
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Subgraph Networks with Application to
Structural Feature Space Expansion

Qi Xuan, Member, IEEE , Jinhuan Wang, Minghao Zhao, Junkun Yuan, Chenbo Fu, Zhongyuan Ruan,
and Guanrong Chen, Fellow, IEEE

Abstract—Real-world networks exhibit prominent hierarchical and modular structures, with various subgraphs as building blocks. Most
existing studies simply consider distinct subgraphs as motifs and use only their numbers to characterize the underlying network.
Although such statistics can be used to describe a network model, or even to design some network algorithms, the role of subgraphs in
such applications can be further explored so as to improve the results. In this paper, the concept of subgraph network (SGN) is
introduced and then applied to network models, with algorithms designed for constructing the 1st-order and 2nd-order SGNs, which
can be easily extended to build higher-order ones. Furthermore, these SGNs are used to expand the structural feature space of the
underlying network, beneficial for network classification. Numerical experiments demonstrate that the network classification model
based on the structural features of the original network together with the 1st-order and 2nd-order SGNs always performs the best as
compared to the models based only on one or two of such networks. In other words, the structural features of SGNs can complement
that of the original network for better network classification, regardless of the feature extraction method used, such as the handcrafted,
network embedding and kernel-based methods.

Index Terms—subgraph, motif, network classification, structural feature, learning algorithm, biological network, social network

F

1 INTRODUCTION

MANY real-world systems can be naturally represented
by networks, such as biological networks [1], [2],

collaboration networks [3], [4], software networks [5], [6],
and social networks [7], [8]. Studying the substructure of
a network, e.g. its subgraphs, is an efficient way to under-
stand and analyze the network [9]. In fact, subgraphs are
basic structural elements of a network, and distinct sets
of subgraphs are usually associated with different types
of networks. In retrospect, as shown in [10], frequent ap-
pearance of subgraphs can reveal topological interaction
patterns, each of which performs precisely some specialized
functions, therefore they can be used to distinguish different
communities and various networks.

Up to now, a number of studies on network subgraphs
for graph classification have been reported. Ugander et
al. [11] treated subgraph frequency as a local property in
social network and found that subgraph frequency can

• This article has been accepted for publication in a future issue of IEEE
TKDE, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI 10.1109/TKDE.2019.2957755

• Q. Xuan, J. Wang, and C. Fu are with the Institute of Cyberspace
Security, College of Information Engineering, Zhejiang University of
Technology, Hangzhou, China (e-mail: xuanqi@zjut.edu.cn; Jinhuan-
Wang@zjut.edu.cn; yuanjk@zju.edu.cn; cbfu@zjut.edu.cn).

• M. Zhao is with the Fuxi AI Lab, NetEase Inc., Hangzhou, China (e-mail:
zhaominghao@corp.netease.com).

• J. Yuan is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou, China (e-mail: yuanjk@zju.edu.cn).

• Z. Ruan is with the College of Computer Science and Technol-
ogy, Zhejiang University of Technology, Hangzhou, China (e-mail:
zyruan@zjut.edu.cn).

• G. Chen is with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong SAR, China (e-mail:
eegchen@cityu.edu.hk).

• Corresponding authors: Qi Xuan and Zhongyuan Ruan.

indeed provide unique insights for identifying both social
structure and graph structure in a large network. Similarly,
Vohra [12] summarized the network by stacking subgraph
frequencies into a vector as a global network property
and then classified networks into different groups, where
these frequency statistics are implemented through two
schemes [11], [13]. Moreover, in the study of biological net-
works, Grochow et al. [14] proposed a novel algorithm for
identifying larger network elements and functional motifs,
revealing the clustering properties of motifs through sub-
graph enumeration and symmetry-breaking. Without any
interaction dependencies between them, these studies sim-
ply acquired a sequence of discrete motif entities with fea-
ture information such as counting, weight, etc. to describe
the underlying network. Except for subgraph frequency
statistics, Benson et al. [15] obtained the corresponding
embedding representation through laplacian matrix analysis
method. Moreover, in [16], an incremental subgraph join fea-
ture selection algorithm was designed, which forces graph
classifiers to join short-pattern subgraphs so as to generate
long-pattern subgraph features. Similarly, Yang et al. [17]
proposed the NEST method which combined the motifs and
convolutional neural network.

The studies mentioned above try to reveal subgraph-
level patterns, which can be considered as network build-
ing blocks of particular functions, to capture mesoscopic
structure. However, most of them ignored the interaction
between these subgraphs, which could be of particular
importance to represent the global structure of subgraph-
level. In order to address this, we propose a method to
establish Subgraph Networks (SGNs) of different orders. It
can be expected that such SGNs can capture the structural
features of different aspects and thus may benefit the follow-
up tasks, such as network classification. Briefly, there are

ar
X

iv
:1

90
3.

09
02

2v
3

 [
cs

.S
I]

 1
5

D
ec

 2
01

9

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

three steps to build an SGN from an original network: first,
detect subgraphs in the original network; second, choose
appropriate subgraphs for a task; third, utilize the chosen
subgraphs to build an SGN. Line graph [18] thus can be con-
sidered as a special SGN, where a link connecting two nodes
in the original network is considered as a subgraph, and two
subgraphs are connected in the SGN if the corresponding
two links share a same terminal node. Clearly more compli-
cated subgraphs can be considered, e.g., three nodes with
two links, so as to get a higher-order SGN, as will be further
discussed in Sec. 3. The key point here is that the SGN
extracts the representative parts of the original network and
then assembles them to reconstruct a new network that
preserves the relationship among subgraphs. Our method
thus implicitly maintains the higher-order structures under
the premise of providing the information of local structures.
And, the network structure of SGN can complement the
original network and, as a result, the integration of their fea-
tures will benefit the subsequent structure-based algorithms
design and applications.

The main contributions of this work are summarized as
follows.

• A new concept of SGN is introduced, along with
algorithms designed for constructing the 1st-order
and 2nd-order SGNs from a given network. These al-
gorithms can be easily extended to construct higher-
order SGNs.

• SGN is used to obtain a series of handcrafted
structural features which, together with the features
automatically extracted by using some advanced
network-embedding methods, kernel-based methods
and depth model, provide complementary features
to those extracted from the original network.

• SGN is applied to network classification. Experi-
ments on seven groups of networks are carried out,
showing that integrating the features obtained from
SGN can indeed significantly improve the classifica-
tion accuracy in most cases, as compared to the same
feature extraction and classification methods based
only on the original networks.

The rest of the paper is organized as follows. In Sec. 2,
some related work about subgraph and network represen-
tation methods are briefly introduced. In Sec. 3, the defi-
nition of SGN is provided and algorithms for constructing
the 1st-order and 2nd-order SGNs are designed. In Sec. 4,
handcrafted structural features are characterized, for both
the original network and SGNs. In Sec. 5, several automatic
feature extraction methods are discussed, whereas SGNs
are applied to graph classification for some real-world net-
works. Finally, Sec. 6 concludes the investigation, with a
future research outlook.

2 RELATED WORK

In this section, we review the related work of subgraph in
graph mining applications and the network representation
methods combined with depth models in recent years.

2.1 Subgraph in Graph Mining
Recently, subgraphs have been widely applied in the study
between entities in networks. For example, in [19]–[21],

different algorithms were designed for detecting network
subgraphs. In [22], a method for detecting strong ties was
proposed using frequent subgraphs in a social network,
where it was observed that frequent subgraphs as network
structural features could lead to good performances in alle-
viating the sparse problem for detecting strong ties on the
network. By adding time stamp to the topology, temporal
frequent subgraphs [23]–[25] were studied for some time-
dependent networks, such as social and communication
networks, as well as biological and neural networks. Fur-
thermore, subgraphs were also applied to graph clustering.
In [26], a graph clustering method was developed based on
frequent subgraphs, which can effectively detect commu-
nities in a network. Network subgraphs deeply depict the
local structural features of the network and have important
research value in the application of graph mining.

