
MSQ-Index: A Succinct Index for Fast Graph Similarity
Search

Xiaoyang Chen
Xidian University

Xi’an 710071, China
chenxyu1991@gmail.com

Hongwei Huo
Xidian University

Xi’an 710071, China
hwhuo@mail.xidian.edu.cn

Jun Huan
The University of Kansas

Lawrence, KS 66045, USA
jhuan@ku.edu

Jeffrey Scott Vitter
The University of Mississippi

Oxford, MS 38677-1848, USA
JSV@OleMiss.edu

ABSTRACT
Graph similarity search has received considerable attention
in many applications, such as bioinformatics, data mining,
pattern recognition, and social networks. Existing methods
for this problem have limited scalability because of the huge
amount of memory they consume when handling very large
graph databases with millions or billions of graphs.

In this paper, we study the problem of graph similarity
search under the graph edit distance constraint. We present
a space-efficient index structure based upon the q-gram
tree that incorporates succinct data structures and hybrid
encoding to achieve improved query time performance with
minimal space usage. Specifically, the space usage of our
index requires only 5%–15% of the previous state-of-the-art
indexing size on the tested data while at the same time
achieving 2–3 times acceleration in query time with small
data sets. We also boost the query performance by augment-
ing the global filter with range search, which allows us to
perform a query in a reduced region. In addition, we propose
two effective filters that combine degree structures and label
structures. Extensive experiments demonstrate that our
proposed approach is superior in space and competitive in
filtering to the state-of-the-art approaches. To the best of
our knowledge, our index is the first in-memory index for
this problem that successfully scales to cope with the large
dataset of 25 million chemical structure graphs from the
PubChem dataset.

1. INTRODUCTION
Graphs are widely used to model complicated data objects

in many disciplines, such as bioinformatics, social networks,
software and data engineering. Effective analysis and
management of graph data become increasingly important.
Many queries have been investigated and they can be

roughly divided into two broad categories: graph exact
search [19] and graph similarity search [6]. Compared with
exact search, similarity search can provide a robust solution
that permits error-tolerant and supports to search patterns
that are not precisely defined.

Similarity computation between two attributed graphs is
a core operation of graph similarity search and it has been
used in various applications such as pattern recognition,
graph classification and chemistry analysis [15]. There are
at least four metrics being well investigated: graph edit
distance [9, 16, 22, 23, 26], maximal common subgraph dis-
tance [2], graph alignment [3] and graph kernel functions [11,
18]. In this paper, we focus on the graph edit distance since
it is applicable to virtually all types of data graphs and can
also capture precisely structural differences. The graph edit
distance ged(g, h) between two graphs g and h is defined as
the minimum number of edit operations needed to transform
one graph to another.

Given a graph database G, a query graph h and an edit
distance threshold τ , the graph similarity search problem
aims to find all graphs g in G satisfying ged(g, h) ≤ τ .
Unfortunately, computing the graph edit distance is known
to be an NP-hard problem [22]. Therefore, for a large
transaction database, such as PubChem, which stores in-
formation about roughly 50 million chemical compounds,
similarity search is very challenging.

Most of the existing methods adopt the filter-and-verify
schema to speed up the search. With such a schema, we first
filter data graphs that are not possible results to generate a
candidate set, and then validate the candidate graphs with
the expensive graph edit distance computations. In general,
the existing filters can be divided into four categories: global
filter, q-gram counting filter, mapping distance-based filter
and disjoint partition-based filter. Specifically, number
count filter [22] and label count filter [24] are two global
filters. The former is derived based upon the differences
of the number of vertices and edges of comparing graphs.
The later takes labels as well as structures into account,
further improving the former. κ-AT [16] and GSimJoin [24]
are two major q-gram counting filters. They considered
a κ-adjacent subtree and a simple path of length p as a
q-gram, respectively. C-Star [22] and Mixed [25, 26] are two
major mapping distance-based filters. The lower bounds are
derived based on the minimum weighted bipartite graphs

1

ar
X

iv
:1

61
2.

09
15

5v
1

 [
cs

.D
B

]
 2

9
D

ec
 2

01
6

between the star and branch structures of comparing graphs,
respectively. Pars [23] is a disjoint partition-based filter. It
divides each data graph g into several disjoint substructures
and prunes g by the subgraph isomorphism.

Even though promising preliminary results have been
achieved by existing methods GSimJoin [24], C-Star [22]
and Mixed [26], our empirical evaluation of all the meth-
ods aforementioned showed that they are not scalable to
large graph databases. The critical limitation of existing
methods are: (1) existing filters having a weak filter ability
produce large candidate sets, resulting in an unacceptable
computational cost for verification, (2) the index storage
cost of the existing methods is too expensive to run properly.
For example, for a database of 10 million graphs, C-Star
on average produces 5 × 105 number of candidates for
verification when τ = 5. Both GSimJoin and Mixed produce
an index that is too large to fit into the main memory for
large input data. The details of the empirical study are
presented in Section 7.

To solve the above issues, we propose a space-efficient in-
dex structure for graph similarity search which significantly
reduces the storage space. Our contributions in this paper
are summarized below.

• We propose two effective filters, i.e. degree-based q-gram
counting filter and degree-sequence filter, by using the
degree structures and label structures.

• We create a q-gram tree to speed up filtering process.
More importantly, we propose the succinct represen-
tation of the q-gram tree which combines with hybrid
coding, significantly reducing the space required for
the representation of the q-gram tree.

• We convert the number count filter to a two-dimensional
orthogonal range searching, which helps us perform a
query at a reduced region and hence further improves
the filtering performance.

• We have conducted extensive experiments over both
real and synthetic datasets to evaluate the index sto-
rage space, construction time, filtering capability, and
response time. The result is graph similarity search
index that we refer to as “MSQ-Index”. It confirms the
effectiveness and efficiency of our proposed approaches
and show that our method can scale well to cope with
the large dataset of 25 million chemical compounds
from the PubChem dataset.

The rest of this paper is organized as follows: In Section 2,
we introduce the problem definition. In Section 3, we
present the degree-based q-gram counting filter and the
degree-sequence filter. In Section 4, we give a method
to reduce the query region. In Section 5, we introduce
the index structure. In Section 6, we give the query
algorithm. In Section 7, we report the experimental results.
We investigate the research work related to this paper in
Section 8. Finally, we make concluding remarks in Section 9.

2. PRELIMINARIES
In this section, we introduce the basic notations and

definitions of graph edit distance and graph similarity
search.

Definition 1 (Attributed Graph). A labeled graph
is defined as a six-tuple g = (Vg, Eg, µ, ζ,ΣVg ,ΣEg), where Vg
is the set of vertices, Eg ⊆ Vg × Vg is the set of edges,
µ : Vg → ΣVg is the vertex labeling function which assigns a
label µ(v) to the vertex v, ζ : Eg → ΣEg is the edge labeling
function which assigns a label ζ(e) to the edge e, ΣVg and
ΣEg are the label multisets of Vg and Eg, respectively.

In this paper, we only focus on simple undirected graphs
without multi-edge or self-loop. We use |Vg| and |Eg| to
denote the number of vertices and edges in g, respectively.
The graph size refers to |Vg| in this paper. Although in the
following discussion we only focus on undirected graphs, our
methods can be extended to handle directed graphs.

Definition 2 (Graph Isomorphism [19]). Given two
graphs g and h, an isomorphism of graphs g and h is a
bijection f : Vg → Vh, such that (1) for all v ∈ Vg,
f(v) ∈ Vh and µ(v) = µ(f(v)). (2) for all e(u, v) ∈ Eg,
e(f(u), f(v)) ∈ Eh and ζ(e(u, v)) = ζ(e(f(u), f(v))). If g is
isomorphic to h, we denote g ∼= h.

There are six primitive edit operations that can transform
one graph to another [1]. These edit operations are
inserting/deleting an isolated vertex, inserting/deleting an
edge between two vertices and substituting the label of
a vertex or an edge. We denote the substitution of two
vertices u and v by (u → v), the deletion of vertex u
by (u → ε), and the insertion of vertex v by (ε → v).
For edges, we use a similar notation. Given two graphs g
and h, an edit path P = 〈p1, p2, . . . , pk〉 is a sequence of

edit operations that transforms h to g, such as h = h0 p1−→
h1 p2−→ . . .

pk−→ hk ∼= g. In Figure 1, we give an example
of an edit path P between g and h, where the vertex labels
are represented by different symbols. The length of P is 6,
which consists of two edge deletions, one vertex deletion, one
vertex insertion and two edge insertions. In the following
sections, we use |P | to denote the length of P .

Definition 3 (Optimal Edit Path). Given two
graphs g and h, an edit path P between g and h is an optimal
edit path if and only if there does not exist another edit
path P ′ such that |P ′| < |P |. The graph edit distance between
them, denoted by ged(g, h), is the length of the optimal edit
path.

Problem statement: Given a graph database G = {g1, g2,
. . ., g|G|}, a query graph h, and an edit distance threshold τ ,
the problem is to find all the graphs g in G such that
ged(g, h) ≤ τ , where ged(g, h) is the graph edit distance
of graphs g and h defined in Definition 3.

Figure 2 shows a query graph h and three data graphs g1, g2,
and g3. We can obtain that ged(g1, h) = 3, ged(g2, h) = 4,
and ged(g3, h) = 3. If the edit distance threshold τ = 3, g1
and g3 are the required graphs.

A A

C B

C

A A

A

CA A

C

A

C

B

h g1 g2 g3

Figure 2: Query graph h and data graphs g1, g2, and g3.

