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Sampler Design for Bayesian Personalized
Ranking by Leveraging View Data
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Abstract—Bayesian Personalized Ranking (BPR) is a representative pairwise learning method for optimizing recommendation models.
It is widely known that the performance of BPR depends largely on the quality of negative sampler. In this paper, we make two
contributions with respect to BPR. First, we find that sampling negative items from the whole space is unnecessary and may even
degrade the performance. Second, focusing on the purchase feedback of E-commerce, we propose an effective sampler for BPR by
leveraging the additional view data. In our proposed sampler, users’ viewed interactions are considered as an intermediate feedback
between those purchased and unobserved interactions. The pairwise rankings of user preference among these three types of
interactions are jointly learned, and a user-oriented weighting strategy is considered during learning process, which is more effective
and flexible. Compared to the vanilla BPR that applies a uniform sampler on all candidates, our view-enhanced sampler enhances BPR
with a relative improvement over 37.03% and 16.40% on two real-world datasets. Our study demonstrates the importance of
considering users’ additional feedback when modeling their preference on different items, which avoids sampling negative items
indiscriminately and inefficiently.

Index Terms—Bayesian personalized ranking; recommendation; sampler; view data.
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1 INTRODUCTION

Due to the prevalence of user implicit feedback in online
information systems, recent research on recommendation
has shifted from explicit ratings to implicit feedback, such
as purchases, clicks, watches and so on [1], [8]. Different
from the recommendation with explicit ratings [11], [12],
negative feedback is naturally scarce when dealing with
implicit feedback, also known as one-class problem [17].
To learn recommender models from binary implicit feed-
back, Rendle et al. [20] proposed the Bayesian Personalized
Ranking (BPR) method, which assumes that an observed
interaction should be predicted with a higher score than its
unobserved counterparts (i.e., the missing interactions). The
optimization of BPR is usually achieved by the stochastic
gradient descent (SGD). In each step, it first randomly draws
an observed interaction (u, i), and then selects an item j that
u has not interacted with before to constitute (u, i, j). Such
a process of selecting j is also known as negative sampling.

In the original paper of BPR [20], Rendle et al. applied
a uniform negative sampler, i.e., sampling j from all items
that u has not consumed before with an equal probability.
Later on, it was reported that such a uniform negative sam-
pler is highly ineffective and slows down the convergence of
BPR [19], [27], especially for datasets that have a large num-
ber of items. To this end, [27] proposed dynamic negative
sampling (DNS) strategies, aiming to maximize the utility
of a gradient step by choosing “difficult” negative examples
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— i.e., the negative examples that lead to a large prediction
loss by the current model. This process is first randomly
selecting X candidates and then drawing a “difficult” neg-
ative sample with a multinomial distribution based on their
prediction scores, where the one with the higher score, i.e.,
the higher prediction loss, is more likely to be selected.
Following this idea of DNS strategy, [19] further proposed
a context-dependent sampler that oversamples informative
pairs in each step, and developed an efficient implemen-
tation with constant amortized runtime costs. Despite the
significant improvements have been observed, existing DNS
strategies sample negative items from the whole item space,
which arguably may still suffer from low efficiency when
the number of items is large.

To further mitigate the one-class problem, one intuition
is to leverage more side information for learning a more
precise preference between two items. In today’s implicit
recommender systems, besides the primary feedback that
can be directly utilized to optimize the conversion rate,
other additional feedback is readily available [5], [22]. Like
in E-commerce systems, users’ multiple micro-behaviors
including view, purchase, wish and put-in-cart are col-
lected [29]. Similarly, there are heterogeneous signals related
to users’ search and watch hitory in online video streaming
systems [4]. Compared to the primary one, the additional
feedback always reflects a relative lower level of preference,
which could help in learning user preference. For example,
in E-commerce systems, user usually views an item before
purchasing it. Even though not purchased, a viewed item
should still be treated differently when compared with
other missing items. Also, searching a specific video in
online video streaming systems can also be considered as a
relatively weak signal of user preference. As the BPR learns
a pairwise ranking relation of user preference between two
items, the above additional information can be seamlessly
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integrated into it by designing an improved BPR sampler.
In this work, we aim to answer the following two

research questions: 1) is it necessary to sample negative
items from the whole space? and 2) can we design a better
sampler for BPR? For the first question about inefficient
sampling from whole negative item space, we propose to
sample negative items from a reduced space, given that one
user normally interacts with a few items. More specifically, a
smaller subset is uniformly drawn from the all unobserved
items for each user and then fixed as the candidate itemset
in the following SGD iterations. As for the second question,
focusing on a specific domain of online-shopping recom-
mender systems, we propose a view-enhanced BPR sampler
that considering users’ viewed interactions as an interme-
diate feedback between purchased and unobserved (i.e.,
neither purchased nor viewed) interactions. We first design
a biased sampling process that assumes two-fold semantics
in a viewed item, i.e., a negative signal when it was sampled
together with another purchased item and a positive signal
when with another unobserved item. By tuning the corre-
sponding probability in this biased sampling, the trade-off
between these two semantics of user’s view signal can be
achieved. Then, we improve the above scheme by learning
the three pairwise ranking relations among a purchased
item, a viewed item and an unobserved item together in
each training example. In particular, we design a novel
objective function with weighted loss to encode the above
three relations in the BPR sampler. We further assign the
weight of these relations based on users’ habits in online-
shopping activities, which is arguably more effective than
the previous methods [14], [16], [20] that are limited by the
uniformity assumption.

