
ar
X

iv
:1

81
1.

08
83

4v
1

 [
cs

.D
C

]
 1

8
N

ov
 2

01
8

1

A Survey on Spark Ecosystem for Big Data
Processing

Shanjiang Tang, Bingsheng He, Ce Yu, Yusen Li, Kun Li

Abstract—With the explosive increase of big data in industry and academic fields, it is necessary to apply large-scale data processing

systems to analysis Big Data. Arguably, Spark is state of the art in large-scale data computing systems nowadays, due to its good

properties including generality, fault tolerance, high performance of in-memory data processing, and scalability. Spark adopts a flexible

Resident Distributed Dataset (RDD) programming model with a set of provided transformation and action operators whose operating

functions can be customized by users according to their applications. It is originally positioned as a fast and general data processing

system. A large body of research efforts have been made to make it more efficient (faster) and general by considering various

circumstances since its introduction. In this survey, we aim to have a thorough review of various kinds of optimization techniques

on the generality and performance improvement of Spark. We introduce Spark programming model and computing system, discuss

the pros and cons of Spark, and have an investigation and classification of various solving techniques in the literature. Moreover, we

also introduce various data management and processing systems, machine learning algorithms and applications supported by Spark.

Finally, we make a discussion on the open issues and challenges for large-scale in-memory data processing with Spark.

Index Terms—Spark, Shark, RDD, In-Memory Data Processing.

✦

1 INTRODUCTION

In the current era of ‘big data’, the data is collected at

unprecedented scale in many application domains, including

e-commerce [106], social network [131], and computational

biology [137]. Given the characteristics of the unprecedented

amount of data, the speed of data production, and the mul-

tiple of the structure of data, large-scale data processing

is essential to analyzing and mining such big data timely.

A number of large-scale data processing frameworks have

thereby been developed, such as MapReduce [83], Storm [14],

Flink [1], Dryad [96], Caffe [97], Tensorflow [62]. Specifically,

MapReduce is a batch processing framework, while Storm

and Flink are both streaming processing systems. Dryad is

a graph processing framework for graph applications. Caffe

and Tensorflow are deep learning frameworks used for model

training and inference in computer vision, speech recognition

and natural language processing.

However, all of the aforementioned frameworks are not

general computing systems since each of them can only work

for a certain data computation. In comparison, Spark [148] is

a general and fast large-scale data processing system widely

used in both industry and academia with many merits. For ex-

ample, Spark is much faster than MapReduce in performance,

benefiting from its in-memory data processing. Moreover, as a

general system, it can support batch, interactive, iterative, and

‚ S.J. Tang, C. Yu, K. Li are with the College of Intelligence and Computing,

Tianjin University, Tianjin 300072, China.
E-mail: {tashj, yuce, kunli}@tju.edu.cn.

‚ B.S. He is with the School of Computing, National University of Singapore.

E-mail: hebs@comp.nus.edu.sg

‚ Yusen Li is with the School of Computing, Nankai University, Tianjin
300071, China.

E-mail: liyusen@nbjl.nankai.edu.cn.

streaming computations in the same runtime, which is use-

ful for complex applications that have different computation

modes.

Despite its popularity, there are still many limitations for

Spark. For example, it requires considerable amount of learn-

ing and programming efforts under its RDD programming

model. It does not support new emerging heterogenous com-

puting platforms such as GPU and FPGA by default. Being

as a general computing system, it still does not support

certain types of applications such as deep learning-based

applications [25].

To make Spark more general and fast, there have been a lot

of work made to address the limitations of Spark [114], [61],

[89], [109] mentioned above, and it remains an active research

area. A number of efforts have been made on performance

optimization for Spark framework. There have been proposals

for more complex scheduling strategies [129], [141] and

efficient memory I/O support (e.g., RDMA support) to improve

the performance of Spark. There have also been a number

of studies to extend Spark for more sophisticated algorithms

and applications (e.g., deep learning algorithm, genomes, and

Astronomy). To improve the ease of use, several high-level

declarative [145], [23], [121] and procedural languages [54],

[49] have also been proposed and supported by Spark.

