
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 1

A Comparative Study of Consistent Snapshot
Algorithms for Main-Memory Database Systems

Liang Li, Guoren Wang, Gang Wu, Ye Yuan, Lei Chen, and Xiang Lian, Member, IEEE

Abstract—In-memory databases (IMDBs) are gaining increasing popularity in big data applications, where clients commit updates
intensively. Specifically, it is necessary for IMDBs to have efficient snapshot performance to support certain special applications (e.g.,
consistent checkpoint, HTAP). Formally, the in-memory consistent snapshot problem refers to taking an in-memory consistent
time-in-point snapshot with the constraints that 1) clients can read the latest data items and 2) any data item in the snapshot should not
be overwritten. Various snapshot algorithms have been proposed in academia to trade off throughput and latency, but industrial IMDBs
such as Redis adhere to the simple fork algorithm. To understand this phenomenon, we conduct comprehensive performance evaluations
on mainstream snapshot algorithms. Surprisingly, we observe that the simple fork algorithm indeed outperforms the state-of-the-arts in
update-intensive workload scenarios. On this basis, we identify the drawbacks of existing research and propose two lightweight
improvements. Extensive evaluations on synthetic data and Redis show that our lightweight improvements yield better performance than
fork, the current industrial standard, and the representative snapshot algorithms from academia. Finally, we have opensourced the
implementation of all the above snapshot algorithms so that practitioners are able to benchmark the performance of each algorithm and
select proper methods for different application scenarios.

Index Terms—In-Memory Database Systems, Snapshot Algorithms, Checkpoints, HTAP.

F

1 INTRODUCTION

IN-MEMORY databases (IMDBs) [1] have been widely adopted
in various applications as the back-end servers, such as e-

commerce OLTP services, massive multiple online games [2],
electronic trading systems (ETS) and so on. For these applications,
it is common to support both intensively committed updates and
efficient consistent snapshot maintenance. Here, we use in-memory
consistent snapshot to emphasize taking an in-memory consistent
time-in-point snapshot with the constraints that (1) clients can read
the latest data items, and (2) any data item in the snapshot should
not be overwritten. In-memory consistent snapshot can be applied
in diverse real-life applications. Representative examples include
but are not limited to the following.

• Hybrid Transactional/Analytical Processing Systems
(HTAP): Hybrid OLTP&OLAP in-memory systems are
gaining increasing popularity [3], [4], [5], [6], [7], [8], [9],
[10], [11]. In traditional disk-resident database systems,
the OLTP system needs to extract and transform data to
the OLAP system. That is, OLTP and OLAP are usually
separated in two systems. Due to the high performance
of in-memory database systems, it becomes viable to
exploit OLTP snapshot data as an OLAP task and build
a hybrid system. In fact, database vendors including
Hyper [5], SAP HANA [10], [11] and SwingDB [9] have

• Liang Li, Ye Yuan are with the Department of Computer Science,
Northeastern University of China, 100819.
E-mail: {liliang@stumail,yuanye@ise}.neu.edu.cn

• Guoren Wang is with the Department of Computer Science, Beging Institute
of Technology, China, CN, 100081.
E-mail: wanggr-bit@126.com

• Gang Wu is with the Department of Computer Science, Northeastern
University of China, 100819 and with the Department of State Key Lab. for
Novel Software Technology, Nanjing University, P.R. China.
E-mail:wugang@mail.neu.edu.cn

• Lei Chen is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong.
E-mail: leichen@cse.ust.hk

• Xiang Lian is with the Department of Computer Science, Kent State
University, USA.
E-mail:xlian@kent.edu

already applied in-memory snapshot algorithms in Hybrid
Transactional/Analytical Processing Systems.

• Consistent Checkpoint: System failures are intolerable
in many business systems. For instance, Facebook was
out of service for approximately 2.5 hours in 2010. There
was a worldwide outage, and 2.8TB memory data were
cleared [12]. Consistent checkpoints are important to avoid
long-time system failures and support rapid recovery; in-
memory systems such as Hekaton [13] and Hyper [14] typi-
cally perform consistent checkpoint frequently. Checkpoint
works by taking a “consistent memory snapshot” of the
runtime system and dumping the snapshot asynchronously.
The key step is to take a consistent snapshot efficiently.
Inefficient snapshot algorithms may accumulatively lead
to system performance degradation and thus unacceptable
user experience in update-intensive applications.

However, the unavoidable fact is that the accumulated latency
brought by the snapshot maintenance may have significant impacts
on system throughput and response time. Improper handling of
snapshot may result in latency spikes and even system stalls. Thus,
pursuing a fast snapshot with low and uniform overhead, or one
that is lightweight, is the focus of in-memory snapshot algorithms.

The wide applications of in-memory consistent snapshot have
attracted the interest of academia. Some representative snapshot
algorithms are Naive Snapshot (NS) [15], [16], Copy-on-Update
(COU) [2], [17], [18], Zigzag (ZZ) [19] and PingPong (PP) [19].
In addition, the simple fork [20] function is used as a common
snapshot algorithm in industrial systems. However, it is often
difficult for practitioners to select the appropriate in-memory
snapshot algorithm due to the lack of a unified, systematic
evaluation on existing snapshot algorithms. This work is primarily
motivated by this absence of performance evaluation, which is
described in more detail as follows.

1.1 Motivation
1. Why do popular industrial IMDBs, e.g., Redis/Hyper, utilize
the simple fork() function instead of state-of-the-art snapshot

ar
X

iv
:1

81
0.

04
91

5v
1

 [
cs

.D
B

]
 1

1
O

ct
 2

01
8

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 2

algorithms? As mentioned above, various in-memory consistent
snapshot algorithms have been proposed in academia to trade off
between latency and throughput. However, it is interesting that
popular industrial IMDBs such as Redis/Hyper still apply the
simple fork() function as the built-in algorithm for consistent
snapshot. It is worth investigating whether this is due to the
simplicity of fork()’s engineering implementation or its good
system performance (e.g., high throughput and low latency).

2. Are state-of-the-art snapshot algorithms inapplicable to
update-intensive workload scenarios? Many modern in-memory
applications are highly interactive and involve intensive updates.
The performance of the state-of-the-arts from academia and
industry in large-scale update-intensive workload scenarios is not
known. If no existing algorithms fit, can we modify and improve
the state-of-the-arts for this scenario?

3. Can we provide unified implementation and benchmark
studies for future studies? A frustrating aspect of snapshot
algorithm research is the lack of a unified implementation for fair
and reproducible performance comparisons. Since new application
scenarios are continually emerging, researchers would benefit by
making unified implementation and evaluation of existing snapshot
algorithms accessible to all.

1.2 Contributions
1. We find that the simple fork() function indeed outperforms
the state-of-the-arts in update-intensive workload scenarios.
Snapshot algorithms for update-intensive workloads should have
consistently low latency. This requirement can be assessed by
average latency and latency spikes. We conduct large-scale
experiments on five mainstream snapshot algorithms (NS, COU,
ZZ, PP, Fork). Fig. 1 shows illustrative latency traces of five
mainstream snapshot algorithms. NS has low average latency
but also high-latency spikes, meaning high latency when taking
snapshots. In contrast, PP has no latency spikes but incurs higher
average latency. Surprisingly, we observe that the simple fork
algorithm indeed outperforms the remaining algorithms. That is,
fork() has low average latency and almost no high latency spikes.
These experimental results can explain why popular industrial
IMDBs prefer the simple fork algorithm rather than state-of-the-art
algorithms from academia. This is more programming friendly.

 4000

 5000

 6000

 7000

 8000

 9000

 150 200 250 300 350

La
te

nc
y[
µs

]

Time series

NS
COU

ZZ
PP

Fork

Figure 1. Comparison of State-of-art algorithms

2. We propose two simple yet effective modifications
of the state-of-the-arts that exhibit better tradeoff among
latency, throughput, complexity and scalability. Based on the
aforementioned experiments with mainstream snapshot algorithms,
we identify the drawbacks of the existing research and propose
two lightweight improvements based on state-of-the-art snapshot
algorithms. In particular, extensive evaluations on synthetic data
and Redis, the popular industrial IMDB, show that our lightweight

improvements yield better performance than fork, the current
industrial standard, and the representative snapshot algorithms
of academia. In addition, the algorithms can not only easily adapt
to widely used cases but also maintain good performance with the
snapshot technique.

3. We opensource our implementations, algorithmic im-
provements, and benchmark studies as guidance for future
researchers. We implement five mainstream snapshot algorithms
and two improved algorithms and conduct comprehensive evalua-
tions on synthetic datasets. The implementations and evaluations
have been released on GitHub1. We further integrate the two
improved algorithms into Redis and investigate the scalability
with the Yahoo! Cloud Serving Benchmark (YCSB) [21]. The
implementations and evaluations are also publicly accessible2. We
envision our experiences as providing valuable guidance for future
snapshot algorithm design, implementation, and evaluation.

