
ar
X

iv
:1

80
9.

08
16

1v
4

 [
cs

.I
R

]
 8

 F
eb

 2
02

0
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Learning to Recommend with Multiple
Cascading Behaviors

Chen Gao, Xiangnan He, Dahua Gan, Xiangning Chen, Fuli Feng, Yong Li, Senior Member, IEEE,

Tat-Seng Chua, Lina Yao, Yang Song, and Depeng Jin, Member, IEEE

Abstract—Most existing recommender systems leverage user behavior data of one type only, such as the purchase behavior in

E-commerce that is directly related to the business KPI (Key Performance Indicator) of conversion rate. Besides the key behavioral

data, we argue that other forms of user behaviors also provide valuable signal, such as views, clicks, adding a product to shopping

carts and so on. They should be taken into account properly to provide quality recommendation for users.

In this work, we contribute a new solution named NMTR (short for Neural Multi-Task Recommendation) for learning recommender

systems from user multi-behavior data. We develop a neural network model to capture the complicated and multi-type interactions

between users and items. In particular, our model accounts for the cascading relationship among different types of behaviors (e.g., a

user must click on a product before purchasing it). To fully exploit the signal in the data of multiple types of behaviors, we perform a

joint optimization based on the multi-task learning framework, where the optimization on a behavior is treated as a task. Extensive

experiments on two real-world datasets demonstrate that NMTR significantly outperforms state-of-the-art recommender systems that

are designed to learn from both single-behavior data and multi-behavior data. Further analysis shows that modeling multiple behaviors

is particularly useful for providing recommendation for sparse users that have very few interactions.

Index Terms—Multi-behavior Recommendation, Collaborative Filtering, Deep Learning

✦

1 INTRODUCTION

IN online information systems, users interact with a sys-
tem in a variety of forms. For example, in an E-commerce

website, a user can click on a product, add a product to
shopping cart, purchase a product and so on.

In traditional recommender systems, only user-item in-
teraction data of one behavior type is considered for col-
laborative filtering, such as the purchase behavior in E-
commerce and the rating behavior on movies [1], [2]. While
it is particularly useful to optimize a recommender model
on the data that is directly related to the business KPI, the
other forms of behaviors should not be neglected, since they
also provide valuable signal on a user’s preference.

Existing approaches for multi-behavior recommendation
can be divided into two categories. The first category is
based on collective matrix factorization (CMF) [3]–[6], which
extends the matrix factorization (MF) method to jointly

• C. Gao, X. Chen, Y. Li, and D. Jin are with Beijing National Research
Center for Information Science and Technology, Department of Electronic
Engineering, Tsinghua University, Beijing 100084, China. E-mail: {gc16,
cxn15}@mails.tsinghua.edu.cn,{liyong07,jindp}@tsinghua.edu.cn

• X. He is with School of Information Science and Technology,
University of Science and Technology of China, Hefei, China. E-
mail: xiangnanhe@gmail.com.

• D. Gan is with the School of Computer Science, Carnegie Mellon
University, USA. E-mail:dgan@andrew.cmu.edu.

• F. Feng and TS. Chua are with School of Computing, National University
of Singapore, Computing 1, Computing Drive, 117417, Singapore.
E-mail: fulifeng93@gmail.com, dcscts@nus.edu.sg.

• L. Yao and Y. Song are with the School of Computer Science and
Engineering, the University of New South Wales (UNSW), Australia.
E-mail: {lina.yao,yang.song1}@unsw.edu.au.

factorize multiple behavior matrices. In MF, a user (or an
item) is described as an embedding vector to encode her
preference (or its property), and a user-item interaction
is estimated as the inner product of the user embedding
and item embedding. To correlate MF on multiple behavior
matrices, it is essential to share the embedding matrix of
entities of one side (e.g., items), and let the entities of the
other side (e.g., users) learn different embedding matrices
for different types of behaviors.

The second category approaches the problem from the
perspective of learning [7], [8]. To learn recommender mod-
els from the (implicit) data of interactions, it is natural
to assume that a user’s interacted items should be more
preferable over the non-interacted items. Bayesian Person-
alized Ranking (BPR) [1] is a representative method that
implements the assumption of relative preference; it is then
extended to address multi-behavior recommendation [7] by
enriching the training data of relative preference from the
multi-behavior data.

Despite effectiveness, we argue that existing models for
multi-behavior recommendation suffer from three limita-
tions.

• Lack of behavior semantics. Each behavior type has its
own semantics and contexts, and more importantly, there
exist strong ordinal relations among different behavior
types. For example, the behaviors may represent the ac-
tion sequence of a user on a product: click is not likely to
happen after add-to-cart; add-to-cart behavior is not likely
to happen after a purchase. Moreover, the semantics make
some intermediate feedback rather meaningful, such as
the products that are viewed but not purchased. However,
existing models have largely ignored the semantics of
different behavior types.

http://arxiv.org/abs/1809.08161v4

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

• Unreasonable embedding learning. The CMF paradigm
needs to enforce the entities of one side (either users or
items) have different embedding matrices for different
types of behaviors. From the perspective of representation
learning and interpretation of latent factor models [9],
[10], this setting is unreasonable. Specifically, a user’s
embedding vector represents his/her inherent interests
and multiple behaviors with one item always happen in a
short period. Therefore a user’s embedding vector should
remain unchanged when the user performs different types
of behaviors on one item; and similarly for the item side.
Only the interaction function [2] should be changed when
predicting a user’s different types of behaviors on an item.

• Incapability in modeling complicated interactions. Ex-
isting methods largely rely on MF to estimate a user’s
preference on an item. In MF, the interaction function is
a fixed inner product, which is insufficient to model the
complicated and multi-type interactions between users
and items. This is also a major reason why these CMF
methods need to enforce entities of one side to have differ-
ent embedding matrices for predicting different types of
behaviors; otherwise, the model could not make distinct
predictions for different behavior types.

To address the above mentioned limitations in multi-
behavior recommendation, we propose a new solution
named Neural Multi-Task Recommendation (NMTR).
Briefly, our method combines the recent advance of neural
collaborative filtering with multi-task learning to effectively
learn from multiple types of user behaviors. Specifically,
we separate the two components of embedding learning
and interaction as advocated by the neural collbaborative
filtering (NCF) [2] framework. We then design that 1) a user
(and an item) has a shared embedding across multiple types
of behaviors, and 2) a data-dependent interaction function
is learned for each behavior type. Through this way, we
address the inherent limitations of CMF methods and make
the model more suitable for learning from behaviors of
multiple types.

Moreover, to incorporate the behavior semantics, espe-
cially the ordinal relation among behavior types, we relate
the model prediction of each behavior type in a cascaded
manner. To be specific, assuming we have two form of
behaviors, view and purchase, which form a natural ordinal
relation: view → purchase. We enforce that the prediction
of a high-level behavior (i.e., purchase) comes from the
prediction of the low-level behavior (i.e., view). Through
this way, we can capture the underlying semantics that a
user must view a product in order to purchase it.

To summarize, the main contributions of this work are
as follows.

• We propose a novel neural network model tailored to
learning user preference from multi-behavior data. The
model shares the embedding layer for different behavior
types, and learns separate interaction function for each
behavior type.

• To capture the ordinal relations among behavior types,
we propose to correlate the model prediction of each
behavior type in a cascaded way. Furthermore, we train
the whole model in a multi-task manner to make full use
of multiple types of behaviors.

• To demonstrate the effectiveness of our proposal, we im-
plement three variants of NMTR using different neural
collabrative filtering models as the interaction function.
Extensive experiments on two real-world datasets show
that our method outperform best existing methods by
6.08% and 30.76% on the hit-ratio effect for two datasets,
respectively. Further studies demonstrate the effective-
ness of the multi-task learning manner.

The remainder of the paper is as follows. We first
formalize the problem and introduce some preliminaries
in Section 2. We then present our proposed method in
Section 3. We conduct experiments in Section 4, before
reviewing related work in Section 5 and concluding the
paper in Section 6.

2 PRELIMINARIES

We first formulate the problem to solve in this paper.
Then we recapitulate the neural collaborative filtering tech-
nique [2]. Lastly, we introduce collective matrix factoriza-
tion, a prevalent solution for multi-behavior recommenda-
tion.

2.1 Problem Formulation

In recommender systems, there typically exists a key type
of user behaviors to be optimized, which we term it as
the target behavior. For example, in an E-commerce site,
the target behavior is usually purchase, since it is directly
related with the conversion rate of recommendation and is
the strongest signal to reflect a user’s preference. Traditional
collaborative filtering techniques [1], [11] focus on the target
behavior only and forgo other types of user behaviors such
as views, clicks, etc., which are readily available in the server
logs. The focus of this work is to leverage these other types
of user behaviors to improve the recommendation for the
target behavior.

