
Efficient Computation and Visualization of
Multiple Density-Based Clustering Hierarchies

Antonio Cavalcante Araujo Neto , J€org Sander , Ricardo J. G. B. Campello, and Mario A. Nascimento

Abstract—HDBSCAN*, a state-of-the-art density-based hierarchical clustering method, produces a hierarchical organization of

clusters in a dataset w.r.t. a parametermpts. While a small change inmpts typically leads to a small change in the clustering structure,

choosing a “good”mpts value can be challenging: depending on the data distribution, a high or lowmpts value may be more

appropriate, and certain clusters may reveal themselves at different values. To explore results for a range ofmpts values, one has to

run HDBSCAN* for each value independently, which can be computationally impractical. In this paper, we propose an approach to

efficiently compute all HDBSCAN* hierarchies for a range ofmpts values by building upon results from computational geometry to

replace HDBSCAN*’s complete graph with a smaller equivalent graph. An experimental evaluation shows that our approach can obtain

over one hundred hierarchies for the computational cost equivalent to running HDBSCAN* about twice, which corresponds to a

speedup of more than 60 times, compared to running HDBSCAN* independently that many times. We also propose a series of

visualizations that allow users to analyze a collection of hierarchies for a range ofmpts values, along with case studies that illustrate

how these analyses are performed.

Index Terms—Clustering, density-based clustering, hierarchical clustering, data mining, relative neighborhood graph

Ç

1 INTRODUCTION

THE discovery of groups within datasets plays an impor-
tant role in the exploration and analysis of data. For sce-

narios where there is little to no prior knowledge about the
data, clustering techniques are widely used. Density-based
clustering, in particular, is a popular clustering paradigm
that defines clusters as high-density regions in the data
space, separated by low-density regions. Algorithms in this
class, such as DBSCAN [16], DENCLUE [21], OPTICS [3]
and HDBSCAN* [9], stand out for their ability to find clus-
ters of arbitrary shapes and to differentiate between cluster
points and noise. HDBSCAN*, the current state-of-the-art
among those, computes a hierarchy of nested clusters, repre-
senting clusters at different density levels. It generalizes
and improves several aspects of previous algorithms, and
allows for a comprehensive framework for cluster analysis,
visualization, and unsupervised outlier detection [9]. It
requires a single parameter mpts, a smoothing factor that
implicitly influences which clusters are detectable in the
cluster hierarchy. Choosing a “correct” value for mpts is
typically not trivial. For instance, consider the examples in
Fig. 1, which shows the results of HDBSCAN* (using auto-
matic cluster extraction) for two datasets A and B and two

sample mpts values, mpts ¼ 5 and 25. Dataset A is
completely labeled as noise for mpts > 24, while the two
structures in dataset B only start to be detected for
mpts > 24. The main observation here is that (1) there is no
single value of mpts that would result in the extraction of
the clusters in both cases, and (2) a user would not know
which value formpts is suitable for a general dataset. It may
even be the case that different values of mpts are needed to
reveal clusters in different areas of the data space of the
same dataset.

To analyze clustering structures in practice, users typically
run HDBSCAN* (like other algorithms with a parameter)
multiple timeswith several differentmpts values, and explore
the resulting hierarchies. Ideally, one would want to analyze
cluster structures w.r.t. a large range of mpts values, in order
to fully explore a dataset in a given application. A larger range
of HDBSCAN* solutions for multiple values of mpts values
offers greater insight into a dataset, also providing additional
opportunities for exploratory data analysis. For instance,
using internal cluster validation measures such as DBCV [27],
one can identify promising density levels from different hier-
archies, produced from different tunings of the algorithm’s
density estimates (based onmpts).

However, one is typically constrained by the non-negligi-
ble computational cost of running HDBSCAN* once for each
desired value of mpts. The main component of the computa-
tional cost is due to the fact that HDBSCAN* is based on com-
puting a Minimum Spanning Tree (MST) for a complete graph
for a given value of mpts. Even though this complete graph
does not need to be explicitly stored, it has Oðn2Þ edges (for n
data points) whose weights depend onmpts. For each desired
value of mpts, these weights have to be re-computed and an
MST has to be constructed for the corresponding complete
graph (we note that the computational cost for the MST

� A. Cavalcante Araujo Neto, J. Sander, and M.A. Nascimento are with the
Department of Computing Science, University of Alberta, Edmonton, AB
T6G 2R3, Canada.
E-mail: {antonio.cavalcante, jsander, mario.nascimento}@ualberta.ca.

� R.J.G.B. Campello is with the School of Mathematical and Physical
Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
E-mail: ricardo.campello@newcastle.edu.au.

Manuscript received 8 June 2018; revised 25 Sept. 2019; accepted 12 Dec.
2019. Date of publication 25 Dec. 2019; date of current version 7 July 2021.
(Corresponding author: Antonio Cavalcante Araujo Neto.)
Recommended for acceptance by X. Zhu.
Digital Object Identifier no. 10.1109/TKDE.2019.2962412

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 8, AUGUST 2021 3075

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2172-9859
https://orcid.org/0000-0002-2172-9859
https://orcid.org/0000-0002-2172-9859
https://orcid.org/0000-0002-2172-9859
https://orcid.org/0000-0002-2172-9859
https://orcid.org/0000-0003-4068-7268
https://orcid.org/0000-0003-4068-7268
https://orcid.org/0000-0003-4068-7268
https://orcid.org/0000-0003-4068-7268
https://orcid.org/0000-0003-4068-7268
https://orcid.org/0000-0002-7609-1805
https://orcid.org/0000-0002-7609-1805
https://orcid.org/0000-0002-7609-1805
https://orcid.org/0000-0002-7609-1805
https://orcid.org/0000-0002-7609-1805
mailto:antonio.cavalcante@ualberta.ca
mailto:jsander@ualberta.ca
mailto:mario.nascimento@ualberta.ca
mailto:ricardo.campello@newcastle.edu.au

construction depends on the number of edges in the input
graph,Oðn2Þ in this case).

As the main contribution we provide theoretical and prac-
tical results that lead us to a method for computing multiple
hierarchies w.r.t. a range of mpts values ðk1; . . . ; kmaxÞ, which
is much more efficient than re-running HDBSCAN* for each
individual value of mpts in that range. This method gives
access to a large range of HDBSCAN* solutions at a low
computational cost, in fact equivalent to the cost of running
the original HDBSCAN* for only 1 or 2 values of mpts. To
achieve that, we show the following:

1) The smallest known neighborhood graph containing
the Euclidean Minimum Spanning Tree (EMST) is
the relative neighborhood graph (RNG)—as a first
step towards finding a small, single spanning sub-
graph that can replace the complete graph in
HDBSCAN*, while maintaining its correctness.

2) The proximity measure used in HDBSCAN*, which
depends on mpts, can be used to define RNGs that
can replace the complete graph in HDBSCAN* with
one RNG for each value ofmpts.

3) For a range of mpts values, RNGs for smaller values
are contained in RNGs for larger values of mpts, that
is, a single RNG is sufficient to compute the hierar-
chies for the whole range ofmpts values.

4) Information related to “core-distances” that is
needed in HDBSCAN* and that can be computed in
a pre-processing step, allows us to formulate a
highly efficient strategy for computing the single
RNG, suitable for a whole range ofmpts values.

These results combined allow us to replace the (virtual)
complete graph of the data in HDBSCAN* with a single,
pre-computed RNG that contains all the edges needed to
compute the hierarchies for every value of mpts 2 ½1; kmax�.
Moreover, this RNG has typically much fewer edges than
the complete graph so its construction cost is more than out-
weighed by the reduction in edge weight computations.

This paper is an extension of [29]. We add here all the
proofs that guarantee the correctness of our proposed
approach. More importantly, as a new contribution, we
present a series of visualization methods that can be used to
thoroughly analyze a set of hierarchies w.r.t. a range ofmpts
values. We illustrate the use of those visualization methods
by analyzing case studies based on real datasets.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 covers the concepts and
techniques used in this paper. Section 4 presents our pro-
posal and proves its correctness. Section 5 shows and dis-
cusses the results of our experimental evaluation. Section 6

introduces new means to visualize clusters that help with
the analysis of a set of hierarchies. Finally, Section 7 offers
conclusions and directions for future work.

2 RELATED WORK

To the best of our knowledge, there is no previous proposal
for computing multiple clustering hierarchies efficiently.
There are works on automatic parameter selection strategies
for density-based clustering, e.g., [13], [25], [30], which are
loosely related to the issue illustrated in Fig. 1. However,
those proposals are unsuitable to be used with HDBSCAN*,
since they were developed for non-hierarchical clustering
algorithms. In addition, they rely on assumptions that are
often not satisfied in practice and there is not enough evi-
dence to support their claims about parameter optimality.

If we denote the HDBSCAN*’s (virtual) complete graph
for a given mpts by Gmpts, a line of work related to our goal
of reducing the cost for computing an MST for each Gmpts,
are the works regarding (1) dynamically updating graphs,
specifically MSTs, and (2) neighborhood graphs that could
potentially replace HDBSCAN*’s (virtual) complete graph.
We discuss some of those next.

The authors of [12], [20], [23], studied the problem of
maintaining dynamic MSTs. However, these approaches are
more suitable when the changes in the underlying graph
take place sequentially, i.e., considering each operation (e.g.,
edge updates) individually. When it comes to major changes
taking place globally and simultaneously across the entire
graph, as opposed to a few localized changes, a sequence of
applications of these techniques tends to be computationally
very costly, possibly even more costly than the construction
of the entire MST from scratch. This is the case for Gmpts,
which is a complete graph whose majority of edges will
likely change as a result of a change in the mpts value.