This paper is a complete description of a previous brief version
of this work [22]. The main additions include a number of examples
in the background and motivation, the theoretical foundation and
implementation of our algorithms, and presentation and analysis of
extensive experimental results. Furthermore, we adapt the proposed
algorithms to the more general concurrent transaction-execution
case for comparison with the CALC algorithm [23].

The rest of the paper is organized as follows. In Section 2,
we define and model the problem of consistent snapshot. Existing
algorithms and two proposed algorithms are detailed in Section 3.
We discuss a more general case in Section 4. To show the feasibility
of the algorithms, we first evaluate them with a synthetic dataset
in Section 5.2 and then integrate them into Redis and benchmark
them with YCSB in Section 5.4. We conclude in Section 6.

2 PRELIMINARIES

2.1 Problem Statement
In this work, we compare, analyze and improve snapshot algorithms
designed for in-memory databases, particularly in update-intensive
scenarios. First, we formally define the in-memory consistent
snapshot problem as follows.

Definition 1 (In-Memory Consistent Snapshot) Let D be an
update intensive in-memory database. A consistent snapshot is
a consistent state of D at a particular time-in-point, which should
satisfy the following two constraints:

• Read constraint: Clients should be able to read the latest
data items.

• Update constraint: Any data item in the snapshot should
not be overwritten. In other words, the snapshot must be
read-only.

An in-memory consistent snapshot algorithm for update-
intensive applications must fulfill the following requirements.

• Consistent and Full Snapshots. “Dirty” (i.e., inconsistent)
snapshots are intolerable. Furthermore, since we do not
consider applications such as incremental backups, full
snapshots that materialize all the application data states are
indispensable.

• Lock-free and Copy-Optimized. Locking and
synchronous copy operations are the main causes
of snapshot overhead [2]. Therefore, lock-free and
copy-optimized snapshot algorithms are more desirable.

1. https://github.com/bombehub/FrequentSnapshot
2. https://github.com/bombehub/RedisPersistent

https://github.com/bombehub/FrequentSnapshot
https://github.com/bombehub/RedisPersistent

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 3

• Low Latency and No Latency Spikes. Latency spikes
(i.e., periodic sharp surges in latency) lead to system
quiescing, which degrades user experience.

• Small Memory Footprint. The snapshot algorithms
should incur low overhead and memory to support large-
scale update-intensive applications.

2.2 Model and Framework

We model the in-memory dataset D as a page array. Each page
contains multiple data items, and the size of each page is 4 KB as
in typical operating systems. To simplify illustration, we assume
only one item per page in the running examples throughout this
paper.

Interface 1 shows the snapshot algorithm framework. We
assume two kinds of threads: the client thread and the snapshotter
thread. The client thread continuously performs large amounts
of Read() and Write() function requests, as in update-intensive
applications. The snapshotter thread is responsible for taking
snapshots periodically. Trigger() is periodically called to check
if the previous snapshot process has completed. If yes, it invokes
TakeSnapshot(). Then, TraverseSnapshot() is invoked to traverse
the generated snapshot. Each interval (a.k.a, period) consists of
two phases, i.e., the taken phase and the access phase. It should
claim that Trigger() is always invoked at a physical consistent time
point when no transactions are uncommitted.

Interface 1 Snapshot Algorithm Framework.
1: Client::Read(index);
2: Client::Write(index,newValue);
3: Snapshotter::Trigger();
4: Snapshotter::TakeSnapshot();
5: Snapshotter::TraverseSnapshot();

In the rest of this paper, we illustrate the process of
representative snapshot algorithms via examples, and we start
with an example of Naive Snapshot.

3

4

6

7

8

5

D

13

4

16

17

8

5

D

13

4

16

17

8

5

D D

5

18

23

16

14

17

13

4

16

17

8

5

D D

13

4

16

17

8

5

TAKEN ACCESS

2
P

1
P

0
t

1
t

2
t

3
t

Figure 2. Running example for Naive Snapshot (NS)

Table 1
Transaction Data

Period Transactions Data to be Updated
P1 T1 < 0, 13 >

T2 < 2, 16 >, < 3, 17 >
P2 T3 < 0, 23 >

T4 < 1, 14 >, < 4, 18 >

EXAMPLE 1 (Naive Snapshot) Assume an initial dataset D =
{3, 4, 6, 7, 8, 5} at time t0. Table 1 shows the client data streams
to be updated, and Fig. 2 shows the data state. We further assume
periodic snapshot taking. In the first period P1 (t0 → t1), there
are two transactions T1 and T2, where each update is represented
by an < index, value > pair. At the end of P1 (i.e., at time t1),
the updated data state D = {13, 4, 16, 17, 8, 5}.

We need to take a snapshot of D at time t1. First, the client
is blocked during the snapshot taken phase (t1 → t2), and the
snapshotter thread duplicates and bulk copies all the data D to
snapshot D. Next, in the access phase (t2 → t3), the client thread
writes T3 and T4 to D, and the snapshotter thread can access the
snapshot from D. Note that the client can read the latest data from
D during the entire period.

3 IN-MEMORY CONSISTENT SNAPSHOT
ALGORITHMS

In this section, we review the mainstream snapshot algorithms for
in-memory database systems. Based on in-depth analysis on the
drawbacks of existing algorithms, we also propose modifications
and improvements of existing snapshot algorithms.

3.1 Representative Snapshot Algorithms
This subsection describes four mainstream snapshot algorithms
(NS, COU, ZZ, PP) proposed by academia.

3.1.1 Naive Snapshot
Naive snapshot (NS) [15] [16] takes a snapshot of data state D
during the taken phase when the client thread is blocked. Once
the snapshot D is taken in memory, the client thread is then
resumed. Meanwhile, the snapshotter thread can access or traverse
the snapshot data D asynchronously. Clients can read the latest
data from D during the entire process. EXAMPLE 1 shows an
example.

3.1.2 Copy-on-Update and Fork
Copy on Update (COU) [18] utilizes an auxiliary data structure
D to shadow copy D and a bit array Db for recording the page
update states of D. Any client write on a page of D for the first
time leads to a shadow page copy to the corresponding page of D
and a setting to the corresponding bit of Db to indicate the state
before the page update. In COU, the snapshotter thread can utilize
the Db to access the snapshot. We refer readers to [18] for more
details.

Note that COU has many variants [2] [17], and here, we
refer to the latency-spike-free implementation in [18]. The fork
function [20] is also a system-level COU variant. Many popular
industrial systems such as Redis [24] and Hyper [5] exploit fork to
take snapshots.

0

0

0

0

0

04

3

7

6

8

5

7

6

3

4

8

5

D

0

0

0

0

0

04

13

17

16

8

5

7

6

3

4

8

5

D

0

1

0

0

1

114

23

17

16

18

5

7

6

13

4

8

5

bDD D DbD bDD

0
t

1
t

2
t

Figure 3. Running example for Copy on Update (COU)

EXAMPLE 2 (Copy-on-Update) As with EXAMPLE 1, dataset
D update from {3, 4, 6, 7, 8, 5} to {13, 4, 16, 17, 8, 5}. To take a

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 4

snapshot at time t1, the incoming transaction T3 and T4 should
not overwrite the snapshot data. So, COU copies the snapshot data
to the shadow data D and sets the bit flag Db to keep track of the

“dirty” data. The snapshotter thread is able to access the snapshot
data using the bit flag, as shown in Fig. 3. However, there must
be exclusive locks between the client thread and the snapshotter
thread, which leads to performance loss.

3.1.3 Zigzag

Zigzag (ZZ) [19] employs one shadow copy D (of the same size
as D) and two auxiliary bit arrays Dbr and Dbw. For a page i,
Dbr[i] and Dbw[i] are responsible for indicating which copy the
client should read from or write to, respectively. Hence, ¬Dbw[i]
indicates the copy the snapshotter thread should access since this
copy cannot be written by the client. ZZ is able to avoid being
overwritten and retain untouched snapshot data with the help of
Dbw[i]. 111 0001 1111 00 0011000000346785 346785 111111 000346785 134161785 111111000346785 134161785 111 02346785 13141617185 111
Figure 4. Running example for Zigzag (ZZ)

EXAMPLE 3 (Zigzag) Assume the same setting as in EXAM-
PLE 1. At the initial time t0, D=D={3, 4, 6, 7, 8, 5}. Dbr are all
zeros, and Dbw[i] are all ones. During the first period, transactions
T1 and T2 are written to D, and D has the time-in-point snapshot
data of time t0. For each write, Zigzag sets Dbr[i]=1, which means
the latest version of page i is in D[i]. At the end of P1 (at time
t1), the latest data can be tracked by the Dbr array. To take the
snapshot, we should ensure that transactions T3 and T4 cannot
write to data tracked by Dbr . Conversely, T3 and T4 should write
according to ¬Dbr. So, we set Dbw=¬Dbr. During the second
period P2, we can access the snapshot with the help of ¬Dbw.