The computation of graph edit distance is an NP-hard
problem [22]. The state-of-the-art approaches like [16, 22,

2

A

v1

C

v2

A

v3

B

v4

two edge dels

A

v1

C

v2

A

v3

B

v4

one vertex del

C

v2

B

v4

A

v3

one vertex ins

C

v5

C

v2

A

v3

B

v4

two edge ins

C

v5

C

v2

A

v3

B

v4
h

Figure 1: An edit path P between graphs g and h.

23, 24, 25] for graph similarity search use a filter-and-verify
schema to speed up query process. In the filtering phase, it
computes the candidate set Cand = {g : ξ(g, h) ≤ τ and g ∈
G}, where ξ(g, h) is the lower bound on ged(g, h). In the
verification phase, for each graph g in Cand , it needs to
compute ged(g, h). Obviously, it is good for the size |Cand |
as small as possible.

In this paper, we propose two filters, i.e., degree-based q-gram
counting filter and degree-sequence filter using the degree
structures and label structures in a graph. Besides, we also
use the following two simple but effective global filters, i.e.,
number count filter [22] and label count filter [24]. Number
count filter is derived based upon the differences of the
number of vertices and edges of comparing graphs and given
by distN (g, h) = ||Vg | − |Vh || + ||Eg | − |Eh ||. Label count
filter improves the number count filter by taking labels as
well as structures into account and is given by distL(g, h) =
max{|Vg|, |Vh|}−|ΣVg ∩ΣVh |+max{|Eg |, |Eh |}−|ΣEg ∩ΣEh |.
By using all of them, we can obtain a candidate set as small
as possible.

3. MULTIPLE FILTERS

3.1 Optimal Edit Path
Given two graphs g and h, and an optimal edit path P

between them, we group the operations on P into five sets
of edit operations: vertex deletion group PVD = {pi : pi =
(u → ε) ∈ P}, vertex insertion group PVI = {pi : pi =
(ε → v) ∈ P}, vertex substitution group PVS = {pi :
pi = (u → v) ∈ P}, edge deletion group PED = {pi : pi =
(e(u, v) → ε) and ((u → ε) ∈ PVD or (v → ε) ∈ PVD)}
consists of the edge deletions performed on the deleted
vertices, and edge operation group PO consists of the edit
operations performed on edges except for those in PED .

For an optimal edit path P between g and h , the
insertion/deletion/substitution edit operation on a vertex v
or an edge e must happen only once, thus the edit operations
in PVD are independent of each other. Therefore, we
can obtain an edit path by arbitrarily arranging the edit
operations in PVD . In the rest of this paper, we use PVD to
denote the edit operation set and the edit operation sequence
interchangeably when there is no ambiguity. Similarly, PVI ,
PVS , PED and PO could be also considered as the edit
operation sets or paths. For an optimal edit path P , we
can always obtain an optimal edit path P ′ = PED · PVD ·
PVI ·PVS ·PO by arranging the edit operations in P . In the
following section, we consider P = PED ·PVD ·PVI ·PVS ·PO

as the default optimal edit path for two given graphs.

Lemma 1. Given graphs g and h, and an optimal edit
path P that transforms h to g, then we have |PVD | =
max{|Vh | − |Vg |, 0} and |PVI | = max{|Vg | − |Vh |, 0}.

Proof. Let P = PED · PVD · PVI · PVS · PO be an edit
optimal path that transforms h to g. Then we discuss the
following three cases.

Case I. When |Vh | = |Vg |. To transform h to g, the
number of vertex deletions must be equal to that of vertex
insertions, i.e., |PVD | = |PVI |. We prove |PVD | = |PVI | = 0
by contradiction. Assuming that |PVD | = |PVI | = l ≥ 1,
thus there must exist at least one vertex insertion and one
deletion. Let u be a deleted vertex and v be a inserted
vertex. We construct another edit path P ′ by P as follows.
First, we substitute the label of u with µ(v), and then
perform these edit operations on u, which were performed
on v before in PO . Finally, we maintain the rest edit
operations in P . In other words, we replace (u → ε) and
(ε → v) by (u → v). The length of P ′ is |P ′| = |P | − 1 <
|P |, which contradicts the hypothesis that P is an optimal
edit path. Therefore, there exists no vertex deletions and
insertions in P , i.e., |PVD| = |PV I | = 0.

Case II. When |Vh | < |Vg |. There exists at least
|Vg | − |Vh | vertex insertions in P . Let h1 be the graph
obtained by inserting |Vg | − |Vh | vertices into h. According
to the analysis in case I, no vertex deletions and insertions
are needed in an optimal edit path that transforms h1 to g.
Thus, only |Vg |−|Vh | vertex insertions are needed in P , i.e.,
|PVI | = |Vg | − |Vh | and |PVD | = 0.

Case III. When |Vh | > |Vg |. The proof is similar to the
proof of case II. We omit it here.

3.2 Q-gram Counting Filters

Definition 4 (Degree-based q-gram). Let Dv =
(µ(v), adj (v), dv) be the degree structure of vertex v in
graph g, where µ(v) is the label of v, adj (v) is the multiset
of labels for edges adjacent to v in g, and dv is the degree
of v. The degree-based q-gram set of graph g is defined as
D(g) = {Dv : v ∈ Vg}.

Lemma 2. Given two graphs g and h, if ged(g, h) ≤ τ ,
then we have |D(g) ∩ D(h)| ≥ 2max{|Vg|, |Vh|} − |ΣVg ∩
ΣVh | − 2τ .

Proof. First, we enumerate the effect of various edit
operations onD(g): (1) vertex insertion/deletion/substitution
will affect one degree-based q-gram. (2) edge insertion/deletion/
substitution will affect two degree-based q-grams. Then,
without loss of generality we assume that |Vh| ≤ |Vg| and
prove Lemma 2 as follows.

Let P = PED ·PVD ·PVI ·PVS ·PO be an optimal edit path
that transforms h to g, such that: h→ h1 → g, where h1 is
obtained by performing PED ·PVD ·PVI ·PVS on h, and g is
obtained by performing PO on h1. By Lemma 1, we know
that |PVD | = 0 and |PVI | = |Vg|−|Vh|. Since PED consists of
the edge deletions performed on the deleted vertices, we have
|PED | = 0. To transform h to g, |PVS | vertex substitutions
are needed, thus |PVS | ≥ |Vg| − (|ΣVg ∩ ΣVh | + |PVI |) =

3

|Vh| − |ΣVg ∩ΣVh |. Since vertex insertion/substitution only
affects one degree-based q-gram, we have |D(g) ∩ D(h)| ≥
|D(g) ∩D(h1)| − (|PVI |+ |PVS |). Since PO only consists of
the edit operations performed on edges and each of them
affects two degree-based q-grams, we have |D(g)∩D(h1)| ≥
|Vg| − 2|PO |. Thus we have |D(g) ∩D(h)| ≥ |Vg| − 2|PO | −
(|PVI |+ |PVS |) ≥ 2|Vg| − |ΣVg ∩ ΣVh | − 2τ .

Definition 5 (Label-based q-gram). The label-based
q-gram set of graph g is defined as L(g) = ΣVg ∪ ΣEg ,
where ΣVg and ΣEg are the label multisets of Vg and Eg,
respectively.

For the label-based q-gram, each edit operation affects
one q-gram, thus we can obtain the label-based q-gram
counting filter as follows. If ged(g, h) ≤ τ , then we have
|L(g) ∩ L(h)| ≥ max{|Vg|, |Vh|}+ max{|Eg|, |Eh|} − τ . It is
a rewritten form of the label count filter [24].

Figure 3 shows the degree-based q-gram and label-based
q-gram sets of graphs shown in Figure 2. Note that
the number on the left of each subgraph is the times of
the q-gram occurring in the graph and we omit the degree
value of each degree-based q-gram.

A1

C1

A1

A3

C1

C1

B1

C1

A1

A2

B1

C1

g1 g2 g3 h

A2

C1

2

A3

C1

3

A1

B1

C2

4

A2

B1

C1

4

g1 g2 g3 h

Figure 3: Degree-based q-gram (left) and label-based q-gram
(right) sets.

We use an example to illustrate the degree-based q-gram
and label-based q-gram counting filters. For the graphs g2
and h shown in Figure 2, if τ = 2, by Lemma 2 we have
|D(g2) ∩ D(h)| = 0 < 2 × max{4, 4} − |{A,A,B,C} ∩
{A,A,A,C}| − 2 × 2 = 1. Thus, g2 will be filtered out.
However, for the graph g1, we have |D(g1) ∩ D(h)| = 1 ≥
2 × max{4, 3} − |{A,A,B,C} ∩ {A,A,C}| − 2 × 2 = 1
and hence g1 will pass the filter. Similarly, only g1 will
be filtered out by the label-based q-gram counting filter
Therefore, we can filter g1 and g2 out using the degree-based
q-gram and label-based q-gram counting filters. However,
for the graph g3 shown in Figure 2, none of the above
filters can filter it out. So, we propose another filter, called
degree-sequence filter, which utilizes the degrees of vertices.

3.3 Degree-Sequence Filter
Let πg = [d1, d2, . . . , d|Vg|] be the degree vector of

graph g, where di is the degree of vertex vi in g. The
degree sequence σg of g is a permutation of d1, d2, . . . , d|Vg|
satisfying σg[i] ≥ σg[j] for i < j. If g is isomorphic to h,
then we have σg = σh. Therefore, we can compute the lower
bound on ged(g, h) using σg and σh.

Definition 6 (Degree vector distance). Given
two degree vectors πg and πh such that |πg| = |πh|. The
distance between them is defined as ∆(πg, πh) =
d
∑
πh[i]≤πg [i]

(πg[i]−πh[i])/2e+d
∑
πh[i]>πg [i]

(πh[i]−πg[i])/2e.