The works on neighborhood graphs that are most
related to our proposal aim at speeding up the special case
of computing a Euclidean Minimum Spanning Tree, by first
computing a spanning subgraph that is guaranteed to con-
tain all the EMST edges. One of these strategies uses a
Delaunay Triangulation [14] of the complete euclidean
graph G, since it has been shown that the EMST is con-
tained in the Delaunay Triangulation of G [32]. Other span-
ning subgraphs of the complete graph G that contain the
EMST are the Gabriel Graph [17], [33] and the Relative
Neighborhood Graph [32]. Unfortunately, these results are
not simply applicable to our problem because Gmpts lies in
a transformed space of the data that depends on mpts
(Gmpts 6¼ G). It is one of the main contributions of this
paper to formally show how to adapt an RNG so that it

Fig. 1. Clusters from datasets A and B formpts ¼ 5 and 25. Noise points are colored in red in all plots.

3076 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 8, AUGUST 2021

can be used by HDBSCAN* as a suitable replacement for
Gmpts for different values of mpts.

3 BACKGROUND

HDBSCAN* stands out for its ability to detect arbitrary-
shaped clusters, and noise, as well as for building a hierarchi-
cal organization of cluster structures, rather thanfinding a sin-
gle flat partitioning of the data. It can be considered a practical
and theoretical generalization of its predecessors (DBSCAN
and OPTICS). HDBSCAN*’s main output is a cluster hierar-
chy that describes the nested structure of density-based clus-
ters in a dataset w.r.t. the parameter mpts. In order to
determine this structure in a datasetX, one needs to know (i)
for each point p 2 X: the smallest radius " around p that cov-
ers mpts other points, called p’s “core distance” w.r.t. mpts;
and (ii) for each value of ": the clusters and the noise pointsw.
r.t. " andmpts. The latter information can be derived concep-
tually from a complete, edge-weighted graph, called Mutual
Reachability Graph, denoted byGmpts, where nodes represent
the points in X, and the edge weight of an edge between two
points p and q corresponds to the “mutual reachability dis-
tance” (w.r.t.mpts) between p and q, defined as

mrdmptsðp; qÞ ¼ maxfcmptsðpÞ; cmptsðqÞ; dðp; qÞg; (1)

where dð�; �Þ represents the underlying distance function
(typically Euclidean Distance), and cmptsðpÞ represents the
core distance of p, which is formally the distance from p to
itsmpts-th nearest neighbor,mpts�NNðpÞ

cmptsðpÞ ¼ dðp;mpts�NNðpÞÞ: (2)

In this work, we assume that the underlying distance dð�; �Þ
is a proper metric, and, without loss of generality, we use
Euclidean Distance in our examples.

Intuitively, an edgeweight inGmpts corresponds to themini-
mum radius " at which the corresponding endpoints are
directly "-reachable w.r.t. mpts, i.e., the smallest distance at
which both points are in each other’s "-neighborhood, and
both "-neighborhoods contain at least mpts points (i.e., both
are dense). Moreover, Gmpts has the following important char-
acteristics related to mrdmpts and to how these edge weights
change when changing the value of mpts: (1) Increasing the
value of mpts usually leads to higher values of cmpts, never
smaller; (2)When increasing cmpts, more edges tend to have the
same edgeweight, since a point pwith a high cmpts value deter-
mines the weight of all edges between itself and itsmpts-near-
est neighbors with a smaller cmpts, given the definition of
mrdmpts as a max function; and (3) When decreasing the value
ofmpts, edge weights can either decrease or remain the same,
but never increase. These characteristics allow us to devise and
prove the correctness of the strategy proposed in thiswork.

Considering the concepts represented by Gmpts, the
HDBSCAN* hierarchy w.r.t. mpts for a dataset X is com-
puted in the following way: First, the core distances of all
points in X w.r.t. mpts are computed. Then, an MST of Gmpts

is dynamically computed.1 From this MST, the complete

density-based cluster hierarchy w.r.t. mpts is extracted, by
removing edges from the MST in descending order of edge
weight, and (re-)labeling the connected components and
noise at the “next” resulting level. For a specific density
level (" and mpts), removing all edges from Gmpts with
weights greater than " reveals the maximal, connected com-
ponents, i.e., clusters, of that density level. The density-
based clustering hierarchy can thus be compactly repre-
sented by (and more easily be extracted from) a Minimum
Spanning Tree of Gmpts.

4 APPROACH

When HDBSCAN* has to be run for a range, k1; . . . ; kmax, of
mpts values, one MST for each value of mpts 2 fk1; . . . ;
kmaxg has to be computed by taking the complete,
unweighted graph G of the dataset, adding to it mutual
reachability distances as edge weights, to obtain an Gmpts,
and then computing the MST of this graph; the Oðn2Þ edge
weights of Gmpts have to be re-computed for each mpts 2
fk1; . . . ; kmaxg by running a k-Nearest-Neigbor (k-NN)
query for each point in the dataset with k equal to the cur-
rentmpts value, in order to determine core distances.

One straightforward way to speed-up multiple runs of
HDBSCAN* for all values of mpts 2 fk1; . . . ; kmaxg is to exe-
cute k-NN queries for each point only once, using the larg-
est value kmax in the range, and materialize the kmax-NN
query results. Since the k-NNs for k � kmax are part of the
kmax-NNs, the core distances for all values in fk1; . . . ; kmaxg
can be easily obtained from the materialized kmax-NN query
results. While this approach reduces the number of k-NN
queries that have to be executed significantly, a main deter-
mining factor of the total runtime is still the large number of
edges in the complete graphs that have to be processed to
construct MSTs. In the following, we will formally prove
that we can construct a single graph that is typically signifi-
cantly smaller than a complete graph, yet still contains the
edges of the MSTs of Gmpts for all mpts 2 fk1; . . . ; kmaxg.
Thus, we can use this graph instead of the complete graph
in HDBSCAN*, without changing the correctness of the
results. How much speed-up can be achieved depends, of
course, not only on the reduction in number of edges from
the complete graph, but also on the added computational
cost for constructing this graph.

4.1 Results From Computational Geometry

Consider first the special case of mpts ¼ 1, where all core
distances are equal to zero, and thus the mutual reachability
distance mrdmpts reduces to the underlying distance func-
tion. With Euclidean Distance, what HDBSCAN* has to
compute then is the Euclidean Minimum Spanning Tree of
a dataset X, i.e., the MST of a complete graph of X with
Euclidean Distance between points as edge weights.

For the EMST, there are known results from computa-
tional geometry that relate the EMST to the Delaunay Trian-
gulation (DT), the Gabriel Graph (GG) and the Relative
Neighborhood Graph in the following way [32]:

EMST � RNG � GG � DT: (3)

The RNG and GG are special cases of a family of graphs
called b-skeletons [26], which can range from the complete

1. The authors of HDBSCAN* [7], [9] deemGmpts a conceptual graph
as it does not need to be explicitly materialized or stored; edge weights
can be computed on demand, when needed.

NETO ET AL.: EFFICIENT COMPUTATION AND VISUALIZATION OF MULTIPLE DENSITY-BASED CLUSTERING HIERARCHIES 3077

graph to the empty graph, when b goes from 0 to 1. A
value of b ¼ 1 results in the GG and b ¼ 2 in the RNG.

Given this result, the RNG, or possibly a b-skeleton with
even fewer edges, may be a good replacement for a com-
plete graph, if we can answer the following questions
positively:

1) Can we determine the smallest b-skeleton, w.r.t.
number of edges, that has the EMST as a subgraph?

2) Can the results for Euclidean Distance be general-
ized to other reachability distances w.r.t.mpts > 1?

3) Is there a single b-skeleton that contains all the edges
needed to compute an MST of Gmpts for each value
ofmpts in a range of values k1; . . . ; kmax?

4) Does the reduction in the number of edges justify the
additional computational cost for constructing and
materializing a b-skeleton for our task?

We will answer these questions in the following
subsections.

4.2 The Smallest b-Skeleton Containing the EMST

The family of b-skeletons for a set of d-dimensional points is
defined as follows. For a given b, an edge exists between two
points a and b if and only if (iff) the intersection of the two balls
centered at ðb=2Þaþ ð1� b=2Þb and ð1� b=2Þaþ ðb=2Þb, both
with radius bdða; bÞ=2, is empty. For instance, when b ¼ 2
(RNG), the centers of the balls coincide with a and b, and the
radius is equal to dða; bÞ, as shown in Fig. 2a. The highlighted
region, called luneða; bÞ, must be empty for an edge to exist
between a and b. For b ¼ 2, one can equivalently say that an
edge exists between a and b iff

dða; bÞ � maxfdða; cÞ; dðb; cÞg; 8c 6¼ a; b: (4)

The RNG is guaranteed to contain the EMST [32], which,
in essence, can be demonstrated by considering a configura-
tion of three points a, b, c, such that luneða; bÞ contains c, as
shown in Fig. 3a. The edges ða; bÞ, ða; cÞ and ðb; cÞ cannot all
be part of an EMST, as they form a cycle. Since ða; bÞ is the
largest of these edges, ða; bÞ cannot be part of the EMST.
Thus, a necessary (but not sufficient) condition for an edge
ða; bÞ to be in an EMST is that all other points must lie out-
side luneða; bÞ. Hence, for a complete graph G ¼ ðV;EÞ,
RNG ¼ ðV;E n fða; bÞ : luneða; bÞ 6¼ ;gÞ contains the EMST.