3.1.4 Ping-Pong

Ping-Pong (PP) [19] is proposed to completely eliminate the latency
spikes. It leverages one copy Du to collect updates and the other
copy Dd to record the incremental snapshot. During each period,
the client thread reads from D and writes to both D and Du.
The snapshotter thread can asynchronously access the incremental
snapshot Dd. At the end of each period, all the updated data for
constructing the upcoming incremental snapshot are held in Du.
PP attains an immediate swap by exchanging the pointers Du and
Dd.

1

0

1

14

18

0

0

0

3

4

6

7

8

5

7 1

6 1

3 1

4

8

5

1

1

1

0

0

0

0

0

0

13

4

16

17

8

5

7 0

6 0

3 0

4

8

5

0

0

0

17 1

16 1

13 1

4

8

5

0

0

0

13

4

16

17

8

5

0

0

0

17 1

16 1

13 1

4

8

5

0

0

0

23

14

16

17

18

5

0

0

23 1

17 0

16 0

13 0

4

8

5

0

0

0

D

D D

u
D D

u
D

d
D

d
D

d
D

u
D

u
D

d
D

0
t

1
t

2
t

3
t

Figure 5. Running example for Ping-Pong (PP)

EXAMPLE 4 (Ping-Pong) Assume the same setting as EXAM-
PLE 1. At time t0, D=Dd={3, 4, 6, 7, 8, 5}. During P1, we
execute T1 and T2 to D and Du. Meanwhile, Dd holds the
snapshot of time t0. At the end of P1 (at time t1), the data in
Du hold the incremental data regarding the updated data during
P1. In the taken phase (t1 → t2), we exchange Du and Dd to
freeze the snapshot data. During P2, we can write data to Du and
access the incremental snapshot in Dd.

3.2 Improved Snapshot Algorithms
Previous snapshot algorithms mainly trade off between latency and
throughput. Fork, a COU variant prevailing in industrial IMDBs,
has low latency and high throughput, but the method itself still
suffers from high time complexity. To simultaneously achieve low
latency, high throughput, small time complexity and zero latency
spikes, we propose two lightweight improvements, Hourglass and
Piggyback, over existing snapshot algorithms.

3.2.1 Hourglass
One intuitive improvement over the above snapshot algorithms
is the combination of Zigzag (bit array marking) and Ping-Pong
(pointers swapping) to avoid latency spikes while at the same time
retaining a small memory footprint. We call this improvement
Hourglass (HG). It maintains dataset D and a shadow copy D,
which are accessed by pointers “pU” and “pD”, respectively, as in
Ping-Pong. D and D are accompanied by bit arrays Db1 and Db2,
where Db1[i] and Db2[i] indicate whether the page in D[i] has
been updated during the current period. Hourglass utilizes these bit
arrays to record the incremental data updates in the current period.
Pointer swapping happens at the end of the period.

An additional bit array Dbr is set up to indicate the locations
(either in D or in D) from which the client thread can read the
latest pages. A zero for the bit Dbr[i] indicates that the latest data
locate in D[i], and a value of one indicates they are located in D[i].
The following example illustrates how Hourglass works during two
successive snapshots.

EXAMPLE 5 (Hourglass) As shown in Fig. 6(a), assume that at
time t0, D=D={3, 4, 6, 7, 8, 5}. Db1 and Db2 are initialized with
zeros and ones, respectively. Dbr is initialized with ones. During
P1, when an update occurs on page i, Db1[i] is set to 1, and Dbr[i]

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 5

7 0

6 0

3 0

4

8

5

0

0

0

3

4

6

7

8

5

1

1

1

1

1

1

1

1

1

1

1

1

DD 1bD brD2bD

pU pD

(a) t0, D and D with identical
dataset

17 1

16 1

13 1

4

8

5

0

0

0

3

4

6

7

8

5

0

0

0

0

0

0

0

1

0

0

1

1

DD 1bD brD2bD

pU pD

(b) t1, the client thread performs
updates

113

17 1

16 1

4

8

5

0

0

0

3

4

6

7

8

5

0

0

0

0

0

0

0

1

0

0

1

1

DD 1bD brD2bD

pD pU

(c) t2, the state after pointers swap-
ping

1

1

1

18

14

17 0

16 0

13 0

4

8

5

0

0

0

23

6

7

5

0

0

0

1

1

0

0

1

1

DD 1bD brD2bD

pD pU

(d) t3, the state after backing up the
incremental updated data

Figure 6. Running example for Hourglass (HG)

0

0

0

0

0

04

3

7

6

8

5

7

6

3

4

8

5

D D bD

pU pD

(a) t0, D and D with identical
dataset

1

0

1

1

0

0

3

4

6

7

8

5

13

4

16

17

8

5

D D bD

pU pD

(b) t1, the client thread performs
updates

17

16

3

4

6

7

8

5

13

4

8

5

1

0

1

1

0

0

D D bD

pD pU

(c) t2, the state after pointers swap-
ping

5

18

23

16

14

17

13

4

16

17

8

5

2

2

0

0

2

0

D D bD

pD pU

(d) t3, the state after backing up the
full snapshot

Figure 7. Running example for Piggyback (PB)

is set to 0. D will be kept away from the client thread, so that it can
be accessed by the snapshotter thread in the lock-free manner. At
the same time, once a page j in the dataset D has been accessed,
the jth position in Db2 is reset to 0. At the end of this period,
all bits in Db2 are reset to zeros. Fig. 6(b) shows the changes to
the memory pages at the end of period P1. The updated pages
are marked in blue shadow. Next, in the snapshot taken phase,
the pointers of pU and pD between D and D are swapped as in
Fig. 6(c). Then, in the access phase, the snapshotter thread begins
to access the incremental snapshot data from D. Only those pages
pointed by pD where the corresponding bits are set to zeros are
included in the snapshot. In our example, D[0], D[2], and D[3]
(marked in yellow shadow Fig. 6(c)) are accessed. During this time,
the client thread resumes executing the transactions. The state at
the end of P2 is shown in Fig. 6(d).

Algorithm 2 describes the main idea of Hourglass.

3.2.2 Piggyback
Although pointer swapping (in Ping-Pong and Hourglass) elimi-
nates latency spikes, it is only applicable for incremental snapshots.
To enable full snapshots with the pointer swapping technique, we
propose another improvement called Piggyback (PB). The idea is
to copy the out-of-date data from pD to pU . Consequently, the
data pointed by pU will always be the latest at the end of each
period, i.e., pD holds the full snapshot data after pointer swapping.

To support piggyback copies, the Piggyback algorithm lever-
ages two techniques. (i) Piggyback maintains a two-bit array Db.
The value of Db[i] is one of three states from {0, 1, 2}, which
indicates from which dataset the client thread should read. When
Db[i]=0, the client thread can read page i from either array because
it means that D[i]=D[i]. When Db[i]=1, the client thread should
read page i from D[i]. When Db[i]=2, the client thread should read
page i fromD[i]. (ii) Piggyback defines another function Snapshot-
ter::WriteToOnline() which is called in Snapshotter::Trigger()
as in Algorithm 3. Snapshotter::WriteToOnline() ensures the

data pointed by pU will always be the latest at the end of each
period, so that Snapshotter::TraverseSnapshot() can access the
full snapshot in pD.

EXAMPLE 6 (Piggyback) Initially, pU and pD are pointed to
D and D, respectively. The bit array Db is set to zeros as shown in
Fig. 7(a). Fig. 7(b) shows the situation at time t1. The client thread
updates pages D[0], D[2], and D[3] (blue shadow) during the first
period. The corresponding two-bit elements in Db are then set to
ones by the client thread at the same time. This ensures that the
client thread always reads the latest data based on the information
in Db. Concurrently, D has the full snapshot data of time t0.

At the beginning of P2, pointers pU and pD are exchanged. A
full snapshot about time t1 is held in this copy in D and can be
accessed. Meanwhile, D can be updated by the client thread. Note
that there may be dirty pages in D in the P3 period. For instance,
D[0], D[2] and D[3] (red shadow) are older pages (Fig. 7(c)). To
avoid dirty pages, Piggyback performs a piggyback copy of these
pages from D to D in this period together with the client’s normal
updates on pages D[0], D[1] and D[4] (blue shadow). Hence, at
the end of P2, all the pages in D are updated to the latest state as
shown in Fig. 7(d).

3.3 Comparison of Snapshot Algorithms

Table 2 compares the advantages and drawbacks of the snapshot
algorithms. Although fork is a variant of COU, we list it separately
since it is the standard method in many industrial IMDBs. In
theory, Piggyback, our modification over Zigzag and Ping-Pong,
outperforms the rest in all metrics.

Note that the 2× memory consumptions of HG and PB are
only for the abstract array model (static memory allocation).
Their memory footprints can be further reduced in the production
environment thanks to the dynamic memory allocation technique
(see Sec. 5.4).