Lemma 3. Let x and y be two degree vectors such that
|x| = |y| = n in non-increasing order. For any bijection
function f : {1, . . . , n} → {1, . . . , n}, we have ∆(x, z) ≥
∆(x, y), where z[i] = y[f(i)] for 1 ≤ i ≤ n.

Proof. For degree vectors x and y, let s1(x, y) =∑
x[i]≤y[i](y[i] − x[i]) and s2(x, y) =

∑
x[i]>y[i](x[i] − y[i]).

We have ∆(x, y) = ds1(x, y)/2e + ds2(x, y)/2e. We want
to prove s1(x, z) ≥ s1(x, y) and s2(x, z) ≥ s2(x, y), where
z[i] = y[f(i)] for 1 ≤ i ≤ n. We prove this claim for x and z
by induction on the vector length n. And similar claim holds
for y and z.

For the base case n = 1, it is trivial that s1(x, z) ≥ s1(x, y)
and s2(x, z) ≥ s2(x, y). For the inductive step, we assume
that s1(xk, zk) ≥ s1(xk, yk) and s2(xk, zk) ≥ s2(xk, yk)
for n ≤ k where xk = [x[1], . . . , x[k]].

We then prove the claim holds for n = k+1. First, without
loss of generality, we assume that f(k + 1) = i (i < k + 1),
and x[i] ≥ y[i], thus we have s1(xk, zk) = s1(xk−1, zk−1) and
s2(xk, zk) = s2(xk−1, zk−1) + x[i] − y[i]. Then we consider
the following three cases.

Case I. When x[i] ≥ x[k + 1] ≥ y[i] ≥ y[k + 1].

s1(xk+1, zk+1) = s1(xk, zk)

≥ s1(xk, yk) = s1(xk+1, yk+1)

s2(xk+1, zk+1) = s2(xk−1, zk−1) + x[i]− y[i] + x[k + 1]− y[k + 1]

= s2(xk, zk) + x[k + 1]− y[k + 1]

≥ s2(xk, yk) + x[k + 1]− y[k + 1]

= s2(xk+1, yk+1).

Case II. When x[i] ≥ y[i] ≥ x[k + 1] ≥ y[k + 1].

s1(xk+1, zk+1) = s1(xk−1, zk−1) + y[i]− x[k + 1]

= s1(xk, zk) + y[i]− x[k + 1]

≥ s1(xk, yk) = s1(xk+1, yk+1).

s2(xk+1, zk+1) = s2(xk−1, zk−1) + x[i]− y[k + 1]

= s2(xk, zk)− (x[i]− y[i]) + x[i]− y[k + 1]

= s2(xk, zk) + y[i]− y[k + 1]

≥ s2(xk, yk) + x[k + 1]− y[k + 1]

= s2(xk+1, yk+1).

Case III. When x[i] ≥ y[i] ≥ y[k + 1] ≥ x[k + 1].

s1(xk+1, zk+1) = s1(xk−1, zk−1) + y[i]− x[k + 1]

= s1(xk, zk) + y[i]− x[k + 1]

≥ s1(xk, yk) + y[k + 1]− x[k + 1]

= s1(xk+1, yk+1).

s2(xk+1, zk+1) = s2(xk−1, zk−1) + x[i]− y[k + 1]

= s2(xk, zk)− (x[i]− y[i]) + x[i]− y[k + 1]

= s2(xk, zk) + y[i]− y[k + 1]

≥ s2(xk, yk) = s2(xk+1, yk+1).

Finally, we note that s1(x, z) ≥ s1(x, y) and s2(x, z) ≥
s2(x, y), and hence we have ∆(x, z) ≥ ∆(x, y).

Lemma 4. Given two graphs g and h with |Vg| = |Vh|,
then we have ged(g, h) ≥ ∆(σg, σh).

Proof. Let f be the bijection from the vertices in h
to that in g to ensure that the induced edit path is an
optimal edit path. Assuming that σh[i] and σg[f(i)] be the
respective degrees of a vertex v in h and the corresponding

4

vertex u in g. If σh[i] ≤ σg[f(i)], we must insert at least
(σg[f(i)] − σh[i]) edges on v; otherwise, we must delete
at least (σh[i] − σg[f(i)]) edges. Since one edge inser-
tion/deletion affects degrees of two vertices, we must insert
at least d

∑
σh[i]≤σg [f(i)](σg[f(i)]− σh[i])/2e edges. Similarly,

we also need to delete at least d
∑
σh[i]>σg [f(i)]

(σh[i] −
σg[f(i)])/2e edges. Thus, we have ged(g, h) ≥ ∆(σh, π

′
g),

where π
′
g[i] = σg[f(i)] for 1 ≤ i ≤ |Vh|. By Lemma 3, we

have ged(g, h) ≥ ∆(σh, π
′
g) ≥ ∆(σg, σh).

Lemma 5 (Degree-sequence filter). Given two
graphs g and h, and an edit distance threshold τ , if
ged(g, h) ≤ τ , then we have τ ≥ max{|Vg |, |Vh |} − |ΣVg ∩
ΣVh |+ λe, where

λe =

{
∆(σg, σ1) if |Vh | ≤ |Vg |;
minh1{|Eh | −

∑
j σh1 [j] + ∆(σg, σh1)} otherwise.

σ1 = [σh[1], . . . , σh[|Vh |], 01, . . . , 0|Vg |−|Vh |] and h1 is a
subgraph of h obtained by deleting |Vh | − |Vg | vertices.

Proof. Let P = PED ·PVD ·PVI ·PVS ·PO be an optimal
edit path that converts h to g, satisfying h→ h1 → h2 → g,
where h1 is obtained by performing PED · PVD on h, h2 is
obtained by performing PVI · PVS on h1 and g is obtained
by performing PO on h2. Then we discuss the following two
cases.

Case I. When |Vh | ≤ |Vg |. We have |PVD | = 0
and |PVI | = |Vg | − |Vh | and |PED | = 0 by Lemma 1.
To transform h1 to h2, |PVS | vertex substitutions are
needed in P , thus we have |PVS | ≥ |Vg | − (|PVI | +
|ΣVg ∩ ΣVh |) = |Vh | − |ΣVg ∩ ΣVh |. Since h2 is obtained
by performing PED · PVD · PVI · PVS on h, we have σh2 =
[σh[1], . . . , σh[|Vh |], 01, . . . , 0|Vg |−|Vh |]. By Lemma 4, we
have |PO | = ged(g, h2) ≥ ∆(σg, σh2). Therefore ged(g, h) =
|P | = |PVI |+ |PVS |+ |PO | ≥ |Vg |− |ΣVg ∩ΣVh |+ ∆(σ1, σg).

Case II. When |Vh | > |Vg |. We have |PVI | = 0 and
|PVD | = |Vh | − |Vg | by Lemma 1. To transform h to h1, the
number of edge deletions in PED is |PED | = |Eh | − |Eh1 | =
|Eh | −

∑
j σh1 [j]/2. Since only |PVS | vertex substitutions

are needed to transform h1 to h2, we have |PVS | ≥ |Vh | −
(|PVD |+ |ΣVg ∩ΣVh |) = |Vg | − |ΣVg ∩ΣVh | and σh1 = σh2 .
By Lemma 4, we also have |PO | ≥ ∆(σg, σh2) = ∆(σg, σh1).
Therefore |P | = |PED |+|PVD |+|PVS |+|PO | ≥ minh1{|Vh |−
|ΣVg∩ΣVh |+|Eh |−

∑
j σh1 [j]/2+∆(σg, σh1)} = |Vh |−|ΣVg∩

ΣVh |+ minh1{|Eh | −
∑
j σh1 [j]/2 + ∆(σg, σh1)}.

We use an example to illustrate the degree-sequence filter.
For the graphs h and g3 shown in Figure 2, we can compute
σh = [2, 2, 2, 2] and σg3 = [3, 2, 2, 1]. By Lemma 5, if τ = 2,
then we have max{4, 4} − |{A,A,B,C} ∩ {A,B,C,C}| +
∆(σh, σg3) = 4− 3 + d(3− 2)/2e+ d(2− 1)/2e = 3 > 2, then
we can filter g3 out.

4. REDUCED QUERY REGION
Given a database G, we consider each graph g in G as a

point in the two-dimensional plane where the x-coordinate
and y-coordinate denote the number of vertices and edges
in g, respectively. Thus the graph database G can be repre-
sented as a set of points S = {(|Vgj |, |Egj |) : 1 ≤ j ≤ |G|}.
These points form a rectangle area A = [xmin, xmax] ×
[ymin, ymax], where xmin = minj{|Vgj |}, xmax = maxj{|Vgj |},
ymin = minj{|Egj |} and ymax = maxj{|Egj |} for 1 ≤ j ≤

|G|. By partitioning A into subregions, we can perform a
query at a reduced query region.

Given an initial division point (x0, y0) and a length l, we
partition A into disjoint subregions as follows. First, we
construct the initial square subregion A0,0 formed by the
point set {(x, y) : |x− x0|+ |y − y0| ≤ l}. Then, we extend
along the surrounding of A0,0 to obtain subregions Ai,j of
the same size with A0,0, where i and j denote the relative
offsets with respect to A0,0 in lines y = x and y = −x,
respectively. Finally, we repeat this process until all points
in A are exhausted. Then A is partitioned into some disjoint
subregions such that A = ∪i,jAi,j and Ai,j ∩ Ai′,j′ = ∅ for
all i 6= i′ and j 6= j′. Note that i and j can be negative.