2.2 Network Representation

The combination of subgraph structures and depth models
enriches the research methods of the network and brings
inspiration to researchers. With the rapid development
of deep learning, many graph mining and representation
methods have been proposed and tested, with practical ap-
plications to, e.g., drug design (through studying chemical
compound and proteins data) [27], [28] and market analysis
(through purchase history) [29]. Methods like word2vec [30]
and doc2vec [31] have shown good performances in natural
language processing (NLP), bringing some new insights to
the field of graph representation. Inspired by these algo-
rithms, graph2vec [32] was proposed, which was shown
to be outstanding for graph representation. Among the
existing graph mining methods, graph kernel [33]–[35] has
obtained unanimous praise in recent years, whereas the
bottleneck is its high computational cost. As a winner from
competitions on a plenty of machine learning problems,
convolutional neural network (CNN) has attracted lots of
attention, especially in the area of computer vision [36], and
it has been reformulated by the new convolution operator
for graph structure data [37]. It was put forward in [38],
referred to as graphconv, the first trial of an analogy of
CNN on graphs. Then, graph convolutional network (GCN),
designed in [39] as an extension to the k-localized kernel,
resolved the problem of over localization as compared with
graphconv. Based on graph neural network (GNN) and
capsule, Zhang et al. [40] designed the CapsGNN, which
can generate multiple embeddings for each graph to capture
network properties from different aspects. This method was
extensively tested, and achieve the state-of-the-art results.

Network algorithms benefit from graph embedding by
automatically extracting features of arbitrary dimensions.
However, such methods still largely rely on the original
network, and thus may ignore important hidden structural
features. To bridge the gap, we map the original network
to different structural spaces, in terms of different SGNs.
Different from those existing subgraph-based methods [12],
[15], [17] that only enumerate a set of motifs as functional
building blocks and then match them in the original net-
work for subsequent representation, our SGN model maps
the subgraphs in the original network to the nodes in a
higher-order structural space, addressing the connections

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

between the subgraphs. Therefore, it can be considered
that SGN provides a general framework to expand the
structural feature space, which can be naturally integrated
into many graph representation methods to further improve
their effectiveness.

3 SUBGRAPH NETWORKS

Generally, SGN can be considered as a mapping in net-
work space, which maps the original node-level network
to subgraph-level networks. In this section, SGN is first
introduced, followed by algorithms for constructing the 1st-
order and 2nd-order SGNs.

DEFINITION 1 (Network). An undirected network is repre-
sented by G(V,E), where V and E ⊆ (V × V) denote the sets
of nodes and links, respectively. The element (vi, vj) in E is an
unordered pair of nodes vi and vj , i.e., (vi, vj) = (vj , vi), for all
i, j = 1, 2, ..., N , where N is the number of nodes, namely the
size of the network.

DEFINITION 2 (Subgraph). Given a network G(V,E), gi =
(Vi, Ei) is a subgraph of G, denoted by gi ⊆ G if and only if
Vi ⊆ V and Ei ⊆ E. The sequence of subgraphs is denoted as
g = {gi ⊆ G|i = 1, 2, ..., n}, n ≤ N .

DEFINITION 3 (SGN: Subgraph Network). Given a network
G(V,E), the SGN, denoted by G∗ = L(G), is a mapping from
G to G∗(V ∗, E∗), with the sets of nodes and links denoted by
V ∗ = {gj |j = 0, 1, ..., n} and E∗ ⊆ (V ∗ × V ∗), respectively.
Two subgraphs gi and gj are connected if they share some common
nodes or links in the original network, i.e., Vi∩Vj 6= ∅. Similarly,
the element (gi, gj) in E∗ is an unordered pair of subgraphs gi
and gj , i.e., (gi, gj) = (gj , gi), i = 1, 2, ..., n with n ≤ N .

According to the definition of SGN, one can see that: (i)
subgraph is a part of the original network; (ii) SGN is de-
rived from a higher-order mapping of the original network
G; (iii) the connecting rule between two subgraphs needs
to be clarified. Following the approach of [41], where the
problem of graph representation in a domain with higher-
order relations is discussed, constructing sets of nodes as p-
chains, corresponding to points (0-chains), lines (1-chains),
triangles (2-chains), etc., here the new framework constructs
subgraphs as 1st order, 2nd order, etc. For clarity, three steps
in building the new framework are outlined as follows.

• Detecting subgraphs from the original network. Net-
works are rich of subgraph structures, with some
subgraphs occurring frequently, e.g., motifs [20]. Dif-
ferent kinds of networks may have different local
structures, captured by different distributions of var-
ious subgraphs.

• Choosing appropriate subgraphs. Generally, sub-
graphs should not be too large, since in this case
SGN may only contain a very small number of
nodes, making the subsequent analysis less mean-
ingful. Moreover, the chosen subgraphs should be
connected to each other, i.e., they should share some
common part (nodes or links) of the original net-
work, so that higher-order structural information can
emerge.

• Utilizing the subgraphs to build SGN. After extract-
ing enough subgraphs from the original network,

(a) Original graph

21

34

5 6

21

3
4

5 6

(1, 2)

(b) Extracting lines

(d)       SGN
(1)

21

34

5 6

(1, 2)

(1, 2)

(c) Establishing connections

Fig. 1. The process of building SGN(1) from a given network: (a) the
original network, (b) extracting lines as subgraphs, (c) establishing con-
nections among these lines, and (d) forming SGN(1).

connections among them are established following
certain rules so as to build SGN. Here, for simplicity,
consider two subgraphs. They are connected if and
only if they share the same nodes or links from
the original network. There certainly can be other
connecting rules, leading to totally different SGNs,
which will be discussed elsewhere in the future.

In this paper, the most fundamental subgraphs, i.e., line
and triangle, are chosen as subgraphs, since they are simple
and relatively frequently appearing in most networks. Thus,
two kinds of SGNs of different orders are constructed as
follows.

3.1 First-Order SGN

In the case of first-order, a line, or a link, is chosen as a
subgraph, based on which SGN is built, denoted by SGN(1).
The 1st-order SGN is also known as a line graph, where the
nodes are the links in the original network, and two nodes
are connected if the corresponding links share a same end
node.

The process to build SGN(1) from a given network is
shown in Fig. 1. In this example, the original network has 6
nodes connected by 6 links. First, extract lines as subgraphs,
labeled them by their corresponding end nodes, as shown
in Fig. 1 (b). These lines are treated as nodes in SGN. Then,
connect these lines based on their labels, i.e., two lines are
connected if they share one same end node, as shown in
Fig. 1 (c). Finally, obtain SGN with 6 nodes and 8 links, as
shown in Fig. 1 (d). A pseudocode of constructing SGN(1)

is given in Algorithm 1. The input of this algorithm is the
original network G(V ,E) and the output is the constructed
SGN(1), denoted by G′(V ′,E′), where V ′ and E′ represent
the sets of nodes and links in the SGN(1), respectively.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

Algorithm 1: Constructing SGN(1).
Input: A network G(V ,E) with node set V and link

set E ⊆ (V × V).
Output: SGN(1), denoted by G′(V ′,E′).

1 Initialize a node set V ′ and a link set E′;
2 for each v ∈ V do
3 get the neighbor set Ω of v;
4 for each ω ∈ Ω do
5 ` = sorted([v, ω]);
6 `str ← merge the nodes in list ` into a string;
7 add the new node `str into Ṽ ;
8 end
9 for i, j ∈ Ṽ and i 6= j do

10 add the link (i, j) into E′;
11 end
12 add Ṽ into V ′;
13 end
14 return G′(V ′,E′);

1 2 3 4

5 6 7 8

10 11 13129

open

closed

(a) Directed (b) Undirected

Fig. 2. The connection patterns among three nodes for (a) directed and
(b) undirected networks.

