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Column-wise Element Selection for
Computationally Efficient Nonnegative Coupled

Matrix Tensor Factorization
Thirunavukarasu Balasubramaniam, Richi Nayak, Chau Yuen, and Yu-Chu Tian

Abstract—Coupled Matrix Tensor Factorization (CMTF) facilitates the integration and analysis of multiple data sources and helps
discover meaningful information. Nonnegative CMTF (N-CMTF) has been employed in many applications for identifying latent patterns,
prediction, and recommendation. However, due to the added complexity with coupling between tensor and matrix data, existing
N-CMTF algorithms exhibit poor computation efficiency. In this paper, a computationally efficient N-CMTF factorization algorithm is
presented based on the column-wise element selection, preventing frequent gradient updates. Theoretical and empirical analyses
show that the proposed N-CMTF factorization algorithm is not only more accurate but also more computationally efficient than existing
algorithms in approximating the tensor as well as in identifying the underlying nature of factors.

Index Terms—CP decomposition, Nonnegative Coupled Matrix Tensor Factorization, Cut-off, Coordinate Descent, Element Selection,
Recommender systems, Spatio-temporal patterns.
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1 INTRODUCTION

W ITH the digital advancements, the data about the
same concept can be collected from multiple sources.

To get meaningful information on a topic, it is important to
combine and analyze relevant data accurately and efficiently
from multiple sources. This is known as data fusion, which
is a fundamental technique widely used in a wide range of
domains such as recommender systems [1], pattern mining
[2], metabolomics [3], chemometrics [4], sensor and signal
processing [5], brain imaging [6], and bioinformatics [7].

In recommender systems, the user-to-item rating (user×
item) information can be fused with the user-to-user trust
(user × user) information. Similarly, the multifaceted na-
ture of datasets facilitates the fusion of matrix and tensor
data sources for discovering useful knowledge. To recom-
mend an item to a user based on its tagging activities,
the primary data source can be represented as a third-
order tensor (user × item × tag) with an auxiliary trust
matrix (user × user). In smart city applications, people’s
check-in activities can be represented as a third order tensor
(user×location×time) with a (location×category) matrix.
The coupled matrix-tensor fusion models are shown to be
useful in real applications [1], [2], [4].

Traditional Matrix Factorization (MF) only or Tensor
Factorization (TF) only algorithms such as Alternating Least
Square (ALS) [6], Stochastic Gradient Descent (SGD) [8],
Multiplicative Update Rule (MU) [9], and Coordinate De-
scent (CD) [10] can fail to capture the latent factors with in-
terrelated multi-dimensions data like coupled matrix-tensor
[11]. A coupled matrix-tensor factorization (CMTF) [1] and
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a Nonnegative CMTF (N-CMTF) [12] have been specifically
proposed to jointly analyze matrix and tensors. However,
their computation efficiency and convergence speed are not
acceptable particularly for sparse data [13]. While these
algorithms can be implemented in parallel and distributed
environments to improve the scalability, same as TF [12],
[14], [15], [16], [17], the underlying computational complex-
ity remains the same. With the rise in this type of data,
there exists a need to develop a computationally efficient
N-CMTF algorithm.

In this paper, we propose a column-wise element
selection-based CD algorithm, Cut-off Coordinate Descent
(Cut-CD), to solve N-CMTF efficiently and accurately. Cut-
CD updates factor matrices one by one. While updating
a factor matrix, it selects only a few important elements
based on a column-wise cut-off technique, instead of up-
dating all the elements. It calculates each elements im-
portance based on the difference in the objective function
that measures the error minimized using optimization. By
using the column-wise element selection technique, Cut-CD
avoids the frequent gradient updates [18], a bottleneck in
traditional element selection-based methods, and speeds up
the factor matrix update process. For the purpose of pattern
mining, we propose to introduce sparsity constraint to the
N-CMTF objective function in Cut-CD (called as Cut-CD-
SC) to capture accurate factor matrices. With an efficient
N-CMTF algorithm as Cut-CD, the shared and unshared
latent factors can be learned accurately, which can facilitate
accurate prediction, recommendation and pattern mining
for large datasets.

Extensive empirical analysis is conducted to show the
efficiency of Cut-CD for the tasks of tensor approximation
and recommendation, and the accuracy of Cut-CD-SC for
spatio-temporal pattern mining in sparse datasets. Using
synthetic and real-world datasets, we demonstrate 1) the
fast convergence speed of Cut-CD; 2) the efficiency of Cut-
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CD as compared to other state-of-the-art algorithms for
accurately generating recommendations and finding the
underlying structure of spatio-temporal patterns; and (3)
the accuracy of Cut-CD-SC in finding distinctive spatio-
temporal patterns.

In summary, this paper presents the followings:

1) Factorization Algorithm. Column-wise element
selection-based Cut-CD algorithm for N-CMTF. It
updates the elements and gradients selectively, lead-
ing to faster convergence without a trade-off of
accuracy.

2) Theoretical analysis. Theoretical results are estab-
lished for the efficiency of Cut-CD in terms of con-
vergence, time complexity, memory requirement,
and element/gradient updates.

3) Experiments. Extensive empirical analysis is con-
ducted to show the efficiency of Cut-CD in terms
of runtime and convergence speed as well as accu-
racy in the tasks of approximation, prediction and
pattern mining.

The rest of the paper is organized as follows: Section
2 reviews related work. Section 3 introduces preliminaries
for TF and CMTF. Section 4 presents Cut-CD. Theoretical
analysis and empirical analysis are discussed in Sections 5
and 6 respectively.

2 RELATED WORK

CMTF Applications: With the wide availability of multiple
data sources (e.g., mobile computing and Internet-of-Things
devices), CMTF has become more effective in missing data
estimation (i.e. prediction) or pattern mining in comparison
to using MF or TF independently [19], [20]. Tensor modeling
(location × noise category × time slot) was applied to
understand the noise pollution across New York City to
inform people about the better environment [20]. The results
show that the traditional TF fails to predict most of the
missing entries due to the data being sparse. On the other
hand, a CMTF method was successfully used to recom-
mend an activity, time and location to a user by modelling
(user × activity × location × time) with additional infor-
mation coupled as a matrix at each mode [19]. CMTF has
also been used in location recommendation by combining a
(user× location× time) tensor model with a (user× user)
similarity matrix and a (location × feature) matrix [21].
The runtime of the method was improved by utilizing a
threshold algorithm that separates the data into smaller
regions and calculates the top-recommendation for each
region. Recently, N-CMTF was applied to predict spatio-
temporal patterns using Greedy Coordinate Descent (GCD)
[2]. The method highlighted the scalability issues with N-
CMTF particularly in the presence of high sparse data. In
general, all of these methods have been applied to small
datasets only. In reality, the majority of tensor applications
results in a large size and very high sparsity dataset [19],
[22].