Definition 7 (Query rectangle and region). Given
a query graph h and an edit distance threshold τ , query
rectangle Ah of h is the rectangle formed by the point set
of {(x, y) : |x− |Vh||+ |y−|Eh|| ≤ τ}. The query region Qh
of h is the union of all subregions intersecting with Ah, i.e.,
Qh = ∪i,jAi,j such that Ai,j ∩Ah 6= ∅.

For graphs g and h, if ged(g, h) ≤ τ , then we have
||Vg| − |Vh||+ ||Eg| − |Eh|| ≤ τ . According to the definition
of Ah, we know that (|Vg|, |Eg|) ∈ Ah. Since Qh = ∪i,jAi,j
and Ai,j ∩ Ah 6= ∅, we have Ah ⊆ Qh. Therefore we
have (|Vg|, |Eg|) ∈ Qh and hence can reduce the query
region from A to Qh. In the example of Figure 4, we
have Qh = {A0,0, A1,0, A0,−1, A1,−1} and then only need
to perform the query at Qh.

|V|

|E|

0

A1,0

A0,0

A0,-1

A1,-1

 Q

A

h

h

A

(|Vh|, |Eh|)

Figure 4: Illustration of Ah, Qh and A

For a two-dimensional point (x, y), its coordinates in lines
y = x and y = −x are 1√

2
(x+y, y−x), thus its relative offsets

with respect to (x0, y0) are dx = 1√
2
((x + y) − (x0 + y0))

and dy = 1√
2
((y − x) − (y0 − x0)) in y = x and y = −x,

respectively. Since the side length of a subregion is l√
2
, the

respective relative offsets with respect to A0,0 are b dx
l/
√

2
c and

b dy

l/
√
2
c in y = x and y = −x. Since the subregions in Qh are

adjacent, we just need to find the boundaries of subregions
intersecting with Ah using the following formula.

Qh = ∪i,jAi,j for all i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2. (1)

where i1 = b(|Eh|−τ+ |Vh|−(x0+y0))/lc and j1 = b(|Eh|−
τ − |Vh| − (y0 − x0))/lc are the relative positions of the
subregion in the lower left corner of Qh with respect to A0,0

in y = x and y = −x, respectively, i2 = b(|Eh|+ τ + |Vh| −
(x0 + y0))/lc and j2 = b(|Eh|+ τ − |Vh| − (y0 − x0))/lc are
the respective relative positions of the subregion in the top
right corner of Qh with respect to A0,0 in y = x and y = −x.

5

5. SUCCINCT Q-GRAM TREE INDEX
Recall that we partitioned the region A into some subre-

gions and then obtained a reduced query region Qh. In order
to efficiently filter the graphs mapped into Qh, we introduce
a space-efficient index structure via succinct representation
of the q-gram tree as follows.

5.1 Tree Structure
Let UD and UL be the sets of all distinct degree-based

q-grams and label-based q-grams occurring in G, respec-
tively, where UD(i) and UL(i) are the ith most frequently
occurring degree-based q-gram and label-based q-gram in G,
respectively. We use a four-tuple LD = (FD ,FL, nv, ne) to
represent a graph g, where nv and ne are the number of ver-
tices and edges in g, respectively, FD and FL are two arrays
to store the degree-based q-gram and label-based q-gram sets
D(g) and L(g), respectively, where FD [i] and FL[i] are the
respective number of occurrences of the degree-based q-gram
UD(i) in D(g) and the label-based q-gram UL(i) in L(g).

Definition 8. Given two four-tuples LD and LD ′, the
union operator ”t” of LD and LD ′ is defined as: LD t
LD ′ = (FD ⊕F ′D ,FL⊕F ′L,min{nv, n′v},min{ne, n′e}), where

(FD⊕F ′D)[i] =

 max{FD [i],F ′D [i]} if i < min{|FD |, |F ′D |};
FD [i] if |F ′D | ≤ i < |FD |;
F ′D [i] if |FD | ≤ i < |F ′D |.

and similar definition for FL ⊕ F ′L.

Similarly, the union of multiple four-tuples can be defined
recursively.

Definition 9. A q-gram tree is a balanced tree such that
each leaf node stores the four-tuple LD of the data graph g
and each internal node is the union of its child nodes.

Figure 5 gives an example of a q-gram tree built on g1,
g2, and g3 shown in Figure 2.

FD = [3 1 1 1 1 1 1]
FL = [4 3 1 2]
nv = 3, ne = 2

r

FD = [3 1 0 0 1 0 1]
FL = [3 3 0 1]
nv = 3, ne = 2

w
FD = [0 0 1 1 1 1]
FL = [4 1 1 2]
nv = 4, ne = 4

g3

FD = [1 1 0 0 1]
FL = [2 2 0 1]
nv = 3, ne = 2

g1

FD = [3 0 0 0 0 0 1]
FL = [3 3 0 1]
nv = 4, ne = 3

g2

Figure 5: Example of a q-gram tree

5.2 Succinct Representation
The arrays FD and FL may contain lots of zeros, thus

a succinct representation of them is a space-efficient way
to store them. For a q-gram tree, we obtain its succinct
representation by performing the following three steps. In
the following sections, we refer X to be D or L.

(1) We use a bit vector IX and an array VX to repre-
sent FX as follows: if FX [j] = 0 then we have IX [j] = 0;

otherwise IX [j] = 1. VX [j] represents the jth nonzero entry
in FX . For example, the array FD in the node w shown in
Figure 5 is FD = [3 1 0 0 1 0 1], then we use (ID , VD) = ([1
1 0 0 1 0 1], [3 1 1 1]) to represent FD .

(2) We concatenate all bit vectors IX and arrays VX

for all nodes from the root node to leaves in a depth-first
traversal order to obtain a bit vector BX and an array ΨX ,
respectively. In addition, we also store the left and right
boundaries lX and rX of IX for each node, respectively. For
example, for the q-gram tree shown in Figure 5, we can
obtain BD = [1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0
0 1 0 0 1 1 1 1] and ΨD = [3 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1
1 1 1].

(3) We divide ΨX into fixed-length blocks of size b and
encode each block by choosing one from two different
compression methods so that the encoded bit vector SX

has the minimum space. One compression method uses
the fixed-length encoding of blog bmaxc + 1 bits to encode
each entry in a fixed-length encoding block, where bmax is
the maximum value in this block. The other method uses
Elias γ encoding to encode each entry in a γ-encoding block.
Logarithms in this paper are in base 2 unless otherwise
stated.

To support random access to ΨX [j], we also need to
store three auxiliary structures SBX , wordsX , and flagX ,
where SBX stores the starting position of the encoding of
each block in SX ; the bit vector flagX stores the encoding
method used in each block such that flagX [k] = 1 for the
fixed-length encoding and flagX [k] = 0 for the Elias γ
encoding for the kth block; wordsX stores the number of
bits required for each entry in a fixed-length encoding block.
We also build rank dictionaries over the bit vectors BX

and flagX to obtain rank1(BX , j) and rank1(flagX , j) in
constant time [7], where rank1(BX , j) and rank1(flagX , j)
are the respective number of 1’s up to j in BX and flagX .

Let BD and BL be the respective degree-based and
label-based q-grams bit vectors, and ΨD and ΨL be the
respective degree-based and label-based q-gram frequency
arrays. We use four structures SD , SBD , flagD , and wordsD
to represent ΨD . Similarly, we use four structures SL, SBL,
flagL, and wordsL to represent ΨL. Figure 6 shows the
succinct representation of the q-gram tree shown in Figure 5.

5.3 Access to ΨX

To access ΨX [j], we first query flagX and SBX to deter-
mine the encoding method used and decoding position, re-
spectively, and then decode SX from the decoding position.
The last decoded value is ΨX [j].

ΨX [j] = decompress(SX ,flagX [bj/bc], SBX [bj/bc],
(j mod b) + 1) (2)

where b is the block size. The operation decompress
performs a decoding on SX . The encoding method and
decoding position are determined by the second parameter
flagX [bj/bc] and third parameter SBX [bj/bc] of decompress,
respectively. (j mod b) + 1 is the number of times needed
to be decoded.

For example, if we want to retrieve ΨD [14] (suppose that
the subscript starts from 0 and b = 4) shown in Figure 6, we
find that flagD [b14/bc] = flagD [3] = 0 and SBD [b14/bc] =
SBD [3] = 16. Thus starting from the 16th bit of SD , we
sequentially decode Elias γ encoding three times and the
last decoded value is ΨD [14] = 3.

6

lD = 0, rD = 6
lL = 0, rL = 3
nv = 3, ne = 2

r

lD = 7, rD = 13
lL = 4, rL = 7
nv = 3, ne = 2

w
lD = 26, rD = 31
lL = 16, rL = 19
nv = 4, ne = 4

g3

lD = 14, rD = 18
lL = 8, rL = 11
nv = 3, ne = 2

g1

lD = 19, rD = 25
lL = 12, rL = 15
nv = 4, ne = 3

g2

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19j

SD

SBD

flagD

wordsD

3 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1

011 1 1 1 1 1 1 011 1 1 1 1 1 1 011 1 1 1 1 1

0 6 12 16 22

0 0 1 0 1

- -

1111111 1100101 11001 1000001 001111 BD

11 -

 ΨD

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SL

SBL

flagL

wordsL

4 3 1 2 3 3 1 2 2 1 3 3 1 4 1 1

100 011 001 010 11 11 01 10 10 01 11 11 1 00100 1 1

0 12 20 28

1 1 1 0

3 2 2 -

10

36

1

16

2

j

1111 1101 1101 1101 1111 BL

2

ΨL

(c)

Figure 6: Succinct representation of the q-gram tree

We use the following formula (3) to compute the original
entry FX [i] in the node w.