Let {Y1,Y2, ...,YR} denote the user-item interaction ma-
trices for all the R types of behaviors. Each interaction
matrix is of size M × N , where M and N denote the
number of users and items, respectively. Since in real-world
applications, most user feedback are in the implicit form [1],
[12], we assume that each entry of a interaction matrix has
a value of 1 or 0:

yrui =

{

1, if u has interacted with i under behavior r;

0, otherwise.
(1)

As we have discussed in the introduction, many user behav-
ior types in real-world applications follow an ordinal (or se-
quential) relationship. Without loss of generality, we assume
that the behavior types have a total order and sort them
from the lowest level to the highest level: Y1 → Y2... → YR,
where YR denotes the target behavior to be optimized. Since
the target behavior typically concerns the conversion rate,
we regard it as having highest priority.

The problem of multi-behavior recommendation is then
formulated as follows.

Input: The user-item interaction data of the target be-
havior YR, and the interaction data of other behavior types
{Y1,Y2, ...,YR−1}.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Output: A model that estimates the likelihood that a user
u will interact with an item i under the target behavior.

After obtaining the predictive model, we can use it to
score all items for a user u, and select the top-ranked items
as the recommendation results for u.

2.2 Neural Collaborative Filtering (NCF)

NCF is generic neural network framework for performing
collaborative filtering (CF) on single-behavior data [2]. It ap-
plies a representation learning view [13] for CF, representing
each user (and item) as an embedding vector. To predict a
user’s preference on an item, it feeds their embeddings into
a neural network:

ŷui = fΘ(pu,qi|Θ), (2)

where pu and qi denote the embedding vector for user u

and item i, respectively; fΘ denotes the neural network
with parameters Θ, which is also called as the interaction
function, since it is responsible for learning the interaction
between user embedding and item embedding to obtain
the prediction score. The model parameters of NCF can be
learned in an end-to-end fashion. Specifically, the authors
opt to optimize a pointwise log loss, where the positive
instances are the entries of value 1 (aka., observed entries)
in the user-item interaction matrix YR and the negative
instances are randomly sampled from the entries of value
0 (aka., missing data).

The matrix factorization model can be seen as the special
case of NCF — by specifying the interaction function fΘ
as an inner product, NCF exactly recovers MF. As such,
under the NCF framework, MF can be interpreted as using
a fixed, data-independent interaction function. As demon-
strated in the NCF paper and its follow-up work [14], using
such a fixed interaction function is suboptimal and can be
improved by learning the interaction function from data. It
is this evidence that motivates us to develop neural network
models to address the multi-behavior recommendation task.

In the NCF paper, the authors present three instantia-
tions of NCF, namely, GMF, MLP and NeuMF. Briefly, GMF
generalizes MF by defining fΘ as an element-wise product
layer followed by a weighted output layer. MLP employes
multi-layer perceptron above the concatenation of pu and
qi to learn the interaction function. The best performance is
achieved by NeuMF, which concatenates the element-wise
product layer of GMF and the last hidden layer of MLP,
feeding it to a weighted output layer to obtain the prediction
score. Our NMTR uses NCF as a building block, and as such,
any design of fΘ can be used as a component to learn the
interaction function for one behavior type in our method.

2.3 Collective Matrix Factorization

CMF is originally proposed to factorize multiple data ma-
trices that have certain common entities [3]. For example, it
can be used to factorize user-movie and movie-genre matrix,
where movies are the common entities of the two data
matrices. The idea is to correlate the multiple factorization
processes by sharing the embeddings of common entities.

Nevertheless, in multi-behavior recommendation, both
sides of entities are shared in data matrices of different
behavior types. Directly applying CMF will fail to produce

different predictions for different behavior types. To address
this problem, Zhao et al. [6] proposed to share the item
embedding matrix for all behavior types, allowing a user
to learn different embedding vectors for different behavior
types. To be specific, the objective function to optimize is as
follows:

min
p
∗
,q

∗

R
∑

r=1

M
∑

u=1

N
∑

i=1

crui(y
r
ui − pr

u
T qi)

2, (3)

where crui denotes the importance of the entry yrui in factor-
ization, qi denotes the embedding vector for item i that is
shared by all behavior types, and pr

u denotes the embedding
vector for user i in reconstructing the behaviors of the r-th
type. Note that we have omitted the L2 regularization term
for clarity.

As argued earlier in the introduction, this setting is
irrational and non-interpretable as a latent factor model.
Specifically, an embedding vector for a user encodes his/her
latent interest, which should remain unchanged when the
user seeks items of interest to consume at a particular
time. Moreover, other potential limitations of existing CMF
methods include the use of a fixed interaction function of
inner product, and the use of squared regression loss for
optimization, which may be suboptimal for item recommen-
dation with implicit feedback [1], [2].

3 METHODS

Figure 1 illustrates our proposed NMTR model. Given a
user-item pair (u, i) as the input, the model aims to pre-
dict the likelihood that u will perform a behavior (of any
of the R types) on item i, represented as the output of
{ŷ1ui, ŷ

2
ui, ..., ŷ

R
ui}.

Our NMTR method is featured with four special designs:

• Shared embedding layer. To make it reasonable under
the paradigm of representation learning, we share the
embedding layer of users and items for the modeling of
all behavior types.

• Separated interaction function. We learn different inter-
action functions for predicting the behaviors of different
types. This is achieved by using the expressive NCF unit
for each type of behaviors.

• Cascaded predictions. To capture the ordinal relations
among behavior types, we correlate the predictions of
different behavior types through cascading.

• Multi-task learning. To optimize the cascaded architec-
ture, we simultaneously train the predictive models for
all behavior types by performing multi-task learning.

In what follows, we present our method by elaborating
the above four designs.

3.1 Shared Embedding Layer

In order to make our proposed model extensible, we apply
one-hot encoding to encode the input of user ID and item
ID. One advantage is that it can be easily extended to
incorporate other features of a user and an item (e.g., user
demographics and item attributes), if they are available
in the application [12]. Let vU

u and vI
i denote the one-hot

feature vector for user u and item i. Then the embedding

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

layer is defined as a linear fully connected layer without the
bias terms:

pu = PT vU
u , qi = QT vI

i , (4)

where P and Q are the user embedding matrix and item
embedding matrix, respectively. When only the ID feature
is used to describe a user (or an item), P and Q are of the
size M × E and N × E, respectively, where E denotes the
embedding size; and pu and qi are essentially the u−th and
i−th row vector of P and Q, respectively.

It is worth noting that NMTR has only one embed-
ding layer in the lower part of the model, which is to be
used for the prediction of all behavior types in the upper
part. Although there are some works modeling dynamic
interests [15]–[17] with dynamic user embeddings, in our
task it is better to use static embeddings for users. In fact,
different with these works studying user dynamic intention
in a long period, we focuses on modeling users multiple
types of interactions on one item, which always happen in a
relatively shorter time period. Based on this design, we can
interpret the model under the paradigm of representation
learning, where pu and qi are the latent features to be
learned to represent user u and item i, respectively.

3.2 Separated Interaction Function

Above the embedding layer is the hidden layers that model
the interaction between pu and qi to obtain the prediction
score. Since we need to predict the likelihood of multiple
behavior types with the same input, it is essential to learn a
separated interaction function for each type. Let f r

Θ denote
the interaction function for the r-th type of behaviors with
parameters Θ, which outputs the likelihood that u will
perform a behavior of the r-th type:

ŷrui = σ(f r
Θ(pu,qi)), (5)

where σ denotes the sigmoid function converting the output
to a probability. A good design of f r

Θ is to have the ability
and sufficient flexibility to learn the possible complicated
patterns (e.g., collaborative filtering and others) in user
behaviors. To achieve this, we consider the three neural
network units proposed in the NCF paper [2]:

• GMF generalizes MF by allowing different dimensions
of the embedding space to have different weights. To be
specific, it first uses an element-wise product to get an
interacted vector, and then project the vector to an output
score with a weight vector:

fGMF
Θ (pu,qi) = hT (pu ⊙ qi), (6)

where h ∈ R
E×1 denotes the learnable weight vector. The

parameters of the GMF unit are ΘGMF = {h}.
• MLP applies a multi-layer perceptron on the concatena-

tion of pu and qi to learn the interaction function in a
hierarchical and non-linear manner:

z1 = ReLU(W1

[

pu

qi

]

+ b1),

.

zL = ReLU(WLzL−1 + bL),

fMLP
Θ (pu,qi) = hT zL,

(7)

1000 0 0 ……

User (u)

0000 1 0 ……

Item (i)

User Embedding Item Embedding

P
M×K

= {p
uk
} Q

N×K
= {q

ik
}

NCF Unit 1 NCF Unit 2 …… NCF Unit R-1 NCF Unit R

 !"#
$!"#

% !"#
&'$!"#

&

(!"#
% (!"#

&'$
+ +……(!"#

$ + (!"#
&+

)#
$)#

%)#
&'$

("#
&

* * * *

("#
&'$("#

%("#
$

Multi-Task Learning

)#
&

……

Embedding

Interaction

Prediction

Fig. 1: Illustration of our proposed NMTR model.

where L denotes the number of hidden layers in the multi-
layer perceptron, Wx and bx denote the weight matrix
and bias vector for the x-th hidden layer, and zx are the
intermediate neurons. By default, the rectifier unit (ReLU)
is used as the activation function for the hidden layer,
which is beneficial to build deep models. The parameters
of the MLP unit are ΘMLP = {h, {Wx}

L
x=1, {bx}

L
b=1}.