N-CMTF algorithms: Traditionally, ALS has been used
to solve Nonnegative Tensor or Matrix Factorization
(NTF/NMF) problems. Because of the non-convex opti-
mization problem underlying the objective function, only

one factor matrix is updated by fixing all the other factor
matrices in ALS to solve the optimization problem. This
approach of ALS has been extended to solve the N-CMTF
because of its simplicity in formulation [1]. However, due
to the expensive matrix multiplications involving in the
update rule, ALS becomes non-scalable and prone to poor
convergence [23], [24]. To overcome poor convergence, all-
at-once optimization (OPT) [1] was introduced for CMTF
that updates all factor matrices together. This gradient-
descent based approach has been reported unable to identify
the true underlying factors of the factor matrices [1], [4].

Fast NMF/NTF algorithms: The time complexity in-
volved in the traditional factorization process is mainly
because of the Matricized Tensor Times Khatri-Rao Product
(MTTKRP) and the factor matrix update [25].

To effectively parallelize or distribute the calculation of
MTTKRP, the majority of researchers rely on the parallel
and distributed setups [12], [14], [15], [16], [17], [26]. For
instance, the parallel and distributed stochastic gradient-
based FlexiFact algorithm was proposed to reduce the com-
putational cost [14]. While these approaches may improve
the performance in a distributed environment, they hardly
have an improvement on traditional non-distributed ma-
chines. The random sampling based method called Turbo-
SMT was used to reduce the size of the input tensor [12]. The
sampled tensor minimizes the size of the processing tensor
involving MTTKRP, thus the computation cost is reduced.
However, the random sampling of an original tensor to a
smaller subset is prone to information loss and may result
in factors learned to be inaccurate.

On the other hand, the Coordinate Descent (CD) based
NMF/NTF algorithms have been developed to reducing
the time complexity by involving the efficient factor matrix
updates [27], [28]. They have shown better accuracy and
convergence property than ALS and OPT [29], [30]. The
optimization is solved as a single element sub-problem and
each factor matrix is alternatively element-wise updated
[27]. This minimizes the computational cost of factor ma-
trix updates. This element-wise update leads the algorithm
to choose and update important elements repeatedly that
proves to converge faster. Hsieh et.al. introduced GCD al-
gorithm to solve the NMF problem [18] where the elements
to be updated are greedily selected based on the importance
measure calculated using the gradients. GCD updates a
single element multiple times and, for each element update,
it recalculates the gradient value of the entire row. However,
this gradient recalculation significantly increases the com-
putational cost and memory requirements. In comparison,
the proposed Cut-CD selects a set of elements to be updated
in each column and avoids frequent gradient updates that
are a bottleneck in GCD. We have implemented GCD which
is the only element selection-based algorithm in N-CMTF
and used it as a benchmark in experiments.

CCD++ [31] is a CD-based MF algorithm that updates
the kth column of each factor matrix without any element
selection and repeats the kth column updating for other
factor matrices. This process is then done for all columns.
This is considered as a single iteration, where the method
requires multiple such iterations. Subset Alternating Least
Square (SALS) [31] is an intermediate version of ALS
and CCD++ with an additional constraint that controls the
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number of columns to update in a single iteration of CCD++.
However, SALS cannot be directly applied for N-CMTF due
to the additional constraint it imposes. Coordinate Descent
for Tensor Factorization (CDTF) [17], [32] and Parallel Col-
lective Matrix Factorization (PCMF) [33] are two closely re-
lated work in which the underlying factorization algorithm
is CCD++ [31]. Without considering the parallelization and
distribution, both CDTF and PCMF are the same except the
fact that CDTF is the extension of CCD++ for higher orders
whereas PCMF is the extension of CCD++ for collective
factorization. We have implemented CCD++ in N-CMTF
environment and used it as a benchmark in experiments.
The difference between the proposed Cut-CD and CCD++
based matrix/tensor factorization algorithms are three-fold.

1) Cut-CD first selects elements in a factor matrix
according to element importance based on the pro-
posed column-wise cut-off technique. All the se-
lected elements of the factor matrix are then up-
dated. This process is then repeated for the rest of
the matrices sequentially. This forms an iteration.
Whereas CCD++ and its dependent methods update
the kth column of each factor matrix without any
element selection and repeats the kth column up-
dating for other factor matrices. This process is then
done for all columns. This forms a single iteration.
This frequent change in factor matrix is repeated for
R (number of columns) times which involves higher
communication cost making its convergence slower.
In summary, Cut-CD and CCD++ considerably vary
in terms of how column elements are selected and
how the sequence of columns are updated.

2) CCD++ involves multiple inner iterations during
the column-wise update whereas Cut-CD does not
have any inner iteration. These inner iterations
cause CCD++ to update the same column multiple
times which introduces frequent gradient updates,
a time consuming task similar to GCD.

3) CCD++ relies on an accelerating technique (stop-
ping criteria) to control the inner iterations and to
avoid unnecessary repetitive update of elements.
On the other hand, the column-wise element se-
lection makes Cut-CD converge faster without any
inner iterations or repetitive update of elements.

In summary, though many factorization algorithms have
been proposed for matrix/tensor factorization, an efficient
algorithm for N-CMTF is yet to be seen. The existing
NMF/NTF algorithms fail to address the computational cost
associated with the factor matrix update. The NMF/NTF
algorithms compromise either with accuracy or need expen-
sive distributed setup while providing an efficient solution.
Recently a family of methods has focused on combining
manifold learning with NMF/NTF to improve the accuracy
of the factorization process by incorporating the graph
regularization term to capture the closeness information in
the data [34], [35], [36]. These methods alter the objective
function according to domain-specific requirements, but the
underlying factorization algorithm remains similar to ALS.
The process of building a nearest graph is very expensive,
thus these algorithms are limited to small data size. The pur-
pose of Cut-CD is to improve the underlying factorization

TABLE 1: Notations used in thie paper.

Notation Description
X tensor (Euler script letter)
Ω set of indices of observable entries of X

xjkl (j, k, l)th entry of X
U matrix (upper case, bold letter)
u vector (lower case, bold letter)
u scalar (lower case, italic letter) / element
Xn mode-n matricization of tensor
⊗ Kronecher product
� Khatri-Rao product
∗ Hadamard product
◦ outer product
‖.‖ Frobenius norm

process as used in all matrix and tensor factorization. Cut-
CD is designed for Euclidean distance objective function
that is commonly used. Therefore, the overarching aim is to
utilise Cut-CD in the factorization process of these methods
to achieve a computationally efficient performance. Cut-CD
can be easily adapted for NMF or NTF problems in general.

3 COUPLED MATRIX TENSOR FACTORIZATION

The notations used throughout the paper are summarized
in Table 1. Let X ∈ R(J×K×L) denote a third-order tensor
where J , K and L represent the length of the dimensions
(or modes) of the tensor.

Matricization of the tensor. The process of converting a
tensor into a matrix is called as matricization or unfolding
of tensor [37]. The mode-1 matricization can be denoted as
X1 ∈ R(J×(KL)) for a third order tensor.

Kronecker product. For two matrices denoted as U ∈
R(J×R) and V ∈ R(K×R), the Kronecker product is pre-
sented as U⊗V. The resultant matrix of size (JK ×R2) is
defined as follows:

U⊗V =


u11V u12V u13V . . . u1rV
u21V u22V u23V . . . u2rV

...
...

...
. . .