FX [i] =

{
0 ifBX [lX + i] = 0;
ΨX [rank1(BX , lX + i)] otherwise.

(3)

where 0 ≤ i ≤ rX − lX , and lX and rX are the left and right
boundaries of IX for w, respectively. If BX [lX + i] = 0,
then we have FX [i] = 0 since IX [i] = BX [lX + i] = 0;
otherwise, we first compute the position of FX [i] in ΨX ,
i.e., rank1(BX , lX + i), and then use formula (2) to compute
ΨX [rank1(BX , lX+ i)], where rank1(BX , lX +i) is the number
of 1’s up to lX +i in BX , which can be computed in constant
time using a dictionary of o(|BX |) bits [7].

For example, to retrieve FD [0] in the node g2 shown in
Figure 5, we first obtain BD [lD + 0] = BD [19] = 1, and then
compute its position in ΨD is rank1(BD , 19) = 14, thus we
have FD [0] = ΨD [14] = 3 by formula (2).

As discussed above, the core operation in a succinct
q-gram tree is to calculate ΨX [j] by formula (2), i.e., the
decompress operation. In order to accelerate the decompress
process, we use the look up table technique proposed in [5]
to ensure that the decompress operation takes a constant
time.

5.4 Space Analysis
In this section we analyze the space occupied by the

succinct q-gram tree TSQ built on G. TSQ consists of three
parts: the respective index structures for ΨD and ΨL, and
left and right boundaries, #vertices and #edges in each
node of the tree. The former contains encoded sequence SX

and corresponding auxiliary structures BX , SBX , flagX and
wordsX ; The latter consists of lX , rX , nv and ne stored in
each node of TSQ , where X denotes D or L. An illustration
of these structures is shown in Figure 6.

Let vm = maxj{|Vgj |}, em = maxj{|Egj |} for 1 ≤ j ≤ |G|,
nD = |BD |, nL = |BL|, bmD and bmL be the maximum value
in ΨD and ΨL, respectively. For a degree-based q-gram, its
maximum number of occurrence in a graph g is |Vg |, thus
we have bmD ≤ vm . Similarly, bmL ≤ max{vm , em}. We first
consider the space required by lX , rX , nv and ne .

For any node of TSQ , we use blog nDc+ 1 bits to store lD
and rD , respectively, and blognLc+1 bits to store lL and rL,
respectively, since lD ≤ rD ≤ nD and lL ≤ rL ≤ nL. We also

use respective blog vmc+ 1 and blog emc+ 1 bits to store nv

and ne , since nv ≤ vm and ne ≤ em . For an average fan-out
of d for each node in TSQ with |G| leaf nodes, the total

number of nodes in TSQ is bounded by
∑logd |G|
h=0

|G|
dh
≤ d|G|

d−1
.

Thus, we can use blog d|G|
d−1
c+1 bits to store each child pointer

of a node in TSQ . Thus, the total number of bits required
by lD , rD , lL, rL, nv , ne and pointers for all nodes in TSQ is
bounded by

d|G|
d− 1

(2(blog nDc+ 1) + 2(blog nLc+ 1) + blog vmc+ 1+

blog emc+ 1 + blog
d|G|
d− 1

c+ 1)

≤ d|G|
d− 1

(2 log(nDnL) + log(vmem) + log
d|G|
d− 1

+ 7).

We then consider the space required by SX , BX , SBX ,
flagX and wordsX .

First we analyze the space needed by the encoded se-
quence SX . Let Ng and Nf be the respective collection
of blocks with γ encoding and fixed-length encoding, and
|γ(bi)| and |f(bi)| be the respective number of bits needed
to encode the ith block bi using γ encoding and fixed-length
encoding. By our hybrid encoding scheme, the number of
bits required by SX is bounded by

|ΨX |/b∑
i=1

min{|γ(bi)|, |f(bi)|}

=
∑
i∈N g

|γ(bi)|+
∑
i∈N f

|f(bi)| ≤
∑
i∈N g

|f(bi)|+
∑
i∈N f

|f(bi)|

≤
∑

i∈N g∪N f

b(blog bmXc+ 1) ≤ |ΨX |
b
b(blog bmXc+ 1)

≤ |ΨX | log bmX + |ΨX |.

where the first inequality is due to the fact that |γ(bi)| ≤
|f(bi)| when i ∈ N g . The number of bits required to encode
block bi of ΨX using fixed-length encoding is bounded by
b(blog bmXc+ 1). The third inequality is due to the fact that
|Ng|+ |Nf | = |ΨX |/b, where b is the block size.

Second, we analyze the space required by auxiliary struc-
tures BX , SBX , flagX and wordsX .

7

For bit vector BX , the total number of bits required
to store it and its rank dictionary is |BX | + o(|BX |) bits,
where o(|BX |) is the space in bits required by the rank
dictionary built on BX [7].

For SBX , the space needed is |ΨX |
b

(log(|ΨX | log bmX +
|ΨX |) + 1) in bits in the worst case since each entry needs
blog(|ΨX | log bmX+|ΨX |)c+1 bits and there are |ΨX |/b blocks.

For flagX , it is trivial that the total number of bits
required is |ΨX |/b+o(|ΨX |/b) bits, since each block takes one
bit and there are total |ΨX |/b blocks. The rank dictionary
built on flagX needs o(|ΨX |/b) bits.

For wordsX , the space used is bounded by |ΨX |
b

(blog bmXc+ 1),
since each entry requires blog bmXc+ 1 bits to store and there
are |ΨX |/b entries in the worst case.

Putting all space needed for auxiliary structures BX , SBX ,
flagX and wordsX together, we then obtain

|BX |+ o(|BX |) +
|ΨX |
b

log(|ΨX | log bmX + |ΨX |)+

|ΨX |
b

log bmX + 3
|ΨX |
b

+ o(
|ΨX |
b

)

= |BX |+ o(|BX |) + o(|ΨX |), for b = log2 |ΨX |.

By adding |ΨX | log bmX + |ΨX | bits required by SX to the
space required by auxiliary structures, we obtain that the
space is |BX |+ o(|BX |) + |ΨX | log bmX + |ΨX |+ o(|ΨX |) bits.

By summing up all space for TSQ and replacing X with D
or L, we obtain that the succinct q-gram tree TSQ takes
d|G|
d−1

(2 log(nDnL)+log(vmem)+log d|G|
d−1

+7)+nD+o(nD)+

nL+ o(nL) + |ΨD |(log vm + 1) + |ΨL|(log max{vm, em}+ 1) +
o(|ΨD |) + o(|ΨL|) bits of space.

6. QUERY PROCESSING
Our query process consists of two phrases. We first

compute the reduced query region Qh by formula (1), and
then perform the query on the succinct q-gram trees built
on the graphs mapped into Qh .

6.1 Query on Succinct q-gram Tree
We introduce the query method on the succinct q-gram

tree T in this section.

Lemma 6. Let CD and CL be the respective number
of common degree-based and label-based q-grams between
any internal node w of T and the query graph h, if
CD < max{nv, |Vh|} − 2τ or CL < max{nv, |Vh|} +
max{ne, |Eh|}− τ , then we can safely prune all child nodes
of w, where nv and ne are the number of vertices and edges
in w, respectively.

Proof. Let x .LD = (x .FD , x .FL, x.nv, x.ne) denote the
four-tuple of x, where x is a node in T . For any in-
ternal node w and a query graph h, we have CD =∑
i min{w .FD [i], h.FD [i]}. According to Definition 8, for a

child node wj of w we have wj .FD [i] ≤ w .FD [i]. There-
fore, for a descendent leaf node (i.e., graph) g of w, we
have |D(g) ∩ D(h)| =

∑
i min{g .FD [i], h.FD [i]} ≤ · · · ≤∑

i min{wj .FD [i], h.FD [i]} ≤
∑
i min{w .FD [i], h.FD [i]} = CD .

Similarly, we also have w .nv ≤ wj .nv ≤ · · · ≤ g .nv = |Vg|
and w .ne ≤ wj .ne ≤ · · · ≤ g .ne = |Eg|. If CD <
max{w .nv , |Vh|} − 2τ , then we have |D(g) ∩ D(h)| ≤
CD < max{w .nv , |Vh|} − 2τ ≤ max{|Vg|, |Vh|} − 2τ ≤
2max{|Vg|, |Vh|} − |ΣVg ∩ ΣVh | − 2τ and can safely prune
graph g by Lemma 3. Similarly, if CL < max{w .nv , |Vh|}+

max{w .ne , |Eh|}−τ , then we have |L(g)∩L(h)| < max{|Vg|,
|Vh|}+ max{|Eg|, |Eh|} − τ and then can safely prune g by
the label-based q-gram counting filter. So, we can safely
prune all child nodes of w.

Algorithm 1 gives the query algorithm on T , where r is
the root node, (FD ,FL, nv, ne) is the four-tuple of w, lD
and rD are the left and right boundaries of ID for w in T ,
respectively.