• NeuMF combines the advantage of the linear GMF with
the nonlinear MLP to learn the interaction function:

fNeuMF
Θ (pu,qi) = hT

[

pu ⊙ qi

zL

]

, (8)

where zL indicates the last hidden layer of MLP, as have
been defined in Equation (7). The zL is concatenated
with pu ⊙ qi as the hidden layer of NeuMF, which is
then projected to a score through the weighted vector
h ∈ R

2E×1. In the original design of NeuMF, the authors
used different embedding layers for GMF and MLP. While
in our method, we have only one set of embeddings for
users and items. As such, we tweak the NeuMF unit by
sharing the embedding layer of GMF and MLP.

Note that any of the three units can be used to model for
behaviors of any type, and the optimal setting may depend
on the dataset. We will empirically evaluate the performance
of three NCF choices and their impact on our NMTR method
in Section 4. There are many other possible designs for the
NCF units, such as placing more layers above the hidden
layer of NeuMF to thoroughly merge GML and MLP, among
others [12], [14]. Since the focus of this paper is not to
develop new NCF units for interaction learning, we leverage
existing ones as the building block for our NMTR model.

3.3 Cascaded Predictions

Typically there are certain ordinal relations among behavior
types in a real-world application, such as a user must view a
product (i.e., click the product page) before she can purchase
it. The existence of such relations implies that the predictive
models for different behavior types should be related with
each other, rather than being independent. To encode the se-
quential effect, we enforce that the prediction on a behavior
type lies in the predictions of the precedent behavior types.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Formally, we cascade the predictions of different behaviors
as:

ŷRui = σ(ŷR−1
ui + fR

Θ (pu,qi) + bRi),

· · · · · ·

ŷ2ui = σ(ŷ1ui + f2
Θ(pu,qi) + b2i),

ŷ1ui = σ(f1
Θ(pu,qi) + b1i),

(9)

where bri denotes the bias of item i in the data of the r-
th behavior type, and f r

Θ denotes the interaction function
for the r-th type of behaviors, which can be any of the
three NCF units as introduced before. The item bias term
can capture some discrepancy effects in different types of
behaviors, for example, some items are likely to be clicked
by users (e.g., products on campaign) but less likely to
be purchased. Moreover, some previous work has demon-
strated that incorporating item bias is more effective than
incorporating user bias for learning from single-behavior
implicit feedback [11].

A graphical illustration of our cascading design1 can be
found in the top part of Figure 1. Such a design is partic-
ularly useful for predicting the preference of inactive users
that have few data on the target behavior. Typically, the data
of low-level behaviors (e.g., clicks) is easier to collect and has
a larger volume than the target behavior (e.g., purchases).
By basing the prediction of target behavior on its precedent
types of behaviors, we can achieve better prediction when
the target behavior data of a user is insufficient to estimate
fR
Θ well.

3.4 Multi-Task Learning

As we have a dedicated model for each type of behaviors
and the models follow a cascading prediction, it is intu-
itive to train models separately by following the order of
ŷ1ui, ŷ

2
ui, ..., ŷ

R
ui. Since these models share the same embed-

ding layer and the final recommendation is based on the
last target model ŷRui, this way can be seen as pre-training
the embedding layer of the target model using other types of
behaviors. We argue that such a sequential training manner
does not make full use of the multi-behavior data, since
it only uses precedent models to improve the next model
while there is no benefit for the precedent models. A better
solution could be to let the models reinforce each other.

In contrast to training the models separately, multi-task
learning (MTL) is a paradigm that performs joint training
on the models of different but correlated tasks, so as to
obtain a better model for each task [18]. The intuition for
our design of cascaded predictions is that, if we can obtain
improved models for other types of behavior, the model for
the target behavior can also be improved. As such, we opt
for MTL that trains all models simultaneously, where the
model learning for each behavior type is treated as a task.

1. Note that we assume that the behaviors can form a full-order
cascading relationship, while in real world the relationship might be
more complicated. For example, there is no sequential relation between
sharing a product to social network and adding it to cart by nature.
Technically speaking, we can adapt to such partial-order relation by
sorting the behaviors by their strength in reflecting user preference. We
leave this exploration as future work.

Objective Function. Following the probabilistic optimiza-
tion framework [2], we first define the likelihood function
for a single behavior type as:

Pr =
∏

(u,i)∈Y
+
r

ŷrui

∏

(u,i)∈Y
−

r

(1− ŷrui), (10)

where Y+
r denotes the set of observed interactions in be-

havior matrix Yr, and Y−
r denotes negative instances to be

sampled from the unobserved interactions in Yr . We then
get the joint probability for multiple types of behaviors as:

P =
R
∏

r=1

Pr =
R
∏

r=1

∏

(u,i)∈Y
+
r

ŷrui

∏

(u,i)∈Y
−

r

(1 − ŷrui). (11)

Taking the negative logarithm of the joint probability, we
obtain the loss function to be minimized as:

L = −
R
∑

r=1

λr(
∑

(u,i)∈Y
+
r

log ŷrui +
∑

(u,i)∈Y
−

r

log(1 − ŷrui)), (12)

where we additionally include the term λr to control the
influence of the r-th type of behaviors on the joint train-
ing. This is a hyper-parameter to be specified for different
datasets, since the importance of a behavior type may vary
for problems of different domains and scales. We addition-

ally enforce that
∑R

r=1 λr = 1 to facilitate the tuning of these
hyper-parameters.

Directly optimizing this joint loss function will update
the parameters of models for multiple behavior types to-
gether. As such, a better embedding learned from a gradient
step of the data of one type will benefit the learning of other
types.

Training. Since our model is composed of nonlinear neural
networks, we optimize parameters with stochastic gradient
descent (SGD), a generic solver for neural network mod-
els. As most machine learning toolkits (e.g., TensorFlow,
Theano, PyTorch etc.) provide the function of automatic
differentiation, we omit the derivation of the derivatives of
our model. Instead, we elaborate on how to form a mini-
batch to facilitate faster training, since modern computing
units like GPU and CPU provide acceleration for matrix-
wise float operations.

To generate a mini-batch, we first sample a user-item
pair (u, i) such that user u has at least one observed in-
teraction on item i (regardless of the behavior type). We
then inspect the interactions of the (u, i) pair — for each
observed interaction, we sample a negative instance from
u′s unobserved interactions of the behavior type. As an
example, if the sampled (u, i) pair has an interaction in
the 1-st behavior and 2-nd behavior, we get two positive
training instances y1ui and y2ui; we then sample two items
t and s that u did not interact under first two behaviors,
respectively, to get two negative instances y1ut and y2us. We
iterate the above sampling step until the desired size of a
mini-batch is reached.

Note that we empirically find that sampling multiple
negative instances to pair with a positive instance in a mini-
batch can improve the performance. This finding has been
reported before in optimizing neural recommender models
with log loss on single-behavior data [2], [19]. As such, in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

our experiments, we allow a flexible tuning of the negative
sampling ratio.

4 EXPERIMENTS

In this section, we conduct extensive experiments on two
real-world datasets to answer the following research ques-
tions:

• RQ1: How does our proposed NMTR perform as com-
pared with state-of-the-art recommender systems that are
designed for learning from single-behavior and multi-
behavior data?

• RQ2: How do the key hyper-parameters affect NMTR’s
performance, and how is the effectiveness of our designed
multi-task learning for the task?

• RQ3: Can NMTR help to address the data sparsity prob-
lem, i.e., improving recommendations for sparse users
with fewer interactions of the target behavior?

In what follows, we first describe the experimental settings,
and then answer the above three research questions.