...
uj1V uj2V uj3V . . . ujrV

 (1)

=
[
u1V u2V u3V . . . urV

]
(2)

where ur and vr are the columns of the matrices U and V
respectively.

Khatri-Rao Product. Column-wise Kronecker product is
called as Khatri-Rao product and it is denoted as U � V.
The resultant matrix is of size (JK ×R) and is defined as:

U�V =
[
u1 ⊗ v1 . . . ur ⊗ vr.

]
(3)

Hadamard Product. When the size of two matrices are
the same, the Hadamard product can be calculated by the
element-wise matrix product. It is denoted by U ∗ V and
defined as:

U ∗V =


u11v11 u12v12 u13v13 . . . u1rv1r

u21v21 u22v22 u23v23 . . . u2rv2r

...
...

...
. . .

...
uj1vj1 uj2vj2 uj3vj3 . . . ujrvjr.

 (4)

Tensor Factorization is a dimensionality reduction tech-
nique that factorizes the given tensor into factor matrices
that contain latent features. CANDECOMP/PARAFAC (CP)
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X
∼=

u1

v1

w1

+

u2

v2

w2

+ · · ·+

uR

vR

wR

Fig. 1: CP Factorization.

factorization and Tucker factorization are two well-known
tensor factorization techniques [24]. CP factorization has
shown to be less expensive in both memory and time con-
sumption as compared to Tucker factorization [24]. There-
fore, CP factorization has been more commonly used.

Definition 1 (CP Factorization): For a tensor X ∈
R(J×K×L) and rank R, the CP factorization factorizes the
tensor into a sum of component rank-one tensors citecar-
roll1970 as:

X ∼= JU,V,WK =
R∑

r=1

ur ◦ vr ◦wr. (5)

As shown in Fig.1, it decomposes the tensorX into three
factor matrices U,V and W with R hidden features. It is
solved as the following minimization problem:

min
U,V,W

f(U,V,W) = ‖X − JU,V,WK‖2 . (6)

Coupled Matrix Tensor Factorization: The objective
function of CMTF optimization with a third order tensor
X ∈ R(J×K×L) and matrix Y ∈ R(J×M) coupled (or
shared) in the first mode can be formulated [1] as:

min
U(1),V,W,U(2)

f(U(1),V,W,U(2)) =
∥∥∥X − JU(1),V,WK

∥∥∥2

+
∥∥∥Y −U(1)U(2)

∥∥∥2
(7)

whereX is factorized as a three dimensional CP model [24],
[38] and Y is factorized as a NMF model [9]. The factor
matrix U(1) ∈ R(J×R) is shared betweenX and Y, whereas
factor matrices V ∈ R(K×R), W ∈ R(L×R) and U(2) ∈
R(M×R) are unshared.

4 THE PROPOSED CUT-OFF COORDINATE DE-
SCENT ALGORITHM FOR N-CMTF: CUT-CD
The overall process of Cut-CD is presented in Fig. 2.

4.1 Cut-CD Objective Function: N-CMTF
The goal of Cut-CD is to identify the factor matrices repre-
senting each mode of the input tensor and the auxiliary ma-
trix that can approximate the input tensor and the auxiliary
matrix together. The objective of the optimization problem
is to minimize the Euclidean distance between the input
tensor and the approximated tensor while also minimizing
the Euclidean distance between the auxiliary matrix and the
approximated matrix using the derived factor matrices. The
objective function of CMTF as formulated in (7) can be rep-
resented as the sum of two objective functions representing
the tensor and matrix as:

f = f1 + f2, (8)

Fig. 2: Architecture of the overall process of Cut-CD.

where f1 is solved as,

min
U(1),V,W≥0

f1(U(1),V,W) =
∥∥∥X − JU(1),V,WK

∥∥∥2
(9)

and f2 is solved as,

min
U(1),U(2)≥0

f2(U(1),U(2)) =
∥∥∥Y −U(1)U(2)

∥∥∥2
(10)

4.2 Gradient Calculation
As the CMTF optimization is a non-convex optimization
problem, the values of all other factor matrices need to be
fixed to update one factor matrix at a time [1]. To update
the factor matrix using the CD method [10], [27], we need to
calculate the gradients of the factor matrices.

We first explain the process of learning the factor matrix
U(1) which is a shared factor matrix during the factorization
process. The gradients G for the objective function f with
respect to U(1) is solved using partial derivatives as:

G =
∂f

∂U(1)
=

∂f1

∂U(1)
+

∂f2

∂U(1)
(11)

∂f1

∂U(1)
= −X1(W �V) + U(1)(VTV ∗WTW) (12)

∂f2

∂U(1)
= U(1)U(2)TU(2) −YU(2) (13)

where X1 is the mode-1 matricization of the tensor. (11) can
be rewritten using (12) and (13) as follows:

G = −X1(W �V) + U(1)(VTV ∗WTW)

+ U(1)U(2)TU(2) −YU(2). (14)

For simplicity, each element of the gradient G is repre-
sented as:

gjr = −(X1(W �V))jr + (U(1)(VTV ∗WTW))jr

+ (U(1)U(2)TU(2))jr − (YU(2))jr (15)
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where gjr is the gradient of (j, r)th element of U(1).
The second-order partial derivative H of function f with

respect to U(1) is defined as,

H =
∂2f

∂U(1)
= (VTV ∗WTW) + U(2)TU(2). (16)

For simplicity, each element of the second-order partial
derivative H for each element can be represented as:

hrr = (VTV ∗WTW)rr + (U(2)TU(2))rr. (17)

4.3 Coordinate Descent based Update Rule

The CD update rule can be given as:

Û
(1)

= max

(
0,

(
U(1) − G

H

))
−U(1). (18)

The single element update rule of CD is given as [27]:

û
(1)
jr = max

(
0,

(
u

(1)
jr −

gjr
hrr

))
− u(1)

jr (19)

where û(1)
jr indicates the computed element, and u

(1)
jr indi-

cates the (j, r)th element of the factor matrix U(1),

u
(1)
jr ←− u

(1)
jr + û

(1)
jr . (20)

4.4 Nonnegative Constraint

We impose the nonnegative constraint to the element as:

u
(1)
jr =

{
u

(1)
jr for u(1)

jr > 0

0 for u(1)
jr ≤ 0.

(21)

4.5 Cut-off Coordinate Descent (Cut-CD) Column-wise
Element Selection

The calculations of X1(W � V), VTV ∗ WTW and
U(1)U(2)TU(2) for every element are expensive. The com-
putational complexity of a factorization algorithm can be
reduced if these values do not need to be calculated for
every element and they are only calculated for selected
elements. We now present how the elements can be selected
and updated using the proposed Cut-CD algorithm.

We conjecture that the N-CMTF algorithm will converge
faster by updating the important elements repeatedly, in-
stead of updating all elements sequentially. Algorithm 1 de-
tails the process. We propose to calculate the importance of
an element during factorization using the gradient principle
[18] as,

ejr = −(u
(1)
jr ∗ gjr)− 0.5(hrr ∗ u(1)

jr ∗ u
(1)
jr ) (22)

where ejr is the (j, r)th element importance which is the
difference in objective function. The higher the value, the
higher the importance.