Still, with the emergence of new hardware, software and

application demands, it brings new opportunities as well

as challenges to extend Spark for improved generality and

performance efficiency. In this survey, for the sake of bet-

ter understanding these potential demands and opportunities

systematically, we classify the study of Spark ecosystem into

six support layers as illustrated in Figure 1, namely, Storage

Supporting Layer, Processor Supporting Layer, Data Man-

agement Layer, Data Processing Layer, High-level Language

Layer and Application Algorithm Layer. The aim of this paper

http://arxiv.org/abs/1811.08834v1

2

is two-fold. We first seek to have an investigation of the latest

studies on Spark ecosystem. We review related work on Spark

and classify them according to their optimization strategies

in order to serve as a guidebook for users on the problems

and addressing techniques in data processing with Spark. It

summarizes existing techniques systematically as a dictionary

for expert researchers to look up. Second, we show and

discuss the development trend, new demands and challenges

at each support layer of Spark ecosystem as illustrated in

Figure 1. It provides researchers with insights and potential

study directions on Spark.

The rest part of this survey is structured as follows. Sec-

tion 2 introduces Spark system, including its programming

model, runtime computing engine, pros and cons, and various

optimization techniques. Section 3 describes new caching

devices for Spark in-memory computation. Section 4 discusses

the extensions of Spark for performance improvement by using

new accelerators. Section 5 presents distributed data manage-

ment, followed by processing systems supported by Spark in

Section 6. Section 7 shows the languages that are supported

by Spark. Section 8 reviews the Spark-based machine learning

libraries and systems, Spark-based deep learning systems, and

the major applications that the Spark system is applied to.

Section 9 makes some open discussion on the challenging

issues. Finally, we conclude this survey in Section 10.

Processor Supporting Layer

Storage Supporting Layer

Data Management Layer

Data Processing Layer

High-level Language Layer

Application Algorithm Layer

GPU MIC FPGA APU TPUCPU

SSD DRAM MRAM Re-RAM Z-SSDHDD

HDFS Alluxio
Dynamo

DB

Amazon

S3
HBase

Batch

Processing

Streaming

Processing

Interactive

Processing

Graph

Processing

Approximate

Processing

Ceph

HIVE Shark SparkSQL SparkR PySparkPIG

Machine

Learning
Genomics Medicine Finance

Astrono

my

Deep

Learning

Fig. 1: Overview of Spark ecosystem from the bottom up. We
classify it into six layers for improved generality and performance
efficiency.

2 CORE TECHNIQUES OF SPARK

This section first describes the RDD programming model,

followed by the overall architecture of Spark framework. Next

it shows the pros and cons of Spark, and various optimization

techniques for Spark.

2.1 Programming Model

Spark is based on Resilient Distributed Dataset (RDD) [147]

abstraction model, which is an immutable collection of records

partitioned across a number of computers. Each RDD is

generated from data in external robust storage systems such as

HDFS, or other RDDs through coarse-grained transformations

including map, filter and groupByKey that use identical pro-

cessing to numerous data records. To provide fault tolerance,

each RDD’s transformation information is logged to construct

a lineage dataset. When a data partition of a RDD is lost

due to the node failure, the RDD can recompute that partition

with the full information on how it was generated from other

RDDs. It is worthy mentioning that the transformation is a lazy

operation that only defines a new RDD instead of calculating

it immediately. In order to launch the computation of RDD,

Spark offers another group of action operations such as count,

collect, save and reduce, which either return a value to an

application program or export the RDD’s data to an external

storage system. Moreover, for the data of a RDD, they can be

persisted either in memory or in disk, controlled by users.

2.2 Spark Architecture

Task

Executor 2

Worker node2

Task

Cache

Executor 1

Worker node1

Task Task

CacheMaster node

ClusterManager

DAGScheduler

Master program

TaskScheduler

Driver

er pppr

or 2

errrrrrr nno

Fig. 2: Architecture overview of Spark.

Figure 2 overviews the architecture of Spark on a cluster.

For each Spark application, it spawns one master process

called driver, which is responsible for task scheduling. It

follows a hierarchical scheduling process with jobs, stages and

tasks, where stages refer to as smaller sets of tasks divided

from interdependent jobs, which resemble map and reduce

phases of a MapReduce job. There are two schedulers inside it,

namely, DAGScheduler and TaskScheduler. The DAGSched-

uler computes a DAG of stages for a job and keeps track

of the materialized RDDs as well as stage outputs, whereas

TaskScheduler is a low-level scheduler that is responsible for

getting and submitting tasks from each stage to the cluster for

execution.

Spark provides users with three different cluster modes (i.e.,

Mesos [92], YARN [140], and standalone mode) to run their

Spark applications by allowing driver process to connect to one

of existing popular cluster managers including Mesos, YARN

3

and its own independent cluster manager. In each worker

node, there is a slave process called executor created for each

application, which is responsible for running the tasks and

caching the data in memory or disk.