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 6

Table 2
Comparison of algorithms in different metrics; “(*)” represents the drawback

Algorithms Average
Latency

Latency
Spike

Snapshot Time
Complexity

Max
Throughput

Is Full
Snapshot

Max Memory
Footprint

Naive Snapshot [15], [16] low (*) high (*) O(n) low yes 2×
Copy-on-Update [2], [17], [18] (*) high (*) middle (*) O(n) middle yes 2×

Fork [20] low (*) middle (*) O(n) high yes 2×
Zigzag [19] middle (*) middle (*) O(n) middle yes 2×

Ping-Pong [19] (*) high almost none O(1) low no (*) 3×
Hourglass low almost none O(1) high no 2×
Piggyback low almost none O(1) high yes 2×

Algorithm 2 Hourglass
Input:

DataSet D,D ← initial data source
DataSet ∗pU , ∗pD
BitArray Db1 ← {0, 0, ..., 0}
BitArray Db2 ← {1, 1, ..., 1}
BitArray ∗pUb, ∗pDb

BitArray Dbr ← {1, 1, ..., 1}
D ← pU , Db1 ← pUb, D ← pD, Db2 ← pDb

PageNum← |D|
1: function CLIENT::WRITE(index, newV alue)
2: pUb[index]← 1
3: pU [index]← newV alue
4: Dbr[index]← (pU == &D)?0 : 1
5: end function
1: function CLIENT::READ(index)
2: return (Dbr[index] == 0)?D[index] : D[index]
3: end function

1: function SNAPSHOTTER::TRIGGER
2: if previous snapshot done then
3: TakeSnapshot()
4: TraverseSnapshot()
5: end if
6: end function
1: function SNAPSHOTTER::TAKESNAPSHOT
2: lock Client
3: swap(pU, pD)
4: swap(pUb, pDb)
5: unlock Client
6: end function
1: function SNAPSHOTTER::TRAVERSESNAPSHOT
2: for i = 1 to PageNum do
3: if pDb[i] = 1 then
4: pDb[i]← 0
5: write pD[i]
6: else
7: copy-from last snapshot
8: end if
9: end for

10: end function

Algorithm 3 Piggyback
Input:

DataSet D,D ← initial data source
DataSet ∗pU , ∗pD
D ← pU , D ← pD
FlagArray Db ← {0, 0, ..., 0}
PageNum← |D|

1: function CLIENT::WRITE(index, newV alue)
2: pU [index]← newV alue
3: Db[index]← (∗pU 6= D)?2 : 1
4: end function
1: function CLIENT::READ(index)
2: return (Db[index] 6= 2)?D[index] : D[index]
3: end function

1: function SNAPSHOTTER::TRIGGER
2: if previous snapshot done then
3: TakeSnapshot()
4: WriteToOnline()
5: TraverseSnapshot()
6: end if
7: end function
1: function SNAPSHOTTER::TAKESNAPSHOT
2: lock Client
3: swap(pU, pD)
4: unlock Client
5: end function
1: function SNAPSHOTTER::WRITETOONLINE
2: bit = (pD == &D)?1 : 2
3: for k = 1 to PageNum do
4: if Db[k] = bit then
5: Db[k] = 0
6: pU [k]← pD[k]
7: end if
8: end for
9: end function
1: function SNAPSHOTTER::TRAVERSESNAPSHOT
2: for k = 1 to PageNum do
3: Dump-All pD[k]
4: end for
5: end function

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 7

4 VIRTUAL SNAPSHOT

This section discusses the recent work [23] in designing virtual
snapshot algorithms that are independent of a physically consistent
state. We also modify our Hourglass and Piggyback algorithms to
meet this new requirement.

4.1 Physical snapshot algorithms with Physically Con-
sistent State
The above snapshot algorithms from academia and industry rely
on a physically consistent state. That is, the in-memory data must
remain consistent at a point in time once the trigger function
is invoked. Such a situation has been discussed frequently in
applications, such as frequent consistent application [2], [19], actor-
oriented database systems [25], and partition-based single thread
running database,i.e., H-Store [26], Redis, Hyper [5], etc.

However, for a broader application situation (e.g., concurrent
transaction based database), to maintain such a physically consistent
state, system quiescing is inevitable until all active transactions
have been committed. This is the cause of latency spikes [23].

4.2 Virtual Snapshot Algorithms without Physically
Consistent State
4.2.1 CALC
To avoid blocking transactions during the trigger, one recent
pioneering work called CALC [23] proposes the concept of virtual
consistent snapshot, for which snapshot is not captured at the point
in trigger time but delayed until the end of all active transactions.
CALC is a concurrent variant of COU. In CALC, each cycle
(period) is divided into 5 phases. Similar to COU, CALC maintains
two copies of data D and D, as well as a bit array Db. CALC can
obtain a virtual consistent view of the snapshot data by carefully
performing COU during specific phases. We interpret the idea
through the following example.

REST PREPARE RESOLVE CAPTURE COMPLETE REST

0t 1t 2t 3t 4t

T1

T2

T3
T4

T5

T6

Figure 8. Running example for CALC

EXAMPLE 7 (CALC) As shown in Fig. 8, the trigger is invoked
at time t0. The time before t0 is the rest phase. At time t1, all
the transactions started in the rest phase are committed. The time
interval t0 → t1 is called the prepare phase. At time t2, all the
transactions started in the prepare phase are committed, and the
corresponding time interval t0 → t1 is labeled the resolve phase.
The snapshot is taken during t2 to t3, which is called the capture
phase. At time t4, all the transactions started in the capture phase
are committed. The time interval t3 → t4 is labeled as the complete
phase.

For transactions (T1, T2) started during the rest or the complete
phase, CALC only needs to update D. For transactions (T3, T4, T5,
T6) started during the prepare, the resolve or the capture phase,
CALC performs the COU strategy. Finally, a virtual consistent view
snapshot is generated at time point t1. The virtual consistent view

of the snapshot data should contain T1, T2, T3, and we can start
accessing the view of data after t2.

4.2.2 vHG and vPB
Although our improved snapshot algorithms Hourglass and
Piggyback are primarily designed to be dependent on a physically
consistent state, we find such a dependency can be easily eliminated.
We call the new versions of Hourglass and Piggyback vHG and
vPB, respectively.

We describe the main idea of vHG as follows. The trick
here is that once the trigger function is invoked, the pointers
are swapped immediately. The new transactions (i.e., those started
after the trigger) should update the data pointed by pU while
the active transactions (i.e., those uncommitted when the trigger
is invoked) will keep updating the data pointed by pD. In other
words, pointer swapping does not influence the writing strategies of
active transactions. The access operation of the snapshotter thread
should wait until all active transactions are committed. Note that
vPB shares the similar idea with vHG.

TAKEN ACCESS

T3 T4

0
t 1t 2t

T1

T2

Figure 9. Running example for vHG

EXAMPLE 8 (vHG) As shown in Fig. 9, the structure of vHG is
the same as HG. The main difference lies in the trigger function.
At time t0 when the trigger is invoked, the pointers of pU and pD
are swapped immediately. The transactions started before t0 (T1,
T2) are updated to pU (i.e., D) regardless of the pointer swapping.
In contrast, the transactions started after t0 (T3, T4) are updated
after swapping pU (i.e., D). Once T1 and T2 are committed at time
t1, the data in pD hold the virtual consistent view of data. Then,
the snapshotter thread invokes the TraverseSnapshot() function.

Algorithm 4 shows the pseudo code of vHG, which shares the
same framework with Algorithm 2. The difference lies in the fact
that data should be updated to the same dataset within a transaction
lifecycle, and snapshot should be postponed by detecting and
waiting for the end of all active transactions rather than being
performed immediately after the trigger is invoked. In this way,
incoming transactions cannot be blocked as shown in line 4 of
Snapshotter::Trigger() function.

5 EXPERIMENTAL STUDIES

This section comprehensively evaluates the performance of
various snapshot algorithms from the previous section. We first
present a thorough benchmark study on latency, throughput and
snapshot overhead (Sec. 5.2). In addition, we briefly evaluate
the performance of virtual snapshot algorithms(Sec. 5.3). Then,
we implement two Redis variants by integrating HG and PB,
respectively, to study the scalability in real-world IMDB systems
(Sec. 5.4).

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 8

Algorithm 4 vHG
1: function CLIENT::TRANSACTIONEXECUTION(txn)
2: if pU equals to D then
3: for index, newvalue in txn do
4: Db[index] = 1
5: D[index] = newvalue
6: end for
7: else
8: for index, newvalue in txn do
9: Db[index] = 1

10: D[index] = newvalue
11: end for
12: end if
13: end function
1: function SNAPSHOTTER::TRIGGER
2: if previous snapshot done then
3: TakeSnapshot()
4: Detect and Waiting()
5: TraverseSnapshot()
6: end if
7: end function

5.1 Infrastructure
All the experiments are conducted on a server, HP ProLiant
DL380p Gen8, which is equipped with two E5-2620 CPUs and
256GB main memory. CentOS 6.5 X86 64 operating system
with Linux kernel 2.6.32 and GCC 5.1.0 os installed. Using the
micro-benchmark 3, the evaluation environment has the following
performance parameters: memory bandwidth = 2.72 GB/s, memory
write startup overhead = 37.38 ns, lock overhead = 87.19 ns, and
atomic bit check overhead = 0.94 ns.