We summarize our key contributions of this work as
follows.

1. We propose to sample negative items from a ran-
domly reduced item space in BPR, and empirically
demonstrate that it is unnecessary to sample from all
items. When the space is reduced to 1/26 of original
size, it achieves a relative improvement of 1.93%
on a popularity-skewed dataset, and only degrades
performance within 1.00% on another less skewed
dataset.

2. We design a view-enhanced user-oriented BPR sam-
pler that can effectively integrate users’ viewing data
in online-shopping recommender systems, where the
viewed interactions are considered as an interme-
diate feedback between those purchased and unob-
served interactions.

3. We conduct extensive experiments on two real-
world datasets, showing that our view-enhanced
sampler enhances BPR with a relative improvement
of 37.03% and 16.40%.

The rest of this paper is organised as follows. We review
related literature in Section 2. Then, we introduce the dataset
and experimental settings in Section 3. The two research
questions are investigated in Section 4 and Section 5, re-
spectively. Finally, we conclude this work and discuss future
work in Section 6.

2 RELATED WORK

As implicit feedback data is more common and valuable in
modern recommender systems, we first review some related
works on modeling user preference from implicit data.
Then, we discuss two types of methods that are proposed
to improve implicit recommender systems with multiple
feedback.

Implicit Feedback Systems. Handling missing data is
notoriously difficult for recommendation with implicit
feedback. To solve this problem, two strategies are pro-
posed: whole-data based strategy and sample-based strat-
egy. Whole-data based strategy treats all missing data as
negative feedback [8], [9], [10], while sample-based learning
strategy overcomes this problem by sampling negative in-
stances from missing data [17], [20]. Both methods have pros
and cons: whole-based methods model the full data with a
potentially higher coverage, but inefficiency can be an issue;
sample-based methods are more efficient by reducing neg-
ative examples in training, but risk decreasing the model’s
performance. As a well-known sample-based method, BPR
has been used in many implicit feedback systems. Therefore,
in this paper, we focus on developing an improved sampler
for BPR. Different from previous works, we demonstrate
that 1) it is unnecessary to sample negative items from the
whole space, and 2) recommendation performance can be
significantly improved after integrating users’ additional
view data.

Collective Matrix Factorization (CMF). CMF is a multiple
relational learning method that improves predictive accu-
racy by sharing information between different feedback [3],
[21], [26]. Originating from the explicit rating problems,
it has been extended into implicit case as well [2], [13],
[15], [25], [28]. For example, by applying CMF technique to
Bayesian Personalized Ranking, Multi-Relational Factoriza-
tion with BPR (MR-BPR) performs better on social network
data [13]. A recently proposed method [15], namely Multiple
Feedback Personalized Ranking (MFPR), borrows the idea
of SVD++ [11] to integrate additional feedback and later
optimizes a pairwise ranking loss, which is similar to BPR.
However, as the CMF-based model generates different user-
item relations, i.e., latent factors, for each type of feedback,
it is hard to differentiate their preference levels. In contrast,
our view-enhanced BPR sampler learns the same user-
item relation to indicate relative preference order among
purchase and view data, which is more effective.

BPR-based Models. The second category of methods
integrate multiple types of feedback in the sampler of
BPR [14], [16], [18]. The time-based and interaction-count
based variants of samplers are designed to provide more
signals [14]. From the perspective of transferring knowl-
edge from additional feedback, [18] proposes an adaptive
BPR that integrates these feedback to learn better confi-
dence of users’ preference on items. Recently, Multi-channel
BPR (MC-BPR) applies the strategy of assigning different
preference levels to multiple types of feedback when sam-
pling training item pairs in BPR [16], which is similar to
our proposed view-enhanced scheme based on a biased
sampling process. However, by simultaneously modeling
pairwise ranking relations among user’s purchased, viewed
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and unobserved items in each training example, our pro-
posed scheme achieves better performance. Moreover, with
a user-oriented weighting scheme, the performance can be
further improved.

3 DATASETS AND OBSERVATIONS

3.1 Datasets
We perform experiments on two real-world datasets.

Beibei1: Beibei is the largest E-commerce platform for
maternal and infant products in China. We sample a sub-
set of user interactions that contain views and purchases
from Beibei within the time period from 2017/05/25 to
2017/06/28.

Tmall2: Tmall is the largest business-to-consumer E-
commerce platform in China. To allow our results to
be reproducible, we use a public benchmark released by
the ICJAI-20153. The time period is from 2014/06/01 to
2014/11/11. Note that 11th Nov. of each year is the Tmall
Global Shopping Festival4, and thus users tend to select
many items before and wait for the deals on this day. There-
fore, besides the original dataset Tmall-all, we also generate
a smaller dataset, called Tmall-selected, to filter out the
possible effect brought by this shopping festival, where only
those interactions before 2014/10/01 are included.