We propose to calculate the column-wise element impor-
tance as,

e∗r = −(u(1)
∗r ∗ g∗r)− 0.5(h∗r ∗ u(1)

∗r ∗ u
(1)
∗r ) (23)

where e∗r is the vector of element importance for all the
elements in rth column.

When an element u(1)
jr is updated using a traditional el-

ement selection-based algorithm such as GCD [18], the gra-
dient gj∗ and the element importance ej∗ of the entire row
are need to be calculated for each update. The calculation
of gradient and element importance for each update is an
expensive task and consumes additional runtime and mem-
ory. Additionally, the gradients are calculated repeatedly for
all elements that are present in the same row where many
of them are not required. Due to this reason, we propose to
update them column-wise so that the repeated updates can
be avoided, and the efficiency of the factorization can be
improved. Once we have the vector e∗r, the element values
are normalized as:

n∗r =
e∗r −min(e∗r)

max(e∗r)−min(e∗r)
(24)

where n∗r indicates the normalized column r of e∗r.
Instead of updating a single element repeatedly, a set of

elements in each column based on a cut-off value can be
updated only once. Most importantly, for each iteration, we
propose to utilise a pre-calculated gradient that can help in
identifying the importance of each element in each column.
Therefore, we do not need to perform any inner gradient up-
dates which are the bottleneck in row-wise element updates
of a CD-based CMTF algorithm [18].

(a) GCD (b) The Proposed Cut-CD

Fig. 3: (a) Row-wise (GCD) and (b) Colum-wise (Cut-CD)
element selection in a factor matrix; red color indicates the
calculation for an element, element importance and gradient
updates; blue color indicates the calculation for element
importance and gradient updates; green color indicates the
element update calculation alone.

As shown in Fig. 3a, if element u22 is selected to update
in GCD, it is essential to update the gradients of the entire
row u2∗ and the element importance e2∗. This is required
to choose the next important element in the row for an
update. The same process is repeated for every row and
consequently increases the time complexity.

We propose to choose mean(n∗r) as the cut-off value
for each column as the mean value represents the best cut-
off value (as shown in the experiment section) and avoids
the need of parameter tuning. As shown in Fig. 3b, if
element u22 is selected to update in Cut-CD, it is enough
to update the element alone and to avoid gradient updates,
a distinct cut-off value can be set for each column. Since
it does not need to be dependent on other columns of G
thereby gradient updates are minimized. Additionally, since
each element is updated only once in an iteration, it is not
required to calculate element importance repeatedly. This is
supported by the following lemma 4.1.
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Algorithm 1: Cut-off Coordinate Descent Cut-CD
1 Input: Tensor X ; Matrix Y; Randomly Initiated factor

matrices U(1) ∈ RJ×R, V ∈ RK×R, W ∈ RL×R,
U(2) ∈ RM×R; Rank R; E = ∅;N = ∅; maxiters.

2 Result: Learned Factor matrices U(1), V,W, U(2)

3 for iters = 1 : maxiters do
4 Compute: G, H; using (14) and (16).
5 for r = 1 : R do
6 calculate e∗r using (23) ;
7 calculate n∗r using (24) ;
8 cut-off = mean(n∗r) ;
9 for j = 1 : J do

10 if njr ≥ cut-off then
11 update the (j, r)th element of U(1);
12 end
13 end
14 Repeat analogues lines 4 to 13 with G and H

calculated using (29) and (30) respectively to
update elements of V in line 11;

15 Repeat analogues lines 4 to 13 with G and H
calculated using (31) and (32) respectively to
update elements of W in line 11;

16 Repeat analogues lines 4 to 13 with G and H
calculated using (33) and (34) respectively to
update elements of U(2) in line 11;

17 end

Lemma 4.1. In the column-wise Cut-CD element selection, the
update of elements and element importance in rth column of U(1)

is dependent only on the gradients of the rth column.

Proof. Let u(1)
jr ∈ U(1) be (j, r)th element of U(1) and gjr ∈

G represents (j, r)th gradient of U(1). Ω denotes the set of
indices of observable entries of X .

∀ r: r ∈ R, the gradient can be calculated column-wise
as,

g∗r = (X1(W �V))∗r + (U
(1)

(V
T
V ∗WTW))∗r. (25)

The MTTKRP operation (X1(W �V)) for entire matrix
is an expensive task which can be simplified by calculating
it column-wise as,

(X1(W �V))∗r = m∗r =
∑

(j,k,l)∈Ω
U

(1)
j

(xjkl ∗ (w∗rv∗r))

(26)
where ΩU

(1)
j indicates the subset of Ω whose mode U(1)’s

index is j. w∗r and v∗r indicate the rth column of the factor
matrices W and V respectively.

Substituting (26) in (25), we have,

g∗r = m∗r + (U
(1)

(V
T
V ∗WTW))∗r. (27)

As the calculation of column-wise gradient is possible as
per (27), the next ((r + 1)th) column’s gradient is calculated
as,

g∗r+1 = m∗r+1 + (U
(1)

(V
T
V ∗WTW))∗r+1. (28)

From (27) and (28), it can be seen that calculating the
gradient of one column is independent of the gradient
of the other column. Moreover, the column-wise element
importance as per (23) is dependent only on the rth column
of the gradient (g∗r).

The set of important elements sr ∈ u(1)
∗r ≤ cut-off

are selected. This subset sr is dependent on the element
importance calculated using (23) which in-turn dependent
on the rth column of G as per (25). Hence, the elements
and element importance of rth column of U(1) can be
calculated and updated column-wise without depending on
the gradients of the other columns.

If J is the total number of rows, Cut-CD selects S (where
S < J ) elements based on the distinct cut-off value, to
update in each column. This considerably minimizes the
total number of element updates.

Therefore, for each update of u(1)
jr , it is enough to update

gjr alone without updating gj∗ of all the columns of jth row
and element importance ejr.

As the matrix component Y is shared only with mode-1
(U(1)), the partial derivatives of f2 in (11) can be set to zero
for updating the tensor factor matrices V,W. The update
rule for V and W can be derived by the following gradient
G and second-order partial derivative H calculations.

∂f

∂V
= G = −X2(W�U(1))+V(U(1)TU(1)∗WTW).

(29)

∂2f

∂V
= H = U(1)TU(1) ∗WTW. (30)

∂f

∂W
= G = −X3(V�U(1))+W(U(1)TU(1) ∗VTV).

(31)

∂2f

∂W
= H = U(1)TU(1) ∗VTV. (32)

When updating U(2) in (8), the partial derivative of f1

with respect to tensor in (11) is set to zero, the gradient
G and second-order partial derivative H for updating U(2)

becomes,

∂f

∂U(2)
= G = U(2)U(1)TU(1) − YTU(2). (33)

∂2f

∂U(2)
= H = U(1)TU(1). (34)

The Cut-CD column-wise element selection is applied to
select and update the elements of factor matrices V,W,U(2)

using (20) in the same way as explained for U(1).
Algorithm 1 details the process. Cut-CD is generic and

can be easily derived for NMF or NTF problems by sub-
stituting zero for f1 and f2 respectively in (8) or adding
another shared matrix in other tensor dimensions.