5.2 Benchmark Study of Physical Snapshot
This trial of experiments evaluates snapshot algorithms with
synthetic update-intensive workloads.

5.2.1 Setups
We benchmark all snapshot algorithms in checkpoint applications
to reveal performance and follow the setups in [19]. The update-
intensive client is simulated by a Zipfian [27] distribution random
generator. It generates a stream of update data (in the form of
< page index, value >), which will be consumed by the client
thread. The generator ensures only a small portion of data to
be “hot”, i.e.,, frequently updated. Since the Zipfian distribution
parameter α has little impact on the experimental results [19], we
set α to 2 by default. To simulate a heavy updating workload,
all the synthetic data are pre-generated and kept in a trace file.
The trace file is loaded into the main memory before performing
updates.

To carefully control the update frequency, the client thread runs
in a tick-by-tick (a.k.a. time slice) way [19], and we divide each
tick into two stages. One is the update stage in which uf times
updates should be accomplished. The length of the update stage is
defined as the tick latency (latency for short). Latency will be used
as one of the evaluation metrics for performance comparison. The
remaining duration of a tick is regarded as the idle stage, which
aims to idle the client thread until the start of the next tick to
guarantee a consistent tick duration of 100ms. We can control the
update frequency by adjusting the proportion of the two stages. For

3. http://www.cs.cornell.edu/bigreddata/games/recovery simulator.php

example, assume a memory page size of 4KB. Each page contains
1024 data items, and the data item is 4 bytes in size. Then, D has
1,000,000 pages, approximately 4000MB, and the data are updated
at a rate of 0.128% per second. Hence, the update frequency is
4000MB

4B ×0.128%=1280K per second, i.e., uf=128K per tick.
The checkpoint interval is defined to be at least 10 seconds. For

each experiment, we monitor 10 successive checkpoints.
Table 3 summarizes the parameters of the synthetic workloads.

The initial parameter settings are shown in bold. Two tunable
parameters, dataset size and uf , can notably affect the performance
of the algorithms. Intuitively, the size of the dataset directly relates
to the checkpointing overhead and the time of the snapshotter
taken phase. Furthermore, during each tick interval, we perform
accurate times of operations, which represents the intensity of the
client workload. Apparently, the workload has very strong influence
on the latency performance. Hence, we conduct experiments to
quantify the impacts of these two parameters in the following.

Table 3
Parameters of synthetic workloads

Parameters Setting
Checkpoint count 10

Data item size 4B
Memory page size 4KB

Tick length 100ms
Update frequency 16k, 32k, 64k, 128k, 256k

Dataset size 1000MB, 2000MB, 4000MB, 8000MB

5.2.2 Performance
We mainly evaluate the latency (average, distribution and maxi-
mum), maximum throughput and checkpoint overhead of different
snapshot algorithms.

Average Latency. Fig. 10 shows the average latency with the
increase of update frequency (16k, 32k, 64k, 128k, and 256k per
tick) on a 1000MB dataset. The average latencies of all algorithms
exhibit similar increasing trends. NS has the shortest average
latency because the normal read and update show no interference
by additional copy or bit checking operations. COU has a long
latency because there are synchronization locks on pages to be
updated between the client and the snapshotter. Page locking and
duplicating increase latency. Unlike [19], we observe that PP incurs
a large latency, as PP exploits the redundant update mode for the
client. That is, the client thread of PP has to update both D and
Du during each operation. The experiments in [19] only consider
one of the writes, while we also take the redundant writes into
account. The same result can be found in [23]. The latency of PB,
HG, Fork and ZZ is relatively small. In the case of PB, HG, and
ZZ, they only need an extra bit operation rather than the costly
page replication. The slightly larger latency of ZZ is because each
update operation may occur at either dataset (D or D), while the
other two methods (HG and PB) have an exclusive dataset for
updating during a checkpointing period. The accumulative cost
of such interlaced memory addressing cannot be ignored in the
case of high updating frequencies. As for Fork, the OS kernel
function fork() is called to create a copy of the updating process
context including the memory space, which is more efficient than
the original COU.

Fig. 11 shows the average latency on datasets of different sizes
at a fixed updating frequency of 256K. We observe that the data
size has almost no impact on average latency.

Referring to Fig. 10 and Fig. 11, we conclude that HG, PB and
Fork exhibit similar performance to NS in average latency.

http://www.cs.cornell.edu/bigreddata/games/recovery_simulator.php

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 9

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

16 32 64 128 256

A
ve

ra
ge

 la
te

nc
y[
µs

]

uf[K/100ms], logscale

NS
COU

ZZ
PP

PB
HG

Fork

Figure 10. uf vs. Average latency

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1000 2000 4000 8000

A
ve

ra
ge

 la
te

nc
y[
µs

]

Size[MB], logscale

NS
COU

ZZ
PP

PB
HG

Fork

Figure 11. Data size vs. Average latency

 4000

 5000

 6000

 7000

 8000

 9000

 150 200 250 300 350

La
te

nc
y[
µs

]

Tick

NS
COU

ZZ
PP

PB
HG

Fork

Figure 12. Latency distribution (uf=256K)

 4500

 5000

 5500

 6000

 6500

 7000

 150 200 250 300 350

La
te

nc
y[
µs

]

Tick

ZZ PB HG Fork

Figure 13. Part of Figure 12 without NS, COU,
and PP

 0.01

 1

 100

 10000

 1x106

 1x108

1000 2000 4000 8000M
ax

im
um

 la
te

nc
y[
µs

],
lo

gs
ca

le

Size[MB], logscale

NS
COU

ZZ
PP

PB
HG

Fork

Figure 14. Data size vs. Maximum latency

 0.01

 1

 100

 10000

 1x106

 1x108

16 32 64 128 256M
ax

im
um

 la
te

nc
y[
µs

],
lo

gs
ca

le

uf[K/100ms], logscale

NS
COU

ZZ
PP

PB
HG

Fork

Figure 15. uf vs. Maximum latency

Latency Distribution. Fig. 12 plots the latency traces on a
1000MB dataset with uf=256K per tick. Only the latency traces
between the 150th and 350th ticks are plotted, which include a full
checkpointing period. Other fragments of the traces show a similar
pattern. Fig. 13 zooms in on the details of the differences between
Fork, ZZ, HG, and PB.

We observe that the latency of each algorithm is relatively stable.
A latency spike usually appears at the beginning of a checkpointing
when the snapshotter enters the snapshot taken phase. NS, COU,
Fork and ZZ show notable latency spikes because of the O(n) time
complexity. The dramatic latency spikes of NS can cause trouble
in practical applications.

Maximum Latency. The taken phase time of the snapshotter
dominates the maximum latency of the client thread. Fig. 14 shows
the maximum latency with the increase in dataset size. The update
frequency is set to 256K per tick in this experiment. We can observe
that the maximum latency of PP, HG, and PB are several orders of
magnitude lower than that of NS, COU, Fork, and ZZ. Moreover,
the maximum latency of the latter algorithms becomes steadily
larger with the increase in dataset size. The good performance of
PP, HG and PB is due to the pointer swapping technique.

Fig. 15 further shows the impact of uf on the maximum latency
on a 1000MB dataset. All curves remain horizontal because the
maximum latency is only influenced by data size.

In sum, comparing average latency, latency distribution and
maximum latency, our improved algorithms, HG and PB, exhibit
better performance than other algorithms.

Maximum Throughput. Maximum throughput is one metric
to assess the maximum load capacity. Fig. 16 shows the maximum
throughput per millisecond on a 8000MB dataset. Unlike the
previous experiments, the length of the idle stage in a tick is
set to zero. Thus, the client can update as fast as possible in a full-
update (no-wait) mode. Further, we turn off the Dump operation to
observe the throughput limit.

HG, PB and Fork exhibit better performance in maximum
throughput. In fact, the maximum throughput is a comprehensive
reflection of the results in Fig. 10 and Fig. 15. For instance, although

NS has the shortest average latency, its latency spike is the most
obvious, which leads to a bad maximum throughput.

Checkpointing Overhead. Checkpoint overhead is the traverse
and dump overhead of the the snapshotter thread. All algorithms per-
form a full snapshot for fair comparison. For incremental snapshot
algorithms, a full snapshot is obtained by merging the incremental
dumped data with the last snapshot. This can be achieved by using
the Copy and Merge proposed by [19]. Merge is more efficient
than Copy in terms of the memory maintenance cost. Therefore, for
Algorithm 2 Line 7 of Snapshotter::TraverseSnapshot(), we apply
Merge to construct a new full snapshot.

Fig. 17 shows the trend in overhead on varying dataset sizes.
The update frequency is fixed to 256K per tick. The checkpointing
overheads of all the algorithms increase linearly, and there is little
difference between their overheads; the overheads are primarily
dominated by the dataset size written to the external memory.
Fig. 18 shows the overheads with different update frequencies on a
dataset of 1000MB. The overheads remain almost constant across
all the algorithms because the dataset size is fixed.