Algorithm 1: searchQTree(T, h, τ)

Input: T, h, τ
Output: Cand

1 Cand← ∅
2 Compute the four-tuple LD ′ = (F ′D ,F

′
L, n
′
v, n
′
e) and

degree sequence σh of h
3 searchTree(r,LD ′, σh, h, τ)
4 return Cand
5 Procedure searchTree(w,LD ′, σh, h, τ)
6 CL ←

∑
i min{FL[i],F ′L[i]}

7 if CL ≥ max{nv, |Vh|}+ max{ne, |Eh|} − τ then
8 CD ←

∑
i min{FD [i],F ′D [i]}

9 if CD ≥ max{nv, |Vh|} − 2τ then
10 if w is an internal node then
11 for each child wi of w do
12 searchTree(wi,LD ′, σh, h, τ)

13 if CD ≥ 2max{|Vh|, |Vw|} − |ΣVw ∩ ΣVh | − 2τ
then

14 for i← lD to rD do
15 Fw [i− lD]← FD [i− lD]

16 Obtain the degree sequence σw of w
17 Compute the lower bound ξ
18 if ξ ≤ τ then
19 Cand ← Cand ∪ {w}

In Algorithm 1, we first compute the four-tuple LD′ and
degree sequence σh of h in line 2, respectively, and then
perform the search processing searchTree starting from a
node w initialized to r, the root node of T as follows.
First, we determine whether a node w needs to be pruned
based upon Lemma 6 in lines 6–12. In lines 6 and 8, we
compute the number of common label-based q-grams CL
and degree-based q-grams CD between w and h, respectively.
Note that, each entry FD [i] and FL[i] are compressed in ΨD

and ΨL, respectively, thus we need to use formula (3) to
compute them. If CL < max{nv, |Vh|}+ max{ne, |Eh|} − τ
or CD < max{nv, |Vh|} − 2τ , we prune w; otherwise each
subtree of w will be accessed in lines 11–12. Then, we
determine whether a node w needs to be pruned based
upon Lemma 2 in line 13, i.e., the degree-based q-gram
counting filter. If CD < 2max{nv, |Vh|} − |ΣVw ∩ΣVh | − 2τ ,
we prune w, where |ΣVw ∩ ΣVh | is the number of common
vertex labels between w and h obtained while computing CL.
Finally, we first obtain the degree sequence σw and then
determine whether w needs to be pruned based upon
Lemma 5, i.e., the degree-sequence filter. In lines 14–15,
we first compute the array Fw storing the degree-based
q-gram set of w and then obtain σw using Fw and TD in
line 16, where TD is a table storing the mapping between
a degree-based q-gram and its identifier. If ξ > τ , then

8

we prune w; otherwise, it passes all filters to become a
candidate.

6.2 Query Algorithm
Algorithm 2 gives the whole query algorithm, where (x0, y0)

is the initial division point, l is the subregion length and Ti,j

is the succinct q-gram tree built on the graphs mapped into
the subregion Ai,j .

Algorithm 2: search(h, τ, x0, y0, l)

Input: h, τ, x0, y0, l
Output: Cand

1 Cand← ∅
2 Qh ← ∪i,jAi,j for all i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2
3 foreach Ai,j ⊆ Qh do
4 Ci,j ← searchQTree(Ti,j , h, τ)
5 Cand ← Cand ∪ Ci,j

6 return Cand

In Algorithm 2, we first compute the query region Qh by
formula (1) in line 2, where i1 = b(|Eh| − τ + |Vh| − (x0 +
y0))/lc, i2 = b(|Eh|+τ+|Vh|−(x0+y0))/lc, j1 = b(|Eh|−τ−
|Vh|−(y0−x0))/lc and j2 = b(|Eh|+τ−|Vh|−(y0−x0))/lc.
Then we only need to perform the query on the q-gram
trees Ti,j built on these subregions Ai,j satisfying Ai,j ⊆ Qh
in lines 3–5. For each candidate graph g in Cand , we can
use the methods in [10, 14, 24] to compute the edit distance
between g and h to seek for the required graphs.

7. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our pro-

posed method and compare it with C-Star [22], GSimJoin [24]
and Mixed [26] on the real and synthetic datasets.

7.1 Datasets and Settings
We choose several real and synthetic datasets to test the

performance of the above approaches in our experiment,
described as follows:

(1) AIDS1. It is a DTP AIDS antivirus screen compound
dataset from the Development and Therapeutics Program
in NCI/NIH to discover compounds capable of inhibiting
the HIV virus. It contains 42687 chemical compounds. We
generate the labeled graphs from these chemical compounds
and omit Hydrogen atoms as did in [18].

(2) PubChem2. It is a NIH funded project to record
experimental data of chemical interactions with biological
systems. It contains more than 50 million chemical com-
pounds until today. We randomly select 25 million chemical
compounds to make up the large dataset PubChem-25M
used in this experiment.

(3) Synthetic. The synthetic datasets are generated by the
synthetic graph data generator GraphGen3. The synthetic
generator can create a labeled and undirected graph dataset.
It allows us to specify various parameters, including the

dataset size, the average graph density ρ = 2|E|
|V |(|V |−1)

, the

number of edges in a graph, and the number of distinct
vertex and edge labels in the dataset, respectively. In order

1http://dtp.nci.nih.gov/docs/aids/aidsdata.html
2http://pubchem.ncbi.nlm.nih.gov/
3http://www.cse.ust.hk/graphgen/

Table 1: Statistics of the three data sets

DataSet |G| |V | |E| |ΣV | |ΣE |
AIDS 42687 25.6 27.5 62 3

S100K.E30.D50.L5 100,000 11.02 30 5 2
PubChem-25M 25,000,000 23.4 25.2 101 3

to evaluate the performance of the above approaches on the
density graphs, we generate the dataset S100K.E30.D50.L5,
which means that this dataset contains 100000 graphs; the
average density of each graph is 50%; the number of edges
in each graph is 30; and the number of distinct vertex and
edge labels are 5 and 2, respectively.

For each dataset, we randomly select 50 graphs from
it as its query graphs. Table 1 summarizes some general
characteristics of the three datasets described above.

We have conducted all experiments on a HP Z800 PC
with a 2.67 GHz CPU and 24GB memory, running Ubuntu
12.04 operating system. We implemented our algorithm
in C++, with −O3 to compile and run. For GSimJoin,
we set p = 4 for the sparse graphs in datasets AIDS and
PubChem-25M, and p = 3 for the density graphs in dataset
S100K.E30.D50.L5, which are the recommended values [24].
In the following sections, we refer MSQ-Index to our index
structure and set the subregion length l = 4 and block size
b = 16, respectively.

7.2 Index Construction and Space Usage
In this section, we introduce extensive experiments to

evaluate index construction performance of C-Star, GSimJoin,
Mixed and MSQ-Index.

7.2.1 Evaluating Our Index
In order to evaluate the effectiveness of our hybrid

encoding, we compare it with fixed-length encoding, Elias δ
encoding, Golomb encoding, and Elias γ encoding.

For each dataset described in Table 1, we show the
number of bits on the average required by each entry in
ΨD and ΨL in Table 2 when applying fixed-length encoding
(f), Elias δ encoding (δ), Golomb encoding (g), Elias γ
encoding (γ) and hybrid encoding (h) to ΨD and ΨL,
where S100K and Pub-25M stand for S100K.E30.D50.L5
and PubChem-25M, respectively. Each entry in ΨD and ΨL

uses about between 4 and 6 bits on the tested data, which
is much smaller than that used to represent an entry in the
previous state-of-the-art indexing methods compared in this
paper.

Table 2: Average number of bits

Datasets
ΨD ΨL

f g δ γ h f g δ γ h
AIDS 4.51 4.25 3.68 3.57 3.51 5.97 6.23 6.17 6.13 5.93
S100K 3.33 4.04 3.31 3.18 3.08 4.01 4.75 4.5 4.27 3.88

Pub-25M 4.57 4.19 3.62 3.61 3.36 5.73 6.07 5.85 5.79 5.31

Among all the encoding methods shown in Table 2,
hybrid encoding gives the minimum space. Compared with
fixed-length encoding, the average number of bits required
for hybrid encoding decreases by about 10%.

In Table 3, we report the storage space of the q-gram
tree TQ and its succinct representation TSQ built on the
above three datasets. For TQ , we decompose its storage
space into three parts Sa, Sb and Sc, where Sa is the storage

9

http://dtp.nci.nih.gov/docs/aids/aids data.html
http://pubchem.ncbi.nlm.nih.gov/
http://www.cse.ust.hk/graphgen/

Table 3: Storage space (MByte)

Datasets
TQ TSQ

Sa Sb Sc S′
a S′

b S′
c

AIDS 0.29 6.09 2.11 0.51 0.39 0.27
S100K 0.53 5.45 7.78 1.13 0.29 0.44

Pub-25M 343.58 3669.91 2014.12 598.1 303.83 237.21

space of nv, ne and pointers of all nodes, and Sb and Sc are
the storage space of FD and FL of all nodes, respectively.
Correspondingly, S′a is the storage space of nv , ne , lD , rD ,
lL, rL and pointers of all nodes, shown in Figure 6(a). S′b
is total storage space of BD , SD , SBD , wordsD and flagD ,
shown in Figure 6(b), and S′c is total storage space of BL,
SL, SBL, wordsL and flagL, shown in Figure 6(c).

From Table 3, we know that Sb and Sc take up most
amount of storage space of TQ , thus a succinct representa-
tion of FD and FL of all nodes is an efficient way to reduce
the storage space of TQ . Compared with Sb and Sc, both S′b
and S′c can be reduced by more than 90%. This is because
that (1) only nonzero entries are needed to encode in the
succinct representation; (2) our hybrid encoding will greatly
reduce the number of bits required for each nonzero entry.
Compared with the storage space of TQ (the sum of Sa, Sb
and Sc), the storage space of TSQ (the sum of S′a, S′b and
S′c) can be reduced by more than 80%. Thus, the succinct
representation of q-gram tree can greatly reduce the storage
space.