3.2 Second-Order SGN

Now, construct higher-order subgraphs by considering the
connection patterns among three nodes. There are more
diverse connection patterns among three nodes than the
case of two nodes. In theory, there are 13 possible non-
isomorphic connection patterns among three nodes [20] in
a directed network, as shown in Fig. 2 (a). This number
decreases to 2 in an undirected network, namely only open
and closed triangles, as shown in Fig. 2 (b). Here, only
connected subgraphs are considered, while those with less
than two links are ignored. Compared with lines, triangles
can provide more insights about the local structure of a net-
work [42]. For instance, in [43], the evolution of triangles in a
Google+ online social network was studied, obtaining some
valuable information during the emerging and pruning of
various triangles.

The open triangles are defined as subgraphs to establish
the 2nd-order SGN, denoted by SGN(2). Here, second-order
means that there are two links in each open triangle, and two
open triangles are connected in SGN(2) if they share a same
link. Note that same link rather than same node is used here to
avoid obtaining a very dense SGN(2). This is because a dense
network, with each pair of nodes connected with a higher
probability, tends to provide less structural information in
general.

(a) Original graph

21

34

5 6

21

34

5 6

(1, 2)

(b) Extracting lines

(1, 2)

(c)  Extracting open triangles(d)  SGN (2)

Fig. 3. The process to build SGN(2) from a given network: (a) the original
network, (b) extracting lines, (b) building SGN(1) and extracting open
triangles as subgraphs, and (d) establishing connections among these
open triangles to obtain SGN(2).

Algorithm 2: Constructing SGN(2).
Input: A network G(V ,E) with node set V and link

set E ⊆ (V × V).
Output: SGN(2), denoted by G′′(V ′′,E′′).

1 Initialize a node set V ′′ and a link set E′′;
2 for each v ∈ V do
3 get the neighbors set Ω of v;
4 Ω̃← get the full combination of node pairs in the

neighbor collection;
5 for each (ω1, ω2) ∈ Ω̃ do
6 ˜̀= [v, ω1, ω2];
7 ˜̀

str ← merge the nodes in list ˜̀ into a string;
8 add the new node ˜̀

str into Ṽ ;
9 end

10 for i, j ∈ Ṽ and i 6= j do
11 add the edge (i, j) into E′′ ;
12 end
13 add Ṽ into V ′′;
14 end
15 return G′′(V ′′,E′′);

The iterative process to build SGN(2) from an original
network is shown in Fig. 3. First, extract lines, labeled by
their corresponding end nodes, as shown in Fig. 3 (b), to
establish SGN(1). Then, in the line graph SGN(1), further
extract lines to obtain open triangles as subgraphs, labeled
by their corresponding three nodes, as shown in Fig. 3 (c).
Finally, obtain SGN(2) with 8 nodes and 14 links, as shown
in Fig. 3 (d). A pseudocode of constructing SGN(2) is given
in Algorithm 2. The input of this algorithm is the original
network G(V ,E) and the output is the constructed SGN(2),
denoted by G′′(V ′′,E′′), where V ′′ and E′′ represent the sets
of nodes and links in the SGN(2), respectively.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Original network Benzene ring SGN

Fig. 4. A compound network, where each node denotes an atom and its
corresponding SGN obtained by taking benzene rings as subgraphs.

Clearly, the new method can be easily extended to
construct higher-order SGNs by choosing proper subgraphs
and connecting rules. For instance, based on Algorithms 1
and 2, for the network shown in Fig. 3 (d), one can further
label each link by the 4 numbers from the end nodes, i.e.,
these numbers correspond to the 4 nodes in the original
network. Then, one can treat each link with a different label
as a node, and connect them if they share 3 same numbers,
so as to establish the 3rd-order SGN.

It is interesting to investigate such a higher-order SGN.
However, as subgraphs become too large, the SGN may
contain only few nodes, making the network structure less
informative. It may be argued that there might be some
functional subgraphs in certain networks, which could be
better blocks to be used to build SGNs. However, this may
not be true. Take the compound networks in chemistry as
examples, e.g. benzene ring, and other functional groups
such as hydroxyl group, carboxyl group and aldehyde
group, which play an important role in the properties of
organic substances. In such networks, however, one usually
cannot choose the benzene ring as a building block, since
most of these networks are of small sizes and contain a
small number of benzene rings, as shown in Fig. 4. In this
case, if one uses benzene rings as subgraphs, an SGN will be
built containing only three nodes, with one isolated from the
other two. As such, this SGN can hardly provide sufficient
information to distinguish itself from the other substances,
hence will not be useful.

4 NETWORK ATTRIBUTES

Now, besides the original network, denoted by SGN(0) for
simplicity, there are two SGNs, i.e., SGN(1) and SGN(2).
These networks together may provide more comprehensive
structural information for subsequent applications. In this
paper, the focus is on its application to network classifica-
tion. A typical procedure for accomplishing the task consists
of two steps: first, extract network structural features; sec-
ond, design a machine learning method based on these fea-
tures to realize the classification. In network science, there
are many classic topological attributes, which have been
widely used in link prediction [44], graph classification [45]
and so on. Here, the following handcrafted network features
are used to design the classifier.

• Number of Nodes (N): Total number of nodes in the
network.

• Number of links (L): Total number of links in the
network.

• Average degree (K): The mean value of links con-
nected to a node in the network.

• Percentage of leaf nodes (P): A node of degree 1 is
defined as a leaf node. Suppose there are totally F
leaf nodes in the network. Then,

P =
F

N
. (1)

• Average clustering coefficient (C): For node vi,
the clustering coefficient represents the probability
of a connection between any two neighbors of vi.
Suppose that there are ki neighbors of vi and these
nodes are connected by Li links. Then, the average
clustering coefficient is defined as

C =
1

N

N∑
i=1

2Li

ki(ki − 1)
. (2)

• Largest eigenvalue of the adjacency matrix (λ): The
adjacency matrix A of the network is an N × N
matrix, with its element aij = 1 if nodes vi and vj
are connected, and aij = 0 otherwise. In this step,
calculate all the eigenvalues of A and choose the
largest one.

• Network density (D): Given the number of nodes
N and the number of links L, network density is
defined as

D =
2L

N(N − 1)
. (3)

• Average betweenness centrality (CB): Betweenness
centrality is a centrality metric based on shortest
paths. The average betweenness centrality of the
network is defined as

CB =
1

N

N∑
i=1

∑
s6=i 6=t

nist
gst

, (4)

where gst is the number of shortest paths between
vs and vt, and nist is the number of shortest paths
between vs and vt that pass through vi.

• Average closeness centrality (CC): The closeness
centrality of a node in a connected network is de-
fined as the reciprocal of the average shortest path
length between this node and the others. The average
closeness centrality is defined as

CC =
1

N

N∑
i=1

n− 1∑n
j=1 dij

, (5)

where dij is the shortest path length between nodes
vi and vj .

• Average eigenvector centrality (CE): Usually, the
importance of a node depends not only on its de-
gree but also on the importance of its neighbors.
Eigenvector centrality is another measure of the im-
portance of a node based on its neighbors, which is
defined as

CE =
1

N

N∑
i=1

xi , (6)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

where xi represents the importance of node vi and is
calculated based on the following equation:

xi = α
N∑
j=1

aijxj , (7)

where α is a preset parameter, which should be less
than the reciprocal of the maximum eigenvalue of the
adjacency matrix A.