The element selection method of GCD needs to know
the values of gradients of the whole matrix. This is not
convenient when the algorithm is applied to a distributed
or parallel environment. Whereas, the column-wise element
selection as in Cut-CD allows the algorithm to efficiently
adapt to a distributed or parallel environment. This is due
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to the fact that the element selection is independent of other
columns of a factor matrix as proven in Lemma 4.1. The
column-wise update sequence as proposed in PCMF and
CDTF has huge advantages in a distributed and parallel en-
vironment over Cut-CD. However, this column-wise update
sequence with distributed and parallelization techniques of
PCMF and CDTF can be adapted to Cut-CD to make it more
efficient in a distributed and parallel environment. This is
beyond the scope of this paper.

5 THEORETICAL ANALYSIS

In this section, we will analyse Cut-CD in terms of con-
vergence, time complexity, memory requirement and ele-
ment/gradient update. As GCD is the state-of-the-art ele-
ment selection-based method, most of our analytical com-
parison is with GCD. We use the following symbols in
the analysis, R: rank; Z : number of element updates; and
J,K,L and M indices for factor matrices U(1),V,W and
U(2) respectively.

5.1 Convergence Analysis
The class of optimization methods solving non-convex op-
timization by alternating between multiple sets of variables
is known as Alternating Direction Method of Multipliers
(ADMM) [39]. All CD methods including Cut-CD employ
ADMM in solving the optimization problem.

Theorem 5.1. The ADMM method with an update sequence
using element section based Cut-CD converges to a stationary
point for a cut-off value imposed.

Proof. The optimization function f reaches a stationary
point (i.e. local, global, or saddle) only when the following
inequality satisfies.

f(ui+1) ≤ f(ui) (35)

where i indicates the ith iteration. This states that the
function decreases monotonically and a stationary point is
reached.

ADMM based update uses the update sequence,

f(ui+1) = max(0, f(ui)− f ′(ui+1)

f ′′(ui+1)
), i = 0, 1, . . . (36)

The gradients for the sequence updating all the elements
can be defined as:

f ′(ui) = −
J∑

j=1

R∑
r=1

gijr. (37)

While S is a set of elements selected based on a cut-off
value (mean(n∗r)) using Cut-CD to be updated in U(1), the
gradients for the selected elements can be defined as,

f ′s(u
i) = −

∑
j,r∈S

gijr. (38)

Since the elements are selected such that the objective
function will be minimized, the following inequality exists,

f ′s(u
i) ≤ f ′(ui). (39)

second-order partial derivative of f can be defined as,

TABLE 2: Time Complexity Analysis.

Mode length (J) Rank (R) O(GCD) O(Cut-CD) Times Faster
1000 10 100,000 10,000 10
1000 20 400,000 20,000 20
1000 30 900,000 30,000 30
1000 50 2,500,000 50,000 50
1000 100 10,000,000 100,000 100

f ′′s (ui) =
R∑

r=1

hirr >
∑
r∈S

hirr > 0. (40)

With the calculated gradients and second-order partial
derivatives, as per (36), we have

f(ui+1) ≤ f(ui)− f ′s(u
i+1)

f ′′s (ui+1)
. (41)

Iterating the inequality above gives,

∞∑
i=0

f ′s(u
i+1)

f ′′s (ui+1)
≤ fs(ui) ≤ f(ui) (42)

which proves that for the given cut-off value (mean(n∗r)),
f(ui+1) ≤ f(ui), hence Cut-CD will converge to a station-
ary point.

If Cut-CD is stuck in a saddle point, a second-order
derivative test can be used to identify it and an advanced
gradient descent techniques like perturbed gradient de-
scent [40] can be used to escape.

5.2 Time Complexity Analysis

The time complexity of Cut-CD is O(JKLR + 2JR2 +
JMR + Z) in comparison to the time complexity of GCD
O(JKLR+3JR2+JMR+3ZR) that isO(JR2+Z(1−3R))
less than GCD.

For the first iteration, both Cut-CD and GCD need
gradients to be initialized G, as shown in (14). This step
includes calculation of four terms X1(W�V),U(1)(VTV∗
WTW),U(1)U(2)TU(2) and YU(2) which incur the com-
plexity of O(JKLR), O(JR2), O(JR2) and O(JMR) re-
spectively. Additionally, GCD needs initialization of the
element importance matrix E that will exhibit O(JR2). If
Z number of elements are updated for every inner loop, the
time computation of element update costsO(ZR). Similarly,
for each gradient and element importance matrix E update,
it requires O(ZR). On the other hand, as shown in Algo-
rithm 1, Cut-CD calculates the element importance column-
wise to avoid initialization. Also as per lemma 4.1, Cut-CD
doesnt need to update the gradient and importance matrix
E of entire row and hence the time complexity becomes
O(Z). For each factor matrix update, GCD involves the R
inner loops, hence the time complexity of GCD and Cut-
CD is O(JR2) and O(JR) respectively. In Table 2, we fix
the value for J as 1000 and substitute different values of
R for the inner loops time complexity of GCD and Cut-
CD. The results shows that the computational complexity
of GCD grows exponentially; however, Cut-CD is efficient
and grows only linearly with increase in the tensor rank.
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5.3 Memory Requirement Analysis
The memory requirement of Cut-CD for a single element
update is O(1) in comparison to GCD that is O(R).

For each single element update in a factor matrix, Cut-
CD requires the following three types of data in the mem-
ory: (1) the element, (2) its gradient and (3) the second-order
derivative value of the element. According to lemma 4.1,
each element update in Cut-CD requires only one gradient
update and hence the memory requirement is O(1). The
independent column-wise update of Cut-CD makes it easier
to perform efficiently if the process of an update can be
distributed column-wise across multiple machines. On the
other hand, GCD needs the gradient of the entire row to be
updated for each single element update. If R is the number
of columns in a factor matrix, the memory requirement
is O(1) + O(R). The memory requirement of GCD grows
linearly when the rank is increased, in comparison to Cut-
CD that has the same memory requirement O(1) irrespec-
tive of the increase in rank. Importantly, it is to be noted
that the selection of elements depends on the entire factor
matrix, consequently, it becomes hard to process GCD in a
distributed environment.

5.4 Element and Gradient Update Analysis
In CD-based factorization, the factor matrices are updated
element-wise [6]. Using a synthetic dataset, we show the
total number of elements and gradients updated in each
iteration by Cut-CD and GCD in Fig. 4. As proved in lemma
4.1, each element update in Cut-CD requires only one gradi-
ent update and the number of gradient updates is the same
as the number of element updates. Whereas in GCD, the
number of gradient updates is more than the number of
element updates. Fig. 4 shows that Cut-CD does not need
frequent gradient updates, as in GCD, when updating the
elements in a factor matrix. It is enough to update all the
gradients of a factor matrix once for each iteration in Cut-
CD. It also shows that the number of element updates is
higher in early iterations in GCD, whereas, the element up-
dates count in Cut-CD remains constant. The greedy search
strategy of GCD can select the same element to be updated
multiple times within a single iteration while the threshold
based search strategy of Cut-CD selects and updates a set of
elements only once.