Here, we prove by counter example that the RNG is also
the smallest b-skeleton (i.e., there is no b > 2) with that
property. Consider a dataset with three points a, b and c,
located at equal distance from each other, as illustrated in
Fig. 2. When b ¼ 2 (Fig. 2a), according to Inequality (4), there
is an edge between every pair of points in the 2-skeleton of

this dataset. For any b > 2 (Fig. 2b), however, the radius of
the balls that define luneða; bÞ is increased by a factor of
ðb� 2Þ=2, and the centers of the balls are “pulled apart”
accordingly, so that c (equidistant from a and b) must
now be inside luneða; bÞ. Thus, a and b are (by definition of
b-skeleton) no longer connected by an edge. Analogously,
there is no edge between the other pairs of points for b > 2,
resulting in an empty b-skeleton that obviously cannot con-
tain the EMST. Thus, it follows with the known result in
Expression (3) that the RNG (b ¼ 2) is the smallest b-skeleton
that contains the EMST and, for this reason, we choose it as
the basis for further analysis.

4.3 The RNG w.r.t.Mutual Reachability Distance

In this section, we prove that the results for RNGs in euclid-
ean space can be extended to the space of mutual reachabil-
ity distances.

Notation: (1) Let G ¼ ðV;EÞ denote the undirected,
unweighted complete graph corresponding to a dataset, i.e.,
the set of vertexes V represents the data points, and the set
of edges E � V 	 V represents all pairs of vertexes/points.
(2) Let Gi ¼ ðV;E;mrdiÞ be the mutual reachability graph
formpts ¼ i, i.e., the weighted, complete graph for the data-
set with edge weights between points p and q equal to
mrdiðp; qÞ, the mutual reachability distance w.r.t.mpts ¼ i.

We can define a relative neighborhood graph w.r.t. the
mutual reachability distancemrdi, RNGi, as follows:

Definition 1. RNGi ¼ ðV;E0Þ where E0 � E and there is an
edge ða; bÞ 2 E0 if and only if

mrdiða; bÞ � maxfmrdiða; cÞ;mrdiðb; cÞg; 8c 6¼ a; b;

and when there is an edge ða; bÞ 2 E0, we say that a and b are
relative neighbors w.r.t. mrdi. The unweighted graph RNGi

can be extended with edge weights defined by a distance func-
tion mrdj, which results in the edge weighted graph RNGi

j,
where the weight of an edge connecting two points p and q is
equal tomrdjðp; qÞ.
We can prove that the RNGi

i contains the MST of Gi, and
thuswe can replaceGi withRNGi

i when runningHDBSCAN*
formpts ¼ i.

Theorem 1. MST ðGiÞ � RNGi
i

Proof 1. The argument for why EMST � RNG [32] is in fact
valid for any distance function as edge weight as long as
it is symmetric and satisfies triangle inequality, which are
all that is needed to guarantee that ða; bÞ is in fact the larg-
est edge in configurations like the one shown in Fig. 3a.
Consequently, we only need to show that mrdi is
symmetric and satisfies triangle inequality.

Fig. 2. b-skeletons.

Fig. 3. Illustration for proofs of Theorems 1 and 2.

3078 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 8, AUGUST 2021

For symmetry, we can see from the definition of
mrdmpts in Equation (1) thatmrdiða; bÞ ¼ mrdiðb; aÞ (given
that the underlying distance d is symmetric by
assumption).

For the triangle inequality, we have to show that for
all a; b; c in a dataset X

mrdiða; cÞ � mrdiða; bÞ þmrdiðb; cÞ: (5)

By assumption (Section 3), the underling distance d in
the definition ofmrdi satisfies the triangle inequality

dða; cÞ � dða; bÞ þ dðb; cÞ: (6)

There are three cases according to the definition of
mrdiða; cÞ, in all of which (5) must hold:

1) mrdiða; cÞ ¼ ciðaÞ. The max function in the
definition of mrdi implies ciðaÞ � mrdiða; bÞ.
Hence, mrdiða; cÞ ¼ ciðaÞ � mrdiða; bÞ � mrdiða; bÞþ
mrdiðb; cÞ.

2) mrdiða; cÞ ¼ ciðcÞ. (Analogous to case 1).
3) mrdiða; cÞ ¼ dða; cÞ. Since for any x; y it holds

that x � maxðx; yÞ, we can replace the terms on the
right side of Inequality (6) with max functions to
obtain, dða; cÞ � maxfdða; bÞ; ciðaÞ; ciðbÞg þmaxfdðb; cÞ;
ciðbÞ; ciðcÞg ¼ mrdiða; bÞ þmrdiðb; cÞ, and hence,
also in this case: mrdiða; cÞ ¼ dða; cÞ � mrdiða; bÞþ
mrdiðb; cÞ.

Since mrdi satisfies symmetry and triangle inequality,
it follows from [32] that RNGi

i contains the MST of Gi. tu

4.4 One RNG To Rule Them All

We have established that we can use RNGi
i as a substitute

for Gi in HDBSCAN*. We will now show that all MSTs for
HDBSCAN* w.r.t. mpts 2 fk1; . . . ; kmaxg can be obtained
from the single graph RNGkmax . For this we only need to
show that RNGi � RNGkmax , for all i < kmax. Then, we can
use the single graph RNGkmax to compute the MST of any
Gi by adding edge weights mrdi to RNGkmax , and comput-
ing the MST of this edge-weighted graph RNGkmax

i .

Theorem 2. RNGi � RNGkmax , 8i < kmax.

Proof 2. To prove this by contradiction, assume that there is
a j < kmax for which RNGj 6� RNGkmax . Then, there must
be at least one edge ða; bÞ that belongs to RNGj but does
not belong to RNGkmax . According to the definition of
relative neighborhood graphs, this means that there is a
point c, such that for distance mrdkmax , c 2 luneða; bÞ, and
for distance mrdj, c =2 luneða; bÞ, as illustrated in Fig. 3.
More formally:

For RNGkmax (Fig. 3a) both of the following inequalities
must be satisfied so that c 2 luneða; bÞ.

mrdkmaxða; bÞ > mrdkmaxða; cÞ (7)

mrdkmaxða; bÞ > mrdkmaxðb; cÞ: (8)

For RNGj (Fig. 3b) at least one of the following inequal-
ities must be satisfied so that c =2 luneða; bÞ.

mrdjða; bÞ � mrdjða; cÞ (9)

mrdjða; bÞ � mrdjðb; cÞ: (10)

Using the definition of mrdkmax , we can rewrite
Inequalities (7) and (8) as follows:

maxfckmaxðaÞ; ckmax ðbÞ; dða; bÞg >
maxfckmaxðaÞ; ckmax ðcÞ; dða; cÞg (11)

maxfckmaxðaÞ; ckmax ðbÞ; dða; bÞg >
maxfckmaxðbÞ; ckmax ðcÞ; dðb; cÞg: (12)

There are three cases, ckmaxðaÞ, ckmaxðbÞ, and dða; bÞ, that
the max function on the left-hand side of the Inequalities
(11) and (12) can evaluate to. If it evaluates to one of the
core distances, we get an immediate contradiction with
one of the Equations (11) and (12): In case maxfckmaxðaÞ;
ckmaxðbÞ; dða; bÞg ¼ ckmaxðaÞ, we get from Inequality (11)
the following:

ckmaxðaÞ > maxfckmaxðaÞ; ckmaxðcÞ; dða; cÞg:
But since maxðckmaxðaÞ; . . .Þ
 ckmaxðaÞ, it follows that
ckmaxðaÞ > ckmaxðaÞ, a contradiction! In casemaxfckmaxðaÞ;
ckmaxðbÞ; dða; bÞg ¼ ckmaxðbÞ, it follows, analogously to the
previous case, from (12) that ckmaxðbÞ > ckmaxðbÞ, a contra-
diction again! If it does not evaluate to one of the core dis-
tances, i.e.,maxfckmaxðaÞ; ckmaxðbÞ; dða; bÞg ¼ dða; bÞ, all the
following inequalities must hold.

dða; bÞ > ckmaxðaÞ (13)

dða; bÞ > ckmaxðbÞ (14)

dða; bÞ > ckmaxðcÞ (15)

dða; bÞ > dða; cÞ (16)

dða; bÞ > dðb; cÞ: (17)

We also know that at least one of the Inequalities (9)
and (10) must hold, under our assumption that
c =2 luneða; bÞ for distance mrdj. We can rewrite (9), using
the definition ofmrdj as follows:

maxfcjðaÞ; cj ðcÞ; dða; cÞg

maxfcjðaÞ; cj ðbÞ; dða; bÞg: (18)

There are again the three possibilities, cjðaÞ; cjðcÞ;
dða; cÞ, that the max function on the left-hand side of
Inequality (18) can evaluate to, and we show that each
one contradicts what we already know about a, b, and c:

1)maxfcjðaÞ; cjðcÞ; dða; cÞg ¼ cjðaÞ.
In this case, Inequality (18) yields the following.

cjðaÞ
 dða; bÞ: (19)

Since core distances cmpts can only increase when mpts
increases, we have ckmaxðaÞ
 cjðaÞ and, accordingly, we
obtain the following from Inequality (19).

ckmaxðaÞ
 dða; bÞ: (20)

This contradicts Inequality (13)!
2)maxfcjðaÞ; cjðcÞ; dða; cÞg ¼ cjðcÞ.