4.1 Experimental Settings

4.1.1 Datasets and Evaluation Protocol

We experimented with two real-world E-commerce datasets
that contain multiple types of user behaviors including
purchases, views, adding to carts, etc.

• Beibei Dataset2. This dataset is collected from Beibei,
the largest E-commerce platform for maternal and infant
products in China. We sampled a subset of user inter-
actions that contain views, adding to carts (abbreviated
as carts), and purchases within the time period from
2017/06/01 to 2017/06/30.

• Tmall Dataset3. This is the dataset released in IJCAI-
15 challenge4, which is collected from Tmall, the largest
business-to-consumer E-Commerce website in China. It
records two types of user behaviors, views and purchases,
within the time period from 2014/05/01 to 2014/11/30.

For both datasets, we merged the duplicated user-item
interactions by keeping the earliest one; the rationality here
is to test the performance of a method in recommending
novel items that a user did not consume before. Moreover,
we focused on users with more than one type of behavior.
After the above pre-processing steps, we obtained the final
evaluation datasets, the statistics of which are summarized
in Table 1. For these two datasets, there exist strict cascading
relationships. For example, in Beibei dataset, a user must
click first before adding to cart, and must add to cart first
before purchasing. In the evaluation stage, given a user in
the testing set, each algorithm ranks all items that the user
has not interacted before. We applied the widely used leave-
one-out technique to obtain the training set and test set,
which means for every user, there is a test item her has not
interacted with. We then adopted two popular metrics, HR
and NDCG, to judge the performance of the ranking list:

• HR@K: Hit Ratio (HR) measures whether the test item is
contained by the top-K item ranking list (1 for yes and 0
for no).

2. https://www.beibei.com
3. https://www.tmall.com
4. https://tianchi.aliyun.com/datalab/dataSet.htm?id=5

TABLE 1: Statistics of our evaluation datasets.

Dataset User# Item# Purchase# Cart# View#
Beibei 21,716 7,977 295,622 642,622 2,412,586
Tmall 15,670 9,076 136,648 – 813,396

TABLE 2: Best parameter settings of our proposed NMTR
methods for top-K recommendation

Dataset Parameter NMTR-GMF NMTR-MLP NMTR-NeuMF

Beibei

Optimzer Adagrad Adagrad Adagrad
Learning rate 0.01 0.01 0.01

Number of layer - 3 3
Loss coefficient [1/3,1/3,1/3] [1/3,1/3,1/3] [1/3,1/3,1/3]
Regularization [0,1e-5] [0,1e-5] [0,1e-5]

Tmall

Optimzer Adagrad Adagrad Adagrad
Learning rate 0.01 0.01 0.05

Number of layer - 3 3
Loss coefficient [0.4,0.6] [0.5,0.5] [0.4,0.6]

Regularization term [0,5e-5] [0,1e-5] [0,0]

• NDCG@K: Normalized Discounted Cumulative Gain
(NDCG) complements HR by assigning higher scores to
the hits at higher positions of the ranking list.

4.1.2 Baselines

We compared the performance of our proposed NMTR with
9 baselines, which can be divided into two groups based on
whether it models single-behavior or multi-behavior data.
The compared single-behavior methods are introduced as
follows.

BPR [1] Bayesian Personalized Ranking (BPR) is a widely
used pairwise learning framework for item recommenda-
tion with implicit feedback. Same as the original paper, we
used BPR to optimize the MF model. NCF [2] Neural

Collaborative Filtering (NCF) is a neural framework to learn
interactions between the latent features of users and items.
As we employed three NCF methods, named GMF, MLP
and NeuMF to learn the interaction function for each be-
havior type, we evaluated how the three methods perform
for single-behavior data.

The second group of five compared methods that can lever-
age multiple types of behavior data are as follows.

CMF [6] As have described in Section 2.3, CMF de-
composes the data matrices of multiple behavior types
simultaneously. We adapted the method by sharing the user
embeddings for factorizing different interaction matrices of
various types of behaviors. As our datasets are implicit
feedback, we further augmented the method by sampling
negative instances in the same way as our NMTR.

MC-BPR [7] Multi-Channel BPR [7] is the state-of-the-art
solution for multi-behavior recommendation. It adapts the
negative sampling rule in BPR to account for the levels of
user feedback in multi-behavior data. For example on the
Tmall dataset that has two behavior types — purchase and
view, to generate a negative sample for a purchase interac-
tion, it assigns different probabilities for sampling from 1)
items that are viewed but not purchased, and 2) items that
are not viewed. We tuned the probability distribution for
sampling and reported the best results.

MC-NCF Since Multi-Channel BPR is a generic learning
method that is applicable to any differentiable recommender

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

model, we replaced the basic MF model in it with state-of-
the-art NCF models, and named this extension as MC-NCF.
That is, we optimized the three NCF models with the Multi-
Channel BPR learner, and named the respective methods as
MC-GMF, MC-MLP and MC-NeuMF.

4.1.3 Parameter Settings

We implemented our NMTR5 and baseline methods in
TensorFlow6. Since we have three choices of NCF units
as the interaction function, we name the respective meth-
ods as NMTR-GMF, NMTR-MLP and NMTR-NeuMF. We
randomly selected a training instance for each user as the
validation set to tune hyper-parameters. For all methods,
we set the embedding size to 64, a relatively larger number
that achieves good performance on our datasets. For CMF,
one important hyper-parameter is the weight of different
behavior types in the joint loss. We tuned the weight for
each behavior in [0, 0.2, 0.4, 0.6, 0.8, 1]. To be specific, the
weight for each behavior represent the influence of each
interaction matrix on the collective matrix factorization task.
For MC-methods, we carefully tune the sampling distri-
bution following the original paper. For neural network
models, we initialized their parameters using the method
proposed in [20]. For models that have multiple hidden lay-
ers, i.e., MLP, MC-MLP, NMTR-MLP, NeuMF, MC-NeuMF
and NMTR-NeuMF, we employed a tower structure for the
hidden layers same as [2], and tuned the number of layers
from 1 to 5. We set the negative sampling ratio as 4 for all
methods, an empirical value that shows good performance.
We tried two SGD-based optimizers, Adam [21] and Ada-
grad [22], and tuned the learning rate for each optimizer
in [0.001, 0.005, 0.01, 0.02, 0.05]. Moreover, we applied L2

regularization to all methods to prevent overfitting.

4.2 Performance Comparison (RQ1)

We first compare the top-K recommendation performance
with state-of-the-art methods. We investigate the top-K per-
formance with K setting to [50, 80, 100, 200]. Note that for
a user, our evaluation protocol ranks all unobserved items
in the training set [11]. Though this all-ranking protocol
can be very time-consuming, the obtained results are more
persuasive than ranking a random subset of negative times
only (e.g., as have done in [2]). In this case, small values of
K will make the results have a large variance and unstable.
As such, we report results of a relatively large7. We report
the best parameter setting for our proposed NMTR methods
in Table 2.

Table 3 shows the performance of HR@K and NDCG@K
for our three NMTR methods, five multi-behavior recom-
mendation methods, and four single-behavior methods.
From the results, we have the following observations:

5. We release our implementation along with datasets at
https://github.com/fiblab

6. https://www.tensorflow.org
7. There is another reason to choose a relatively larger K . In practical

recommender systems, the procedure of item recommendation is typi-
cally divided into two stages [23]: candidate selection and re-ranking.
Since collaborative filtering (CF) methods are typically applied in the
first stage to retrieve a few hundreds of relevant items, a larger K to
evaluate CF methods is more reasonable.

• NMTR achieves the best performance. Our proposed
NMTR methods obtain the best performance in terms of
HR@K and NDCG@K as compared to all baselines. The
one-sample paired t-tests indicate that all improvements
are statistically significant for p < 0.05. Among the three
NMTR methods, NMTR-GMF and NMTR-NeuMF are
better than NMTR-MLP, which verifies the effectiveness
of the element-wise operator in learning the user-item
interaction function.
Compared with the best single-behavior baseline NeuMF,
NMTR outperforms it by 9.01% in HR and 6.72% in
NDCG on the Beibei dataset; and the improvements are
13.04% in HR and 9.91% in NDCG on the Tmall dataset.
Compared with MC-NeuMF, which extends NeuMF on
multi-behavior data with the Multi-Channel BPR [7],
NMTR obtains an improvement in HR of 6.08% and
10.23% on Beibei and Tmall, respectively. In addition,
we can observe that MF based methods (CMF, MC-BPR
and BPR), achieve the worst performance on the Beibei
dataset, which has more complicated and richer behaviors
than the Tmall dataset. This confirms the incapability of
MF in modeling complicated interactions between users
and items, being inferior to the multi-layer neural net-
works.