7.2.2 Comparing with Existing Indexes
We vary the size of datasets to evaluate the index storage

space and construction time, and show the results in
Figure 7. Regarding the index size, Mixed consumes the
most amount of space in AIDS and PubChem-25M since it
has to store all branch and disjoint structures. However,
GSimJoin does not perform well in S100K.E30.D50.L5
since the number of paths increases exponentially in the
dense graphs. MSQ-Index performs the best and its index
size is only 5% of that of Mixed and 15% of that of
C-Star. This is because that (1) the total number of degree
structures and label structures is less than the number of
tree structures and paths; (2) the entries in the succinct
q-gram tree are compressed for efficient storage. For the
large dataset PubChem-25M, Mixed, GSimJoin and C-Star
cannot properly run for the memory error when the dataset
size is more than 15M, while the index size of MSQ-Index is
about 1.2GB, which achieves an excellent performance.

By Figure 7, we know that C-Star has the shortest index
construction time. This is because that it only needs to
enumerate all star structures in each data graph without any
complex index. Although MSQ-Index is stored in a succinct
form, its construction time is shorter than GSimJoin and
Mixed. For the large dataset PubChem-25M, it can be built
done in 1 hour.

7.3 Filter Performance
In this section, we evaluate the query performance of all

tested methods on the datasets AIDS and S100K.E30.D50.L5
and PubChem-25M on two metrics: # of candidates passed
the filtering and overall processing time. For overall
processing, we further divide it into two parts: indexing
processing time and candidate verification time.

We fix the datasets and vary the edit distance threshold τ

from 1 to 5 to evaluate the filter capability and response
time. Figure 8 shows the the average candidate size
and total response time (i.e., the filtering time plus the
verification time) of different methods for the fifty query
graphs. Note that, we combine the heuristic estimate
function h(x) in [24] into the software provided by Riesen
et al. [14] to compute the exact graph edit distance in the
verifcation phase for C-Star, Mixed and MSQ-Index, except
for GSimJoin has implemented it in their executable binary
file.

Regarding the candidate size, we can know that our
method has the smallest candidate size in most case.
GSimJoin and C-Star do not perform well because that both
tree structures and paths have much more overlapping. In
S100K.E30.D50.L5, Mixed performs the best when τ ≤ 3
and our method has a close candidate size with it. For the
large dataset PubChem-25M, only our method can properly
run since only it can be built done in our environment.

For the response time of C-Star (denoted by “C”),
GSimJoin (denoted by “G”), Mixed (denoted by “M”) and
MSQ-Index (denoted by “S”), we know that C-Star con-
sumes the longest filtering time because it needs to construct
a minimum weighted bipartite graph between each data
graph and the query graph. Even though GSimJoin shows a
better filtering time in AIDS, it produces a large candidate
set than MSQ-Index, making the total response time large
than MSQ-Index. Compared with Mixed, MSQ-Index
can achieve 1.6x speedup on AIDS and 3.8x speedup on
S100K.E30.D50.L5 on the average. In addition, although
MSQ-Index are compressed for efficient storage, it can
provide good filtering efficiency especially when τ is small,
such as the total filtering time of MSQ-Index is less than 5s
in PubChem-25M when τ = 1.

7.4 Scalability
In this section, we evaluate the scalability performance of

C-Star, GSimJoin, Mixed and MSQ-Index on the real and
synthetic datasets.

7.4.1 Varying |Vh|
We vary the query graph size from 10 to 60, and fix the size

of PubChem-25M be 5M and τ = 3, respectively, to evaluate
the effect of the query graph size on the query performance.
Figure 9 shows the distribution of graphs in G, where x-axis
is the graph size, i.e., the number of vertices and y-axis is the
number of graphs of the same size in the dataset. Figure 10
shows the average candidate size and total filtering time for
the fifty query graphs, respectively.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
0

1 x 1 0 5

2 x 1 0 5

3 x 1 0 5

4 x 1 0 5

#G
rap

hs
 in

 da
tab

as
e

G r a p h s i z e

Figure 9: Graph distribution.

By Figure 9, we know that the distribution of data graphs
in G is close to a normal distribution and the number of
graphs whose size near 30 is relatively large. Thus, the
average candidate size of all tested (excepting GSimJoin for

10

1 0 K 1 5 K 2 0 K 2 5 K 3 0 K 3 5 K 4 0 K1 0 - 1

1 0 0

1 0 1

1 0 2
A I D S

Ind
ex

 siz
e (

MB
)

D a t a b a s e s i z e

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

2 0 K 4 0 K 6 0 K 8 0 K 1 0 0 K1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

 S 1 0 0 K . E 3 0 . D 5 0 . L 5

Ind
ex

 siz
e (

MB
)

D a t a b a s e s i z e

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

5 0 0 K 5 M 1 0 M 1 5 M 2 0 M 2 5 M1 0 1

1 0 2

1 0 3

1 0 4 P u b C h e m - 2 5 M

D a t a b a s e s i z e

Ind
ex

 siz
e (

MB
)

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

1 0 K 1 5 K 2 0 K 2 5 K 3 0 K 3 5 K 4 0 K1 0 - 1

1 0 0

1 0 1 A I D S

D a t a b a s e s i z e

Ind
ex

 bu
ildi

ng
 tim

e (
s)

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

2 0 K 4 0 K 6 0 K 8 0 K 1 0 0 K1 0 - 1

1 0 0

1 0 1

1 0 2

 S 1 0 0 K . E 3 0 . D 5 0 . L 5

Ind
ex

 bu
ildi

ng
 tim

e (
s)

D a t a b a s e s i z e

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

5 0 0 K 5 M 1 0 M 1 5 M 2 0 M 2 5 M1 0 1

1 0 2

1 0 3

 P u b C h e m - 2 5 M

 D a t a b a s e s i z e

Ind
ex

 bu
ildi

ng
 tim

e (
s)

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

Figure 7: Index size and building time on the three datasets.

the memory error) methods first increase and then decrease,
and achieves the maximum when the query graph size is 30.

By Figure 10(b), we know that MSQ-Index has the
shortest filtering time. Compared with Mixed, MSQ-Index
can achieve 8–40x speedup when the query graph size is less
than 20 or more than 50. The reason is that the number
of data graphs whose size near 20 or 50 in the dataset is
relatively small by Figure 9, resulting in the query region
Qh containing few data graphs.

1 0 2 0 3 0 4 0 5 0 6 0
1 0 2

1 0 3

1 0 4

1 0 5

Av
era

ge
 ca

nd
ida

te
siz

e

Q u e r y g r a p h s i z e

 C - S t a r
 M i x e d
 M S Q - I n d e x

(a) Average candidate size

1 0 2 0 3 0 4 0 5 0 6 01 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

To
tal

 filt
eri

ng
 tim

e (
s)

Q u e r y g r a p h s i z e

 C - S t a r
 M i x e d
 M S Q - I n d e x

(b) Total filtering time

Figure 10: Scalability vs. |Vh|.

7.4.2 Varying |G|
We fix τ = 5 and vary the size of PubChem-25M from

500K (kilo) to 25M (million) to evaluate the effect of the
dataset size. Figure 11 shows the average candidate size
and the total response time for the fifty graphs. Among
all tested methods, MSQ-Index has the smallest candidate
size and the shortest response time. When the dataset size
is 10M, GSimJoin and Mixed cannot properly run for the
memory error, and the verification time of C-Star is longer
than 48 hours, making all of them not be suitable for such
large dataset. Only MSQ-Index can easily scale to cope with
it.

7.4.3 Varying |ΣV |
We fix τ = 5, the dataset size be 100K, the average graph

density ρ = 50%, the number of edges in each data graph
be 30, respectively, and then produce a group of synthetic

5 0 0 K 5 M 1 0 M 1 5 M 2 0 M 2 5 M1 0 2

1 0 3

1 0 4

1 0 5

Av
era

ge
 ca

nd
ida

te
siz

e

D a t a s e t s i z e

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

(a) Average candidate size

C G M S C M S S S S S1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5

D a t a s e t s i z e

To
tal

 re
sp

on
se

 tim
e (

s)

 f i l t e r i n g t i m e v e r i f i c a t i o n t i m e
5 0 0 K 5 M 1 0 M 1 5 M 2 0 M 2 5 M

(b) Total response time

Figure 11: Scalability vs. |G|.

datasets to evaluate the effect of the number of labels.
Figure 12 shows the average candidate size of all tested
methods. By Figure 12, we know that the average candidate
size decreases as the number of vertex labels increases. This
is because that more information can be used to filter.

5 1 5 2 5 3 5 4 5 5 51 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Av
era

ge
 ca

nd
ida

te
siz

e

N u m b e r o f l a b e l s

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

Figure 12: Scalability vs. |ΣV |

1 0 2 0 3 0 4 0 5 0 6 0 7 0
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

A v e r a g e g r a p h d e n s i t y (%)

Av
era

ge
 ca

nd
ida

te
siz

e

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

Figure 13: Scalability vs. ρ.

7.4.4 Varying ρ

We fix τ = 5, the dataset size be 100K, the number of
edges and vertex labels in each data graph be 30 and 5,
respectively, and then produce a group of synthetic datasets
to evaluate the effect of the average density. Figure 13 shows
the average candidate size of all tested methods. It shows
that the candidate size of all tested methods increases as
ρ increases when ρ ≥ 40%. This is because that all tested
methods only using the local structures have a weak filter
ability for the the density graphs.