We take three steps for data preprocessing. We first
merge the repetitive purchases of the same user and item
into one purchase with the earliest timestamp, as we aim
to recommend novel items. Next we filter out users’ views
on their purchased items to avoid information leaking.
Finally, we filter out users and items with less than 12 and
16 purchases, respectively, to overcome the high sparsity
of the raw datasets. Table 1 summarizes the statistics of
our experiment datasets. With both primary (purchase) and
additional (view) feedback collected, these datasets are suf-
ficient for our research on leverage additional view data in
BPR sampler.

TABLE 1
Statistics of the evaluation datasets.

Dataset Purchase# View# User# Item# Sparsity
Beibei 2,654,467 23,668,454 158,907 119,012 99.99%/99.87%

Tmall-all 352,768 1,585,225 28,059 32,339 99.96%/99.83%
Tmall-selected 160,840 531,640 12,921 22,570 99.94%/99.82%

3.2 Observations
The popularity skewness exists in many recommender sys-
tems and impacts the performance. Therefore, we investi-
gate the popularity skewness in our data, in terms of item
purchases and views, and show the result in Fig. 1(a) and
(b), respectively. The y-axis represents the ratio of interac-
tions for a given ratio of items on the x-axis, sorted by
decreasing popularity. For item purchases, Beibei is the most
popularity skewed dataset, where the top-1% of the items

1. http://www.beibei.com/
2. https://www.tmall.com/
3. The dataset is downloaded from https://tianchi.aliyun.com/

datalab/dataSet.htm?id=5
4. http://www.alizila.com/look-back-2014-global-shopping-festival/

accounts for 50% of the purchased interactions, much larger
than 10% in Tmall dataset. Such difference in skewness
no longer exists in item views, where the top-1% of the
items accounts for 16% and 9% of the viewed interactions in
Beibei and Tmall-selected, respectively. As for the difference
between Tmall-all and Tmall-selected, the popularity skew-
ness of purchase interactions is almost the same, as shown in
Fig. 1(a), while for view interactions Tmall-selected is much
more skewed than Tmall-all, about 40% vs. 10% in terms of
top-10% of the items. In summary, users in Beibei are more
likely to purchase those popular items, which may affect the
performance of personalized recommendation algorithms.
On the contrary, users in Tmall-all do not tend to view
those popular items, meaning that there may exist a strong
personal preference in users’ views.
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Fig. 1. Popularity skewness of the Beibei and Tmall datasets.

3.3 BPR

The objective function for BPR can be formulated as

arg min
Θ

∑
(u,i,j)∈D

− lnσ(ŷui(Θ)− ŷuj(Θ)), (1)

where ŷ(Θ) is the predictive model, and we use the standard
matrix factorization [20] as the predictive model. Θ denotes
the model parameters, σ(x) = 1

1+exp(−x) is the sigmoid
function to convert the margin to a probability, and D
denotes the set of pairwise training examples: {(u, i, j)|i ∈
R+
u ∧ j /∈ R+

u }, where R+
u denotes the set of items that u

has interacted with before. Note that we have omitted the
L2 regularization terms for clarity. The optimization of BPR
is usually achieved by the stochastic gradient descent (SGD).

3.4 Evaluation Methodology

We adopt the leave-one-out protocol [8], [20], where the latest
purchase interaction of each user is held out for testing. For
hyperparameter tuning, we randomly sample one purchase
interaction for each user as the validation set. The training
process is stopped once we observe increasing in the valida-
tion loss.

For evaluation measures, we employ Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG). Mathemat-
ically, HR@k for each user u is defined as:

HRu@k =

{
1 , hit in top-k recommendation
0 , else. (2)

http://www.beibei.com/
https://www.tmall.com/
https://tianchi.aliyun.com/datalab/dataSet.htm?id=5
https://tianchi.aliyun.com/datalab/dataSet.htm?id=5
http://www.alizila.com/look-back-2014-global-shopping-festival/
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NDCG@k for each user u is defined as:

NDCGu@k =
k∑
p=1

2R(u,p) − 1

log(p+ 1)
, (3)

where R(u, p) is the rating assigned by u to the item at the
pth position on the ranked list produced for u. Here R(u, p)
equals 1 if hit and 0 otherwise. Compared to HR, NDCG
is very sensitive to the ratings of the highest ranked items.
We truncate the ranked list of non-purchased items at the
position of 100, i.e., k=100, and report the average score of
all users. Since the findings are consistent across the number
of latent factors K , we report the results of K = 32 only.

4 UNNECESSARY TO SAMPLE FROM ALL ITEMS

4.1 Methodology
Generally the vanilla BPR samples negative items indiscrim-
inately from the whole set of those unobserved instances. As
the negative sampling space of BPR is fairly large for each
user in implicit recommender systems, it may not only cause
inefficiency issue but also degrade the performance. To
overcome this, we design the following scheme of reducing
negative sampling space to evaluate whether it is necessary
to sample from all items.

As detailed in Algorithm 1 (Lines:1-4), we randomly
assign each user a much smaller but different set of samples
R−u . More specifically, for each user, the negative items are
only sampled from a fraction of items, i.e., a randomly
reduced item space, given the size ratio γ of this reduced
space to the original space. Note that γ is invariant among
users, while the specific items are different. An intuitive
implementation of random select(u,N, γ) function is to
uniformly draw γ × N unobserved instances. Also, more
complexed scheme can consider combining both reducing
sampling space and applying dynamic negative sampling
strategy [27], as well as adaptively generating sampling
space for different users. Then, with each user’s R−u fixed,
BPR sampler randomly samples training triples (u, i, j) and
updates model parameters in each iteration. Since the neg-
ative items can only be sampled from the reduced item set,

Algorithm 1: Proposed scheme of reducing negative
sampling space in BPR.

