseline1 for many assessed tasks (see tables).
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TABLE 2: Comparison of sentiment classification accuracies (%) for different methods using the DAT B dataset. The bottom
section corresponds to neural network based approaches, while the top section includes the non-neural approaches. Within
each section, the best performance is boldfaced and the second best is underlined.

Tasks B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E
(81.25) (83.25) (80.25) (80.75) (83.25) (80.25) (80.75) (81.25) (80.25) (80.75) (81.25) (83.25)

Baseline1 70.50 65.00 63.75 67.00 68.50 67.00 61.00 64.50 69.50 65.00 66.50 74.25
Baseline2 77.50 66.00 69.00 76.25 67.50 66.75 68.00 70.25 73.00 67.50 69.50 70.75
SCL0 71.00 64.75 57.50 74.25 65.25 65.75 64.25 64.50 72.00 61.50 58.00 72.50
SCL 76.50 66.75 65.50 74.75 68.50 66.75 60.75 64.50 72.50 64.75 66.75 74.00
SFA0 54.00 51.50 50.00 61.00 55.75 54.50 55.25 62.00 65.00 60.00 60.50 60.75
SFA1 70.25 63.50 65.00 68.25 68.75 66.50 61.50 65.00 70.50 65.00 67.00 74.25
SFA2 78.75 67.75 67.25 78.00 70.50 70.75 64.50 69.25 77.50 64.75 69.00 79.50
SSE 72.75 66.25 67.00 70.75 69.00 67.75 62.00 68.00 73.75 66.50 69.75 74.25
BLSE 75.25 70.00 62.50 78.00 69.75 67.25 69.50 73.75 74.00 74.25 73.25 74.75
MEDA0 76.50 62.75 66.75 73.75 71.50 67.75 64.25 70.50 72.75 53.25 64.25 71.25
MEDA1 75.25 53.25 57.25 74.75 67.00 69.00 62.00 70.00 74.50 53.50 61.25 70.00
Proposed 81.75 71.25 71.25 80.25 73.75 75.00 71.00 72.00 77.75 74.50 73.75 78.25
mSDA 78.50 76.00 69.75 77.75 74.25 72.25 67.75 72.75 77.75 70.50 73.00 78.75
DANN 73.00 68.00 66.75 78.00 70.75 70.50 66.00 70.25 73.75 65.50 71.00 76.75
mSDA-DANN 78.75 73.00 68.25 77.25 73.50 72.50 66.50 69.75 77.75 74.00 74.25 78.00
HATN 82.50 72.00 69.00 78.00 72.75 72.00 71.50 77.75 76.25 71.25 78.50 78.00

TABLE 3: Comparison of the averaged training time (10 iter-
ations/epochs) for methods that adopt the gradient descent
optimization using the DAT B dataset. The reported results
are recorded using Python running on a server with the use
of GeForce-GTX-1080Ti-12GB GPU. The best performance is
boldfaced and the second best is underlined.

Method Time(s) for 10 iterations/epochs
BLSE 12.72s
DANN 6.04s
mSDA-DANN 17.08s
HATN 81.75s
Proposed 1.67s

However, the drawback of the GloVe embedding vectors is
that they are not learned from specialized review text, and
therefore are not sentiment sensitive in some domains. Nev-
ertheless, these word vectors carry rich word co-occurrence
information and provide a good starting point to work with.
This is why they are used as the input for our model.
• The state-of-the-art techniques SCL, SFA, SSE and BLSE
provide similarly good performance and there seems to
be no consistent winner throughout the different tasks.
SCL is based on singular value decomposition of a com-
puted weight matrix, SFA and SSE are based on eigen-
decomposition of a constructed similarity matrix, while
BLSE jointly minimizes a mean squared error and a cross-
entropy error. Both SCL and SFA compute new vectors for
characterizing the documents. But these new vectors are
not robust enough to be used on their own and have to
be combined together with the original bag-of-word vectors
to maintain a satisfactory performance. This is evidenced
by the performance difference between their two versions
(SCL0 vs. SCL, SFA0 vs. SFA). On the contrary, the new
document vectors computed by SSE can be used on their
own, offering similarly good performance to that of the com-
bined vectors of SCL and SFA. This shows that SSE may be a
more robust technique than SCL and SFA. Furthermore, the
learned word embeddings by BLSE can also perform well
when being used to generate document representations.
• Our proposed CrossWord model inherits the basic ideas
from some modeling strategies of SSE, such as pivot

word alignment, document separability enhancement and
content-based neighbor preservation. Starting from these, it
further improves the model design by proposing more so-
phisticated word alignment and document similarity matrix
construction models, and also uses a more powerful simi-
larity structure preservation technique based on stochastic
neighbor embedding, which has been demonstrated to be
more accurate in local neighbor preservation by various
previous research [26], [46], [47]. Relying on this improved
design, as shown in Tables 1 and 2, the proposed method
offers significant performance improvement over SSE and
the other state-of-the-art techniques.
• The proposed CrossWord provides similarly good perfor-
mance to the best competing neural networks for most of
the transfer tasks. It only fails to keep up with the best
performing neural networks for 3 out of the 12 transfer
cases, which are B → E, E → D and K → D. But it
still manages to provide comparably good performance to
the second best neural networks for these three cases. More-
over, we compare the training time of 10 iterations/epochs
for the top-performing methods based on gradient descent
optimization in Table 3. It shows that CrossWord possesses
the highest training speed, particularly much higher than
the top-performing HATN, under the same Python imple-
mentation and hardware environment.