2.3 Pros and Cons of Spark

MapReduce was a powerful large-scale data processing system

widely used for many data-intensive applications. In this

section, we take MapReduce as a baseline to discuss the pros

and cons of Spark.

2.3.1 Strength

Easy to use. Spark provides users with more than 80 high-

level simple operators (e.g., map, reduce, reduceByKey, filter)

that allow users to write parallel applications at the application

level with no need to consider the underlying complex parallel

computing problems like data partitioning, task scheduling and

load balancing. Moreover, Spark allows users to write their

user-defined functions with different programming languages

like Java, Scala, Python by offering corresponding APIs.

Faster than MapReduce. Due to its in-memory computing,

Spark has shown to be 10ˆ „ 100ˆ faster than MapReduce

in batch processing [13].

General computation support. First, from the aspect of

processing mode, Spark is an integrated system that supports

batch, interactive, iterative, and streaming processing. Second,

Spark has an advanced DAG execution engine for complex

DAG applications, and a stack of high-level APIs and tools in-

cluding Shark [145], Spark SQL [121], MLlib and Graphx [89]

for a wide range of applications.

Flexible running support. Spark can run in a standalone

mode or share the cluster with other computing systems

like MapReduce by running on YARN or Mesos. It also

provides APIs for users to deploy and run on the cloud

(e.g., Amazon EC2). Moreover, it can support the access of

various data sources including HDFS, Tachyon [109], HBase,

Cassandra [105], and Amazon S3 [21].

2.3.2 Weakness

Albeit many benefits, there are still some weakness for Spark,

compared with MapReduce as follows:

Heavy consumption of storage resources. As an in-memory

data processing framework, Spark is superior to MapReduce

in performance, achieved by reducing the redundant computa-

tions at the expense of storage resources, especially memory

resource. Similar to existing popular in-memory caching sys-

tems like Memcached [126], [150] and Redis [74], it stores

RDD data in memory and keeps it there for data sharing

across different computation stages. More memory resources

are needed when there are a large volume of RDD data to be

cached in computation.

Poor security. Currently, Spark supports authentication

through a shared secret [12]. In comparison, Hadoop has more

security considerations and solutions, including Knox [10],

Sentry [16], Ranger [11], etc. For example, Knox provides

the secure REST API gateway for Hadoop with authorization

and authentication. In contrast, Sentry and Ranger offer access

control and authorization over Hadoop data and metadata.

Learning Curve. Although Spark is faster and more general

than MapReduce, the programming model of Spark is much

more complex than MapReduce. It requires users to take time

to learn the model and be familiar with provided APIs before

they can program their applications with Spark.

2.3.3 Comparison

Metrics Spark MapReduce

Usability Easy-to-use Easy-to-use

Performance High Efficiency Low Efficiency

Generality Yes No

Flexibility Yes Yes

Scalability Yes Yes

Fault Tolerance Yes Yes

Memory Consumption Heavy Heavy

Security Poor Strong

Learning hard-to-learn easy-to-learn

TABLE 1: The comparison of Spark and MapReduce.

For the sake of better understanding Spark’s characteristics,

we make a comparison of Spark and MapReduce in Table 1

with respect to different metrics. First, both frameworks have

a good usability, flexibility, scalability, and fault tolerance

properties. All of complex details of distributed computation

are encapsulated and well considered by frameworks and are

transparent to users. Second, Spark is superior to MapRe-

duce in performance and generality, attributing to Spark’s

in-memory computation and RDD programming model. Re-

versely, MapReduce has a stronger security and easy-to-learn

property than Spark. Compared to Spark, the programming

model of MapReduce is more simple and mature. Finally, both

frameworks have the problem of high memory consumption,

due to the heavy memory usage of JVMs. Particularly, for

Spark, its in-memory RDD caching consumes a large amount

of memory resources.

2.4 Spark System Optimization

Performance is the most important concern for Spark system.

Many optimizations are studied on top of Spark in order to

accelerate the speed of data handling. We mainly describe

the major optimizations proposed on the Spark system in this

section.

2.4.1 Scheduler Optimization

The current Spark has a centralized scheduler which allocates

the available resources to the pending tasks according to some

policies (e.g., FIFO or Fair). The design of these scheduling

policies can not satisfy the requirements of current data

analytics. In this section, we describe different kinds of sched-

ulers that are especially optimized for large-scale distributed

scheduling, approximate query processing, transient resource

allocation and Geo-distributed setting, respectively.