NETO ET AL.: EFFICIENT COMPUTATION AND VISUALIZATION OF MULTIPLE DENSITY-BASED CLUSTERING HIERARCHIES 3079

Analogously to the previous case, from (18) we
get (21), and then from ckmaxðcÞ
 cjðcÞ we get (22), which
contradicts Inequality (15)!

cjðcÞ
 dða; bÞ (21)

ckmaxðcÞ
 dða; bÞ: (22)

3)maxfcjðaÞ; cjðcÞ; dða; cÞg ¼ dða; cÞ.
In this case, we get from Inequality (18) that

dða; cÞ
 dða; bÞ, which is a contradiction to Inequality (16)!
This proves that Inequality (9) cannot hold under our

assumption. We can prove analogously the same result
for Inequality (10), which contradicts our assumption
that there is a j < kmax such that RNGj 6� RNGkmax .
Hence RNGi � RNGkmax , 8i � kmax. tu
When we combine the results of Theorems 1 and 2, we

obtain the following corollary, which states that the
MST ðGiÞ for all i < kmax is contained in RNGkmax , and can
thus be computed from RNGkmax

i , the graph obtained by
extending RNGkmax with edge weightsmrdi.

Corollary 1.MST ðGiÞ � RNGkmax
i , 8i � kmax.

Proof 3. MST ðGiÞ � RNGi
i (Theorem 1), and RNGi �

RNGkmax (Theorem 2). By extending both graphs from
Theorem 2 with edge weights mrdi, we obtain RNGi

i

� RNGkmax
i . Hence,MST ðGiÞ � RNGkmax

i . tu

4.5 RNG Computation

The performance gain when running HDBSCAN* w.r.t. all
values ofmpts 2 fk1; . . . ; kmaxg by using RNGkmax

i instead of
the complete graph G relies on a number of factors: the
additional time to construct RNGkmax

i (recall that G does not
have to be explicitly constructed), the number of edges in
RNGkmax

i compared to G, and the number of hierarchies
kmax to be computed.

The naive way to compute an RNG for a set of
points X is to check for every pair of points p; q 2 X and
each third point c 2 X, whether c is inside luneðp; qÞ.
This algorithm runs in Oðn3Þ time, which is inefficient
for large datasets. More efficient strategies are surveyed
in [24].

We adopt the approach in [2]—which has sub-quadratic
expected time complexity under the assumption that points
are in general position—with an adaptation of the definition
of well-separated pairs proposed in [6]. In the first step, the
entire dataset is decomposed recursively into smaller and
smaller subsets, so that all pairs of obtained subsets ðA;BÞ
are well-separated (see [6] for details).

Intuitively, two sets A and B are well-separated “if the
diameter of each set is relatively small compared to the dis-
tance between the two sets” [5]. The distance is in our case
the mutual reachability distance mrdmpts, and the smallest
possiblemrdmpts between two point setsA andB is the short-
est possible Euclidean Distance between a point a 2 A and a
point b 2 B, because of the max function in the definition of
mrdmpts. In order to avoid computing pairwise distances, one
can use “safe” bounds instead of the exact distances to define
well-separability (the only consequence of using bounds
instead of exact distances is that more well-separated pairs

may be generated than necessary). The distance between the
sets A and B can be bounded, as in [6], by the distance
DðA;BÞ between the smallest enclosing balls BA and BB

around the minimum bounding hyper-rectangles enclosing
A andB, respectively. The largest possible mutual reachabil-
ity distance within the sets A and B can be bounded by
maxfdiameterðBAÞ; diameterðBBÞ;maxp2A[BðcmptsðpÞÞg.
Then, we can define thatA andB are well-separated if

DðA;BÞ

s �maxfdiameterðBAÞ; diameterðBBÞ; max

p2A[B
ðcmptsðpÞÞg:

The separation factor s > 0 determines how far both sets
have to be from each other to be considered well-separated.

The larger the separation factor, the larger the num-
ber of generated pairs. For 0 < s < 1, there is no guar-
antee that the resulting graph will contain the MST
edges, and hence, to have as few edges as possible, we
adopt s ¼ 1.

In the second step, a supergraph of the RNG, which we
will call RNG**, is constructed. For each well-separated
pair ðA;BÞ, the points ai 2 A and bj 2 B are connected
with an edge if they are Symmetric Bichromatic Closest
Neighbors (SBCN), i.e., if there is no other point in B that
is closer to ai than bj and vice versa. For example, in
Fig. 4, a3 and b3 are SBCN and thus the edge ða3; b3Þ is
part of the RNG**.

The third step of the RNG computation consists of filter-
ing RNG** to remove edges that are not in the RNG.
Although RNG** has typically far fewer edges than the
complete graph G, a naive filtering approach, which checks
for each edge ða; bÞ in RNG** whether each point c is in
luneða; bÞ, can be very time consuming for large datasets.
Therefore, we propose an alternative strategy based on
information that is computed anyway for HDBSCAN*,
which can make the overall filtering process more efficient.
It is based on the intuition that points closer to a or b are
more likely in luneða; bÞ than points that are farther away.
For computing multiple HDBSCAN* hierarchies, we ini-
tially compute and store core distances (i.e., KNN-distan-
ces) ci for each value of i 2 k1; . . . ; kmax by performing a
kmax-nearest neighbor query for each point, which gives us
access to the kmax closest points to each point. To support
our pruning strategy, we propose to also store the actual
kmax-nearest neighbors, so that we can first check for each
edge ða; bÞ with weight w if any of the kmax-nearest neigh-
bors of a and b is inside luneða; bÞ. As soon as we find
one that is inside, we can safely remove the edge without
further checking. If none of those neighbors is inside
luneða; bÞ, we check if w is equal to the core-distance of a or
b. If that is the case (say for a), we know that no other point
can be in luneða; bÞ (since luneða; bÞ is a subset of the ball

Fig. 4. Symmetric Bichromatic Closest Neighbor (SBCN).

3080 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 8, AUGUST 2021

around a with radius w and we have checked all points
inside this ball); hence we know without further checking
that the edge is in the RNG. We can choose to perform only
these 2	 kmax checks per edge to obtain a graph, which we
call RNG*, that is smaller than RNG** but may still contain
edges that are not in the RNG. To obtain the exact RNG, we
search the entire dataset whenever an edge cannot be
excluded or included based on the described, 2	 kmax tests,
to determine whether or not there is a point in luneða; bÞ.

Algorithm 1

Input: X: dataset; n: Xj j; ½k1; . . . ; kmax�: mpts range; T : graph to
be computed (RNG, RNG*, RNG**);
1: for i 2 f1; . . . ; ng do
2: M½i� [1-NNðiÞ, . . . , kmax-NNðiÞ];
3:
4: wspd WSPDðX;MÞ;
5:
6: for ðA;BÞ 2 wspd do
7: RNGkmax RNGkmax [SBCNðA;BÞ;
8:
9: if T 6¼ RNG** then
10: remove False;
11: for ða; bÞ 2 RNGkmax do
12: for x 2M½a] [M½b] do
13: if x 2 luneða; bÞ then
14: remove True;
15: break;
16: if : remove then
17: ifmrdkmaxða; bÞ ¼ maxfckmax ðaÞ; ckmax ðbÞg then
18: remove False;
19: continue;
20: if : remove and T ¼ RNG then
21: for x 2 X do
22: if x 2 luneða; bÞ then
23: remove True;
24: break;
25: if remove then
26: RNGkmax RNGkmax n ða; bÞ;
27: remove False;
28:
29: formpts 2 fk1; . . . ; kmaxg do
30: MSTmpts MST ðRNGkmax

mptsÞ;
31: compute�hierarchyðMSTmptsÞ;

The pseudo-code for the overall strategy is shown in
Algorithm 1. It takes as input a dataset X with n points, a
range of mpts values, ½k1; . . . ; kmax�, and the type T of the
RNG to be computed, namely, the exact RNG, RNG*, or
RNG**. The kmax-nearest neighbors for each point x 2 X are
computed and materialized in Line 2. It is important to
emphasize that a single kmax-NN query is performed for
each x 2 X. Next, the Well-Separated Pairs Decomposition
(WSPD) is performed in Line 4. In Lines 6-7, the RNG** is
constructed by adding one edge for each of the Symmetric
Bichromatic Closest Neighbors between the pairs ðA;BÞ 2
wspd. The edge filtering occurs between Lines 11-27. In case
the RNG** is chosen, the filtering process is completely
skipped (Line 9). Otherwise, the filter steps based on the
kmax-nearest neighbors are performed. The last filter, based
on the sequential scan of the dataset (Lines 21-24), is only
performed when the exact RNG is to be computed, and

only for edges that cannot be excluded or included based
on the previous tests. Finally, in Lines 29-31, the MSTs and
hierarchies are computed for all the values of mpts � kmax,
using the computed RNG.