• Average neighbor degree (DN): Neighbor degree of
a node is the average degree of all the neighbors of
this node, which is defined as

DN =
1

N

N∑
i=1

1

ki

∑
vj∈Ωi

kj , (8)

where Ωi is a set of the neighbors of node vi, and kj
is the degree of node vj ∈ Ωi.

Note that, among the above 11 features, number of
nodes (N), number of links (L), average degree (K) and
network density (D) are the most basic properties of a
network [46]. Average clustering coefficient (C) [47] is also
a very popular metric to quantify the link density in ego
networks. The percentage of leaf nodes (P) can distinguish
whether a network is tree-like or rich with rings. The largest
eigenvalue of the adjacency matrix (λ) is chosen since the
eigenvalues are the isomorphic invariant of a graph, which
can be used to estimate many static attributes, such as
connectivity, diameter, etc. Average neighbor degree (DN)
captures the 2-hop information. Also, centrality measures
are indicators of the importance (status, prestige, standing,
and the like) of a node in a network, therefore, we also
use average betweenness centrality (CB), average closeness
centrality (CC), and average eigenvector centrality (CE) to
describe the global structure of a network.

4.1 Datasets

Experiments were conducted on 7 real-world network
datasets, as introduced in the following, with each contain-
ing two classes of networks. The first 5 datasets are about
bio- and chemo-informatics, while the last two are social
networks. The basic statistics of these datasets are presented
in TABLE 1.

• MUTAG: This dataset is about heteroaromatic nitro
and mutagenic aromatic compounds, with nodes and

TABLE 1
Basic statistics of the 7 datasets. #Graphs is the number of graphs.
#Classes is the number of classes. #Positive and #Negative are the

numbers of graphs in the two different classes.

Dataset #Graphs #Classes #Positive #Negative
MUTAG 188 2 125 63

PTC 344 2 152 192
PROTEINS 1113 2 663 450

NCI1 4110 2 2057 2053
NCI109 4127 2 2079 2048
IMDB-B 1000 2 500 500

REDDIT-B 2000 2 1000 1000

links representing atoms and the chemical bonds be-
tween them, respectively. They are labeled according
to whether there is a mutagenic effect on a special
bacteria [48].

• PTC: This dataset includes 344 chemical compound
graphs, with nodes and links representing atoms and
the chemical bonds between them, respectively. Their
labels are determined by their carcinogenicity for
rats [49].

• PROTEINS: This dataset comprises of 1113 graphs.
The nodes are Secondary Structure Elements (SSEs)
and the links are neighbors in the amino-acid se-
quence or in the 3D space. These graphs represent
either enzyme or non-enzyme proteins [50].

• NCI1 & NCI109: These two datasets comprise of
4110 and 4127 graphs, respectively. The nodes and
links represent atoms and chemical bonds between
them, respectively. They are two balanced subsets
of the datasets of chemical compounds screened for
the activities against non-small cell lung cancer and
ovarian cancer cell lines, respectively. The positive
and negative samples are distinguished according to
whether they are effective against cancer cells [2].

• IMDB-B: This dataset is about movie collaboration,
which is collected from IMDB, containing lots of
information about different movies. Each graph is
an ego-network, where nodes represent actors or
actresses and links indicate whether they appear in
the same movie. Each graph is categorized into one
of the two genres (Action and Romance) [3].

• REDDIT-B: This dataset is crawled from Reddit,
which is composed of submission graphs from pop-
ular subreddits. Each graph corresponds to an on-
line discussion thread, where nodes are users, and
there is an link between two nodes if one of them
responded to the other’s comments. The four pop-
ular subreddits are IAmA, AskReddit, TrollXChro-
mosomes and atheism. There are also two categories
of graphs: IAmA and AskReddit are two QA-based
subreddits and TrollXChromosomes and atheism are
two discussion-based subreddits [35].

4.2 Benefits of SGN
Here, take the MUTAG dataset as an example to show that
SGNs of different orders may capture different aspects of a
network structure.

First, a positive sample and a negative one are chosen
from the MUTAG dataset, with their SGN(0), SGN(1) and
SGN(2) visualized in Fig. 5. To facilitate a comparison, the
numbers of nodes and links of these networks are also
presented in the figure. Here, a positive sample means that
this compound has mutagenic effect on the bacteria; other-
wise, it is negative. As can be seen, although the original
networks of the two samples have quite similar sizes, their
difference is seemingly enlarged in the higher-order SGNs;
more precisely, the numbers of nodes and links in SGN
increase faster for the positive sample than the negative one
as the order increases.

Then, the handcrafted network features are visualized
by using t-SNE in Fig. 6, where the networks in MUTAG

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

SGN
(0)

SGN
(1)

SGN
(2)

N = 13, L = 18 N = 18, L = 35

(a) Positive sample

(b) Negative sample

N = 12, L = 13

SGN
(0)

SGN
(1)

SGN
(2)

N = 11, L = 14 N = 14, L = 25 N = 11, L = 11

Fig. 5. SGN(0), SGN(1) and SGN(2) as well as the numbers of nodes and
links for (a) positive and (b) negative samples in the MUTAG dataset.

can indeed be distinguished to a certain extent by these
features of the original network, the 1st-order SGN and
the 2nd-order SGN, respectively. Moreover, when all the
features are put together, it appears that these networks can
be better distinguished, indicating that SGNs of different
orders and the original network may complement to each
other. Therefore, integrating the structural information of all
these networks may significantly improve the performances
of the subsequent algorithms designed based on network
structures.

5 EXPERIMENTS

With the rapid growth of real-world graph data, network
classification is becoming more and more important, and
a number of effective network classification methods [51]–
[53] have been proposed in recent years. Along this line of
research, as an application of the proposed SGN, classifiers
are designed based on the structural features obtained from
SGNs as well as from the original networks.

5.1 Automatic Feature Extraction Methods

Besides those handcrafted features, one can also use some
advanced methods, such as network embedding methods,
to automatically generate a feature vector of certain dimen-
sion from the given network. Under the present framework,
such automatically generated feature vectors can also be
further expanded based on SGNs.

Network embedding method, graph2vec, and two graph
kernel-based methods, subtree kernel WL and deep WL
methods, and depth model algorithm CapsGNN, are chosen
as automatic feature extraction methods.

• Graph2vec [32]: This is the first unsupervised em-
bedding approach for an entire network, which is
based on the extending word-and-document embed-
ding techniques that has shown great advantages in
NLP. Similarly, graph2vec establishes the relation-
ship between a network and the rooted subgraphs
using a similar model to doc2vec [31]. Graph2vec first

extracts rooted subgraphs and provides correspond-
ing labels into the vocabulary, and then trains a skip-
gram model to obtain the representation of the entire
network.

• WL [34]: This is a rapid feature extraction scheme
based on the Weisfeiler-Lehman (WL) test for isomor-
phism on graphs. It maps the original network to a
sequence of graphs, with node attributes capturing
both topological and label information. The key idea
of the algorithm is to augment the node labels by the
sorted set of node labels of neighboring nodes, and
compress these augmented labels into new and short
labels. These steps are then repeated until the node
label sets of the two compared networks differ, or the
number of iterations reaches a preset value. It should
be noted that, to facilitate the expansion of the new
model, the sub-structure frequency vectors, instead
of the kernel matrix K, are used as the inputs to the
new classifier.

• Deep WL [35]: This provides a unified frame-
work that leverages the dependency information
of sub-structures by learning latent representations.
The differences from the WL kernel generate a
corpus of sub-structures by integrating language-
modeling and deep-learning techniques [54], where
a co-occurrence relationship of sub-structures is pre-
served and sub-structure vector representations are
obtained before the kernel is computed. Then, a
sub-structure similarity matrix, M, is calculated by
the matrix V with each column representing a sub-
structure vector. Denote by P the matrix with each
column representing a sub-structure frequency vec-
tor. Then, according to the definition of kernel:

K = PMPT = PVVTPT = HHT, (9)

one can use the columns in the matrix H = PV as
the inputs to the classifier.