Input : number of users M and items N , user-item
interaction data R+, reduce ratio γ

Output: Θ
1 for u← 1 to M do
2 //Generate the negative sampling space for each

user
3 R−u ← random select(u,N, γ)
4 end
5 while not reaching convergence do
6 // Random sampling
7 u← draw a random user from U
8 i← draw a random purchased item from R+

u

9 j ← draw a random negative item from R−u
10 Compute gradients of Θ according to BPR
11 Update the above parameters
12 end

this scheme reduces the number of possible training item
pairs {(i, j)} for u, and thus can largely improve efficiency
in terms of learning model parameters.

We vary the size ratio γ and summarize the performance
on two datasets, Beibei and Tmall-all, in Table 2. In order
to factor out random effects, for each size, we repeat the ex-
periment five times and report the average score, as well as
standard variance. The first row indicates the performance
of the original BPR that samples negative items from the
whole space.

4.2 Results

Surprisingly on the Beibei dataset, the performance is not
decreased but increased after reducing the sampling space.
When varying γ from 1/25 to 1/210, we all observe the per-
formance improvement of over 1.20% in terms of both HR
and NDCG. Even with a rather small γ as 1/210, where the
sampling space of each user only contains 116 candidates,
we still obtain a relative improvement of 1.39% (HR) and
2.47% (NDCG) over the original BPR. This finding is novel
and encouraging, meaning that sampling from the whole
item space is not only unnecessary for BPR, but may even
hurt the performance.

On the Tmall-all dataset, as the original item space is
not that large (which is one magnitude smaller), we do not
observe improvements by reducing the sampling space. But
still, we can see that with a much smaller sampling space,
the performance remains the same level as the original BPR.
When the size of sampling space is larger than 505, i.e.,
γ > 1/26, the performance is only degraded within 1.33%
in terms of both HR and NDCG. Only when sampling space
becomes one magnitude smaller, a significant decrease over
2.00% is observed. This provides further evidence on the
inefficiency of the uniform sampler for BPR.

TABLE 2
Performance of BPR with different settings on the fraction of the

reduced sampling space. “Num.” means the size of sampling space for
each user, i.e., Ratio × Item#.

Ratio Num. HR ∆HR NDCG ∆NDCG
20 119012 0.1094 0 0.0251 0

2−5 3719 0.1116± 0.0013 +2.36% 0.0258± 0.0003 +2.71%
2−6 1859 0.1112± 0.0020 +2.03% 0.0256± 0.0004 +1.83%
2−7 930 0.1103± 0.0016 +1.22% 0.0255± 0.0003 +1.67%
2−8 465 0.1106± 0.0022 +1.50% 0.0257± 0.0007 +2.31%
2−9 232 0.1104± 0.0015 +1.26% 0.0255± 0.0003 +1.67%
2−10 116 0.1105± 0.0014 +1.39% 0.0257± 0.0005 +2.47%

(a) Beibei

Ratio Num. HR ∆HR NDCG ∆NDCG
20 32339 0.0301 0 0.0076 0

2−2 8085 0.0299± 0.0003 -0.66% 0.0075± 0.0001 -1.05%
2−3 4042 0.0300± 0.0005 -0.27% 0.0076± 0.0002 +0.26%
2−4 2021 0.0300± 0.0002 -0.33% 0.0076± 0.0001 -0.53%
2−5 1010 0.0297± 0.0007 -1.33% 0.0075± 0.0002 -0.79%
2−6 505 0.0299± 0.0004 -0.60% 0.0075± 0.0001 -1.05%
2−7 253 0.0295± 0.0005 -2.06% 0.0074± 0.0001 -2.37%

(b) Tmall-all
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Rendle et al. [19] have shown that oversampling popular
items as negative feedback underperforms the basic uniform
sampler, due to the under-training of those less popular
items. Motivated by this, we investigate the different ob-
servations on Beibei and Tmall datasets from this aspect. As
we have shown in Fig. 1(a), Beibei is a popularity skewed
dataset, where top-1% of the items accounts for 50% of the
purchased interactions. By fixing a reduced sampling space
for each user, a less popular item in this space can receive
more gradient steps. Since there are more unpopular items
in Beibei dataset, the scheme of reducing sampling space can
benefit the SGD learning process and thus perform better.

To summarize, we have demonstrated that the uniform
sampler is unnecessary for BPR and may even degrade the
performance in popularity-skewed datasets. When the space
is reduced to 1/26 of original size, it achieves a relative
improvement of 1.93% on the popularity-skewed Beibei
dataset, and only degrades performance within 1.00% on
another less skewed Tmall dataset. Considering its ineffi-
ciency and poor robustness against popularity skewness, we
focus on designing a better sampler for BPR in the following
sections.