Decentralized Task Scheduling. Nowadays, more and more

Big Data analytics frameworks are moving towards larger

degrees of parallelism and shorter task durations in order to

provide low latency. With the increase of tasks, the throughput

and availability of current centralized scheduler can not offer

4

low-latency requirement and high availability. A decentralized

design without centralized state is needed to provide attrac-

tive scalability and availability. Sparrow [129] is the-state-

of-art distributed scheduler on top of Spark. It provides the

power of two choices load balancing technique for Spark

task scheduling. The power probes two random servers and

places tasks on the server with less load. Sparrow makes

the power of two choices technique effective in parallel jobs

running on a cluster with the help of three techniques, namely,

Batch Sampling, Late Binding and Policies and Constraints.

Batch Sampling reduces the time of tasks response which

is decided by the finishing time of the last task by placing

tasks of one job in a batch way instead of sampling for each

task individually. For the power of two choices, the length of

server queue is a poor norm of latency time and the parallel

sampling may cause competition. Late binding prevents two

issues happening by delaying allocation of tasks to worker

nodes before workers get ready to execute these tasks. Sparrow

also enforces global policies using multiple queues on worker

machines and supports placement constraints of each job and

task.

Data-aware Task Scheduling. For machine learning al-

gorithms and sampling-based approximate query processing

systems, the results can be computed using any subset of the

data without compromising application correctness. Currently,

schedulers require applications to statically choose a subset

of the data that the scheduler runs the task which aviods the

scheduler leveraging the combinatorial choices of the dataset

at runtime. The data-aware scheduling called KMN [141]

is proposed in Spark to take advantage of the available

choices. KMN applies the “late binding” technique which can

dynamically select the subset of input data on the basis of the

current cluster’s state. It significantly increases the data locality

even when the utilization of the cluster is high. KMN also

optimizes for the intermediate stages which have no choice in

picking their input because they need all the outputs produced

by the upstream tasks. KMN launches a few additional jobs in

the previous stage and pick choices that best avoid congested

links.

Transient Task Scheduling. For cloud servers, due to various

reasons, the utilization tends to be low and raising the utiliza-

tion rate is facing huge competitive pressure. One addressing

solution is to run insensitive batch job workloads secondary

background tasks if there are under-utilized resources and

evicted them when servers’s primary tasks requires more

resources (i.e., transit resources). Due to excessive cost of

cascading re-computations, Spark works badly in this case.

TR-Spark (Transient Resource Spark) [146] is proposed to

resolve this problem. It is a new framework for large-scale data

analytic on transient resources which follows two rules: data

scale reduction-aware scheduling and lineage-aware check-

pointing. TR-Spark is implemented by modifying Spark’s Task

Scheduler and Shuffle Manager, and adding two new modules

Checkpointing Scheduler and Checkpoint Manager.

Scheduling in a Geo-distributed Environment. Geo-

distributed data centers are deployed globally to offer their

users access to services with low-latency. In Geo-distributed

setting, the bandwidth of WAN links is relatively low and

heterogeneous compared with the intra-DC networks. The

query response time over the current intra-DC analytics

frameworks becomes extreme high in Geo-distributed setting.

Iridium [130] is a system designed for Geo-distributed data

analytics on top of Spark. It reduces the query response time

by leveraging WAN bandwidth-aware data and task placement

approaches. By observing that network bottlenecks mainly

occur in the network connecting the data centers rather than

in the up/down links of VMs as assumed by Iridium, Hu

et al. [93] designed and implemented a new task scheduling

algorithm called Flutter on top of Spark. which reduces both

the completion time and network costs by formulating the

optimization issue as a lexicographical min-max integer linear

programming (ILP) problem.

2.4.2 Memory Optimization

Efficient memory usage is important for the current in-memory

computing systems. Many of these data processing frameworks

are designed by garbage-collected languages like C#, Go, Java

or Scala. Unfortunately, these garbage-collected languages are

known to cause performance overhead due to GC-induced

pause. To address the problem, current studies either improve-

ment the GC performance of these garbage-collected language

or leverage application semantics to manage memory explicitly

and annihilate the GC overhead of these garbage-collected

languages [2], [4], [115], [116]. In this section, we introduce

these optimizations from these two aspects.

Spark run multiple work processes on different nodes and

the Gargabe Collection (GC) is performed independently in

each node at run. Works communicate data between different

nodes (e.g, shuffle operation). In this case, no node can

continue until all data are received from all the other nodes.