• CapsGNN [40]: This method was inspired by Cap-
sNet, which adopted the concept of capsules to over-
come the weakness of existing GNN-based graph
embedding algorithms. In particular, CapsGNN ex-
tracts node features in the form of capsules and
utilizes the routing mechanism to capture important
information at the graph level. The model generates
multiple embeddings for each graph so as to capture
graph properties from different aspects.

In this study, for graph2vec, the embedding dimension
is adopted according to [32]. Graph2vec is based on the
rooted subgraphs which are adopted in the WL kernel.
The parameter height of WL kernel is set to 3. Since the
embedding dimension is predominant for learning perfor-
mances, a commonly-used value of 1024 is adopted. The
other parameters are set to defaults: the learning rate is set
to 0.5, the batch size is set to 512 and the epochs is set to
1000. For WL and Deep WL, according to [35], the Weisfelier-
Lehman subtree kernel is used to built the corpus and the
height of which is set to 2. Then, the Maximum Likelihood
Estimation (MLE) is used to compute the kernel in the WL
method. Furthermore, the same parameter setting as WL is
chosen, with the embedding dimension equal to 10, window

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

SGN
（0）

SGN
（2）（1）

SGN SGN
（0,1,2）

Fig. 6. The t-SNE visualization of handcrafted network features. The same color of points represent the same class of networks in MUTAG.

size equal to 5 and skip-gram used for the word2vec model
in the deep WL method. We adopt the default parameters
for CapsGNN and flatten the multiple embeddings of each
graph as the input.

Without loss of generality, the well-known logistic re-
gression is chosen as the new classification model. Mean-
while, for each feature extraction method, the feature space
is first expanded by using SGNs, and then the dimension
of the feature vectors is reduced to the same value as that
of the feature vector obtained from the original network
using PCA in the experiments, for a fair comparison. Each
dataset is randomly split into 9 folds for training and 1 fold
for testing. Here, the F1-Score is adopted as the metric to
evaluate the classification performance:

F1 =
2PR

P +R
, (10)

where P and R are the precision and recall, respectively.
To exclude the random effect of the fold assignment, ex-
periment is repeated for 500 times and then the average
F1-Score and its standard deviation are recorded.

5.2 Computational Complexity

Now, the computational complexity in building SGNs is
analyzed. Denote by |V | and |E| the numbers of nodes
and links, respectively, in the original network. The average
degree of the network is calculated by

K =
1

|V |

|V |∑
i=1

ki =
2|E|
|V |

, (11)

where ki is the degree of node vi. Based on Algorithm 1,
the time complexity in transforming the original network to
SGN(1) is

T1 = O(K|V |+ |E|2) = O(|E|2 + |E|) = O(|E|2) . (12)

Then, the number of nodes in SGN(1) is equal to |E| and the
number of links is

∑|V |
i=1 k

2
i −|E| ≤ |E|2−|E| [18]. Similarly,

one can get the time complexity in transforming SGN(1) to
SGN(2), as

T2 ≤ O((|E|2 − |E|)2) = O(|E|4) . (13)

5.3 Experiment Results

As described in Sec. 3, the proposed SGNs can be used
to expand structural feature spaces. To investigate the ef-
fectiveness of the 1st-order and the 2nd-order SGNs, i.e.,
SGN(1) and SGN(2), for each feature extraction method, the
classification results are compared on the basis of only one
network, i.e., SGN(0), SGN(1) and SGN(2), respectively; on
the basis of two networks, i.e., SGN(0) together with SGN(1)

and SGN(0) together with SGN(2), denoted by SGN(0,1) and
SGN(0,2), respectively; and on the basis of three networks,
i.e., SGN(0) together with SGN(1) and SGN(2), denoted as
SGN(0,1,2). For a fair comparison, PCA is used to compress
the feature vectors to the same dimension for each feature
extraction method, before they are input into the logistic
regression model.

The results are shown in TABLE 2, where one can see
that, for a single network case, the original network seems
to provide more structural information, i.e., the classification
model based on SGN(0) performs better, in terms of higher
F1-Score, than those based on SGN(1) or SGN(2), in most
cases. This is reasonable, because there must be information
loss in the processes to build SGNs. However, it still appears
to be dependent on the feature extraction method used. For
instance, when the Deep WL is adopted, better classification
results can be obtained based on SGN(1) or SGN(2) than
SGN(0) for 2 datasets, while when handcrafted features
are used, even better classification performance is realized
based on the 1st-order or 2nd-order SGNs than the original
network in 3 datasets. More interestingly, the classification
models based on two networks, i.e., SGN(0,1) and SGN(0,2),
perform better than those based on a single network, while
the model based on three networks, i.e., SGN(0,1,2), performs
the best in most cases.

The gain G on F1-Score is calculated, when all the three
networks are used together, i.e., SGN(0,1,2), compared with
that when only the original network is used, i.e., SGN(0),
which is defined to be the relatively difference between their
corresponding F1-Score:

G =
F

(0,1,2)
1 − F (0)

1

F
(0)
1

× 100% . (14)

The gains are also presented in TABLE 2, where one can see
that the classification performance is indeed significantly
improved in all the 35 cases. Particularly, in 17 cases,
the gains are larger than 5%, while in 7 cases, they are

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

TABLE 2
Classification results on the 7 datasets, in terms of F1-Score, based on different feature extraction methods and combinations of SGNs.

Algorithm Dataset
Handcraft MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B REDDIT-B

SGN(0) 86.58± 3.61 63.52± 4.55 78.30± 2.49 67.48± 0.87 67.34± 1.25 73.00± 3.68 78.68± 1.66
SGN(1) 88.20± 3.62 65.29± 6.93 76.79± 3.41 65.72± 1.41 66.25± 2.14 73.30± 4.82 76.50± 2.73
SGN(2) 85.53± 4.47 65.00± 6.09 75.45± 5.04 65.35± 2.32 64.15± 2.20 74.24± 3.38 74.37± 3.14
SGN(01) 87.89± 4.58 66.47± 6.73 78.83± 3.12 68.76± 2.24 68.88± 2.17 73.38± 3.94 79.15± 2.32
SGN(0,2) 88.42± 4.22 65.59± 7.09 78.92± 3.17 69.39± 1.82 68.09± 1.74 75.42± 3.34 78.80± 2.07
SGN(1,2) 88.95± 3.37 67.06± 6.14 78.21± 3.60 68.13± 1.30 68.48± 1.42 74.94± 2.81 77.23± 1.98

SGN(0,1,2) 91.58 ± 4.21 67.94 ± 6.36 79.46 ± 2.96 69.84 ± 1.59 69.73 ± 1.97 77.65 ± 4.50 79.23 ± 1.62

Gain 5.78% 6.96% 1.71% 3.50% 3.55% 6.37% 0.70%

Graph2vec MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B REDDIT-B
SGN(0) 83.15± 9.25 60.17± 6.86 73.30± 2.05 73.22± 1.81 74.26± 1.47 62.47± 3.99 76.00± 2.20
SGN(1) 63.16± 4.68 56.80± 5.39 60.27± 2.05 54.56± 1.38 56.35± 1.52 63.06± 6.72 75.34± 2.55
SGN(2) 68.95± 8.47 57.35± 3.83 59.82± 4.11 61.31± 2.13 53.54± 1.43 64.35± 6.63 74.50± 2.71

SGN(0,1) 83.42± 5.40 59.03± 3.36 74.12± 1.57 73.65± 1.38 73.18± 1.26 66.59± 4.54 77.63± 1.25
SGN(0,2) 81.32± 3.80 61.76± 3.73 73.09± 1.28 77.54 ± 2.52 75.39 ± 1.33 66.53± 4.45 77.39± 3.10
SGN(1,2) 72.63± 4.08 59.42± 5.84 62.76± 3.49 67.47± 3.84 68.12± 1.86 66.24± 2.58 76.00± 3.18