• NMTR is a better framework than MC. For each NCF
model, we find that optimizing it under our NMTR frame-
work outperforms optimizing it under the Multi-Channel
BPR framework. Specifically, NMTR-NeuMF outperforms
MC-NeuMF by 6.08% on Beibei dataset and 30.76% on
Tmall dataset in HR@100. Thus, we can conclude that
NMTR performs better than the MC framework in adapt-
ing a single-behavior recommender model for multiple
behaviors.
To better understand the difference between two frame-
works, we present the training loss and the testing per-
formance in each training iteration in Figure 2 (for Beibei)
and Figure 3 (for Tmall). In our NMTR framework, the
training loss is defined as the joint loss in multi-task
learning, which is a combination of the prediction loss
of behaviors of multiple types. We can observe that, for
both datasets, although training loss of NMTR is the
highest, it essentially demonstrates the best generalization
performance. For the Beibei dataset, we find that the HR
score of MC-NeuMF starts to decrease after 40 iterations,
even though the L2 regularization and dropout have been
adopted. Note that in Table 3, we have reported the peak
performance of each baseline evaluated per iteration (such
a setting is to fully explore the potential of all methods).
Even so, our NMTR still outperforms MC-NeuMF by
6.08% in HR@100 and 5.70% in NDCG@100. However, on
the Tmall dataset, in which only two behaviors are avail-
able and the data is of a smaller scale, MC-NeuMF fails to
utilize the view behavior to improve the performance (i.e.,
underperforms NeuMF). In contrast, our NMTR-NeuMF
outperforms NeuMF by 30.76% in HR@100 and 14.37%
in NDCG@100, which are very significant improvements.
We also present the average training time per epoch of
three models in Table 4 and we can find our proposed
NMTR framework’s efficiency is acceptable.

• The performance on multiple behaviors are relevant to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

TABLE 3: Top-K recommendation performance comparison on the Beibei and Tmall datasets (K is set to 50, 80, 100, 200)

Beibei Dataset
Group Method HR@50 NDCG@50 HR@80 NDCG@80 HR@100 NDCG@100 HR@200 NDCG@200

Our NMTR Model
NMTR-GMF 0.2050 0.0590 0.2721 0.0688 0.3119 0.0741 0.4543 0.0961
NMTR-MLP 0.1928 0.0560 0.2690 0.0676 0.3188 0.0762 0.4732 0.0967

NMTR-NeuMF 0.2079 0.0609 0.2689 0.0683 0.3193 0.0760 0.4766 0.0971

Multi-behavior

CMF 0.1596 0.0481 0.2377 0.0606 0.2829 0.0663 0.4191 0.0850
MC-BPR 0.1743 0.0503 0.2299 0.0604 0.2659 0.0647 0.3852 0.0786
MC-GMF 0.1822 0.0508 0.2425 0.0611 0.2975 0.0690 0.4262 0.0891
MC-MLP 0.1810 0.0534 0.2342 0.0598 0.2810 0.0684 0.4116 0.0834

MC-NeuMF 0.2014 0.0577 0.2522 0.0669 0.3010 0.0719 0.4300 0.0897

Single-behavior

BPR 0.1199 0.0348 0.1686 0.0419 0.2002 0.0463 0.3039 0.0624
GMF 0.1792 0.0475 0.2555 0.0608 0.2920 0.0665 0.4090 0.0828
MLP 0.1711 0.0483 0.2383 0.0459 0.2679 0.0617 0.3947 0.0792

NeuMF 0.1828 0.0573 0.2559 0.0668 0.2929 0.0714 0.4078 0.0852

Tmall Dataset
Group Method HR@50 NDCG@50 HR@80 NDCG@80 HR@100 NDCG@100 HR@200 NDCG@200

Our NMTR Model
NMTR-GMF 0.0778 0.0250 0.1042 0.0293 0.1196 0.0314 0.1751 0.0390
NMTR-MLP 0.0734 0.0251 0.0884 0.0277 0.0982 0.0290 0.1672 0.0338

NMTR-NeuMF 0.0854 0.0315 0.1045 0.0347 0.1169 0.0366 0.1668 0.0428

Multi-behavior

CMF 0.0738 0.0234 0.0940 0.0269 0.1085 0.0287 0.1565 0.0359
MC-BPR 0.0674 0.0218 0.0928 0.0260 0.1072 0.0282 0.1597 0.0357
MC-GMF 0.0653 0.0243 0.0778 0.0258 0.0846 0.0264 0.1084 0.0294
MC-MLP 0.0617 0.0195 0.0784 0.0219 0.0868 0.0228 0.1122 0.0238

MC-NeuMF 0.0711 0.0296 0.0820 0.0311 0.0894 0.0320 0.1172 0.0359

Single-behavior

BPR 0.6666 0.0200 0.0926 0.0240 0.1058 0.0263 0.1647 0.0342
GMF 0.0742 0.0271 0.0927 0.0295 0.1027 0.0306 0.1407 0.0355
MLP 0.0666 0.0194 0.0824 0.0220 0.0905 0.0233 0.1194 0.0273

NeuMF 0.0760 0.0299 0.0925 0.0321 0.1013 0.0333 0.1383 0.0377

0 20 40 60 80 100
Iteration

0

0.1

0.2

0.3

0.4

0.5

T
ra

in
in

g
Lo

ss

Beibei Dataset

NeuMF
MC-NeuMF
NMTR-NeuMF

(a) Training Loss

0 20 40 60 80 100
Iteration

0.15

0.2

0.25

0.3

0.35

H
R

@
10

0

Beibei Dataset

NeuMF
MC-NeuMF
NMTR-NeuMF

(b) HR@100

0 20 40 60 80 100
Iteration

0.04

0.05

0.06

0.07

0.08

N
D

C
G

@
10

0

Beibei Dataset

NeuMF
MC-NeuMF
NMTR-NeuMF

(c) NDCG@100

Fig. 2: Training loss and testing performance of NeuMF, MC-NeuMF, and NMTR-NeuMF in each iteration on Beibei

TABLE 4: Average training time of one epoch of NeuMF,
MC-NeuMF and NMTR-NeuMF on two datasets.

Dataset NMTR-NeuMF# MC-NeuMF# NeuMF#
Beibei 204.4s 472.4s 101.9s
Tmall 91.5s 73.1s 88.0s

that on single behavior. No matter which framework is
chosen, NMTR or MC, we can observe that the perfor-
mance of the multi-behavior setting is relevant to that of
single-behavior. This is because that they use the same set
of CF functions, which on the other hand implies that the
performance on multi-behavior data maybe limited by the
choice of the CF function. An empirical evidence is that
NMTR-MLP performs the worst among the three NMTR
methods, which can be caused by the poor performance
of MLP in modeling CF effect (in single-behavior data). In
addition, for some metrics, such as HR@50 and NDCG@50
on both dataset, and HR@80 and NDCG@80 on Tmall

dataset, NMTR-MLP and NMTR-GMF are outperformed
by some baseline methods such as MC-NeuMF. It can
be explained that MC-NeuMF’s relatively better perfor-
mance is due to NeuMF’s best performance compared all
single-behavior methods. Therefore, our NMTR-NeuMF
achieves better performance than MC-NeuMF on these
metrics. Moreover, another important finding is that aux-
iliary behaviors could adversely degrade the performance
without a proper modeling. An evidence can be found in
the results of the Tmall dataset, where the methods under
the MC framework fail to improve the performance in
general.