5 VIEW-ENHANCED SAMPLER

One inherent issue of recommender systems is the natural
scarcity of observed data. To overcome this, BPR samples
unobserved items as negative feedback. However, since a
user can only interact with a limited number of items,
sampling process can be inefficient and may even de-
grade the performance, as we have demonstrated above.
In E-commerce recommender systems, besides the purchase
feedback that is directly related to optimizing the conversion
rate, the view logs of users are usually much easier to collect
and thus can be leveraged to learn user preference. In this
section, we design a view-enhanced sampler for BPR. For
readability, we summarize the major notations throughout
the paper in Table 3.

5.1 Integrating View Signal

Intuitively, viewed interactions can be treated as an inter-
mediate feedback between the purchased and missing inter-
actions. Therefore, for user u’s viewed (but not purchased)
item v, it should have an intermediate value of prediction
r̂uv between those of non-viewed item j (i.e., missing entry)
and purchased item i, i.e., r̂uj and r̂ui. Based on this, we
propose two variant of BPR sampler that can leverage view
data. One is to leverage these viewed items in a biased
sampling process, the other is to consider this relationship
in a newly proposed objective function.

5.1.1 Biased Sampling
First of all, we can integrate the view signal by augmenting
the training data. In BPR, a training example (u, i, j) ∈ D
assumes that u prefers i over j. Then, the model parameters,
i.e., user vector pu and item vector qi, are updated towards
the objective of r̂ui > r̂uj . Through a biased sampling
process, we are able to encode the intermediate preference
information of users’ viewed interactions in the model.
In our proposed view-enhanced sampler, as illustrated in

TABLE 3
List of commonly used notations.

Notation Description

M,N,K The numbers of users, items, and factors.

P, {pu} The latent factor matrix and vector for users.

Q, {qi} The latent factor matrix and vector for items.

S,Su
The sets of all purchased (u, i) pairs,

items purchased by u.

V,Vu Similar notations for viewed interactions.

R,Ru Similar notations for unobserved interactions.

r̂ui, r̂uv, r̂uj
Predictions of user u over purchased items i,

viewed items v and non-viewed items j.

{ω1, ω2, ω3} Probability of sampling training item pairs.

α
Weight of training pairs made up of

a purchased item and a viewed item.

αu
User-oriented weight of training pairs made up of

a purchased item and a viewed item.

β Significance level of view-purchase ratio in αu.

λ Regularization parameter.

Fig. 2, we split the item space into three sets for each user
u, namely Su, Vu, and Ru, which indicate the purchased
items, viewed (but not purchased) items, and remaining
non-viewed items, respectively. Then, we sample an item
pair from three candidate sets, {(i, v)|i ∈ Su, v ∈ Vu},
{(i, j)|i ∈ Su, j ∈ Ru}, and {(v, j)|v ∈ Vu, j ∈ Ru},
with predefined probabilities [ω1, ω2, ω3] respectively, where
ω1 + ω2 + ω3 = 1. The generated training example is finally
used to update the model parameters in (1) (see [20] for
further details). We term the BPR method with this view-
enhanced sampler as BPR+viewprob.

!"#$%&'(&#)'*+(&(&#)

%,+$-.%/
!"# $# %& !"# $# '& !"# %# '&

0/%*)"
1"*23+/%4)

('%$)("

5(%6%4)78"')&9')

-"*23+/%4:)('%$))"

;%$+(&(&#)

('%$)*"

<+$-.(&#)-*98+8(.('= +, +- +.> > ?)@

-9/('(A%)B%%48+2C)D)))(&'%*$%4(+'%)B%%48+2C)))D))&%#+'(A%)B%%48+2C

Fig. 2. Biased sampling process considering users’ viewed items.

Our proposed BPR+viewprob uses biased sampling to
exploit the side information provided by the viewed items.
As each training example in BPR+viewprob only contains two
items, the viewed items are sampled as negative feedback
and positive feedback with a probability of ω1 and ω3, re-
spectively. In other words, it is hard to jointly learn the two-
fold semantics of user preference on these viewed items,
which assigns them a positive signal compared to those non-
viewed items and a negative signal compared to purchased
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ones. Therefore, next we move forward to improve BPR
sampler by considering a view-enhanced weighted loss in
objective function.

5.1.2 Weighted Loss
To overcome the inefficacy issue in BPR+viewprob, we pro-
pose to sample a item triple (i, v, j) in each training exam-
ple, where i, v and j represent a user’s purchased item,
viewed item and non-viewed item, respectively. Consid-
ering the user preference on these three items, the model
parameters, {pu,qi,qv,qj}, should be updated towards the
objective of r̂ui > r̂uv > r̂uj . Therefore, similar to BPR, we
design following objective function:

J(Θ) = arg min
Θ

∑
(u,i,v,j)∈D

− lnσ(r̂ui(Θ)− r̂uj(Θ))

− α lnσ(r̂ui(Θ)− r̂uv(Θ))− (1− α) lnσ(r̂uv(Θ)− r̂uj(Θ)),
(4)

where σ(x) = 1 − σ(x), and Θ denotes the set of all
parameters to be optimized. All three pairwise ranking
relations among i, v and j are considered. Since the viewed
item v can be considered as both negative (r̂ui > r̂uv) and
positive (r̂uv > r̂uj) feedback, the weighting parameter
α in (4) controls the relative strength between these two
semantics. Therefore, by tuning α empirically, we can train
a model that properly exploits the user preference of view
signal.