4.3 Investigation of Model Behavior

To understand better the model behavior, we demon-
strate the performance changes of the proposed method
under different parameter settings, using the larger dataset
DAT B. Figure 3 compares the proposed and competing
methods under different embedding dimension settings. It
can be seen that CrossWord provides in general comparable
or better performance than the competing methods for all
the observed settings, and certainly the best performance
when comparing under their own individual optimal set-
tings.

Figure 4 demonstrates the changes of CrossWord per-
formance as observed during the parameter tuning process
of α, employing the score function LA only (β1 = 1) and
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Fig. 3: Performance changes for different methods and varying embedding length d = 50, 100, 150, assessed for four
example tasks from DAT B. The d setting used for reporting the performance in the tables is indicated by a square.

comparing two θk settings. The chosen setting of α = 0.3
provides a generally good performance across different
tasks.

Figure 5 demonstrates the changes of CrossWord perfor-
mance while varying κ, employing the score function ε(Sl)

only (β2 = 1). It can be seen that, in general, a smaller size
of local neighborhood is more reliable and provides better
performance.

Figure 6 demonstrates the CrossWord performance
changes with varying λ using the two score functions ε(Su)

and ε(T) (β1, β2 = 0). Increasing λ leads to an increased
attention shift from the unlabeled documents in the source
domain to the unlabeled ones in the target domain. The
chosen setting λ = 0.8 results in higher attention degree
over the domain-specific information. As explained in the
previous section, after a rough tuning of β1 and β2 the
setting of around 0.1 for β1 provides a generally good
performance. This means that around 10% attention is paid
to the word-level score function LA.

Figure 7 demonstrates the CrossWord performance while
varying the attention degree to LA from 5% to 15%, from
20% to 80% of the remaining attention to the score function
ε(Sl) and the rest for ε(Su) and ε(T). The performance of the
best competing method is displayed in Figure 7, where it can
be seen that, for each example task there exist multiple set-

TABLE 4: Examples of selected pivot words and their corre-
sponding domain-specific words, as well as their closeness
ranking computed in the CrossWord embedding space for
the task I→Y and DAT A. T@n denotes that the given
domain-specific word, ranks as the top nth word closest to
the target pivot word based on examining the Euclidean
distances between the computed word embedding vectors.

Movie (Domain I) Restaurant (Domain Y)
Pivot Domain-specific Ranking Domain-specific Ranking
rather superficial T@4 letdown T@2
almost unrecognizable T@5 empty T@4

extremely insincere T@4 rude T@17
recommended fans T@3 place T@41

classic cult T@4 fantastic T@29
imagination ineptly T@6 stretch T@3

good acting T@5 service T@6
glad planned T@3 unbelievable T@33

attention hold T@3 waiter T@16
special effects T@4 whatsoever T@21

ting combinations that offer satisfactory performance. The
preference degree (controlled by β2) between the source-
domain separability and the unsupervised content infor-
mation varies among tasks. Nevertheless, the performance
change is not drastic, which shows that the proposed model
is not demanding in tuning its hyper-parameters β1 and β2.
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Fig. 4: Performance changes for CrossWord while varying α ∈ [0, 1], assessed under the settings θk = 5 and θk = 10, using
four example tasks from DAT B. The α setting used for reporting the performance in the tables is indicated by a square.
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Fig. 5: Demonstration of the CrossWord performance under
the two neighbor settings of κ = 5 and κ = 10, assessed for
six example tasks from DAT B.

4.4 Example Demonstration

Finally, in Table 4 we demonstrate examples of selected
pivot words, and the top selected domain-specific word

for each example pivot as well as its closeness ranking to
its corresponding pivot word computed in the CrossWord
embedding space. The examples are collected for the task
of predicting sentiment polarity of restaurant reviews based
on movie reviews. It can be seen from the table, that these
selected pivot and domain-specific words carry sentiment
information. Also, the domain-specific words that are con-
nected to the same pivot word are indeed aligned in the
embedding space, indicated by their top closeness rankings
to that pivot word.

5 CONCLUSION

We have proposed CrossWord, a novel cross-domain
embedding technique. It effectively creates an alignment
between the source and target feature spaces. Low-
dimensional document embedding vectors computed from
its resulting embedding vectors are sufficient for construct-
ing a robust sentiment classifier that can be shared across
domains. CrossWord offers a more accurate modeling of
probabilistic similarity relationships between the pivot and
domain-specific words, and also between the labeled re-
views in the source domain and the unlabeled reviews in
both domains. It also provides a more accurate preserva-
tion of the desired similarity structures in the embedding
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Fig. 6: Performance changes for CrossWord while varying λ ∈ [0, 1], assessed under different example tasks from DAT B.
The λ setting used for reporting the performance in the tables is indicated by a square.
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space, achieved through the use of the stochastic neighbor
embedding technique. Furthermore, CrossWord attempts to
reduce algorithm bias by learning a mapping function from
a standard word embedding space, learned from a general
English corpus, to the desired cross-domain embedding
space. Extensive experimental results have demonstrated
the superior performance of the proposed method over
various classical and state-of-the-art algorithms.
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