To summarize, the extensive comparison on two real
datasets verify that our proposed NMTR solution can effec-
tively leverage multiple types of behaviors to improve the
recommendation performance, i.e. our model outperforms
the best baseline method by 6.08% and 30.76% on two
datasets, respectively.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

0 20 40 60 80 100
Iteration

0

0.1

0.2

0.3

0.4

0.5

T
ra

in
in

g
Lo

ss

Tmall Dataset

NeuMF
MC-NeuMF
NMTR-NeuMF

(a) Training Loss

0 20 40 60 80 100
Iteration

0.02

0.04

0.06

0.08

0.1

0.12

H
R

@
10

0

Tmall Dataset

NeuMF
MC-NeuMF
NMTR-NeuMF

(b) HR@100

0 20 40 60 80 100
Iteration

0

0.01

0.02

0.03

0.04

N
D

C
G

@
10

0

Tmall Dataset

NeuMF
MC-NeuMF
NMTR-NeuMF

(c) NDCG@100

Fig. 3: Training loss and testing performance of NeuMF, MC-NeuMF, and NMTR-NeuMF in each iteration on Tmall

TABLE 5: Performance of NMTR model with different combination of interaction data on the Beibei dataset

Beibei Dataset
Interaction Subset (Purchase, Carting) (Purchase, View) (Purchase, 50% Carting) (Purchase, 50% View)

Performance HR@100 NDCG@100 HR@100 NDCG@100 HR@100 NDCG@100 HR@100 NDCG@100
NMTR-GMF 0.2979 0.0705 0.3029 0.0726 0.2947 0.0701 0.2953 0.0698
NMTR-MLP 0.2770 0.0670 0.3140 0.0741 0.2726 0.0654 0.3058 0.0725

NMTR-NeuMF 0.2882 0.0691 0.3147 0.0743 0.2778 0.0676 0.3107 0.0737

4.3 Impact of Auxiliary Behaviors and Parameters

(RQ2)

In order to understand how auxiliary behavior data affect
the recommendation performance, we choose the Beibei
dataset for further investigation since it has more types
of behaviors. Since the motivation of multi-behavior rec-
ommendation is to utilize interaction data of other types
of behaviors to help improving recommendation quality
on target behavior, we investigate how the data quality of
auxiliary behaviors affects our NMTR model’s performance.
An intuitive experimental setting is that to random sample
auxiliary behaviors for our utilized two datasets while keep-
ing target behaivor (i.e. purchase) intact. Table 5 shows the
performance of different combinations of behavioral data.
There are four sampling rules for obtaining a subset. For
example, (Purchase, 50%view) means that intact purchase
records are kept and half records of view behavior are
randomly selected to be kept for each user. As mentioned
above, when investigating top-K performance, K=100 is a
reasonable setting. Thus, here we evaluated the performance
via two metrics: HR@100 and NDCG@100. We tuned hyper-
parameters, with a similar way as Section 4.1, to report the
best performance for various subsets of interaction data.
From the results, we have the following two observations.

First, adding views data leads to better performance
than adding carts data. The main reason is probably that
the cart data contains too similar signal with the purchase
data and provides fewer new signal on user preference.
Specifically, a purchase record is often accompanied by a
carting record. On the contrary, the view behaviors provide
some useful intermediate feedback such as, viewed and
not bought, which can effectively improve the learning on
binary implicit feedback.

Second, by using only 50% of the cart and view inter-
actions, we find that the performance is worse than the
previous two experiments. Specifically, the performance of

(Purchase, 50% Carting) is worse than only using purchase,
while (Purchase, 50% View) is better than only using pur-
chase. There are two major reasons. On one hand, view
is the weakest signal to reflect user preference and the
total number of views is very large, making the missing of
part of view data is acceptable. Therefore, missing of some
view records shall not affect the result too much. On the
other hand, random missing of carts records can bring some
noises, as cart behavior is very similar with the purchase
behavior, and this validates the hypothesis in [24]: those
missing records of some behaviors are more likely taken as
negative value rather than missing value by model.

In order to understand how hyper-parameters impact
the performance, we focus on the coefficient in the joint loss
function of MTL, λr , since it controls the weight of each
type of behavior and is a key parameter of our method.
There are three and two behavior types for Beibei and
Tmall, respectively. For the Beibei dataset, there are three
types of behaviors (view, cart and purchase), which means
there are three loss coefficients λ1, λ2 and λ3, respectively.
Note that λ1 + λ2 + λ3 = 1, we tune the three coefficients
in [0, 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6 , 1] and plot the performance of HR@100

in Figure 4(a), 4(b) and 4(c). When λ1 and λ2 are given,
then value of λ3 is determined. Therefore each block rep-
resents a setting of λr . And in these three figures, darker
blocks means better performance. Similarly, for the Tmall
dataset, there are only two types of behaviors (view and
purchase), so there are two coefficients: λ1 + λ2 = 1. We
tune λ1 from 0 to 1 with step size 0.1 and plot the HR@100
performance in Figure 4(d). For both datasets, the best
performance of the NMTR methods are achieved at almost
the same setting, (2/6,2/6,2/6) for the Beibei dataset and
about(0.4, 0.6) for the Tmall dataset, which verifies that it
is not so independent on the utilized CF unit. For Beibei
dataset, in Figure 4(a), 4(b) and 4(c), upper-right blocks
are rather shallow since they represent a relatively small λ3

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

TABLE 6: Performance comparison of sequential training
and multi-task learning on the Beibei and Tmall datasets

Dataset Beibei Tmall
Performance HR@100 NDCG@100 HR@100 NDCG@100
NMTR-GMF 0.3119 0.0741 0.1196 0.0314

Sequential-GMF 0.2730 0.0672 0.0913 0.0290
NMTR-MLP 0.3188 0.0762 0.0982 0.0290

Sequential-MLP 0.2663 0.0692 0.0856 0.0226
NMTR-NeuMF 0.3193 0.0760 0.1169 0.0366

Sequential-NeuMF 0.2704 0.0658 0.0946 0.0304

0 1/6 2/6 3/6 4/6 5/6 1
Coefficient of View Behavior

1

0

1/6

2/6

3/6

4/6

5/6

1

C
oe

ffi
ci

en
t o

f C
ar

tin
g

B
eh

av
io

r
2 Beibei Dataset

0.15

0.2

0.25

0.3

H
R

@
10

0

(a) NMTR-GMF on Beibei Dataset

0 1/6 2/6 3/6 4/6 5/6 1
Coefficient of View Behavior

1

0

1/6

2/6

3/6

4/6

5/6

1
C

oe
ffi

ci
en

t o
f C

ar
tin

g
B

eh
av

io
r

2 Beibei Dataset

0.15

0.2

0.25

0.3

H
R

@
10

0

(b) NMTR-MLP on Beibei Dataset

0 1/6 2/6 3/6 4/6 5/6 1
Coefficient of View Behavior

1

0

1/6

2/6

3/6

4/6

5/6

1

C
oe

ffi
ci

en
t o

f C
ar

tin
g

B
eh

av
io

r
2 Beibei Dataset

0.15

0.2

0.25

0.3

H
R

@
10

0

(c) NMTR-NeuMF on Beibei
Dataset

0 0.2 0.4 0.6 0.8 1.0
Coefficient of View Behaivor

1

0.07

0.08

0.09

0.1

0.11

0.12

H
R

@
10

0

Tmall Dataset

NMTR-GMF
NMTR-MLP
NMTR-NeuMF

(d) NMTR on Beibei Dataset

Fig. 4: HR@100 Performance of NMTR with different loss
coefficient on the Beibei and Tmall datasets

which is the coefficient of purchase behavior. However, for
Tmall dataset, in Figure 4(d), a relatively low coefficient of
purchase behavior outperforms that of view behavior. We
argue that it is due to size difference of auxiliary behavioral
data in two datasets.

Furthermore, as mentioned in Section 3.4, we utilize
multi-task learning rather than sequential learning to opti-
mize our proposed model. Then to study how multi-task
learning outperforms the intuitive sequential learning in
optimizing the cascaded prediction models, we compare
the performance of the two training methods in Table 6.
Here we still adopt HR@100 and NDCG@100 as evaluation
metrics. For the sequential learning, we feed the cascaded
CF units for each behavior type with separated samples
following the order of behaviors. We can find that train-
ing in the sequential manner achieved worse performance,
which verified the effectiveness of our proposed multi-task
training component.

In summary, our NMTR incorporates the semantics of
different behavior interactions and capture the ordinal rela-
tions among them. In addition, coefficient λr , as a significant
hyper-parameter in our NMTR model, is independent with
CF unit. Furthermore, multi-task training is demonstrated
to far better than sequential training.

5~8 9~12 13~16 17~20 >20
Number of purchase

0.2

0.25

0.3

0.35

0.4

0.45

H
R

@
10

0

Beibei Dataset

NeuMF
MC-NeuMF
CMF
MC-BPR
NMTR-NeuMF

(a) HR@100

5~8 9~12 13~16 17~20 >20
Number of purchase

0.05

0.06

0.07

0.08

0.09

0.1

N
D

C
G

@
10

0

Beibei Dataset

NeuMF
MC-NeuMF
CMF
MC-BPR
NMTR-NeuMF

(b) NDCG@100

Fig. 5: Performance of NeuMF, MC-NeuMF, CMF, MC-BPR
and NMTR-NeuMF on users with different number of

purchase records

4.4 Impact of Data Sparsity (RQ3)

Data sparsity is a big challenge for recommender systems
based on implicit feedbacks [11], [25], and multi-behavior
recommendation is a typical solution of it. Thus, we study
how our proposed NMTR model improves the recommen-
dation for those users having few records of target behavior.
Specifically, we divided all users of the Beibei dataset into
several groups according to the number of purchase records:
[5-8, 9-12, 13-16, 17-20, >20]. In each group, the number of
users are in the range of 4000 to 5000, which eliminates
the randomness of experimental results. For each group,
we compare the performance of our methods with baseline
methods. For NMTR and MC models, we only plot the
most competitive ones, NMTR-NeuMF and MC-NeuMF, for
clarity; for baselines for single-behavior data, we also only
plot the best one, NeuMF.