Note that we have omitted L2 regularization terms for
clarity. We use matrix factorization to predict r̂ui, user u’s
preference on item i, obtained by calculating the dot product
of the latent factors of the user pu and the item qi, as follows:

r̂ui = pTuqi =
K∑
f=1

pu,f × qi,f . (5)

Recall that K is the number of latent factors. Finally,
we use Stochastic Gradient Descent (SGD) to find a local
minimum of the objective function in (4). In particular,
for each iteration (Algorithm 2, Lines: 3-11), given a ran-
dom feedback triple of user u who has purchased item i,
viewed (but not purchased) item v but not viewed item j,
(u, i, v, j) ∈ D = {(u, i, v, j)|i ∈ Su ∧ v ∈ Vu ∧ j ∈ Ru}, we
update the model parameter θ ∈ Θ based on the gradient

Algorithm 2: Learning Algorithm for BPR+viewloss.
Input : purchase data S , view data V
Output: Θ = {P ∈ RM×K ,Q ∈ RN×K}

1 Randomly initialize P and Q;
2 while not reaching convergence do
3 // Random sampling
4 u← draw a random user from U
5 i← draw a random purchased item from Su
6 v ← draw a random viewed item from Vu
7 j ← draw a random non-viewed item from Ru
8 // Eq. (7) - (10)
9 Compute gradients of {pu,qi,qv,qj}

10 // Eq. (6)
11 Update the above parameters
12 end

of its corresponding parameter ∂J
∂θ while fixing the others,

until convergence, as follows:

θ(t+1) = θ(t) + η(t) · ∂J
∂θ

(θ(t)). (6)

Note that learning rate parameter η can both be a fixed con-
stant or an adaptive value like Adagrad [6]. The gradients
of latent vectors {pu,qi,qv,qj} are calculated as follows:

∂J

∂pu
= δ(r̂ui − r̂uj)(qi − qj) + αδ(r̂ui − r̂uv)(qi − qv)

+ (1− α)δ(r̂uv − r̂uj)(qv − qj)− λpu,
(7)

∂J

∂qi
= δ(r̂ui − r̂uj)pu + αδ(r̂ui − r̂uv)pu

+ (1− α)δ(r̂uv − r̂uj)pu − λqi,
(8)

∂J

∂qv
= −αδ(r̂ui− r̂uv)pu+(1−α)δ(r̂uv− r̂uj)pu−λqv, (9)

∂J

∂qj
= −δ(r̂ui− r̂uj)pu−(1−α)δ(r̂uv− r̂uj)pu−λqj , (10)

where the regularization parameter λ is added to avoid
overfitting. Regarding the complexity of the above pairwise
learning algorithm, the computation of each gradient is
O(K), where K is the number of latent factors. The total
complexity is O(T ·K), where T is the number of iterations.
We term the above variant of BPR sampler as BPR+viewloss.

5.2 User-aware Weighting Strategy

Intuitively, if a user tend to view many items and instead
purchase another one, the viewed interactions should indi-
cate a stronger negative signal than that of other users. In
this meaning, the relative strength between two semantics of
view signal should differ among users. Let Au denote a user
u’s view-purchase ratio that measures the degree of whether
u prefers to view many items before deciding which to buy,
it is reasonable to think a higherAu indicates a stronger neg-
ative signal in u’s viewed interactions, which corresponds to
a higher weight α in our proposed BPR+viewloss. To account
for this effect, we parametrize a user-oriented weight αu
based on Au:

αu =
Aβu

(Aβu + 1)
, (11)

where exponent β controls the significance level of this effect
— it is strengthened when β > 1 and smoothed while
setting β ∈ (0, 1). We term this new BPR sampler with user-
aware weighting scheme as BPR+viewβloss

Next, we focus on the definition of view-purchase ratio
Au above. A straightforward way of computing it would be
the ratio between number of user u’s viewed interactions
and purchased ones. However, as users’ shopping history is
divided into several sessions, computing Au in the session-
level can be more accurate. More specifically, we define Au
as the average value among these sessions:

Au =

∑S
s=1 au,s
|S|

, au,s =
Vu,s
Pu,s

, (12)
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(a) Beibei (b) Tmall-all (c) Tmall-selected

Fig. 3. Impact of sampling probability parameters {ω1, ω2, ω3} on BPR+viewprob’s performance, in terms of HR.

α

0 0.2 0.4 0.6 0.8 1

H
it
 R

a
ti
o

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N
D

C
G

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Hit Ratio

NDCG

(a) BPR+viewloss, Beibei
α

0 0.2 0.4 0.6 0.8 1

H
it
 R

a
ti
o

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

N
D

C
G

0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

0.0225

0.025

Hit Ratio

NDCG

(b) BPR+viewloss, Tmall-selected
β

0.1 0.3 0.5 0.7 0.9

H
it
 R

a
ti
o

0.135

0.14

0.145

0.15

N
D

C
G

0.028

0.03

0.032

0.034

Hit Ratio

NDCG

(c) BPR+viewβloss, Beibei

Fig. 4. Impact of weighting parameters α and β on HR performances of BPR+viewloss and BPR+viewβloss, respectively.

where au,s, Vu,s and Ru,s represent u’s view-purchase
ratio, viewed item set and purchased item set in session
s, respectively. To generate u’s sessions in the shopping
history, we first sort u’s viewed and purchased interac-
tions according to timestamps and then we merge those
consecutive interactions into one session based on whether
they happen within a threshold d. Since the suitable setting
of d may vary between different datasets, we empirically
tune this parameter and search the best recommendation
performance. The result shows that d = 3600 (s) works
well in Beibei dataset. As for Tmall dataset, since the times-
tamp information only contains the date, it is infeasible to
extract session information in each user’s shopping history.
Therefore, we leave the exploration of user-aware weighting
scheme on BPR+viewβloss for future work.