11

1 2 3 4 51 0 0

1 0 1

1 0 2

1 0 3

1 0 4 A I D S

 G E D t h r e s h o l d (τ��

Av
era

ge
 ca

nd
ida

te
siz

e

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

1 2 3 4 5

1 0 0

1 0 1

1 0 2

1 0 3
 S 1 0 0 K . E 3 0 . D 5 0 . L 5

 G E D t h r e s h o l d (τ��

Av
era

ge
 ca

nd
ida

te
siz

e

 C - S t a r
 G S i m J o i n
 M i x e d
 M S Q - I n d e x

1 2 3 4 51 0 2

1 0 3

1 0 4

1 0 5

 P u b C h e m - 2 5 M

 M S Q - I n d e x

Av
era

ge
 ca

nd
ida

te
siz

e

G E D t h r e s h o l d (τ��

C G M S C G M S C G M S C G M S C G M S1 0 - 3
1 0 - 2
1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4

To
tal

 re
sp

on
se

 tim
e(s

)

 A I D S
 f i l t e r i n g t i m e v e r i f i c a t i o n t i m e

τ = 2 τ = 5τ = 4τ = 3τ = 1 C G M S C G M S C G M S C G M S C G M S1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

To
tal

 re
sp

on
se

 tim
e(s

)

 S 1 0 0 K . E 3 0 . D 5 0 . L 5
 f i l t e r i n g t i m e v e r i f i c a t i o n t i m e

τ = 1

τ = 5τ = 4τ = 3τ = 2
S S S S S1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5
 P u b C h e m - 2 5 M

 f i l t e r i n g t i m e v e r f i c a t i o n t i m e

τ = 2

To
tal

 re
sp

on
se

 tim
e(s

)

τ = 5τ = 4τ = 3τ = 1

Figure 8: Average candidate size and total response time on the three datasets.

8. RELATED WORKS
Recently, graph similarity search has received considerable

attention. κ-AT [16] and GSimJoin [24] are two major
q-gram counting filters. In κ-AT, a q-gram is defined as a
tree consisting of a vertex v and the paths whose length
no longer than κ starting from v. However, GSimJoin
considered the simple path whose length is p as a q-gram.
The principle of the q-gram counting filter is stated as
follows: if ged(g, h) ≤ τ , graphs g and h must share at
least max{|Q(g)| − γg · τ, |Q(h)| − γh · τ} common q-grams,
where Q(g) and Q(h) denote the multisets of q-grams in g
and h, respectively, γg and γh are the maximum number
of q-grams that can be affected by an edit operation,
respectively. C-Star [22] and Mixed [25, 26] are two
mapping distance-based filters. The lower bounds are

LS(g, h) = sm(g,h)
max{4,max{dg,dh}+1} and LB(g, h) = bm(g,h)

2
,

respectively, where sm(g, h) and bm(g, h) are the mapping
distances derived based on the minimum weighted bipartite
graphs between the star and branch structures of g and h,
respectively, and dg and dh are the respective maximum
degrees in g and h. SEGOS [17] introduced a two-level
index structure to speed up the filtering process, which has
the same filter ability with C-star. Pars [23] divided each
data graph g into τ + 1 non-overlapping substructures, and
pruned the graph g if there exists no substructure that
is subgraph isomorphic to h. The above methods show
different performance on different databases and we can
hardly prove the merits of them theoretically [4].

In the verification phase, A∗ algorithm [12] is widely used
to compute the exact graph edit distance. Zhao et.al [24]
and Gouda et.al [9] designed different heuristic estimate
functions to improve A∗. Note that, we only focus on the
filtering phase in this paper.

When the database contains millions of graphs, many
existing approaches cannot properly run. gWT [21] utilized
the Weisfeiler-Lehman (WL) kernel [11] function to compute
the similarity between two graphs and constructed a wavelet
tree [13] to speed up the query processing. Chen et.al [20]
built the index structure on a hadoop [8] cluster to search

on the large database. Unlike previous methods, we propose
the first succinct index structure for this problem for efficient
storage. Our index can scale to cope with the large dataset
of millions of graphs.

9. CONCLUSIONS AND FUTURE WORK
We present an space-efficient index structure for the graph

similarity search problem, whose encoded sequence SX re-
quires |ΨX | log bmX + |ΨX | bits, where X denotes D or L. Our
index structure incorporates succinct data structures and
hybrid encoding to significantly reduce the index space usage
while at the same time keeping fast query performance.
Each entry in ΨX requires about between 4 and 6 bits
on our data, which is much smaller than that used to
represent an entry in the compared indexing methods in
this paper. However, there is still room for improvement on
this space bound of SX . The design of a representation of
the q-gram tree that achieves the entropy-compressed space
bound while still preserving query efficiency is left as a future
work.

10. ACKNOWLEDGMENTS
The authors would like to thank Weiguo Zheng and Lei

Zhou for providing their source files, and thank Xiang Zhao
and Xuemin Lin for providing their executable files.This
work is supported in part by China NSF grants 61173025
and 61373044, and US NSF grant CCF-1017623. Hongwei
Huo is the corresponding author.

11. ADDITIONAL AUTHORS

12. REFERENCES
[1] D.Justice and A.Hero. A binary linear programming

formulation of the graph edit distance. IEEE Trans.
Pattern Anal Mach Intell., 28(8):1200–1214, 2006.

[2] M. L. Fernández and G. Valiente. A graph distance
metric combining maximum common subgraph and
minimum common supergraph. Pattern Recognit Lett.,
22(6):753–758, 2001.

12

[3] H. Fröhlich, J. K. Wegner, and F. Sieker. Optimal
assignment kernels for attributed molecular graphs. In
ICML, pages 225–232, 2005.

[4] K. Gouda and M. Arafa. An improved global lower
bound for graph edit similarity search. Pattern
Recognit Lett., 58:8–14, 2015.

[5] H.Huo, L.Chen, J.S.Vitter, and Y.Nekrich. A practical
implementation of compressed suffix arrays with
applications to self-indexing. In DCC , pages 292–301,
2014.

[6] H.Shang, K.Zhu, X.Lin, Y.Zhang, and R.Ichise.
Similarity search on supergraph containment. In
ICDE , pages 903–914, 2010.

[7] G. Jacobson. Succinct data structures. Carnegie
Mellon University, 1989.

[8] J.Dean and S.Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM.,
51(1):107–113, 2008.

[9] K.Gouda and M.Hassaan. CSI-GED: An efficient
approach for graph edit similarity computation. In
ICDE , pages 256–275, 2016.

[10] K.Riesen, S.Fankhauser, and H.Bunke. Speeding up
graph edit distance computation with a bipartite
heuristic. In MLG, pages 21–24, 2007.

[11] N.Shervashidze and K.M.Borgwardt. Fast subtree
kernels on graphs. In NIPS , pages 1660–1668, 2009.

[12] P.E.Hart, N.J.Nilsson, and B.Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Trans.SSC., 4(2):100–107, 1968.

[13] R.Grossi, A.Gupta, and J. S.Vitter. High-order
entropy-compressed text indexes. In SODA, pages
841–850, 2003.

[14] K. Riesen, S. Emmenegger, and H. Bunke. A novel
software toolkit for graph edit distance computation.
In GbRPR, pages 142–151, 2013.

[15] A. Robles-Kelly and R. H. Edwin. Graph edit distance

from spectral seriation. IEEE Trans. Pattern Anal
Mach Intell., 27(3):365–378, 2005.

[16] G. Wang, B. Wang, X. Yang, and G. Yu. Efficiently
indexing large sparse graphs for similarity search.
IEEE Trans. Knowl Data Eng., 24(3):440–451, 2012.

[17] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and
H. Jin. An efficient graph indexing method. In ICDE ,
pages 210–221, 2012.

[18] X. Wang, A. Smalter, J. Huan, and H. Gerald.
G-hash: towards fast kernel-based similarity search in
large graph databases. In EDBT , pages 472–480, 2009.

[19] X. Yan, P. S. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In SIGMOD ,
pages 335–346, 2004.

[20] Y.Chen, X.Zhao, G.Bin, C.Xiao, and C.H.Cui.
Practising scalable graph similarity joins in
mapreduce. In BigData, pages 112–119, 2014.

[21] Y.Tabei and K.Tsuda. Kernel-based similarity search
in massive graph databases with wavelet trees. In
SDM , pages 154–163, 2011.

[22] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and
L. Zhou. Comparing stars: On approximating graph
edit distance. PVLDB, 2(1):25–36, 2009.

[23] X. Zhao, C. Xiao, X. Lin, Q. Liu, and W. Zhang. A
partition-based approach to structure similarity
search. PVLDB, 7(3):169–180, 2013.

[24] X. Zhao, C. Xiao, X. Lin, and W. Wang. Efficient
graph similarity joins with edit distance constraints.
In ICDE , pages 834–845, 2012.

[25] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao.
Graph similarity search with edit distance constraint
in large graph databases. In CIKM , pages 1595–1600,
2013.

[26] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao.
Efficient graph similarity search over large graph
databases. IEEE Trans. Knowl Data Eng.,
27(4):964–978, 2015.

13

	1 Introduction
	2 Preliminaries
	3 Multiple Filters
	3.1 Optimal Edit Path
	3.2 Q-gram Counting Filters
	3.3 Degree-Sequence Filter

	4 Reduced Query Region
	5 Succinct q-gram Tree Index
	5.1 Tree Structure
	5.2 Succinct Representation
	5.3 Access to X
	5.4 Space Analysis

	6 Query processing
	6.1 Query on Succinct q-gram Tree
	6.2 Query Algorithm

	7 Experimental results
	7.1 Datasets and Settings
	7.2 Index Construction and Space Usage
	7.2.1 Evaluating Our Index
	7.2.2 Comparing with Existing Indexes

	7.3 Filter Performance
	7.4 Scalability
	7.4.1 Varying |Vh|
	7.4.2 Varying |G|
	7.4.3 Varying |V|
	7.4.4 Varying

	8 Related Works
	9 Conclusions and Future Work
	10 Acknowledgments
	11 Additional Authors
	12 References