4.6 Computational Complexity

Our method can be decomposed into five main parts: (i)
core-distance computations, (ii) Well-Separated Pair
Decomposition (WSPD), (iii) RNG** construction, (iv) edge
filtering, and (v) hierarchy constructions. In part (i), where
the core-distances are computed, a kmax-NN query is exe-
cuted for each point in the dataset, resulting in an Oðn2Þ
time complexity. In part (ii), the WSPD is computed accord-
ing to the method proposed in [5], which runs in OðnÞ time.
In part (iii), the RNG** is constructed via the computation of
the Symmetric Bichromatic Closest Neighbors for each of
the pairs in the WSPD. Note that for every point p in the
dataset, the number of comparisons that involve p is of
order n, as the remaining n� 1 points are placed in sets that
are well separated from a set containing p. Therefore, one
needs Oðn2Þ comparisons in order to find the SBCNs for all
pairs of well-separated sets and, thus, building the RNG**
takes Oðn2Þ time. In part (iv), the edges of the RNG** are fil-
tered to produce either the RNG* or the RNG. This process
relies on the information available from the core-distances
to filter out the edges that do not belong in the final graph.
Therefore, the computational complexity of this part
depends directly on kmax and on how the points are distrib-
uted in the space. In the best case scenario, checking
whether an edge belongs to the RNG or not can be done in
constant time, and the entire filtering process is done in
OðjE0jÞ time, where E0 represents the set of edges in the
RNG**. On the other hand, in the worst case scenario a lin-
ear scan of the points in the dataset has to be performed for
each edge and the filtering is done in OðjE0j � nÞ time. The
number of edges in the RNG** can vary from OðnÞ to
Oðn2Þ, depending on the distribution and dimensionality of
the points. Note that to produce the RNG* we only filter the
edges that can be discarded in constant time. In part ðvÞ, the
Minimum Spanning Trees are computed in OðjEj þ n lognÞ
time, where E represents the set of edges in the graph after
filtering (step ðivÞ). As the RNG and its variants have in gen-
eral much fewer edges than the complete graph, the compu-
tation of the hierarchies is much faster than applying the
same algorithm in the complete graph.

5 EXPERIMENTS

We conducted experiments to evaluate the efficiency of the
proposed method with respect to changes in size and
dimensionality of the dataset, and, most importantly, with
respect to the number of hierarchies to be computed. We
also show the sizes of the RNG, RNG*, and RNG** in com-
parison to the size of the Gmpts, since the reduction in the
number of edges is the source of our performance gain.

To the best of our knowledge, no other strategy in the
literature aims at computing multiple hierarchies efficiently.
Thus, we compare our strategy to a straightforward base-
line that runs HDBSCAN* multiple times, one for each
mpts value in the given range, but with the optimization of

NETO ET AL.: EFFICIENT COMPUTATION AND VISUALIZATION OF MULTIPLE DENSITY-BASED CLUSTERING HIERARCHIES 3081

pre-computing the core distances for all points, as we do in
our approach, using a single kmax-NN query per point.

To study the computational trade-offs of the different
edge filtering strategies described in Section 4.5, we show
results for three variants: RNG**-HDBSCAN*, which just
uses the RNG** without any additional filtering; RNG*-
HDBSCAN*, which applies only the filtering based on kmax

nearest neighbors; and RNG-HDBSCAN*, which applies
the complete filtering to obtain the exact RNG.

All methods have been implemented on top of the origi-
nal HDBSCAN* code, provided by the authors of [9], in
Java. The core-distances are computed with the aid of aKd-
Tree index structure, adapted from [34]. The experiments
were performed in a virtual machine with 64 GB RAM, run-
ning Ubuntu. For runtime experiments, we measure the
total running time to compute core-distances and MSTs,
and report the average runtime over 5 experiments.

The datasets were obtained using the generator proposed
in [19], varying the number of dimensions from 2 to 128,
and the number of points from 16k to 1M; the ranges of
mpts started with 1, varying the value of kmax from 2 to 128.
Table 1 shows these values and indicates in bold the default
value for each variable when other variables are varied.

The datasets used to properly assess the efficiency of our
method with regard to the effects of a specific variable were

generated by varying only that variable, while the others
were kept at their default values. For instance, in order to
evaluate how our strategy behaves with regard to different
dataset sizes, we take samples of different sizes from the
largest dataset. Similarly, in order to evaluate the effects of
dimensionality on the performance of our strategies, we
vary the number of dimensions and keep the same number
of clusters and points in the dataset. In the evaluation of the
effects of kmax, the number of points and dimensions are
kept fixed at their default values. Note that kmax does not
have any influence on the dataset generation.

5.1 Effect of Dataset Size

Fig. 5a shows the total runtime as a function of the dataset size
with default values for the remaining variables. As expected,
the runtime tends to increase for all methods as the number of
points increases. For datasets up to 64k points, all strategies
have similar performances, but as the datasets become larger,
the difference between our approaches and the baseline
increases significantly. For 128k points, the baseline strategy
already takes about twice as much time as our approaches,
and for 1024k points, we actually interrupted each run of the
baseline before it finished.2

Fig. 6a shows the number of edges in Gmpts, RNG**,
RNG*, and RNG, as a function of the dataset size. As
expected, the number of edges increases with the number of
points. However, the RNGs are significantly smaller than
the complete graph for all dataset sizes. In fact, even for the
largest dataset, the sizes of the RNG* and RNG are smaller
than the size of the Gmpts for the smallest dataset.

Fig. 6. RNG size as a function of the dataset size, dataset dimensionality, and kmax. (Note that both axes are in log scale).

Fig. 5. Runtime as a function of the dataset size, dataset dimensionality, and kmax. (Note that the x-axis is in log scale).

TABLE 1
Experimental Setup

Variables Values

#points 16k, 32k, 64k, 128k, 256k, 512k, 1M
#dimensions 2, 4, 8, 16, 32, 64, 128
kmax 2, 4, 8, 16, 32, 64, 128

2. The runs on this experiment were interrupted after 7,500 minutes
(� 5 days), as the observed performance was already enough for
comparison purposes

3082 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 8, AUGUST 2021

The sizes of RNG and RNG** are quite different, yet their
running times are quite similar (see Fig. 5a), indicating that
the gain in MST computation due to a smaller graph size is
canceled out by the time spent filtering to obtain the exact
RNG. On the other hand, RNG*, which only uses the very
fast filter based on materialized k-nearest neighbors, is very
close in size to RNG, showing the effectiveness of our prun-
ing heuristic, and leading to a much faster runtime.

5.2 Effect of Dimensionality

Fig. 5b shows the effect of dataset dimensionality on run-
time. As expected, all approaches are affected by increasing
dimensionality, due to a number of effects that are generally
referred to as “curse of dimensionality.” However, since our
datasets do contain cluster structures, these effects are not
critically severe even in 128 dimensions.

We can observe that all RNG-based strategies perform
better than the baseline in all datasets, but as dimensionality
increases, the difference between the unfiltered RNG
(RNG**) and the filtered versions (RNG* and RNG)
increases. This can be explained by looking at the number
of graph edges shown in Fig. 6b. The size of the exact RNG
is barely affected by an increase in dimensionality, while
the size of the unfiltered RNG** grows significantly,
approaching the complete graph Gmpts. This shows that the
generation of well-separated pairs becomes less effective in
implicitly excluding edges that cannot be in an RNG as the
dimensionality increases. On the other hand, the exact RNG
still has significantly fewer edges than a complete graph in
these scenarios—although, theoretically, it also must even-
tually approach the complete graph [5], [24].

The number of edges of RNG* increases only slightly as
the dimensionality increases, which shows that the pruning
strategy using only the pre-computed k-nearest neighbors

(16, as kmax ¼ 16 in this experiment) stays quite effective,
even in the 128-dimensional datasets, resulting in the best
runtime performance overall.

5.3 Effect of Upper Limit kmax

Fig. 5c and Table 2 show the runtimes w.r.t. kmax. The run-
time of all our methods is very low compared to the base-
line, for which runtime increases linearly, as expected.

The runtime of HDBSCAN*-RNG** increases very slightly
with kmax as also the number of edges increases slightly, but it
stays significantly below the number of edges in Gmpts, as
shown in Fig. 6c.

RNG-HDBSCAN* shows a slightly higher runtime for
mpts ¼ 2, which then decreases for mpts ¼ 4 and mpts ¼ 8,
after which it stays almost constant and becomes almost
indistinguishable in performance to RNG*-HDBSCAN*.

RNG*-HDBSCAN*, which only uses the kmax-nearest
neighbors for pruning RNG**, shows the most stable run-
time behavior; its increase in runtime, as kmax increases, is
almost unnoticeable. For the largest value of kmax, the dif-
ference in runtime to the baseline corresponds to a speed-
up of about two orders of magnitude. The runtime behav-
ior of RNG and RNG* can be explained by their number
of edges, shown in Fig. 6c. For mpts ¼ 2, the number of
edges in RNG* is much larger than in RNG (while still
being smaller than in RNG**). The reason is that the filter-
ing strategy is not yet very effective when only two near-
est neighbors are considered. Thus, for many edges ða; bÞ a
sequential scan has to be performed to check luneða; bÞ in
order to obtain RNG, outweighing the gain in perfor-
mance runtime for computing the MST of RNG with fewer
edges.

The results also show that (1) computing MSTs is very
fast, compared to the rest of the computation, if the underly-
ing graphs are already relatively small compared to the
complete graph, and (2) that our pruning heuristic based on
kmax-NNs becomes more effective as kmax increases, leading
to an almost indistinguishable performance between RNG
and RNG* for kmax
 16.