5.3 Results

We first study the influence of hyper-parameters. Then we
compare the performance of our proposed BPR sampler
with the original one.

5.3.1 Hyper-parameter Investigation
BPR+viewprob. In the biased sampling, our pro-

posed BPR+viewprob has three non-negative parameters:
[ω1, ω2, ω3], which respectively represents the probability

of item pairs among users’ purchased, viewed and unob-
served interactions. Considering ω1 + ω2 + ω3 = 1, we
have to search two independent parameters. Fig. 3 shows
its performance (HR) with different ω1 and ω2. On Beibei
dataset, BPR+viewprob performs best when [ω1, ω2, ω3] =
[0.3, 0.3, 0.4] , as shown by the yellow center of Fig. 3(a).
In terms of the two-fold semantics encoded in view data,
we use ω3

ω1
to measure whether it is more closed to positive

feedback (> 1) or negative feedback (< 1). Here in Beibei,
ω3

ω1
is close to 1, indicating both two folds are equally impor-

tant. However, in Tmall-all dataset, the best performance
appears when [ω1, ω2, ω3] = [0.01, 0.09, 0.9], indicating that
view data acts as a strong indicator of user preference,
more important than purchase data as ω2 < ω3. Recall that
the test data in Tmall-all belongs to Nov. 11th, an annual
global shopping festival on Tmall platform, we believe this
abnormal observation of view data was caused by the fact
that most users had viewed a lot of items in their wish
lists before Nov. 11th and these viewed items indicated a
strong positive signal even though they did not purchased
them in the end. Thus we also investigate [ω1, ω2, ω3] in a
subset Tmall data, Tmall-selected, where the above effect
is avoided (See Section 3.1 for more details). In Tmall-
selected, as shown in Fig. 3(c), peak performance lies in
[0.01,0.74,0.25]. Unlike Tmall-all, view data is less important
than purchase data, with ω2 > ω3. When compared with
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that in Beibei dataset, view data in Tmall-selected is still
more close to a positive feedback due to larger value of
ω3

ω1
. Because of abnormally intensive influence of viewed

interactions, following experiments will not take Tmall-all
into consideration.

BPR+viewloss. Now, we study the impact of weighting
parameter α on BPR+viewloss. As shown in Fig. 4(a), we
observe the best α varies between 0.7 and 0.8 on Beibei.
Since a large α increases the importance of learning user
preference from purchased and viewed item pairs, this
observation highlights the significance of considering users’
viewing behavoirs more as a negative feedback. However,
the performance still shows a drop at α = 1, where we
take viewed items as equally important as those unob-
served ones. This observation also confirms the necessity
of taking view interactions as a weak positive feedback. In
Fig. 4(b), the performance drop steeply as α increases in
Tmall-selected dataset and the peak lies at α = 0.1, where
view items are almost utilized equally as purchased ones
but pairwise ranking relation between them still exists. The
performance of BPR+viewloss is sensitive to α in Tmall-
selected, while not in Beibei. This difference may be caused
by the same reason as distinctive influence of [ω1, ω2, ω3] on
BPR+viewprob mentioned above, that view data represents
a more effective signal of user preference in Tmall-selected
dataset.

BPR+viewβ
loss. Fig. 4(c) plots the prediction accuracy

of BPR+viewβloss on Beibei, with different β. This model
achieves best performance at β = 0.5 evaluated by HR and
0.9 by NDCG. Such β less than 1 smooths the effect of Au
on αu, indicating a weak but still influential relationship
between A and the confidence of view signal. As for Tmall-
selected, since we cannot extract users’ shopping sessions
from the coarse-grained timestamp in each record, we do
not conduct similar experiments on this dataset.

According to the investigation above, we fix these hyper-
parameters according to the best performance evaluated
by HR, i.e., [ω1, ω2, ω3] = [0.3, 0.3, 0.4], α = 0.7, β = 0.5
for Beibei and [ω1, ω2, ω3] = [0.01, 0.74, 0.25], α = 0.1 for
Tmall-selected.

TABLE 4
Performance comparison among BPR, BPR+viewprob, BPR+viewloss

and BPR+viewβloss.

HR ∆ NDCG ∆

BPR (baseline) 0.1086 – 0.0242 –
BPR+viewprob 0.1422 +30.93% 0.0321 +32.64%
BPR+viewloss 0.1436 +32.23% 0.0327 +35.12%
BPR+viewβ

loss 0.1473 +35.64% 0.0335 +38.43%

(a) Beibei

HR ∆ NDCG ∆

BPR (baseline) 0.0755 – 0.0191 –
BPR+viewprob 0.0807 +6.89% 0.0199 +4.19%
BPR+viewloss 0.0884 +17.09% 0.0221 +15.71%
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Fig. 5. Performance comparison in each iteration (BPR+viewprob).