Fig. 4: A factor matrix update analysis on the Syn1 dataset
(as shown in Table 3).

6 EMPIRICAL ANALYSIS

We conducted experiments with Cut-CD to answer the
following questions:

TABLE 3: Dataset statistics.

Dataset Tensor size Matrix size Density of tensor
Syn1 1500 x 1500 x 1500 1500 x 1500 0.00009
LastFM 200 x 12500 x 1719 200 x 200 0.00040
Delicious 100 x 5010 x 5120 100 x 100 0.00070
D1 37 x 1295 x 7 37 x 37 0.00700
D2 37 x 1295 x 24 37 x 37 0.00200
D3 25000 x 2294 x 7 25000 x 385 0.00030
D4 25000 x 2294 x 24 25000 x 385 0.00010

Q1. What is Cut-CD’s runtime performance compared to
the state-of-the-art N-CMTF algorithms?

Q2. How accurately Cut-CD can approximate the tensor?
Q3. How accurately Cut-CD can predict the missing

data of the tensor? In other words, what is its accuracy
performance in a recommendation or prediction task?

Q4. How well Cut-CD with Sparsity Constraint (Cut-
CD-SC) can identify factors used in pattern mining?

The datasets used for the experiments, the experimental
setups, and the evaluation criteria are detailed in Sections
6.1, 6.2 and 6.3 respectively. Q1, Q2, Q3, and Q4 are ad-
dressed in Sections 6.4, 6.5, 6.6, and 6.7 respectively.

6.1 Datasets
Several synthetic and openly available real-world datasets
were used in experiments (Table 3). The randomly generated
synthetic dataset (Syn1) was generated showing high spar-
sity. LastFM, Delicious datasets1 and Syn1 were used to test
the tensor approximation performance. The LastFM dataset
includes a total of 200 users, 12500 artists and 1719 tags
information represented as tensor with a coupled matrix
of 200 users relationship. The Delicious dataset includes a
tensor of 100 users × 5010 URLs × 5120 tags with a coupled
matrix of 100 users relationship. These three datasets are
used to address the questions Q1, Q2, and Q3.

We address Q4 by using two smart city data (D1 and D3).
The first smart city data (D1) is collected from the activities
of Singapores elderly people living in the Bukit Panjang
region. D1 was gathered using smartphone sensors that
consist of 37 users home location, 1295 locations visited by
them and the time [41]. We represent D1 in the tensor model
as 37 × 1295 × 7 along with user-user physical distance
matrix representation 37 × 37 to identify temporal patterns
over 7 days of the week. We changed the time slot in D1 to
24 hours to generate data D2 in the tensor model to identify
the temporal pattern over 24 hours. The second smart city
data, Tokyo city foursquare2, consists of 2294 users and
their check-ins at 25000 restaurants. The dataset was added
with an auxiliary information of 385 categories for different
locations. We represent (user× location× time) as a tensor
and (location× location category) as an additional matrix.
We generated two datasets by defining 7 days and 24 hours
as the temporal dimension of the tensor as shown in Table 3.

6.2 Experimental setup and Benchmarks
The source code of Cut-CD is available3. All the experiments
were executed in Intel (R) Xeon (R) CPU E5-2665 0 @

1. https://grouplens.org/datasets/hetrec-2011/
2. https://www.kaggle.com/spinalnerve/nyc-tokyo
3. https://github.com/thirubs/Cut-CD
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2.40GHz model with 16GB RAM. We compared the per-
formance of Cut-CD with the state-of-the-art N-CMTF fac-
torization algorithms including GCD [2], Turbo-SMT OPT
[12] (an advance variation of OPT [1]), ALS [5], and CCD++
(we implemented the serial version of CCD++ to solve the
N-CMTF problem) [31]. For a fair comparison, we used
the single machine implementation of Turbo-SMT OPT by
setting parameter repetitions and sample factor to 1. All the
algorithms were implemented in MATLAB using the tensor
toolbox. Note that CDTF and PCMF are distributed and
parallel variations of CCD++ for TF and Coupled Matrix
Factorization respectively. Therefore, to have a fair compari-
son we use the fundamental factorization algorithm CCD++
employed in those methods. CCD++ has a parameter that
defines the number of inner iterations it can have. We
included two versions of CCD++ (CCD++1 and CCD++3)
as benchmarks where CCD++1 stands for CCD++ with 1
inner iteration and CCD++3 stands for CCD++ with 3 inner
iterations. Each experiment setting is executed 5 times with
different factor matrix initializations and the average value
is reported in the result section.

Identifying the rank of a matrix or a tensor is an NP-
hard problem. It is known that the higher the rank, the
higher the computation complexity will be, and the solution
reaches a stable condition after a certain rank value. In our
experiments, we have set the matrix and tensor rank to 100
and 75 for LastFM and Delicious datasets respectively and
30 for Syn1 as the approximation reached stable condition
without the further chances of improvement.

6.3 Evaluation Criteria
Accuracy is calculated using Normalized Residual Value
(NRV) [30] as:

Approximation Error (NRV) =

∥∥∥X1 −U(1)(W �V)T
∥∥∥2

‖X‖2
.

(43)
Prediction Accuracy is reported by the Root Means Square
Error (RMSE) and the recommendation quality is evaluated
using precision, recall and F1 score,

RMSE =

√∑
(X t − X̂ t)2

n
(44)

whereX t is the original tensor populated with the test data,
X̂ t is the approximated tensor after the factorization process
and n is the number of elements in X t.

Precision =
True Positive

True Positive+ False Positive
. (45)

Recall =
True Positive

True Positive+ False Negative
. (46)

F1 Score = 2

(
Precision×Recall
Precision+Recall

)
. (47)

Pattern Distinctiveness (PD) is used to evaluate the qual-
ity of patterns learned using the N-CMTF as follows.

PD =< tq, tr >,∀q, r ∈ [1, R], q < r (48)

where tq and tr indicates the qth and rth column of tem-
poral factor matrix W. PD measures the similarity of each

pattern with other patterns. Higher the PD value, higher
is the similarity between patterns. Since the objective is to
identify unique patterns, hence, lower the PD value, better
the quality of learned patterns is considered.

6.4 Runtime Performance
The runtime of Cut-CD and all benchmarking algorithms in
factorizing a tensor has been reported in Fig. 5 by varying
the mode length, density and rank of the tensor. We first
generate randomly initialized synthetic datasets by increas-
ing the length of mode (J,K,L,M) of the tensor and the
matrix from 26 to 214, by fixing the rank and the tensor
density to 10 and 0.00001 respectively. As shown in Fig. 5a,
the runtime of Cut-CD is lower than other algorithms. The
runtime of ALS increases exponentially with an increase in
data size, whereas Cut-CD, GCD, and CCD++ show the
linear growth. Comparing the maximum size of the dataset
that ALS and Turbo-SMT OPT can handle, Cut-CD can
process a 24 times bigger dataset. Most importantly, due to
high sparsity, Turbo-SMT OPT even fails to run for smaller
datasets (26 and 28) as there are not enough observations for
partitioning the dataset into multiple smaller subsets.