5.2.3 Does Fork really good enough?

Fig. 19 shows the performance comparison of Fork, HG, and PB
with data size ranging from 1000 MB to 8000 MB. In particular,
the results reflect the limitations of Fork. It is no longer comparable
with HG and PB in the case of maximum latency. As stated in [28],
although it is an OS kernel function, fork is still expensive on
most Unix-like systems. The costs are the result of copying the
memory page table from the parent process to the child process.
Let the memory page size be 4 KB for a Linux x86 64 system
whose pointer size is 8 Bytes. Thus, to address a 50 GB memory
space, the size of the memory page table should be 50GB

4KB ×8B≈
100 MB. This will result in the allocation and copying of 100 MB
memory whenever a checkpoint occurs. Suppose that the memory
bandwidth is 2.5 GB/s; the latency spike is about 40 ms, which
accords with the results in Fig. 14 and Fig. 19.

Summary. Our benchmark evaluations on a synthetic workload
reveal the following findings.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 10

 12000

 12500

 13000

 13500

 14000

 14500

 15000

 15500

 16000

NS COU ZZ PP HG PB Fork

T
hr

ou
gh

pu
t [

pe
r

m
s]

Algorithms

NS
COU

ZZ
PP

HG
PB

Fork

Figure 16. Maximum throughput

80

160

320

640

1000 2000 4000 8000

C
he

ck
po

in
t o

ve
rh

ea
d[

s]

Size[MB]

NS
COU

ZZ
PP

PB
HG

Fork

Figure 17. Data size vs. Checkpointing over-
head

 66

 68

 70

 72

 74

16 32 64 128 256

C
he

ck
po

in
t o

ve
rh

ea
d[

s]

uf[K/100ms], logscale

NS
COU

ZZ
PP

PB
HG

Fork

Figure 18. uf vs. Checkpointing overhead

 0

 1000

 2000

 3000

 4000

 5000

 6000

1000 2000 4000 8000M
ax

im
um

 la
te

nc
y[
µs

],
lo

gs
ca

le

Size[MB]

PB
HG

Fork

Figure 19. fork performance

• For applications where only backend performance is a
concern, the snapshot algorithms should have low average
latency. NS, Fork, HG and PB all are applicable (see Fig. 10
and Fig. 11).

• For interaction-intensive applications (i.e., frequent up-
dates), latency spikes should be included to assess the
snapshot algorithms. PP, HG and PB outperform the others
in terms of the number of spikes and the value of spikes
(i.e., maximum latency), while NS performs the worst (see
Fig. 12, Fig. 14 and Fig. 15).

• Fork outperforms NS, COU, ZZ and PP in terms of both
latency and throughput (see Fig. 12, Fig. 14 and Fig. 16);
in addition, fork has a simple engineering implementation;
fork is therefore adopted in several industrial IMDBs such
as Redis.

• The latency performances of PB and HG are not affected by
the data size (see Fig. 14 and Fig. 19). In general, PB and
HG are more scalable than the other algorithms including
fork.

• NS, Fork, COU, ZZ and PP are fit for specific applications
(i.e., they perform well either on latency or throughout).
PB and HG trade off latency, throughput and scalability,
which are fit for a wider range of applications.

5.3 Benchmark study of Virtual Snapshot
The above experiments were conducted under the update intensive
physical snapshot scenario. In this section, we present a comparison
of CALC, vHG and vPB under the virtual snapshot scenario. The
transaction concurrent control method used here is the general
Strict two-phase Locking Protocol (S2PL) [29] as in [23]. Note
that any other concurrent control methods (e.g., MVCC, OCC, etc.)
are also applicable as long as they are under the same concurrency
control protocol.

Fig. 20 compares the throughput of CALC, vHG, and vPB on
a 100MB dataset. Since vHG and vPB do not require page copy
operations, they have greater workload capacity than CALC for all
the multi-thread cases. Interestingly, we observe that the throughput

tends to be stable when the thread number is larger than 8. Even
if the number of threads in the system continues to increase, the
performance will not always improve. This phenomenon can be
explained by the heavy lock contentions among threads. The result
is similar to that of the DBx1000 project [30].

5.4 Performance in Industrial IMDB System
Redis is a popular In-Memory NoSQL system and it utilizes fork()
to persist data [31]. To generate the persistent image (a.k.a. RDB
file) in the background, Redis has to invoke the system call fork() to
start a child process to execute snapshot and dumping work. From
the above benchmark study, we see that fork() indeed performs
better than mainstream snapshot algorithms including NS, COU,
ZZ and PP in terms of latency and throughput. However, we also
suspect that fork() will incur dramatic latency on large datasets,
which limits the scalability of Redis. In fact, database users usually
restrain the data size of a running Redis instance in practice [32].
In this performance study, we aim to harness proper snapshot
algorithms to improve the scalability of snapshots in Redis.

5.4.1 Snapshot Algorithm Selection
Fork has weak scalability due to its O(n) time complexity. It
is posted in the official website [31] that “Fork() can be time
consuming if the dataset is large, and as a result, Redis may stop
serving clients for milliseconds or even one second if the dataset is
large and the CPU performance not great”.

To optimize the scalability of Redis, an option is to replace fork
with snapshot algorithms of O(1) complexity. Here, we implement
two Redis variants Redis-HG and Redis-PB using the HG and PB
algorithms, respectively. Both variants are a single-process with
double-thread (client and snapshotter). We do not choose ZZ, for
it is only suitable for small datasets; during the taken phase, ZZ
needs to operate all the bit flags. Traversing all the keys is time
consuming and is almost equal to executing the “keys *” directive.
PP is also excluded due to the three copies of the memory footprint.
In addition, the Redis architecture is unfit for integrating the PP
algorithm.

Note that, as a key-value database, Redis internally maintains a
large hash table in the main memory. Alternatively, for each key,
we build the array data model as its corresponding value. Although
the arrays in the model are physically broken up into fragments,
they are still logically traversable through the hash table. To save
memory (see Sec. 3.3), we introduce the garbage collection and
dynamic memory allocation techniques.

5.4.2 Dataset
We chose YCSB (Yahoo! Cloud Serving Benchmark) [21] to
validate the practical performance of our prototype. A workload
of YCSB is a dataset plus a set of read and write operations,

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 11

 100

 200

 300

 400

 500

1 2 4 8 16 32 64

T
ra

ns
ac

tio
ns

 [p
er

 m
s]

Thread num [M], logscale

CALC
vHG
vPB

Figure 20. Thread num vs. Transaction through-
put

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 13500

 14000

1 2 4 8 16

T
hr

ou
gh

pu
t [

pe
r

s]

Record count[M], logscale

Redis Redis-HG Redis-PB

Figure 21. Redis: YCSB record count vs.
Throughput

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16

M
ax

im
um

 la
te

nc
y[

m
s]

Record count[M], logscale

Redis
Redis-HG
Redis-PB

Figure 22. Redis: YCSB record count vs. Maxi-
mum latency

 10

 20

 30

 40

 50

 60

0.1 0.2 0.3 0.4 0.5

M
ax

im
um

 la
te

nc
y[

us
]

Update proportion

Redis Redis-HG Redis-PB

Figure 23. Redis: Update proportion vs. Maxi-
mum latency

219

220

221

222

223

224

1 2 4 8 16

M
ax

im
um

 p
ag

e,
 lo

gs
ca

le

Record count[M], logscale

Redis
Redis-HG
Redis-PB

Figure 24. Redis: YCSB record count vs. Maxi-
mum memory cost

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8 16

D
um

p
ov

er
he

ad
[s

]

Record count[M]

Redis
Redis-HG
Redis-PB

Figure 25. Redis: YCSB record count vs. Dump
overhead

i.e.,, a transaction set. The dataset is loaded into the database and
then consumed by the transaction set. YCSB predefines six main
workloads. We implement our own workloads based on Workload A
(update heavy workload) and Workload B (read mostly workload),
which accord with our aim to evaluate performance for frequent
consistent checkpointing. Table 4 shows the detailed workload
setups. Those defined by YCSB are in bold.

The Redis configuration file “redis.conf ” contains a number
of directives. We use directive “save 10 1” to configure Redis to
automatically dump the dataset to disk every 10 seconds if there is
at least one change in the dataset.

Table 4
Parameters of YCSB workloads

Parameters Setting
Loading thread 256

Distribution Zipfian
Operation count 4M

Update proportion 0.1, 0.2, 0.3, 0.4, 0.5
Record count 1M, 2M, 4M, 8M, 16M

5.4.3 Performance
We mainly evaluate the performance of the two Redis variants
in terms of throughput, latency, effect of updates, memory and
snapshot overhead.

Throughput. Fig. 21 illustrates the change of throughput as the
benchmark record count grows. The trends are consistent with those
shown in Fig. 11. We make two observations. (i) The throughput
of all the algorithms is insensitive to the dataset size. (ii) Redis-
HG and Redis-PB have similar throughput performance to the
default Redis; although Redis-HG and Redis-PB can avoid locks
between data updating and dumping, they need additional checking
through the hash table for each read/write operation. Therefore, the
throughout improvement is marginal.