The significance of our contribution and of the obtained
speed-ups becomes even more clear, if we look at the run-
time from a different perspective. Fig. 7 shows the ratio of
the runtime to compute kmax MSTs over the runtime to com-
pute a single MST. RNG* exhibits a very stable ratio of
about 2 for all values of kmax, i.e, we can use it to compute as
many as 128 MSTs/hierarchies for the computational cost
of naively computing about 2 MSTs/hierarchies.

Fig. 7. Ratio: runtime to compute kmax MSTs/hierarchies divided by the runtime to compute a single MST/hierarchy.

TABLE 2
kmax vs. Runtime (min.)

kmax HDBSCAN* RNG**-
HDBSCAN*

RNG*-
HDBSCAN*

RNG-
HDBSCAN*

2 12 12 12 99
4 33 12 12 45
8 79 14 12 22
16 169 17 13 15
32 363 23 14 15
64 781 40 18 19
128 1,759 72 29 30

NETO ET AL.: EFFICIENT COMPUTATION AND VISUALIZATION OF MULTIPLE DENSITY-BASED CLUSTERING HIERARCHIES 3083

6 APPLICATION: VISUALIZATION

The ability to efficiently compute a set of HDBSCAN* hier-
archies for a range of mpts values opens the opportunity to
interpret multiple hierarchies together in order to gain a bet-
ter understanding of the data and its cluster structures. As
argued earlier, different ranges of mpts values produce dif-
ferent hierarchies and clusterings, and guessing the “right”
range of mpts for a specific dataset is not trivial. In what fol-
lows we propose a set of visualization methods that aim at
helping a user to identify interesting ranges of mpts values
and what they mean in terms of clustering.3 Note that this
would not be practical without an efficient approach like
RNG-HDBSCAN* which is capable of generating all the
necessary metadata at an acceptable computational cost.

6.1 Hierarchy Similarity Plot

To identify different ranges ofmpts values that produce differ-
ent relevant hierarchies, we first need to measure how similar
(or dissimilar) two hierarchies are. In [1], the authors propose
the Hierarchy Agreement Index (HAI) which captures how
much two hierarchies agree with each other w.r.t. the distances
between pairs of points in both hierarchies. The distance
between a pair of points xi and xj in a hierarchyH, dHðxi; xjÞ,
is defined as the size of the smallest cluster where xi and xj
appear together divided by the size of the whole dataset. The
HAI similarity between two hierarchies H1 and H2 is then
defined by the average, normalized difference of the distances
dH1

and dH2
, between all pairs of points, in the followingway:

HAIðH1;H2Þ ¼ 1� 1

n2

Xn

i¼1

Xn

j¼1
jdH1
ðxi; xjÞ � dH2

ðxi; xjÞj:

After computing the HAI values for every pair of
hierarchies, one is able to represent the similarities in a
symmetric matrix where a row index i and a column
index j represent mptsi and mptsj, respectively, from the
given range of mpts values. A cell ði; jÞ contains the HAI
value for the pair of hierarchies with respect to mptsi
and mptsj, respectively. Plotting HAI values in a color
scale allows one to visually identify mpts values that
result in similar hierarchies.

Fig. 8 shows theHAI similaritymatrix for 50 hierarchies, one
for each value ofmpts 2 ½1; 50�, computed from a sample of the
ALOI (Amsterdam Library of Object Images) dataset [18],
which contains images of physical objects taken from different
angles and under different light conditions. Intuitively, each
cluster/category in this dataset correspond to a specific physical
object. The sample contains 125 images in total from 5 different
categories, and each object is represented with 144 dimensions
[22]. In the plot, one is able to clearly identify two large ranges of
mpts values in which hierarchies have a high degree of similar-
ity with each other, but are different from hierarchies in the
other range. Thismeans that across a range ofmpts values, there
aremainly twodifferent clustering structures.

The computation of the similarity matrix involves the com-
parison of each pair of hierarchies according to the HAI mea-
sure. Each comparison takes Oðn2Þ-time with the use of

auxiliary techniques and data structures, such as Euler Path,
Range Minimum Queries, and Sparse Tables, to compute the
Lowest Common Ancestor (LCA) of every pair of points in
each hierarchy—given that LCA queries can be computed in
Oð1Þ-time [4]. It is important to note that the HAI measure is
only one possible measure; alternative similarity measures
that would be computationally less expensive could be
explored. For instance, one could investigate how to extract a
similarity measure from the reachability plots that represent
the hierarchies or investigate strategies that would approxi-
mate a similarity measure based on the observation that adja-
cent values of mpts are likely to produce similar hierarchies.
We have chosen to use an existing measure in the literature as
we consider that the evaluation and comparison of hierarchies
is a relevant research topic on its own, which would deserve
attention as a separate work with a proper discussion around
theoretical and practical aspects.

6.2 Meta-Hierarchy Plot

TheHAI similaritymatrix plot presents an overviewof the simi-
larities between hierarchiesw.r.t. a range ofmpts values. Identi-
fying exact sets of similar hierarchies from this plot can,
however, be challenging. For example, in cases where changing
the value ofmpts leads to a smooth decrease or increase of simi-
larity, it is hard to draw boundaries that separate two ranges of
values just by looking at the HAI similarity plot. Also, there
might be cases where two hierarchies for non-consecutive val-
ues ofmpts have a higher similarity than for consecutive values.

To find classes of similar clustering hierarchies, we can
perform a meta-clustering using the HAI values to construct
a clustering hierarchy of clustering hierarchies.4 This meta-hier-
archy can then be visualized as a dendrogram, where the
user can see groups of similar hierarchies at different simi-
larity levels more clearly.

Previous works in the literature have used meta-cluster-
ing techniques to analyze multiple clustering results [10],
[11]. Unlike ours, however, these works produce a single
flat clustering solution (a partition), rather than a clustering
hierarchy, which carries more information.

Fig. 8. ALOI - HAI similarity matrix plot; lighter colors indicate a higher
similarity.

3. A web-based demonstration of these visualizations can be found
at http://webdocs.cs.ualberta.ca/�joerg/mustache.

4. Note that (1) we use HDBSCAN* with mpts ¼ 1 to cluster the
clustering hierarchies, which is equivalent to using Single Linkage; and
(2) as the HAI values express similarity, one has to convert them into
dissimilarity before using them with HDBSCAN*.

3084 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 8, AUGUST 2021

http://webdocs.cs.ualberta.ca/~joerg/mustache
http://webdocs.cs.ualberta.ca/~joerg/mustache

Fig. 9 shows the dendrogram resulting from a meta-clus-
tering of the HAI similarity matrix in Fig. 8. Note that there
is a clear separation of two main meta-clusters.

A meta-hierarchy plot makes it easier to identify groups
of hierarchies whose elements can be considered as rep-
resenting essentially the same clustering structure of the
data, as well identify groups of hierarchies that represent
“significantly” distinct clustering structures of the data.
Furthermore, deciding what is significant becomes more
intuitive and more practical with the use of dendrograms.

6.3 Reachability Plots

In the next step, we examine the hierarchies in each meta-
cluster of hierarchies. Since the hierarchies in each meta-
cluster are, according to the meta-clustering, similar to each
other, we can select and visualize only the medoid hierarchy
from each meta-cluster as its representative. The medoid of
a meta-cluster is the hierarchy for which the average HAI
similarity to other hierarchies in the same meta-cluster is
the highest.

We could use again a dendrogram to visualize individual
clustering hierarchies of the data, but dendrograms are only
a good visualization when the number of leaf nodes (i.e.,
elements being clustered) is “relatively small”, as is typi-
cally the case for our meta-hierarchy. The number of leaf
nodes in a meta-hierarchy corresponds to the number of
obtained clustering hierarchies w.r.t. the different values of
mpts used, which in practice is rarely larger than a few tens.
However, when inspecting individual clustering hierarchies
of a data set, such as the meta-cluster medoids or outliers in
the meta-hierarchy, the number of leaf nodes corresponds
to the number of data points in the dataset, which may be
too large to be properly visualized as a dendrogram. There-
fore, we choose in these cases reachability plots [3] to visual-
ize density-based clustering hierarchies. Reachability plots
are bar plots where each bar corresponds to an object in the
dataset, and they are sorted in such a way that objects that
belong to the same cluster at every density level are next to
each other. The height of each bar is defined by the lowest
density level that makes its corresponding object join the
preceding objects in the plot, so that density-based clusters
appear as “valleys” or “dents” in the plot.

Fig. 10 shows the reachability plots that correspond to
the medoids of the two meta-clusters highlighted in
Fig. 9. The medoids are the hierarchies w.r.t. mpts ¼ 12
and mpts ¼ 36, respectively, and they are colored accord-
ing to the color of the meta-cluster they represent. For
mpts ¼ 12, one can identify 5 clusters in the data, while
the plot for mpts ¼ 36 does not reveal any prominent
cluster structure. This type of visualization of multiple,
representative reachability plots can be very powerful in
practice as it allows model selection to be performed (in
this case, the choice of mpts around 12) in a completely
unsupervised way.

This example shows how the combined visualization of
different reachability plots for meta-cluster medoids can
be used to easily compare the main different hierarchical
organizations of the data across multiple mpts values.
One can also investigate a specific reachability plot in
more detail, possibly coloring the plot according to clusters
selected from the corresponding hierarchy. In particular,
HDBSCAN* is equipped with an optional post-processing
routine, called FOSC [8], to automatically extract clusters
from optimal local cuts through the hierarchy using the
notions of cluster lifetime and stability. Once a flat cluster-
ing solution is extracted using this method, the reachability
plot can be colored according to the extracted clusters.