5.3.2 Performance Comparison

We compare the performance of vanilla BPR and our pro-
posed view-enhanced sampler. The main result is listed in
Table 4.

BPR+viewprob vs. BPR. Our proposed BPR+view achieves
the best performance when [ω1, ω2, ω3] are set as
[0.3, 0.3, 0.4] and [0.01, 0.09, 0.9] on the Beibei and Tmall
datasets, respectively. To demonstrate its effectiveness, we
compare it with 1) the vanilla BPR [20], and 2) BPR-
DNS [27], which selects the item with the highest prediction
score amongX randomly sampled negatives. For BPR-DNS,
we tune the X in the same way as the original paper. To our
knowledge, DNS is the most effective sampler to date for
BPR based on the interaction data only, and empirically out-
performs [19]. In addition, we evaluate a common baseline
Popularity [8], which simply recommends items based on
their popularity evidenced by the number of purchases.

Fig. 5 shows the testing HR and NDCG of the compared
methods in each training iteration. As can be seen, upon
convergence, BPR+view significantly outperforms all other
methods on three datasets, except for the NDCG on Beibei.
This justifies the efficacy of accounting for the preference
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Fig. 6. Performance comparison in each iteration (BPR+viewloss).

signal in the view data using our proposed sampler. Be-
sides, the relative improvements of BPR+view over BPR are
about 30%+, 80%+ and 5%+ on Beibei, Tmall-all and Tmall-
selected dataset, respectively (See Table 4). Due to the effect
of Global Shopping Festival on Tmall-all, the improvement
is more significant. Last but not least, we observed that Pop-
ularity performs as well as BPR on the Beibei dataset, which
is unexpected since BPR is a personalized recommendation
method. Our further investigation finds that it is because
the Beibei dataset is highly popularity-skewed — the top-
1% items contribute almost 50% of purchases, as illustrated
in Fig. 1(a).

Clearly, after integrating viewing signal as intermediate
feedback, BPR+viewprob outperforms the original BPR that
only contains purchase feedback.
BPR+viewloss vs. BPR+viewprob. To evaluate our two pro-
posed variants of BPR sampler, i.e., biased sampling scheme
and weighted loss scheme, we look further into the compar-
ison of BPR+viewprob and BPR+viewloss for every iteration,
in Fig. 6. For Beibei, the relative improvement in terms of
HR and NDCG are 1.29% and 2.48% respectively (0.1436
vs. 0.1422 and 0.0327 vs. 0.0321, Table 4). Moreover,
for Tmall-selected, we observe a relative improvement of
10.20% (0.0884 vs. 0.0807) and 11.52% (0.0221 vs. 0.0199)
on two evaluation indexes, which indicates the stronger
influence of viewing behavoirs on Tmall again. The obvious
improvements demonstrates that considering three pairwise
relations among the sampled item triple (a purchased item,
a viewed item and an unobserved item) can better describe
both positive and negative signals of viewing behaviors.
Even BPR+viewprob outperforms vanilla BPR and BPR-DNS,
it still has difficulty in treating view interactions as both
positive and negative feedback in a single sampling.

BPR+viewloss vs. BPR+viewβ
prob. Finally, we compare the
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Fig. 7. Performance comparison in each iteration (BPR+viewβloss).

performance of BPR+viewloss and BPR+viewβloss in Fig. 7 to
evaluate the efficacy of user-oriented weighting scheme. On
Beibei dataset, by imposing personalized weighting strat-
egy, BPR+viewβloss achieves a further relative improvement
of 3.41% (0.1473 vs. 0.1436) and 3.31% (0.0335 vs. 0.0327)
w.r.t. HR and NDCG, which proves our intuition that view
interactions are stronger negative feedback for users with
larger view-purchase ratio.

To summarize, modelled as an intermediate feedback,
users’ viewed interactions can play an important role in
learning a more precise user preference to improve recom-
mendation performance. Compared with integrating view-
ing signal through a biased sampler, simultaneously learn-
ing two-fold semantics of viewing signal in each update
step performs much better. By taking into account the effect
of users’ online-shopping habits, we design a user-oriented
weighting scheme which achieves further improvements.

6 CONCLUSION AND FUTURE WORK

This paper studied the problem of improving BPR sampler
in implicit feedback recommender systems. First, we have
demonstrated that sampling negative items from the whole
space is unnecessary for BPR. Then, to further improve BPR
sampler’s ability of learning user preference, we propose an
enhanced sampler that encodes two-fold semantics in user’s
viewing behaviors. With these design, our improved BPR
sampler is able to achieve higher accuracy.

In the future, we will design an adaptive sampler to
leverage view data and other implicit feedback more suf-
ficiently. This work has focused on collaborative filtering
setting, which only leverages the feedback data and is
mostly used in the candidate selection stage of industrial
recommender systems [24]. In future, we will focus more on
the ranking stage, integrating view data into generic feature-
based models, such as expressive neural factorization ma-
chines [7] and more explainable tree-enhanced embedding
model [23].
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