As discussed before, there are two components involved
in the time complexity of the factorization process, MTTKRP
calculation and factor matrix update. As seen in Fig. 5b,
Cut-CD is nearly 9.2 times faster than GCD in updating the
factor matrix while the time taken for MTTKRP calculation
remains the same on the 214 mode length dataset. Fig. 5c
shows the runtime on datasets with varying density with
the rank and mode length set to 10 and 210 respectively.
Cut-CD serves the best performance with 4.2 times faster
over GCD and 76 times faster over ALS. Performance of
Cut-CD increases with increase in the sparsity. For instance,
it is 1.5 times faster than ALS for the denser dataset whereas
it is 76 times faster for the sparse dataset. This demonstrates
the efficiency of Cut-CD for sparse datasets which will be
the case for most of the applications. In Fig. 5d, we vary
the rank by fixing the density to 0.00001 and mode length
to 210. We choose this to show the performance of all
algorithms, as for larger mode length some of the algorithms
(ALS and Turbo-SMT OPT) do not work. Results show
that Cut-CD outperforms other algorithms. Even though
CCD++ can avoid frequent gradient updates unlike GCD,
the runtime performance is inferior to GCD. This is due to
the communication cost associated with the frequent change
in the factor matrix. It is interesting to note that CCD++1 and
CCD++3 show similar performance despite the increase in
the inner iterations which shows that the communication
cost is the bottleneck and influences the runtime.

6.5 Approximation Performance
Fig. 6 reports the RMSE performance of all the algorithms
for the synthetic datasets used in Section 6.4. It is evident
that accuracy is not compromised in Cut-CD for efficient
runtime performance.

Figures 7, 8, and 9 show the comparative performance
of all algorithms in terms of accuracy and convergence.
In all datasets, Cut-CD and GCD converged into a better
solution faster without compromising accuracy. For the
sparse data (Syn1) in Fig. 9, Cut-CD converged to a better
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(a) Running time vs Mode length (b) Running time (c) Running time vs Density (d) Running time vs Rank

Fig. 5: Runtime performance of all algorithms with varying mode length, rank, and density of the tensor. ALS and Turbo-
SMT OPT did not scale with mode length > 210. Turbo−SMT OPT fails to process the tensor for mode length < 210 and
density < 1e−6. Legends showing the bar type are given below.

(a) RMSE vs Mode length (b) RMSE vs Density (c) RMSE vs Rank

Fig. 6: Accuracy performance with synthetic datasets (used for scalability evaluation).

solution before GCD and ALS algorithms, completing only
a single iteration. This indicates the effectiveness of Cut-CD
in sparse conditions which is a common situation in real-
world applications where other algorithms may suffer.

Sensitivity to cut-off value: Cut-CD requires a cut-off value
to select the elements for updating during factorization. By
normalizing each column values, a cut-off value can be set
between 0 and 1. Experiments with all datasets including
the very sparse Syn1 reveal that the mean value performs
consistently best (Figs. 7d, 8d, and 9d), as well as, it takes
least the time to converge. Therefore, the cut-off value is set
to mean that makes Cut-CD a parameter-free method. As
shown in Fig. 8a, the accuracy of Cut-CD with mean as cut-
off value is less than that of GCD for the Delicious dataset.
But with a proper cut-off value selection, its accuracy can
further be improved. This is supported by Fig. 8d.

6.6 Prediction or Recommender Performance

The N-CMTF can be considered as a solution to a rec-
ommendation or prediction problem, where the estimated
missing data are treated as the prediction. The factor ma-
trices learned during factorization using Cut-CD are used
to reconstruct the approximated tensor as per (5) that will
identify missing values. The goal of the recommendation
task conducted with LastFM and Delicious datasets is to
predict the missing entries of the tensor as accurately as
possible. These entries are then inferred as most likely items
that can be recommended to users.

Figs. 10 and 11 report the best performance of Cut-
CD in comparison to all baseline algorithms. While other
algorithms including Cut-CD can handle higher ranks, ALS
is not scalable to LastFM and ran out of memory for rank

greater than 75 for the Delicious dataset. With lower ranks,
it has failed in recommendation generation yielding the
lowest F1 score. Though Turbo-SMT OPT can handle higher
ranks, due to random sampling it has lost some information
leading to poor performance in terms of prediction and
recommendation generation. GCD and CCD++ show poorer
accuracy performance in comparison to Cut-CD, as well as,
GCD is 5.7 to 8.3 times slower and CCD++ is 8 times slower
than Cut-CD.

6.7 Pattern Mining

The objection function (8) is designed to generate denser fac-
tor matrices so that the reconstructed tensor can be approxi-
mated to the original tensor as close as possible. The new or
unobserved entries in the approximated tensor can be used
for making prediction or recommendation. However, for the
purpose of pattern mining, it is better to generate sparse
and distinct factor matrices [42]. We introduce an auxiliary
term to the N-CMTF objective function (8) that controls the
sparsity level of the factor matrices. We add the L2,1 norm
to the objective function (8) as,

min
U(1),V,W,U(2)≥0

f(U(1),V,W,U(2)) =∥∥∥X − JU(1),V,WK
∥∥∥2

+
∥∥∥Y −U(1)U(2)

∥∥∥2
+ λ

∥∥∥U(1)
∥∥∥

2,1

+ λ ‖V‖2,1 + λ ‖W‖2,1 + λ
∥∥∥U(2)

∥∥∥
2,1

(49)

where
∥∥∥U(1)

∥∥∥
2,1

, ‖V‖2,1, ‖W‖2,1 and
∥∥∥U(2)

∥∥∥
2,1

are L2,1

norms applying the sparsity constraints on each factor ma-
trices and λ indicates the regularization parameter.
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(a) NRV vs Running time (b) NRV vs Iterations (c) Running time vs Iteration (d) Threshold sensitivity

Fig. 7: Approximation and Runtime performance of all the algorithms for LastFM dataset.

(a) NRV vs Running time (b) NRV vs Iterations (c) Running time vs Iteration (d) Threshold sensitivity

Fig. 8: Approximation and Runtime performance of all the algorithms for Delicious dataset.

(a) NRV vs Running time (b) NRV vs Iterations (c) Running time vs Iteration (d) Threshold sensitivity

Fig. 9: Approximation and Runtime performance of all the algorithms for Syn1 dataset.

(a) RMSE vs Rank (b) Running time vs Rank (c) Precision and Recall (d) F1 score

Fig. 10: RMSE, Runtime, Precision, Recall and F1 score on the LastFM dataset.

The L2,1 norm of factor matrices say for
∥∥∥U(1)

∥∥∥
2,1

can

be calculated as,∥∥∥U(1)
∥∥∥

2,1
=

J∑
j=1

√√√√ R∑
r=1

(u
(1)
jr )2 =

J∑
j=1

∥∥∥u(1)
∗j

∥∥∥ . (50)

With the sparsity constraint added to the objective func-

tion, the non-zero elements in the factor matrix will be
reduced leading to a sparse factor matrix. As the sparsity
constraint in (49) is introduced using norm, it will not
change the optimization process and we can easily apply
Cut-CD for N-CMTF with Sparsity Constraint (Cut-CD-SC)
by repeating the Sections 4.2 to 4.5 and calculating L2,1 of
each factor matrix using (50).
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(a) RMSE vs Rank (b) Running time vs Rank (c) Precision and Recall (d) F1 score

Fig. 11: RMSE, Runtime, Precision, Recall and F1 score on the Delicious dataset. o.m. out of memory.