The results are shown in Figure 5. From the results,
we can observe that when the user purchase data be-
comes sparser, the recommendation performance of NMTR-
NeuMF decreases slower than other methods. Especially
for NDCG, from fifth to first user group, NMTR-NeuMF
is decreased by 27.56% while MC-BPR and MC-NeuMF is
decreased by 40.09% and 38.62%. Furthermore, even in the
first user group with only 5-8 purchase records, our NMTR
still keeps a good recommendation performance of 0.027 for
HR@100 and 0.07 for NDCG@100, which outperforms the
best baseline by 11.23% and 15.35%, respectively. As a result,
the performance gap between NMTR and other methods
becomes larger when data become sparser. Since NMTR
model learns the other type of behaviors in a reasonable
way, it can achieve a good performance for users with sparse
interactions. As a summary, we conclude that our proposed
NMTR model solves data sparsity problem efficiently to
some extent.

In conclusion, we conduct extensive experiments on
two real-word datasets, which verifies that our proposed
NMTR model outperform existing recommendation meth-
ods. Further studies demonstrate our model can alleviate
data sparisty problem efficiently.

5 RELATED WORK

5.1 Multi-Behavior Recommendation.

In today’s online information systems, user can interact with
a system in multiple forms. There are many works [26], [27]
analyzing and modeling such multiple types of behaviors.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

Lo et al. [26] studied the influence of click and save behavior
on the final purchase decision via case study. Moe et al. [28],
Dong et al. [27] and Lee et al. [29] utilized various time-
evolving behavioral features to predict purchase behaviors.
Olbrich et al. [30] and Yehezki et al. [31] proposed to extract
features from user clickstreams to help predict purchase.
These works verify the effectiveness of other types of behav-
iors to help model the target behavior. Multi-behavior based
recommendation aims to leverage the behavior data of other
types to improve the recommendation performance on the
target behavior. Matrix factorization, a prevalent method for
single-behavior based recommendation [1], [11], has been
adapted to the multi-behavior scenario. Ajit et al. [3] first
proposed a collective matrix factorization model (CMF) to
simultaneously factorize multiple user-item interaction ma-
trices with sharing item-side embeddings across matrices.
Some other works extended the CMF to handle datasets
of multiple user behaviors [5], [6]. Zhe et al. [6] considered
different behaviors in online social network (comment, re-
share, and create-post), while Artus et al. [5] extended
CMF with sharing user-side embeddings in recommenda-
tion based social network data. On the other hand, some
works approach multi-behavior recommendation from the
perspective of learning [7], [8], [32], [33]. Babak et al. [7]
proposed an extension of Bayesian Personalized Ranking
(BPR) [1], as Multi-channel BPR, to adapt the sampling rule
from different types of behavior in training of standard BPR.
Qiu et al. [8] proposed an adaptive sampler for BPR con-
sidering co-occurrence of multiple feedbacks while Guo et
al. [32] proposed to sample unobserved items as positive
items based on item-item similarity, which is calculated by
multiple types of feedbacks. Ding et al. [33] developed a
margin-based pairwise learning framework when view-data
is available. As discussed in the introduction, these existing
models suffer from several limitations, which are addressed
by our neural network-based solution NMTR.

5.2 Neural Network Based Recommendation.

Salakhutdinov et al. [34] proposed a Restricted Boltzmann
Machines to predict explicit ratings, which was the first to
apply neural network to recommender system. Recently,
lots of works utilize neural network to extract the aux-
iliary information and features in recommender system,
such as textual [35]–[39], visual [40], [41], audio [42], [42]
and video [43]. Rather than these other side features, some
other works make use of recurrent neural network to model
temporal features in recommender system [44]–[47].

More recently, He et al. [2] proposed a neural network
architecture for collaborative filtering, named Neural Col-
laborative Filtering (NCF), which learns the user-item inter-
action function using neural networks. It has been extended
to adapt to different recommendation scenarios [12], [48].
For example, Wang et al. [12] applied NCF to model user-
item interaction in both information domain and social
domain, and Chen et al. [48] combined NCF with attention
mechanism to recommend videos and images. Recently,
inspire the advances in graph representation learning, some
works [49]–[51] utilize graph neural network [52] for rec-
ommendation tasks. Our work extends the architecture of
NCF to a multi-task learning framework, which aims to

solve the problem of learning recommender systems from
multi-behavior data.

5.3 Multi-task Learning for Recommendation.

In multi-task learning (MTL) framework, various related
tasks can share common representations, while training in
parallel. Traditional multi-task learning works are mainly
based on matrix regularization [18], [53] and neural-based
approach [54], [55]. To the best of our knowledge, [56] is
the first work to apply multi-task learning to recommender
system, which built a MTL framework to limit the simi-
larity between users and similarity between items. Bansal
et al. [57] proposed a gated-recurrent-units based MTL net-
work which share the embedded representation of texts and
output personalized text for different users. In contrast, our
work adapts MTL our task to effectively learn from multiple
user behaviors.

6 CONCLUSION AND FUTURE WORK

In this work, we designed a recommendation system to
exploit multiple types of user behaviors. We proposed a
neural network method named NMTR, which combines the
recent advances of NCF modeling and the efficacy of multi-
task learning. We conducted extensive experiments on two
real-world datasets and demonstrated the effectiveness of
our NMTR method on multiple recommender models. This
work makes the first step towards understanding how to
integrate the rich semantics of users’ multiple behaviors into
recommender systems. With increasing kinds of user behav-
iors on the Web, we believe multi-behavior recommendation
is an important topic and will attract more attention in the
future.

As for future work, we will perform online evaluation
of our NMTR method through A/B tests, and focus more
on the practical issues of online learning and incremental
learning. On the other hand, we will study multi-behavior
recommendation in the scenarios that user behaviors cannot
form a full-order cascading relation. These behaviors not
only contain the normal interactions between users and
items, but may also include social interactions among users,
such as sharing, following, etc. It is interesting to investigate
how to integrate these heterogeneous kinds of user behav-
iors into a unified recommendation framework. Lastly, we
will study time-aware models to capture the evolution of
user preference in multi-behavior recommendation, espe-
cially for capturing dynamic user interests with RNN-based
or other models for better recommendation.

ACKNOWLEDGEMENT

This work was supported in part by The National Key
Research and Development Program of China under grant
2017YFE0112300, the National Nature Science Foundation
of China under 61861136003, 61621091 and 61673237, Beijing
National Research Center for Information Science and Tech-
nology under 20031887521, and research fund of Tsinghua
University - Tencent Joint Laboratory for Internet Innova-
tion Technology. This research is also part of NExT research
which is supported by the National Research Foundation,
Prime Ministers Office, Singapore under its IRC@SG Fund-
ing Initiative. This work is also supported by the National
Natural Science Foundation of China (61972372).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

REFERENCES

[1] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“Bpr: Bayesian personalized ranking from implicit feedback,” in
UAI, 2009, pp. 452–461.

[2] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in WWW, 2017, pp. 173–182.

[3] A. P. Singh and G. J. Gordon, “Relational learning via collective
matrix factorization,” in SIGKDD. ACM, 2008, pp. 650–658.

[4] C. Park, D. Kim, J. Oh, and H. Yu, “Do also-viewed products help
user rating prediction?” in WWW, 2017, pp. 1113–1122.

[5] A. Krohn-Grimberghe, L. Drumond, C. Freudenthaler, and
L. Schmidt-Thieme, “Multi-relational matrix factorization us-
ing bayesian personalized ranking for social network data,” in
WSDM, 2012, pp. 173–182.

[6] Z. Zhao, Z. Cheng, L. Hong, and E. H. Chi, “Improving user topic
interest profiles by behavior factorization,” in WWW, 2015, pp.
1406–1416.

[7] B. Loni, R. Pagano, M. Larson, and A. Hanjalic, “Bayesian person-
alized ranking with multi-channel user feedback,” in RecSys, 2016,
pp. 361–364.

[8] H. Qiu, Y. Liu, G. Guo, Z. Sun, J. Zhang, and H. T. Nguyen,
“Bprh: Bayesian personalized ranking for heterogeneous implicit
feedback,” Information Sciences, vol. 453, pp. 80–98, 2018.