This type of visualization is illustrated in Fig. 11, which
shows the reachability plot for mpts ¼ 12 with the extracted
clusters shown in different colors (black represents data
objects left unclustered as noise). Fig. 11 also shows the
physical objects corresponding to the images in each of
the clusters. (Recall that this dataset contains 125 different
images of 5 unique objects [22].)

The previous discussion illustrates how the proposed
visual tools can be used to learn more from a collection of
clustering hierarchies about a data set. Next, we present a
few small, real-world case studies to demonstrate the effec-
tiveness of our visualization tools for exploratory cluster
analysis with multiple clustering hierarchies.

6.4 Case Study #1: Text Data

In this case study, we analyze hierarchies constructed for
the dataset Articles-1442-5 [28] containing 253 documents
extracted from journals of different fields (DNA Research,

Fig. 10. ALOI - Reachability plots of the medoids of the two meta-
clusters in Fig. 9. Five valleys in the reachability plot of the green meta-
cluster (mpts ¼ 12) correspond to clusters.

Fig. 9. ALOI - Meta-hierarchy plot.

NETO ET AL.: EFFICIENT COMPUTATION AND VISUALIZATION OF MULTIPLE DENSITY-BASED CLUSTERING HIERARCHIES 3085

British Food Journal, Transactions on Mobile Computing,
American Political Science Review and Monthly Weather
Review). Each document is a research paper described by
4636 dimensions following a “bag-of-words” representation,
and documents from the same journal/field are expected to
correspond to a cluster in the feature space. For this dataset,
we used the angular distance in order to generate the set of
HDBSCAN* hierarchies for a range ofmpts values. The angu-
lar distance is equivalent to the normalized angle between
two vectors in the feature space and is also ametric.

Fig. 12a shows that there are two main ranges ofmpts val-
ues for which the hierarchies are more similar among them-
selves. Overall, the hierarchies in the larger range (mpts 2
½13; 50�) have a weaker degree of similarity than the ones in

the smaller range (mpts 2 ½2; 12�), although there are sub-
ranges of larger valueswithinwhich similarity ismore promi-
nent, e.g., around [13, 25] and around [42, 49]. Notice that in a
dataset with these many dimensions, selecting a meaningful
value ofmptswould be particularly challenging.

Fig. 12b shows the meta-hierarchy for this dataset, with
meta-clusters (as detected by FOSC) highlighted in different
colors. The reachability plot of each meta-cluster’s medoid is
shown in Fig. 12c. Fig. 13 shows the reachability plots for
mpts ¼ 7 and mpts ¼ 34 colored according to the partitioning
automatically extracted from the corresponding hierarchies.
Observe that mpts ¼ 7 is able to detect most clusters success-
fully, just splitting cluster 3 into two sub-clusters. We can also
observe that mpts ¼ 34 results in a larger amount of noise
objects (colored in black), because the density of objects as esti-
mated by the inverse of their core distance decreases as mpts
increases, turning more objects into noise for any density cut-
ting threshold ". A relevant aspect that can be learned from this
is that clusters c1, c3 and c4 can still be detected formpts ¼ 34,
whereas clusters c2 and c5 become noise at this level. This
shows that clusters c1, c3 and c4 aremore stable than the others,
as they persist across varied parameter ranges and hierarchies.

The reachability plots for the other values ofmptsmay be
similarly analyzed in order to get insights about the data.
Also, one should keep in mind that the reachability plots
showed in Fig. 12c are only the representatives of their
respective meta-clusters, which can serve as a first guide to
what ranges of values the user should focus on primarily.

6.5 Study Case #2: Sound Data

In this second case study, we analyze a dataset of sound fea-
tures extracted from frog (Anuran order) calls [15]. The
dataset contains 7,000 entries with 22 dimensions each and
has been used in tasks related to species recognition. We
want to investigate if there are clusters that match the taxo-
nomic classification of the frogs. After running HDBSCAN*
in this dataset, one may expect to get a clustering hierarchy
that represents, as close as possible, the taxonomy that
describes which specimen belongs to the each species,
genus and families. This depends on thempts value though.

Choosing mpts for this dataset is far from trivial. Fig. 14a
shows that there are several intervals of mpts values for
which hierarchies are very similar to each other. After per-
forming the meta-clustering on the HAI values, five more
prominent meta-clusters are identified (Fig. 14b).

Fig. 15 shows the reachability plots for each medoid
meta-cluster colored according to the partitioning found by
FOSC. For mpts ¼ 4, FOSC extracted 78 clusters. When
compared to the true labels, we observed that clusters

Fig. 13. Selected plots for the “Articles-1442-5” dataset.

Fig. 11. Reachability plot (mpts ¼ 12) colored according to clusters
selected by HDBSCAN*’s automatic cluster extraction method (FOSC).

Fig. 12. Journal documents (“Articles-1442-5”) results.

3086 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 8, AUGUST 2021

corresponding to the same family/genus/species were split
into several micro sub-clusters. On the other hand, for the
higher values of mpts, we observed that some entries that
belong to the same family, but not same genus or specie,

were put into the same cluster. In rare cases, a small number
of objects (e.g., 2 or 3) were put into the wrong cluster, but
the overall results are aligned with the taxonomic classifica-
tion at some level. Note that, even in cases where the
ground-truth is unknown and this type of comparison is
not an option, narrowing the mpts search space to 5 values
is already a good starting point to a more detailed analysis,
i.e., clustering as a primary exploratory data analysis tool.

The plots in Fig. 15 also reveal that the number of objects
labeled as noise increases as the value of mpts increases, for
the reasons already explained in the previous case study.
Also, there is a large cluster that can be detected in all of the
reachability plots. This cluster is not only the largest one,
but is also very dense and stable, as it can be observed for
these very different density estimate settings. This observa-
tion is only possible when multiple and “distant enough”
values ofmpts are inspected. The medoids represent exactly
these distinct values across a range ofmpts values for which
one had no knowledge before.

6.6 Case Study #3: Geolocated Data

In this dataset, we analyze geolocations from photos posted
on Flickr [31]. We selected a sample of the dataset contain-
ing 28,000 geo-tagged photos in Paris, France. In a city like
Paris, one expects most photos to be concentrated on tourist
hotspots such as the Eiffel Tower and the Louvre Museum.
However, the amount of outliers in some regions of the city
makes it difficult to identify the boundaries of clusters that
correspond to a specific touristic place from another. For
instance, photos related to the Arc de Triomphe and the
Champs-�Elys�ees Avenue are hard to separate, because the
former is located on the latter.

Fig. 16a indicates that there are a few ranges and sub-
ranges of mpts values for which the hierarchies have a

Fig. 14. Anuran sounds results.

Fig. 15. Anuran - Reachability plots.

Fig. 16. Flickr Paris results.

NETO ET AL.: EFFICIENT COMPUTATION AND VISUALIZATION OF MULTIPLE DENSITY-BASED CLUSTERING HIERARCHIES 3087

higher degree of similarity. When clustered, the hierarchies
for this dataset form 4 main meta-clusters, as shown in
Fig. 16b. Fig. 16c shows the reachability plots for the meta-
cluster medoids (mpts ¼ 4, 15, 29, and 44).

Fig. 17 shows on the map the actual geolocations corre-
sponding to the clusters extracted from the hierarchies for
mpts ¼ 4 and mpts ¼ 29. Note that for mpts ¼ 4, it is hard to
identify the boundaries of each cluster. When it comes to the
reachability plot, one can also identify the clusters more easily
withmpts ¼ 29 thanwithmpts ¼ 4, as shown in Fig. 18. Even
though it is possible to see some prominent valleys in the
reachability plot for mpts ¼ 4, these valleys are composed of
several micro-valleys that end up being selected by FOSC. On
the other hand, for mpts ¼ 29 the clusters are clearly sepa-
rated on themap, and at the same time it is possible to identify
the major valleys in the reachability plot that cover larger
areas in the map, merging together smaller nearby clusters,
typically around the same hotspot. In this case, the use of
larger values ofmpts not only helps clearing outliers that end
up unclustered as noise, but it also reduces the large amount
ofmicro-clusters thatmight be found.

7 CONCLUSION

In this paper we presented RNG-HDBSCAN*, an efficient
strategy for computing multiple density-based clustering

hierarchies. The key for its efficiency is the replacement of
the Mutual Reachability Graph by a suitable Relative Neigh-
borhood Graph which allows to incrementally explore
HDBSCAN* solutions w.r.t. a range of values of mpts. Our
experiments showed that RNG-HDBSCAN* can be more
than 60 times faster than running the original HDBSCAN*
algorithm for the same ranges ofmpts. In particular, it scales
significantly better when running on large datasets and
more prominently for broader ranges of mpts values. More-
over, we proposed a series of visualizations that allow the
analysis of multiple hierarchies w.r.t. several mpts values,
and we used real datasets from different domains to show
how one can use these visualizations to explore and better
understand the different hierarchical organizations of the
data under different parameter settings.

We also found that in some cases there is no single
value of mpts that is able to detect all the cluster structures
in the data in a single hierarchy; that is, different relevant
clusters are revealed for different values of mpts as part
of different hierarchies. As future work, we intend to
investigate how one can analyze the multiple HDBSCAN*
hierarchies as a single structure that considers different
density scenarios. This will help one understand how the
cluster structures change with mpts as we progress
towards a parameter-free hierarchical density-based clus-
tering framework.