SGN(0,1,2) 86.84 ± 5.70 63.24 ± 6.70 74.44 ± 3.09 76.64± 3.21 74.86± 2.76 70.65 ± 5.55 78.04 ± 2.61

Gain 4.44% 5.10% 1.56% 5.90% 1.52% 13.73% 2.68%
WL MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B REDDIT-B

SGN(0) 80.63± 3.07 56.91± 2.79 72.92± 0.56 66.19± 0.97 69.26± 1.14 70.90± 4.18 75.15± 2.39
SGN(1) 76.05± 2.73 61.76± 6.17 67.04± 1.58 58.24± 1.87 57.68± 1.28 69.20± 3.87 74.83± 2.64
SGN(2) 74.21± 7.33 59.41± 5.22 64.01± 1.58 52.62± 0.53 58.26± 0.72 66.10± 4.18 74.34± 2.65

SGN(0,1) 87.11± 5.45 62.50± 4.15 76.19± 2.29 72.49± 1.79 69.50± 1.76 73.05± 4.75 76.90± 1.51
SGN(0,2) 86.57± 4.31 59.71± 3.96 74.99± 1.56 70.11± 1.22 69.67± 1.34 72.23± 3.13 75.40± 4.73
SGN(1,2) 76.11± 7.75 60.88± 3.11 64.81± 3.05 56.00± 2.35 57.92± 1.30 70.45± 3.22 74.15± 4.17

SGN(0,1,2) 88.94 ± 3.28 63.53 ± 4.80 78.08 ± 1.41 77.03 ± 2.73 72.92 ± 1.25 75.00 ± 4.49 77.03 ± 2.73

Gain 10.31% 11.63% 7.08% 11.63% 5.28% 5.78% 2.50%
Deep WL MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B REDDIT-B

SGN(0) 82.95± 2.68 59.04± 1.09 73.30± 0.82 67.06± 1.91 67.04± 1.36 67.50± 2.45 77.25± 2.52
SGN(1) 67.89± 6.84 58.53± 3.23 69.43± 2.57 55.45± 1.43 57.63± 2.07 73.30± 2.38 76.93± 3.68
SGN(2) 68.42± 6.65 62.65± 4.17 68.57± 2.42 55.22± 1.45 55.68± 1.12 71.48± 2.48 75.29± 4.35

SGN(0,1) 92.11± 5.39 64.41± 1.87 74.62± 2.51 70.10± 1.24 69.39± 1.35 73.50± 2.87 77.35± 2.47
SGN(0,2) 93.15± 5.28 64.70± 4.88 75.89± 2.99 70.12± 1.31 68.61± 1.11 74.36± 2.22 76.92± 3.13
SGN(1,2) 73.68± 5.77 64.16± 4.92 69.43± 2.26 59.95± 1.12 56.24± 1.62 71.90± 2.51 76.20± 5.06

SGN(0,1,2) 93.68 ± 5.15 65.88 ± 5.05 76.78 ± 2.41 70.26 ± 1.24 71.06 ± 1.61 75.70 ± 1.55 78.41 ± 1.70

Gain 12.93% 11.58% 4.75% 4.77% 6.00% 11.85% 1.50%
CapsGNN MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B REDDIT-B

SGN(0) 86.32± 7.52 62.06± 4.25 75.89± 3.51 78.30± 1.80 72.99± 2.15 72.71± 4.36 76.12± 3.82
SGN(1) 83.68± 8.95 61.76± 5.00 74.64± 3.55 74.70± 1.54 69.82± 2.24 74.35± 4.61 75.64± 4.15
SGN(2) 82.63± 7.08 58.82± 3.95 72.39± 6.03 69.82± 1.89 67.04± 2.45 73.64± 4.77 72.41± 3.97

SGN(0,1) 87.37± 8.55 63.53± 4.40 76.25± 3.53 78.42± 2.92 73.28± 3.11 74.58± 4.80 78.49± 2.93
SGN(0,2) 87.89± 5.29 62.20± 6.14 73.00± 3.17 73.78± 2.32 71.52± 2.09 74.94± 4.56 78.17± 5.13
SGN(1,2) 78.95± 8.49 59.11± 5.65 70.09± 2.45 70.53± 2.45 70.64± 2.30 75.29± 4.08 75.73± 4.97

SGN(0,1,2) 89.47 ± 7.44 64.12 ± 3.67 76.34 ± 4.13 78.61 ± 1.87 73.72 ± 2.39 76.47 ± 5.74 79.68 ± 5.34

Gain 4.65% 3.32% 0.59% 0.40% 1.00% 5.17% 4.87%

3.28%

1.49%

4.84%

3.57%

6.10%

7.53%

2.15%

8.63%

2.28%

1.93%

0.50%

1.39%

1.23%

2.45%

5.15%

6.22%

6.16%

2.07%

2.24%

1.79%

3.73%

1.68%

1.32%

6.15%

1.58%

14.43%

Rest

L

CB

CE

K

λ

DN

P

C

SGN(0) SGN(1) SGN(2)

37.68%

27.31%

35.01%

20.59%

16.42%

13.46%

11.30%

9.10%

8.70%

7.13%

5.67%

7.63%

Fig. 7. The importance of handcrafted features in logistic regression model for network classification using SGN(0), SGN(1) and SGN(2) together in
MUTAG dataset.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

(0)

(0)

(0,1,2,3)(0,1,2)(0,1)

(0,1,2,3)(0,1,2)(0,1)

(0) (0,1) (0,1,2) (0,1,2,3) (0) (0,1) (0,1,2) (0,1,2,3)

(0) (0,1) (0,1,2) (0,1,2,3)(0) (0,1) (0,1,2) (0,1,2,3)

MUTAG PTC PROTEINS

NCI1 IMDB-B REDDIT-B

Model

F
1
-S
co
re

Fig. 8. Average F1-Scores obtained by using different feature extraction methods under different combinations of SGNs.

even larger than 10%. These results indicate that the 1st-
order and the 2nd-order SGNs can indeed complement the
original network regarding the structural information, thus
benefiting network classification. Surprisingly, it is found
that the chosen handcrafted features based on SGN(0,1,2)

outperforms the other automatically generated features that
use more advanced network-embedding or graph-kernel
based methods even depth model, in 3 out of 7 datasets, i.e.,
PTC, PROTEINS and IMDB-B. This phenomenon indicates
that, compared with those automatically generated ones,
properly chosen traditional structural features are of par-
ticular advantage in the proposed framework, in the sense
that they are not only more interpretable due to their clear
physical meanings, but also equally effective in designing
subsequent structure-based algorithms, e.g., for network
classification.

In addition, the feature importance for the task of net-
work classification is investigated by using logistic regres-
sion. Denote by βi the coefficient of feature xi in the model,
and suppose that there are M features in total. Then, the
importance of feature xi is defined as

I =
|βi|∑M

k=1 |βk|
× 100% . (15)

Taking MUTAG for example, the results are visualized
in Fig. 7. Overall, the features in SGN(0) are most important,
since they determine 37.68% of the model, while the features
in SGN(2) are more important than those in SGN(1), since

they determine 35.01% and 27.31% of the model, respec-
tively. When focusing on a single feature, it is found that
the clustering coefficient C , the percentage of leaf nodes P ,
and the average neighbor degree DN , are the top three most
important features, and they together determine more than
50% of the model. Interestingly, it appears that different
SGNs address different aspects of the network structure
in the classification task. For instance, the most important
feature in SGN(2) is the clustering coefficient, while the
coefficient for this feature in SGN(0) is zero since there is no
triangle in the networks in MUTAG dataset. Moreover, the
largest eigenvalue of the adjacency matrix λ and the average
degree K in SGN(0) are relatively important, while those
in SGN(1) and SGN(2) have less effect on the model. These
results confirm once again that SGNs indeed complement
the original network to achieve better network classification
performance.