[9] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma, “Explicit
factor models for explainable recommendation based on phrase-
level sentiment analysis,” in SIGIR, 2014, pp. 83–92.

[10] R. Heckel, M. Vlachos, T. Parnell, and C. Dünner, “Scalable
and interpretable product recommendations via overlapping co-
clustering,” in ICDE, 2017, pp. 1033–1044.

[11] S. Kabbur, X. Ning, and G. Karypis, “Fism: factored item similarity
models for top-n recommender systems,” in SIGKDD, 2013, pp.
659–667.

[12] X. Wang, X. He, L. Nie, and T.-S. Chua, “Item silk road: Rec-
ommending items from information domains to social users,” in
SIGIR, 2017.

[13] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” TPAMI, vol. 35, no. 8, pp. 1798–
1828, 2013.

[14] T. Bai, J. Wen, J. Zhang, and W. X. Zhao, “A neural collaborative
filtering model with interaction-based neighborhood,” in CIKM,
2017, pp. 1979–1982.

[15] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and
J. Sun, “Temporal recommendation on graphs via long-and short-
term preference fusion,” in Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2010, pp. 723–732.

[16] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized markov chains for next-basket recommendation,” in
Proceedings of the 19th international conference on World wide web.
ACM, 2010, pp. 811–820.

[17] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-
based recommendations with recurrent neural networks,” in ICLR,
2016.

[18] T. Evgeniou and M. Pontil, “Regularized multi–task learning,” in
SIGKDD, 2004, pp. 109–117.

[19] X. Chen, Y. Zhang, Q. Ai, H. Xu, J. Yan, and Z. Qin, “Personalized
key frame recommendation,” in SIGIR, 2017, pp. 315–324.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
in ICCV, 2015, pp. 1026–1034.

[21] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR, 2015.

[22] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” JMLR, vol. 12, no.
Jul, pp. 2121–2159, 2011.

[23] W. Wang, H. Yin, S. Sadiq, L. Chen, M. Xie, and X. Zhou, “Spore:
A sequential personalized spatial item recommender system,” in
ICDE, 2016, pp. 954–965.

[24] H. Steck, “Training and testing of recommender systems on data
missing not at random,” in SIGKDD, 2010, pp. 713–722.

[25] H. Yin, L. Chen, W. Wang, X. Du, Q. V. H. Nguyen, and X. Zhou,
“Mobi-sage: A sparse additive generative model for mobile app
recommendation,” in ICDE, 2017, pp. 75–78.

[26] C. Lo, D. Frankowski, and J. Leskovec, “Understanding behaviors
that lead to purchasing: A case study of pinterest,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, 2016, pp. 531–540.

[27] Y. Dong and W. Jiang, “Brand purchase prediction based on
time-evolving user behaviors in e-commerce,” Concurrency and
Computation: Practice and Experience, vol. 31, no. 1, p. e4882, 2019.

[28] W. W. Moe and P. S. Fader, “Dynamic conversion behavior at e-
commerce sites,” Management Science, vol. 50, no. 3, pp. 326–335,
2004.

[29] M. Lee, T. Ha, J. Han, J.-Y. Rha, and T. T. Kwon, “Online footsteps
to purchase: Exploring consumer behaviors on online shopping
sites,” in Proceedings of the ACM Web Science Conference. ACM,
2015, p. 15.

[30] R. Olbrich and C. Holsing, “Modeling consumer purchasing be-
havior in social shopping communities with clickstream data,”
International Journal of Electronic Commerce, vol. 16, no. 2, pp. 15–40,
2011.

[31] S. Yehezki and A. Dhini, “Classifying purchase decision based
on user clickstream in e-commerce using web usage mining,” in
Proceedings of the International Conference on Business and Information
Management. ACM, 2017, pp. 57–61.

[32] G. Guo, H. Qiu, Z. Tan, Y. Liu, J. Ma, and X. Wang, “Resolving
data sparsity by multi-type auxiliary implicit feedback for recom-
mender systems,” Knowledge-Based Systems, vol. 138, pp. 202–207,
2017.

[33] J. Ding, G. Yu, X. He, Y. Quan, Y. Li, T.-S. Chua, D. Jin, and J. Yu,
“Improving implicit recommender systems with view data.” in
IJCAI, 2018, pp. 3343–3349.

[34] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann
machines for collaborative filtering,” in ICML, 2007, pp. 791–798.

[35] L. Zheng, V. Noroozi, and P. S. Yu, “Joint deep modeling of users
and items using reviews for recommendation,” in WSDM, 2017,
pp. 425–434.

[36] L. Tang and E. Y. Liu, “Joint user-entity representation learning for
event recommendation in social network,” in ICDE. IEEE, 2017,
pp. 271–280.

[37] Z. Cheng, Y. Ding, L. Zhu, and M. Kankanhalli, “Aspect-aware
latent factor model: Rating prediction with ratings and reviews,”
in Proceedings of the 2018 World Wide Web Conference. International
World Wide Web Conferences Steering Committee, 2018, pp. 639–
648.

[38] Z. Cheng, X. Chang, L. Zhu, R. C. Kanjirathinkal, and M. Kankan-
halli, “Mmalfm: Explainable recommendation by leveraging re-
views and images,” ACM Transactions on Information Systems
(TOIS), vol. 37, no. 2, p. 16, 2019.

[39] Z. Cheng, Y. Ding, X. He, L. Zhu, X. Song, and M. S. Kankanhalli,
“Aˆ 3ncf: An adaptive aspect attention model for rating predic-
tion.” in IJCAI, 2018, pp. 3748–3754.

[40] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-
based recommendations on styles and substitutes,” in SIGIR, 2015,
pp. 43–52.

[41] S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu, “What
your images reveal: Exploiting visual contents for point-of-interest
recommendation,” in WWW, 2017, pp. 391–400.

[42] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-
based music recommendation,” in NIPS, 2013, pp. 2643–2651.

[43] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in RecSys, 2016, pp. 191–198.

[44] S. Wu, W. Ren, C. Yu, G. Chen, D. Zhang, and J. Zhu, “Personal rec-
ommendation using deep recurrent neural networks in netease,”
in ICDE, 2016, pp. 1218–1229.

[45] S. Okura, Y. Tagami, S. Ono, and A. Tajima, “Embedding-based
news recommendation for millions of users,” in SIGKDD, 2017,
pp. 1933–1942.

[46] Y. Song, A. M. Elkahky, and X. He, “Multi-rate deep learning for
temporal recommendation,” in SIGIR, 2016, pp. 909–912.

[47] W.-C. Kang and J. McAuley, “Self-attentive sequential recom-
mendation,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 2018, pp. 197–206.

[48] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua, “Attentive
collaborative filtering: Multimedia recommendation with item-
and component-level attention,” in SIGIR, 2017, pp. 335–344.

[49] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining
(KDD). ACM, 2018, pp. 974–983.

[50] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The World Wide
Web Conference (WWW), 2019, pp. 417–426.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

[51] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” in International Conference on Research and
Development in Information Retrieval (SIGIR), 2019.

[52] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in International Conference on
Learning Representations (ICLR), 2017.

[53] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature
learning,” in NIPS, 2007, pp. 41–48.

[54] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang, “Exploiting
feature and class relationships in video categorization with regu-
larized deep neural networks,” TPAMI, vol. 40, no. 2, pp. 352–364,
2018.

[55] Y. Yang and T. Hospedales, “Deep multi-task representation learn-
ing: A tensor factorisation approach,” in ICLR, 2017.

[56] X. Ning and G. Karypis, “Multi-task learning for recommender
system,” in ACML, 2010, pp. 269–284.

[57] T. Bansal, D. Belanger, and A. McCallum, “Ask the gru: Multi-
task learning for deep text recommendations,” in RecSys, 2016, pp.
107–114.

	1 Introduction
	2 PRELIMINARIES
	2.1 Problem Formulation
	2.2 Neural Collaborative Filtering (NCF)
	2.3 Collective Matrix Factorization

	3 Methods
	3.1 Shared Embedding Layer
	3.2 Separated Interaction Function
	3.3 Cascaded Predictions
	3.4 Multi-Task Learning

	4 Experiments
	4.1 Experimental Settings
	4.1.1 Datasets and Evaluation Protocol
	4.1.2 Baselines
	4.1.3 Parameter Settings

	4.2 Performance Comparison (RQ1)
	4.3 Impact of Auxiliary Behaviors and Parameters (RQ2)
	4.4 Impact of Data Sparsity (RQ3)

	5 Related Work
	5.1 Multi-Behavior Recommendation.
	5.2 Neural Network Based Recommendation.
	5.3 Multi-task Learning for Recommendation.

	6 Conclusion and future work
	References