During this research we realized that the literature still
lacks in works that explore similarity measures between
clustering hierarchies. As future work, we would also like
to investigate alternative methods to estimate how similar
two hierarchies are, as well as possible validity indexes able
to evaluate the quality of a clustering hierarchy in an unsu-
pervised way.

ACKNOWLEDGMENTS

Research partially supported by NSERC, Canada, and by
CNPq, under the program Science without Borders, Brazil.

REFERENCES

[1] D. M. Johnson, C. Xiong, J. Gao, and J. J. Corso, “Comprehensive
cross-hierarchy cluster agreement evaluation,” in Late-Breaking
Developments in the Field of Artificial Intelligence, vol. WS-13–17,
2013.

[2] P. K. Agarwal and J. Matou�sek, “Relative neighborhood graphs in
three dimensions,” Comput. Geom., vol. 2, pp. 1–14, 1992.

[3] M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 1999, pp. 49–60.

[4] M. A. Bender and M. Farach-Colton, “The LCA problem revis-
ited,” in Proc. 4th Latin Amer. Symp.Theor. Informat., 2000,
pp. 88–94.

Fig. 17. Paris Flickr: Geolocations of extracted clusters.

Fig. 18. Selected reachability plots - Paris Flickr dataset.

3088 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 8, AUGUST 2021

[5] P. B. Callahan, “Dealing with higher dimensions: The well-
separated pair decomposition and its applications,” PhD thesis,
Dept. Comput. Sci., Johns Hopkins Univ., Baltimore, MD, 1995.

[6] P. B. Callahan and S. R. Kosaraju, “A decomposition of multidi-
mensional point sets with applications to k-nearest-neighbors and
n-body potential fields,” J. ACM, vol. 42, no. 1, pp. 67–90, 1995.

[7] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based
clustering based on hierarchical density estimates,” in Proc.
Pacific-Asia Conf. Knowl. Discovery Data Mining, 2013, pp. 160–172.

[8] R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander,
“A framework for semi-supervised and unsupervised optimal
extraction of clusters from hierarchies,” Data Mining Knowl. Dis-
covery, vol. 27, no. 3, pp. 344–371, 2013.

[9] R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander,
“Hierarchical density estimates for data clustering, visualization,
and outlier detection,” ACM Trans. Knowl. Discovery Data, vol. 10,
no. 1, pp. 5:1–5:51, 2015.

[10] C. Carpineto and G. Romano, “Optimal meta search results
clustering,” in Proc. 33rd Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2010, pp. 170–177.

[11] R. Caruana, M. Elhawary, N. Nguyen, and C. Smith, “Meta
clustering,” in Proc. 6th Int. Conf. Data Mining, 2006, pp. 107–118.

[12] G. Cattaneo, P. Faruolo, U. F. Petrillo, and G. F. Italiano,
“Maintaining dynamic minimum spanning trees: An experimen-
tal study,” Discrete Appl. Math., vol. 158, no. 5, pp. 404–425, 2010.

[13] X. Chen, Y. Min, Y. Zhao, and P. Wang, “GMDBSCAN: Multi-den-
sity DBSCAN cluster based on grid,” in Proc. IEEE Int. Conf. e-Bus.
Eng., 2008, pp. 780–783.

[14] B. Delaunay, “Sur la sph�ere vide. A la m�emoire de Georges
Voronoı̈,” Bulletin de l’Acad�emie des Sciences de l’URSS, no. 6,
pp. 793–800, 1934.

[15] D. Dheeru and G. Casey, “UCI machine learning repository,” Uni-
versity of California, Irvine, School of Information and Computer
Sciences, 2017. [Online]. Available: http://archive.ics.uci.edu/ml

[16] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with
noise,” in Proc. 2nd Int. Conf. Knowl. Discovery Data Mining, 1996,
pp. 226–231.

[17] K. R. Gabriel and R. R. Sokal, “A new statistical approach to geo-
graphic variation analysis,” Syst. Biol., vol. 18, pp. 259–278, 1969.

[18] J. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, “The
amsterdam library of object images,” Int. J. Comput. Vis., vol. 61,
no. 1, pp. 103–112, 2005.

[19] J. Handl and J. D.Knowles, “Improvements to the scalability ofmulti-
objective clustering,” in Proc. IEEE Congress Evol. Comput., 2005,
pp. 2372–2379.

[20] M. R. Henzinger and V. King, “Maintaining minimum spanning
trees in dynamic graphs,” in Proc. Int. Colloquium Automata Lang.
Program., 1997, pp. 594–604.

[21] A. Hinneburg and D. A. Keim, “An efficient approach to cluster-
ing in large multimedia databases with noise,” in Proc. 4th Int.
Conf. Knowl. Discovery Data Mining, 1998, pp. 58–65.

[22] D. Horta and R. J. G. B. Campello, “Automatic aspect discrimi-
nation in data clustering,” Pattern Recognit., vol. 45, no. 12,
pp. 4370–4388, 2012.

[23] G. A. II, G. Cattaneo, and G. F. Italiano, “Experimental analy-
sis of dynamic minimum spanning tree algorithms (extended
abstract),” in Proc. 8th Annu. ACM-SIAM Symp. Discrete Algo-
rithms, 1997, pp. 314–323.

[24] J. W. Jaromczyk and G. T. Toussaint, “Relative neighborhood
graphs and their relatives,” Proc. IEEE, vol. 80, no. 9,
pp. 1502–1517, Sep. 1992.

[25] A. Karami and R. Johansson, “Choosing DBSCAN parameters
automatically using differential evolution,” Int. J. Comput. Appl.,
vol. 91, pp. 1–11, 2014.

[26] D. G. Kirkpatrick and J. D. Radke, “A framework for computa-
tional morphology,” Mach. Intell. Pattern Recognit., vol. 2,
pp. 217–248, 1985.

[27] D. Moulavi, P. A. Jaskowiak, R. J. G. B. Campello, A. Zimek, and J.
Sander, “Density-based clustering validation,” in Proc. 14th SIAM
Int. Conf. Data Mining, 2014, pp. 839–847.

[28] M. C. Naldi, R. J. G. B. Campello, E. R. Hruschka, and
A. C. P. L. F. Carvalho, “Efficiency issues of evolutionary
k-means,” Appl. Soft Comput., vol. 11, no. 2, pp. 1938–1952, 2011.

[29] A. C. A. Neto, J. Sander, R. J. G. B. Campello, andM. A. Nascimento,
“Efficient computation of multiple density-based clustering hier-
archies,” in Proc. IEEE Int. Conf. DataMining, 2017, pp. 991–996.

[30] A. Smiti and Z. Elouedi, “DBSCAN-GM: An improved clustering
method based on Gaussian means and DBSCAN techniques,” in
Proc. IEEE 16th Int. Conf. Intell. Eng. Syst., 2012, pp. 573–578.

[31] B. Thomee et al., “YFCC100M: The new data in multimedia
research,” Commun. ACM, vol. 59, no. 2, pp. 64–73, 2016.

[32] G. T. Toussaint, “The relative neighbourhood graph of a finite
planar set,” Pattern Recognit., vol. 12, no. 4, pp. 261–268, 1980.

[33] D. W. Matula and R. R. Sokal, “Properties of gabriel graphs rele-
vant to geographic variation research and the clustering of points
in the plane,” Geogr. Anal., vol. 12, no. 3, pp. 205–222, 1980.

[34] J. Wetherell, “Java: Algorithms and data structure,” 2017.
[Online]. Available: https://github.com/phishman3579/java-
algorithms-implementation

Antonio Cavalcante Araujo Neto received the
bachelor’s and master’s degree from the Federal
University of Cear�a, Brazil, in 2012 and 2015,
respectively. He is currently working toward the
PhD degree in the Department of Computing Sci-
ence, University of Alberta’s, Edmonton, Canada.
His main research interests are clustering and
data mining.

Joerg Sander received the MS and PhD degrees
in computer science from the University of Munich,
Munich, Germany. He is currently a full professor in
computing science at the University of Alberta,
Edmonton, Canada. His research interests include
knowledge discovery in databases, clustering,
spatial datamining, and similarity search.

Ricardo J. G. B. Campello received the BSc
degree in electronics engineering from the State
University of S~ao Paulo, Brazil, in 1994, and the
MSc and PhD degrees in electrical engineering
from the State University of Campinas, Brazil, in
1997 and 2002, respectively. He is currently a
full professor with the School of Mathematical
and Physical Sciences, University of Newcastle,
Callaghan, Australia. His current research inter-
ests include data mining, data science, machine
learning, and computational intelligence.

Mario A. Nascimento is a full professor with the
Department of Computing Science, University of
Alberta’s, Edmonton, Canada. He has also been
a visiting professor with the National University of
Singapore, Singapore, Aalborg University in
Denmark, LMU Munich in Germany and with the
Federal University of Ceara in Brazil. His current
research interests lie in the domain of spatio-
temporal data management.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

NETO ET AL.: EFFICIENT COMPUTATION AND VISUALIZATION OF MULTIPLE DENSITY-BASED CLUSTERING HIERARCHIES 3089

http://archive.ics.uci.edu/ml
https://github.com/phishman3579/java-algorithms-implementation
https://github.com/phishman3579/java-algorithms-implementation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