Furthermore, we also visualize the average F1-Scores
obtained by using different feature extraction methods un-
der different combinations of SGNs, as shown in Fig. 8.
Note that here we also consider the third-order SGNs, in
order to present the changing trends of F1-Scores with the
number of SGNs more clearly. Indeed, we can find that
integrating higher-order SGNs generally helps to capture
more structural information, leading to higher classification
performance. However, such benefit seems to be shrunk
when we go further, i.e., the improvement of F1-Score
from SGN(0,1,2) to SGN(0,1,2,3) is relatively small, while the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

-1

-2

-4

-3

0

1

2

Fig. 9. Average execution time to establish SGNs of different orders on
the seven datasets.

computational complexity increases quite fast. And this is
the reason why we only consider first-order and second-
order SGNs in most parts of this work.

To address the computational complexity of our method,
we record the average execution time to establish SGNs of
different orders on the seven datasets, including MUTAG,
PTC, PROTEINS, NCI1, NCI109, IMDB-B and REDDIT-B.
The results are shown in Fig. 9, where we can see that
execution time increases fast as the order of SGN and the
network size increase. One possible reason is that here the
subgraph we chose is relatively simple, making the SGNs of
higher-order even more complicated than those of lower-
order. Therefore, one way to decrease the computational
complexity is to choose more complex subgraphs to estab-
lish simpler higher-order SGNs. Another way to accelerate
this process is to adopt parallel computing mechanism,
which will be our focus in future work.

To address the robustness of the classification model
against the size variation of the training set, the F1-Score is
calculated for the network classification task, using various
sizes of training sets (from 10 to 90 percent, within a 10
percent interval). For each size, the training and test sets are
randomly divided, which is repeated for 500 times with the
average result recorded. The results are shown in Fig. 10 for
various feature extraction methods on different datasets. It
can be seen that the classification results based on SGN(0),
SGN(1) and SGN(2) together are always the best, and the
results based on SGN(0) and SGN(1) together, or SGN(0)

and SGN(2) together, are always better than those based
only on the original network SGN(0). This confirms that the
simulation results are quite robust to the variation of the
training set size. For further study, our source codes are
available online. 1

6 CONCLUSIONS

In this paper, the concept of subgraph network (SGN) is in-
troduced, along with algorithms developed for constructing
the 1st-order and 2nd-order SGNs, which can expand the

1. https://github.com/GalateaWang

structural feature space. As a multi-order graph representa-
tion method, various orders of SGNs can significantly enrich
the structural information and thus benefit the network
feature extraction methods to capture various aspects of the
network structure. Also, the effectiveness of the 1st-order
and 2nd-order SGNs are verified. Moreover, the handcrafted
features, as well as the features automatically generated by
network representation methods including graph2vec and
kernel-based methods including Weisfeiler-Lehman (WL)
and deep WL methods and CapsGNN method, are used in
experiments for network classification on seven real-world
datasets.

The experimental results show that the classification
model based on the features of the original network together
with the 1st-order and 2nd-order SGNs always performs the
best, compared with those based only on a single network,
either the original one, the 1st-order or the 2nd-order SGN,
or those based on a pair of them. This demonstrates that
SGNs can indeed complement the original network on struc-
tural information and thus benefit the subsequent network
classification algorithms, no matter which feature extraction
method is adopted. More interestingly, it is found that the
model based on handcrafted features performs even better
than those based on the features automatically generated
by more advanced methods, such as graph2vec, for most
datasets. This finding suggests that, in general, properly
chosen structural features with clear physical meanings may
be effective in designing structure-based algorithms.

Future research may focus on extracting more types
of subgraphs to establish SGNs of higher diversity for
both static and temporal networks, so as to capture the
network structural information more comprehensively, to
design consequent algorithms for network classification and
perhaps other tasks as well.

ACKNOWLEDGMENTS

The authors would like to thank all the members in the
IVSN Research Group, Zhejiang University of Technology
for the valuable discussion about the ideas and technical
details presented in this paper. This work was partially
supported by the National Natural Science Foundation of
China under Grant 61973273 and Grant 61572439, by the
Zhejiang Provincial Natural Science Foundation of China
under Grant LR19F030001, and by the Hong Kong Research
Grants Council under the GRF Grant CityU11200317.

REFERENCES

[1] M. Walter, C. Chaban, K. Schütze, O. Batistic, K. Weckermann,
C. Näke, D. Blazevic, C. Grefen, K. Schumacher, C. Oecking,
K. Harter, and J. Kudla, “Visualization of protein interactions in
living plant cells using bimolecular fluorescence complementa-
tion,” The Plant Journal, vol. 40, no. 3, pp. 428–438, 2004.

[2] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor
spaces for chemical compound retrieval and classification,” Knowl-
edge and Information Systems, vol. 14, no. 3, pp. 347–375, 2008.

[3] D. Nguyen, W. Luo, T. D. Nguyen, S. Venkatesh, and D. Phung,
“Learning graph representation via frequent subgraphs,” in Pro-
ceedings of the 2018 SIAM International Conference on Data Mining.
SIAM, 2018, pp. 306–314.

[4] Q. Xuan, Z.-Y. Zhang, C. Fu, H.-X. Hu, and V. Filkov, “Social
synchrony on complex networks,” IEEE transactions on cybernetics,
vol. 48, no. 5, pp. 1420–1431, 2018.

https://github.com/GalateaWang

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

（0,2）

M
U
T
A
G

P
T
C

P
R
O
T
E
IN
S

N
C
I1

N
C
I1
0
9

IM
D
B
-B

R
E
D
D
IT
-B

（0） （0,1） （0,2） （0,1,2）

Fig. 10. Average F1-Score as functions of the size of the training set (represented by the fraction of samples in the training set), for various feature
extraction methods on different datasets, based on SGN(0), SGN(0,1), SGN(0,2) and SGN(0,1,2), respectively.

[5] Q. Xuan, A. Okano, P. Devanbu, and V. Filkov, “Focus-shifting
patterns of oss developers and their congruence with call graphs,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2014, pp. 401–412.

[6] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies
of open source software development: Apache and mozilla,” ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 3,

pp. 309–346, 2002.

[7] J. Kim and M. Hastak, “Social network analysis: Characteristics
of online social networks after a disaster,” International Journal of
Information Management, vol. 38, no. 1, pp. 86–96, 2018.

[8] C. Fu, M. Zhao, L. Fan, X. Chen, J. Chen, Z. Wu, Y. Xia, and
Q. Xuan, “Link weight prediction using supervised learning meth-
ods and its application to yelp layered network,” IEEE Transactions

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

on Knowledge and Data Engineering, vol. 30, no. 8, pp. 1507–1518,
2018.

[9] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal
of the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.

[10] G. Balazsi, A.-L. Barabási, and Z. Oltvai, “Topological units of
environmental signal processing in the transcriptional regulatory
network of escherichia coli,” Proceedings of the National Academy of
Sciences, vol. 102, no. 22, pp. 7841–7846, 2005.

[11] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequencies:
Mapping the empirical and extremal geography of large graph
collections,” in Proceedings of the 22nd international conference on
World Wide Web. ACM, 2013, pp. 1307–1318.

[12] Q. Vohra, “Subgraph frequencies and network classification.” [On-
line]. Available: http://snap.stanford.edu/class/cs224w-2014/
projects2014/cs224w-76-final.pdf

[13] M. Jha, C. Seshadhri, and A. Pinar, “Path sampling: A fast and
provable method for estimating 4-vertex subgraph counts,” in
Proceedings of the 24th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee,
2015, pp. 495–505.