Maximum Latency. Fig. 12 compares the differences in
latency spikes and Fig. 14 shows the maximum latency with the

increase of the dataset size. Fig. 22 plots the maximum latency
with the record count from 1 million to 16 million, approximately
up to 50GB (with update proportion = 0.1).

The default Redis incurs a dramatic increase in maximum
latency when the record count reaches 8 million. This result is
consistent with the Redis document for which the maximum latency
becomes huge because of the invocation of fork(). Redis-PB and
Redis-HG have similar maximum latencies, and both remain stable
with the growth of the record count. This can be explained by the
pointer swapping technique employed in the snapshot taken phase,
which only needs to be almost constant and incur a small cost. We
expect that the maximum latency of official Redis implementation
will grow rapidly with the record count until eventually quiescing
the system, which leads to weak scalability. Conversely, Redis-HG
and Redis-PB can scale to larger datasets than the default Redis.

Effects of Updates on Latency. Fig. 23 shows the maximum
latency with fixed record counts of 8 million and a varying
proportion of updates from 0.1 to 0.5. As shown, the maximum
latency of Redis grows with more updates, while those of Redis-
HG and Redis-PB still remain relatively stable. We conclude that
Redis-HG and Redis-PB are more suitable for update-intensive
applications.

Maximum Memory Footprint. Since the default Redis
persistence strategy depends on forking a child process to dump
the snapshot, the additional application dataset size of the memory
footprint is inevitable. Although at the beginning of a fork, the
parent and child processes share a single data region in memory,
the actual size of the memory consumed will increase with frequent
data updates (i.e., page duplication). That is, the memory footprint
depends on the workload. In the worst case (update intensive),
fork will lead to a memory spike (almost double the memory
footprint) [33]. As explained in Redis FAQ [34], the fork may fail
when the Redis memory size is larger than half of system memory.
Although the fork failure can be avoided by setting parameter
overcommit memory to 1, there still exists the risk of being
killed by the OS’ OOM killer. Based on experience, the case where
the redis instance is larger than half of the local physical memory

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 12

is dangerous.
In principle, Redis-HG and Redis-PB need a memory footprint

that is twice the size. To reduce memory usage, we leverage
the dynamic memory allocation and the garbage collection
technologies. Once a value has been dumped to the disk and
the value is not up-to-date, the corresponding value portion should
be identified as garbage that can be destroyed and reused by the
system now or later. Fig. 24 shows the comparison of the maximum
memory cost. All comparisons are linear to the dataset size. The
memory cost of Redis-HG and Redis-PB are similar and far smaller
than the original Redis.

Checkpointing Overhead. Fig. 25 presents the checkpointing
(i.e., RDB) overhead. The results are similar to those in Fig. 17.
The scale of the record count ranges from 1 million to 16 million.
The checkpointing overhead grows linearly with the dataset size.
For small datasets, the dump overheads of Redis-HG and Redis-PB
are close to that of the original Redis. The gap increases slowly
with the increase in dataset size. Note that the two variants need
additional state checking to determine the appropriate copy of data
for dumping while the default Redis’ child thread only needs to
traverse the hash table to flush all the key-value pairs. Fortunately,
the double-thread design effectively separates the updating and
dumping tasks and induces only a slightly longer background
dumping period. Furthermore, the overhead gap can be reduced by
leveraging high-speed disks and large memory buffers.

Summary. Redis with the built-in fork() function is unscalable
(see Fig. 22). By replacing the default fork with HG and PB, the
two variants, Redis-HG and Redis-PB, exhibit better scalability.

6 CONCLUSIONS

In this paper, we analyze, compare, and evaluate representative
in-memory consistent snapshot algorithms from both academia
and industry. Through comprehensive benchmark experiments,
we observe that the simple fork() function often outperforms the
state-of-the-arts in terms of latency and throughput. However, no in-
memory snapshot algorithm achieves low latency, high throughput,
small time complexity, and no latency spikes at the same time;
however, these requirements are essential for update-intensive in-
memory applications. We propose two lightweight improvements
over existing snapshot algorithms, which demonstrate better
tradeoff among latency, throughput, complexity and scalability.
We implement our improvements on Redis, a popular in-memory
database system. Extensive evaluations show that the improved
algorithms are more scalable than the built-in fork() function. We
have made the implementations of all algorithms and evaluations
publicly available to facilitate reproducible comparisons and further
investigation of snapshot algorithms.

7 FUTURE WORK

This work discusses leveraging snapshot algorithms to perform
checkpoints. As described in Sec. 1, consistent snapshots are not
only used for consistent checkpoints but are also employed in
HTAP systems [3], [4], [5], [6], [7], [8], [9], [10], [11], i.e., Hyper,
HANA and SwingDB. Although there are many studies about
concurrency control protocols for OLTP systems [30], [35], [36],
[37], [38], [39], few works address HTAP’s concurrency control;
thus, we plan to build a prototype based on snapshot concurrency
control to fill this gap in the future.

ACKNOWLEDGMENTS

The authors would like to thank Wenbo Lang, Phillip Saenz and
the anonymous reviewers. Guoren Wang is the corresponding
author of this paper. Lei Chen is supported by the Hong Kong
RGC GRF Project 16214716 , National Grand Fundamental
Research 973 Program of China under Grant 2014CB340303,
the National Science Foundation of China (NSFC) under Grant No.
61729201, Science and Technology Planning Project of Guangdong
Province, China, No. 2015B010110006, Webank Collaboration
Research Project, and Microsoft Research Asia Collaborative
Research Grant. Guoren Wang is supported by the NSFC (Grant
No. U1401256, 61732003, 61332006 and 61729201). Gang Wu
is supported by the NSFC (Grant No. 61370154). Ye Yuan is
supported by the NSFC (Grant No. 61572119 and 61622202) and
the Fundamental Research Funds for the Central Universities (Grant
No. N150402005).

REFERENCES

[1] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory
big data management and processing: A survey,” IEEE Transactions on
Knowledge and Data Engineering(TKDE’15), vol. 27, no. 7, pp. 1920–
1948, 2015.

[2] M. A. V. Salles, T. Cao, B. Sowell, A. J. Demers, J. Gehrke, C. Koch,
and W. M. White, “An evaluation of checkpoint recovery for massively
multiplayer online games,” Proceedings of The VLDB Endowment
(PVLDB’09), vol. 2, no. 1, pp. 1258–1269, 2009.

[3] F. Özcan, Y. Tian, and P. Tözün, “Hybrid transactional/analytical
processing: A survey,” in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, 2017, pp. 1771–1775. [Online].
Available: http://doi.acm.org/10.1145/3035918.3054784

[4] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland, “The end of an architectural era:(it’s time for a complete
rewrite),” in Proceedings of The VLDB Endowment (PVLDB’07), 2007,
pp. 1150–1160.

[5] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots,” in 2011 IEEE 27th
International Conference on Data Engineering (ICDE’11). IEEE, 2011,
pp. 195–206.

[6] H. Plattner, “A common database approach for oltp and olap using an
in-memory column database,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data (SIGMOD’09). ACM,
2009, pp. 1–2.

[7] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and
A. Kemper, “Data blocks: hybrid oltp and olap on compressed storage
using both vectorization and compilation,” in Proceedings of the 2016
ACM SIGMOD International Conference on Management of Data
(SIGMOD’16). SIGMOD, 2016, pp. 311–326.

[8] F. Funke, A. Kemper, and T. Neumann, “Benchmarking hybrid oltp&olap
database systems.” in Datenbanksysteme fr Business, Technologie und
Web (BTW’11), 2011, pp. 390–409.

[9] Q. Meng, X. Zhou, S. Chen, and S. Wang, “Swingdb: An embedded
in-memory dbms enabling instant snapshot sharing,” in International
Workshop on In-Memory Data Management and Analytics (IMDB’16).
Springer, 2016, pp. 134–149.

[10] F. Farber, S. K. Cha, J. Primsch, C. Bornhovd, S. Sigg, and W. Lehner,
“Sap hana database: data management for modern business applications,”
Sigmod Record, vol. 40, no. 4, pp. 45–51, 2012.

[11] V. Sikka, F. Farber, A. K. Goel, and W. Lehner, “Sap hana: the evolution
from a modern main-memory data platform to an enterprise application
platform,” Proceedings of The VLDB Endowment (PVLDB’13), vol. 6,
no. 11, pp. 1184–1185, 2013.

[12] (2010) More details on today’s outage. [Online]. Available:
https://www.facebook.com/note.php?note id=431441338919

[13] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-
pher, N. Verma, and M. Zwilling, “Hekaton: Sql server’s memory-
optimized oltp engine,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD’13). ACM,
2013, pp. 1243–1254.