6.7.1 Understanding the Spatio-Temporal Patterns of Sin-
gapores Elderly people (D1 and D2)
In this section, we apply Cut-CD-SC to extract spatio-
temporal patterns from the smart city datasets, D1 and D2.
We represent the users’ mobility information in the N-CMTF
of (user × location × time slots) with (user × user) to
identify spatio-temporal patterns over 7 days of the week
and over 24 hours in D1 and D2 respectively. Though NMF
can be useful to extract spatial-temporal patterns separately
by representing (user × location) and (user × time slots)
matrices, they cannot be used to capture spatial and tempo-
ral patterns existing together. With rank (R) set as 4 during
the factorization process, 4 distinct patterns relating to each
of the temporal (W ∈ RL×R) and location (V ∈ RK×R)
factor matrices are obtained. Each column in the factor
matrix becomes a pattern/feature.

Fig. 12a and Fig. 12b show the temporal patterns gen-
erated by Cut-CD-SC on D1 and D2 where different color
indicates different patterns. The red and pink patterns in
Fig. 12a show that people are more active on weekends
(Sundays and Saturdays respectively) and stay inactive over
weekdays. The blue pattern indicates that some users are ac-
tive on Thursdays and remain inactive during the weekend.
The red and pink patterns in Fig. 12b provide fine-granular
information that people are engaged in activities between 6
- 10 pm, and in the evening at 6 pm, respectively. The blue
pattern in Fig. 12b shows a peak at 6 to 9 am to distinguish
itself from green pattern.

Using location factors V, the spatial patterns of D1 and
D2 can be identified as shown in Fig. 13a and Fig. 13b
respectively. An interesting pattern can be identified when
the pink patterns from Fig. 12a and Fig. 13a are associated.
The pattern can be interpreted as people who show similar
kinds of activities over all 7 days, tend to be only active
within their region. It should be noted that color sizes
indicate the distribution within each pattern and does not
necessarily show the overall dominance. For example, the
green factor in Fig. 13a seems to be very active, but it means
that the pattern is scattered. Connecting the color patterns
of Fig. 12b and Fig. 13b, the red pattern shows 3 hot spots
which are spatio-temporal patterns indicating that people
tend to visit 3 places regularly around 8 am to 6 pm.

6.7.2 Understanding the Spatio-temporal Patterns of Tokyo
City Foursquare Users (D3 and D4)
Fig. 12c and Fig. 12d show the temporal patterns of Cut-
CD on D3 and D4 involving Tokyo city foursquare users.

TABLE 4: Pattern distinctiveness (smaller is desirable).

Method D1 D2 D3 D4 Avg.
ALS 0.87 0.45 o.m o.m -
Turbo-SMT OPT 0.82 0.49 0.98 o.m -
CCD++1 0.85 0.50 0.99 0.62 0.74
CCD++3 0.85 0.50 0.99 0.62 0.74
GCD 0.87 0.49 0.99 0.66 0.75
Cut-CD 0.64 0.49 0.99 0.59 0.67
Cut-CD-SC 0.63 0.41 0.99 0.47 0.62

For D3 and D4, we set the rank to 2 and 4 respectively.
We set the rank to 2, as there are no more unique patterns
found in the dataset. Fig. 12c shows that Foursquare users
are highly active on weekdays and moderately active on
weekends. Fig. 13c shows the respective spatial patterns
associated with red and blue temporal patterns in Fig. 12c.
While looking at Fig. 12d, the red pattern shows a peak
between 8 − 10 am and 6 − 9 pm. The Pink pattern shows
a peak between 8 − 1 pm and 6 − 12 am. While these
patterns occur only at few hot spots as shown in Fig. 13d,
blue and green patterns showing a peak at 10 pm and 9 am
are widespread.

6.7.3 Pattern Distinctiveness

As shown in Table 4, Cut-CD-SC outperforms all the bench-
marks by generating more unique and meaningful patterns.
The column-wise element selection of Cut-CD-SC enables
it to find unique patterns. ALS ran out of memory for
D3 whereas both ALS and Turbo-SMT-OPT ran out of
memory for D4. Cut-CD-SC does not show a significant
improvement for D3. This is due to the presence of very
few unique patterns in the dataset (Fig. 12c). For datasets
D2 and D4 where there exist more patterns, Cut-CD-SC has
significantly generated unique and meaningful patterns.

In Fig. 14, we compare the patterns derived from Cut-CD
and Cut-CD-SC for D4. The red, pink and blue patterns in
Fig. 14a can be paired up with green, blue and red patterns
respectively in Fig. 14b. Cut-CD in Fig. 14b identifies 1 more
pattern (i.e. pink) that is highly similar to blue pattern. This
shows the inability of Cut-CD to avoid the simultaneous
elimination problem (i.e., a state where similar patterns are
derived multiple times) [43]. On the other hand, Cut-CD-SC
avoids generating the same patterns repeatedly due to the
application of sparsity constraint and therefore, the green
pattern in Fig. 14a is a straight line stating there are no more
unique patterns.
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(a) Time factors on D1 (b) Time factors on D2 (c) Time factors on D3 (d) Time factors on D4

Fig. 12: Temporal patterns derived from the 3rd mode (time) of the tensor using Cut-CD-SC. y−axis shows the normalized
values of elements in a column of the factor matrix.

(a) Spatial Pattern on D1 (b) Spatial Pattern on D2 (c) Spatial Pattern on D3 (d) Spatial Pattern on D4

Fig. 13: Spatial patterns derived from the 2nd mode (location) of the tensor using Cut-CD-SC.

(a) Cut-CD SC (b) Cut-CD

Fig. 14: Temporal patterns derived from the 3rd mode (time)
of the tensor on D4 using Cut-CD-SC and Cut-CD showing
the evidence of simultaneous elimination problem.

7 CONCLUSION

An element selection-based CD algorithm, Cut-CD, has
been introduced to improve the efficiency of the N-CMTF
computation. Cut-CD facilitates efficient factorization to
reveal useful information in multifaceted datasets. Cut-CD
first selects elements in a factor matrix according to the
element importance based on the proposed column-wise
cut-off technique. All the selected elements of the factor
matrix are then updated. We conducted theoretical and
empirical studies to demonstrate the effectiveness of Cut-
CD. Theoretical analysis shows that the computational effi-
ciency is achieved by Cut-CD by avoiding frequent gradient
updates and proves the convergence property of Cut-CD.
Empirical analysis shows that Cut-CD outperforms existing
state-of-the-art algorithms in terms of scalability and con-
vergence speed without compromising accuracy. It performs

well, especially in sparse data conditions. Cut-CD has been
shown to be efficient not only in missing value identification
but also in the identification of factor problems with the
incorporation of a sparsity constraint on factor matrices. In
the future, we will explore the Cut-CD for the reduction of
the computational complexity of MTTKRP.
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