[14] J. A. Grochow and M. Kellis, “Network motif discovery using
subgraph enumeration and symmetry-breaking,” in Annual Inter-
national Conference on Research in Computational Molecular Biology.
Springer, 2007, pp. 92–106.

[15] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organi-
zation of complex networks,” Science, vol. 353, no. 6295, pp. 163–
166, 2016.

[16] H. Wang, P. Zhang, X. Zhu, I. W.-H. Tsang, L. Chen, C. Zhang, and
X. Wu, “Incremental subgraph feature selection for graph clas-
sification,” IEEE Transactions on Knowledge and Data Engineering,
vol. 29, no. 1, pp. 128–142, 2017.

[17] C. Yang, M. Liu, V. W. Zheng, and J. Han, “Node, motif and
subgraph: Leveraging network functional blocks through struc-
tural convolution,” in 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM). IEEE,
2018, pp. 47–52.

[18] F. Harary and R. Z. Norman, “Some properties of line digraphs,”
Rendiconti del Circolo Matematico di Palermo, vol. 9, no. 2, pp. 161–
168, 1960.

[19] M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. Smola,
L. Song, P. S. Yu, X. Yan, and K. M. Borgwardt, “Discriminative
frequent subgraph mining with optimality guarantees,” Statistical
Analysis and Data Mining: The ASA Data Science Journal, vol. 3, no. 5,
pp. 302–318, 2010.

[20] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB),
vol. 3, no. 4, pp. 347–359, 2006.

[21] ——, “A faster algorithm for detecting network motifs,” in Inter-
national Workshop on Algorithms in Bioinformatics. Springer, 2005,
pp. 165–177.

[22] R. Rotabi, K. Kamath, J. Kleinberg, and A. Sharma, “Detecting
strong ties using network motifs,” in Proceedings of the 26th Inter-
national Conference on World Wide Web Companion. International
World Wide Web Conferences Steering Committee, 2017, pp. 983–
992.

[23] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, “Tem-
poral motifs in time-dependent networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2011, no. 11, p. P11005, 2011.

[24] Q. Xuan, H. Fang, C. Fu, and V. Filkov, “Temporal motifs reveal
collaboration patterns in online task-oriented networks,” Physical
Review E, vol. 91, no. 5, p. 052813, 2015.

[25] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining. ACM, 2017, pp. 601–610.

[26] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher, “Scalable
motif-aware graph clustering,” in Proceedings of the 26th Interna-
tional Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2017, pp. 1451–1460.

[27] Y. Jing, Y. Bian, Z. Hu, L. Wang, and X.-Q. S. Xie, “Deep learning
for drug design: An artificial intelligence paradigm for drug
discovery in the big data era,” The AAPS journal, vol. 20, no. 3,
p. 58, 2018.

[28] T. Lane, D. P. Russo, K. M. Zorn, A. M. Clark, A. Korotcov,
V. Tkachenko, R. C. Reynolds, A. L. Perryman, J. S. Freundlich, and
S. Ekins, “Comparing and validating machine learning models
for mycobacterium tuberculosis drug discovery,” Molecular phar-
maceutics, 2018.

[29] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Arad-
hye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide &
deep learning for recommender systems,” in Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 2016,
pp. 7–10.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[31] Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in International Conference on Machine Learning,
2014, pp. 1188–1196.

[32] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
and S. Jaiswal, “graph2vec: Learning distributed representations
of graphs,” arXiv preprint arXiv:1707.05005, 2017.

[33] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph kernels,” Journal of Machine Learning Research,
vol. 11, pp. 1201–1242, 2010.

[34] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal
of Machine Learning Research, vol. 12, pp. 2539–2561, 2011.

[35] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015, pp. 1365–1374.

[36] Q. Xuan, B. Fang, Y. Liu, J. Wang, J. Zhang, Y. Zheng, and G. Bao,
“Automatic pearl classification machine based on a multistream
convolutional neural network,” IEEE Transactions on Industrial
Electronics, vol. 65, no. 8, pp. 6538–6547, 2018.

[37] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional net-
works on graphs for learning molecular fingerprints,” in Advances
in neural information processing systems, 2015, pp. 2224–2232.

[38] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and locally connected networks on graphs,” arXiv preprint
arXiv:1312.6203, 2013.

[39] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Advances in Neural Information Processing Systems, 2016, pp.
3844–3852.

[40] Z. Xinyi and L. Chen, “Capsule graph neural network,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=Byl8BnRcYm

[41] S. Agarwal, K. Branson, and S. Belongie, “Higher order learning
with graphs,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 17–24.

[42] J.-P. Eckmann and E. Moses, “Curvature of co-links uncovers
hidden thematic layers in the world wide web,” Proceedings of the
national academy of sciences, vol. 99, no. 9, pp. 5825–5829, 2002.

[43] D. Schiöberg, F. Schneider, S. Schmid, S. Uhlig, and A. Feldmann,
“Evolution of directed triangle motifs in the google+ osn,” arXiv
preprint arXiv:1502.04321, 2015.

[44] P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social
networks: the state-of-the-art,” Science China Information Sciences,
vol. 58, no. 1, pp. 1–38, 2015.

[45] G. Li, M. Semerci, B. Yener, and M. J. Zaki, “Graph classification
via topological and label attributes,” in Proceedings of the 9th
international workshop on mining and learning with graphs (MLG),
San Diego, USA, vol. 2, 2011.

[46] X. Wang, X. Li, and G. Chen, “Network science: an introduction,”
pp. 87–90, 2012.

[47] S. N. Soffer and A. Vazquez, “Network clustering coefficient
without degree-correlation biases,” Physical Review E, vol. 71, no. 5,
p. 057101, 2005.

[48] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J.
Shusterman, and C. Hansch, “Structure-activity relationship of
mutagenic aromatic and heteroaromatic nitro compounds. correla-
tion with molecular orbital energies and hydrophobicity,” Journal
of medicinal chemistry, vol. 34, no. 2, pp. 786–797, 1991.

[49] H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma,
“Statistical evaluation of the predictive toxicology challenge 2000–
2001,” Bioinformatics, vol. 19, no. 10, pp. 1183–1193, 2003.

[50] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J.
Smola, and H.-P. Kriegel, “Protein function prediction via graph
kernels,” Bioinformatics, vol. 21, pp. i47–i56, 2005.

[51] T. Joachims, T. Hofmann, Y. Yue, and C.-N. Yu, “Predicting struc-
tured objects with support vector machines,” Communications of
the ACM, vol. 52, no. 11, pp. 97–104, 2009.

http://snap.stanford.edu/class/cs224w-2014/projects2014/cs224w-76-final.pdf
http://snap.stanford.edu/class/cs224w-2014/projects2014/cs224w-76-final.pdf
https://openreview.net/forum?id=Byl8BnRcYm

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[52] T. Kudo, E. Maeda, and Y. Matsumoto, “An application of boosting
to graph classification,” in Advances in neural information processing
systems, 2005, pp. 729–736.

[53] X. Zhao, B. Zong, Z. Guan, K. Zhang, and W. Zhao, “Substructure
assembling network for graph classification,” 2018.

[54] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” Journal of machine learning research,
vol. 3, pp. 1137–1155, 2003.

	1 Introduction
	2 Related work
	2.1 Subgraph in Graph Mining
	2.2 Network Representation

	3 Subgraph networks
	3.1 First-Order SGN
	3.2 Second-Order SGN

	4 Network Attributes
	4.1 Datasets
	4.2 Benefits of SGN

	5 Experiments
	5.1 Automatic Feature Extraction Methods
	5.2 Computational Complexity
	5.3 Experiment Results

	6 Conclusions
	References