[14] H. Mühe, A. Kemper, and T. Neumann, “How to efficiently snapshot
transactional data: Hardware or software controlled?” in Proceedings
of the Seventh International Workshop on Data Management on New
Hardware (DaMoN’11). ACM, 2011, pp. 17–26.

http://doi.acm.org/10.1145/3035918.3054784
https://www.facebook.com/note.php?note_id=431441338919

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 13

[15] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill,
“Recent advances in checkpoint/recovery systems,” in Proceedings
20th IEEE International Parallel & Distributed Processing Symposium
(IPDPS’2006). IEEE, 2006, pp. 282–289.

[16] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” in Journal of Physics: Conference Series (JPCS’07), vol. 78.
IOP Publishing, 2007, pp. 012 022–012 032.

[17] A.-P. Liedes and A. Wolski, “Siren: A memory-conserving, snapshot-
consistent checkpoint algorithm for in-memory databases,” in 2006 IEEE
22th International Conference on Data Engineering (ICDE’06). IEEE,
2006, pp. 99–99.

[18] T. Cao, Fault Tolerance For Main-Memory Applications In The Cloud.
Cornell University, 2013.

[19] T. Cao, M. A. V. Salles, B. Sowell, Y. Yue, A. J. Demers, J. Gehrke,
and W. M. White, “Fast checkpoint recovery algorithms for frequently
consistent applications,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data (SIGMOD’11), 2011,
pp. 265–276.

[20] (2017) Wikipedia of Fork (system call). [Online]. Available:
https://en.wikipedia.org/wiki/Fork (system call)

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing (SoCC ’10). ACM, 2010, pp.
143–154.

[22] G. W. Y. Y. Liliang Li, Guoren Wang, “Consistent snapshot algorithms for
in-memory database systems: Experiments and analysis,” in 34rd IEEE
International Conference on Data Engineering, ICDE 2018, Paris, France,
April 16-19, 2018.

[23] K. Ren, T. Diamond, D. J. Abadi, and A. Thomson, “Low-overhead
asynchronous checkpointing in main-memory database systems,” in
Proceedings of the 2016 ACM SIGMOD International Conference on
Management of Data (SIGMOD’16). SIGMOD, 2016, pp. 1539–1551.

[24] (2017) Redis. [Online]. Available: https://redis.io
[25] P. Bernstein, “Actor-oriented database systems,” in 34rd IEEE Interna-

tional Conference on Data Engineering, ICDE 2018, Paris, France, April
16-19, 2018.

[26] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang et al., “H-store:
a high-performance, distributed main memory transaction processing
system,” Proceedings of The VLDB Endowment (PVLDB’08), vol. 1,
no. 2, pp. 1496–1499, 2008.

[27] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases,” in ACM SIGMOD
Record, vol. 23. ACM, 1994, pp. 243–252.

[28] (2017) Redis latency problems troubleshooting. [Online]. Available:
https://redis.io/topics/latency

[29] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison- Wesley, 1987.

[30] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring
into the abyss: An evaluation of concurrency control with one thousand
cores,” PVLDB, vol. 8, no. 3, pp. 209–220, 2014. [Online]. Available:
http://www.vldb.org/pvldb/vol8/p209-yu.pdf

[31] (2017) Redis persistence. [Online]. Available: https://redis.io/topics/
persistence

[32] (2017) Best ec2 setup for redis server. [Online]. Available: https:
//stackoverflow.com/questions/11765502/best-ec2-setup-for-redis-server

[33] (2017) Redis memory and cpu spikes. [Online]. Available: https:
//stackoverflow.com/questions/16384436/redis-memory-and-cpu-spikes

[34] (2017) Redis faq. [Online]. Available: https://redis.io/topics/faq
[35] K. Ren, A. Thomson, and D. J. Abadi, “Lightweight locking for main

memory database systems,” vol. 6, no. 2, pp. 145–156, 2012.
[36] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy

transactions in multicore in-memory databases,” in ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013, 2013, pp. 18–32. [Online]. Available:
http://doi.acm.org/10.1145/2517349.2522713

[37] X. Yu, A. Pavlo, D. Sánchez, and S. Devadas, “Tictoc: Time traveling
optimistic concurrency control,” in Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, 2016, pp. 1629–1642.
[Online]. Available: http://doi.acm.org/10.1145/2882903.2882935

[38] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo, “An
empirical evaluation of in-memory multi-version concurrency control,”
PVLDB, vol. 10, no. 7, pp. 781–792, 2017. [Online]. Available:
http://www.vldb.org/pvldb/vol10/p781-Wu.pdf

[39] H. Lim, M. Kaminsky, and D. G. Andersen, “Cicada: Dependably fast
multi-core in-memory transactions,” in Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, 2017, pp. 21–35. [Online].
Available: http://doi.acm.org/10.1145/3035918.3064015

Liang Li received his BSc degree from the
College of Computer Science and Engineering of
Northeastern University, China in 2014. Currently,
he is a PhD student in Computer Science and
Engineering at Northeastern University. His main
research interests include in-memory database
systems, distributed systems, and database per-
formance.

Guoren Wang received his BSc, MSc and PhD
degrees in Computer Science from Northeast-
ern University, China in 1988, 1991 and 1996,
respectively. Currently, he is a Professor in the
Department of Computer Science at Beijing
Institute of Technology, China. His research
interests include XML data management, query
processing and optimization, bioinformatics, high-
dimensional indexing, parallel database systems,
and P2P data management.

Gang Wu received his BS and MS degrees in
Computer Science from Northeastern University,
China in 2000 and 2003, respectively, and his
PhD degree in Computer Science from Tsinghua
University in 2008. He is now an Associate
Professor at the College of Information Science
and Engineering at Northeastern University. His
research interests include in-memory databases,
graph databases, and knowledge graphs.

Ye Yuan received his BS, MS and PhD degrees in
Computer Science from Northeastern University,
China in 2004, 2007 and 2011, respectively. He is
now a Professor at the College of Information Sci-
ence and Engineering at Northeastern University.
His research interests include graph databases,
probabilistic databases, data privacy-preserving
and cloud computing.

Lei Chen received his BS degree in Computer
Science and Engineering from Tianjin University,
China in 1994, his MA degree from the Asian
Institute of Technology, Bangkok, Thailand in
1997, and his PhD degree in Computer Science
from the University of Waterloo, Canada in
2005. He is currently an Associate Professor
in the Department of Computer Science and
Engineering, Hong Kong University of Science
and Technology. His research interests include
crowdsourcing over social media, social media

analysis, probabilistic and uncertain databases, and privacy-preserved
data publishing.

Xiang Lian received the BS degree from the
Department of Computer Science and Technol-
ogy, Nanjing University. in 2003, and the PhD
degree in computer science from the Hong Kong
University of Science and Technology, Hong
Kong. He is now an assistant professor in the
Department of Computer Science, Kent Univer-
sity. His research interests include probabilis-
tic/uncertain data management, probabilistic RDF
graphs, inconsistent probabilistic databases, and

streaming time series.

https://en.wikipedia.org/wiki/Fork_(system_call)
https://redis.io
https://redis.io/topics/latency
http://www.vldb.org/pvldb/vol8/p209-yu.pdf
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://stackoverflow.com/questions/11765502/best-ec2-setup-for-redis-server
https://stackoverflow.com/questions/11765502/best-ec2-setup-for-redis-server
https://stackoverflow.com/questions/16384436/redis-memory-and-cpu-spikes
https://stackoverflow.com/questions/16384436/redis-memory-and-cpu-spikes
https://redis.io/topics/faq
http://doi.acm.org/10.1145/2517349.2522713
http://doi.acm.org/10.1145/2882903.2882935
http://www.vldb.org/pvldb/vol10/p781-Wu.pdf
http://doi.acm.org/10.1145/3035918.3064015

	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Preliminaries
	2.1 Problem Statement
	2.2 Model and Framework

	3 In-Memory Consistent Snapshot Algorithms
	3.1 Representative Snapshot Algorithms
	3.1.1 Naive Snapshot
	3.1.2 Copy-on-Update and Fork
	3.1.3 Zigzag
	3.1.4 Ping-Pong

	3.2 Improved Snapshot Algorithms
	3.2.1 Hourglass
	3.2.2 Piggyback

	3.3 Comparison of Snapshot Algorithms

	4 Virtual Snapshot
	4.1 Physical snapshot algorithms with Physically Consistent State
	4.2 Virtual Snapshot Algorithms without Physically Consistent State
	4.2.1 CALC
	4.2.2 vHG and vPB

	5 Experimental Studies
	5.1 Infrastructure
	5.2 Benchmark Study of Physical Snapshot
	5.2.1 Setups
	5.2.2 Performance
	5.2.3 Does Fork really good enough?

	5.3 Benchmark study of Virtual Snapshot
	5.4 Performance in Industrial IMDB System
	5.4.1 Snapshot Algorithm Selection
	5.4.2 Dataset
	5.4.3 Performance

	6 Conclusions
	7 Future work
	References
	Biographies
	Liang Li
	Guoren Wang
	Gang Wu
	Ye Yuan
	Lei Chen
	Xiang Lian