GC pauses can lead to unacceptable long waiting time for

latency-critical applications without the central coordination.

If even a single node is stuck in GC, then all the other

nodes need wait. In order to coordinate the GC from the

central view, Holistic Runtime System [116], [115] is proposed

to collectively manages runtime GC across multiple nodes.

Instead of making decisions about GC independently, such

Holistic GC system allows the runtime to make globally coor-

dinated consensus decision through three approaches. First, it

let applications choose the most suitable GC policy to match

the requirement of different applications (e.g., throughput

vs pause times). Second, Holistic system performs GC by

considering the application-level optimizations. Third, the GC

system is dynamically reconfigured at runtime to adapt to

system changes.

Instead of replying the memory management of such man-

aged languages. Spark also tries to manage the memory

by itself to leverage the application semantic and elimi-

nate the GC overhead of these garbaged-collected languages.

Tungsten [4] improves the memory and CPU efficiency of

spark applications to make the performance of Spark reach

the limits of modern hardware. This work consists of three

proposes. First, it leverages the off-heap memory, a feature

provided by JAVA to allocate/deallocate memory like c and

c++, to manage memory by itself which can take advantage

of the application semantics and annihilate the overhead of

5

JVM and GC. Second, it proposes cache-obvious algorithms

and data structures to develop memory hierarchical structure.

Third, it uses the code generation to avoid the overhead

the expression evaluation on JVM (e.g., too many virtual

functions calls, extensive memory access and can not take

advantage modern CPU features such as SIMD, pipeline and

prefetching). Recently, Spark further optimizes its performance

by integrating the techniques proposed in Modern parallel

database area [124]. Spark 2.0 leverages whole process code

generation and vectorization to further ameliorate the code

generation at runtime [2].

2.4.3 I/O Optimization

For large-scale data-intensive computation in Spark, the mas-

sive data loading (or writing) from (or to) disk, and transmis-

sion between tasks at different machines are often unavoidable.

A number of approaches are thereby proposed to alleviate it

by having a new storage manner, using data compression, or

importing new hardware.

Data Compression and Sharing. One limitation for Spark is

that it can only support the in-memory data sharing for tasks

within an application, whereas not for tasks from multiple

applications. To overcome this limitation, Tachyon [109],

[110] is proposed as a distributed in-memory file system that

achieves reliable data sharing at memory speedup for tasks

from different processes. The Spark applications can then

share their data with each other by writing (or reading) their

data to (or from) Tachyon at memory speedup, which is faster

than disk-based HDFS file system. Moreover, to enable more

data stored in memory for efficient computation, Agarwal et

al. [63] proposed and implemented a distributed data store

system called Succinct in Tachyon that compresses the input

data and queries can be executed directly on the compressed

representation of input data, avoiding decompression.

Data Shuffling. Besides the performance degradation from

the disk I/O, the network I/O may also be a serious bot-

tleneck for many Spark applications. Particularly, shuffle, a

many-to-many data transfer for tasks across machines, is an

important consumer of network bandwidth for Spark. Zhang

et al. [151] observed that the bottleneck for shuffle phase is

due to large disk I/O operations. To address it, a framework

called Riffle is proposed to improve I/O efficiency by merging

fragmented intermediate shuffle files into larger block files and

converts small and random disk I/O operations into large and

sequential ones. Davidson et al. [61] proposed two approaches

to optimize the performance in data shuffling. One is to

apply the Columnar compression technique to Spark’s shuffle

phase in view of its success in a column-oriented DBMS

called C-Store [135], so as to offload some burden from

the network and disk to CPU. Moreover, they observe that

Spark generates a huge number of small-size shuffle files on

both the map and reduce phase, which introduces a heavy

burden on operating system in file management. A shuffle

file consolidation approach is thereby proposed to reduce the

number of shuffle files on each machine.

Moreover, prefetching is an effective technique to hide shuf-

fling cost by overlapping data transfers and the shuffling phase.

Current state-of-the-art solutions take simple mechanisms to

determine where and how much data to acquire from, resulting

in the performance of sub-optimal and the excessive use of

supplemental memory. To address it, Bogdan et al. [125]

proposed an original adaptive shuffle data transfer strategy

by dynamically adapting the prefetching to the calculation.

It is achieved by taking into account load balancing for

request extraction using executor-level coordination, prioriti-

zation according to locality and responsiveness, static circular

allocation of initial requests, elastic adjustment of in-flight

restrictions, shuffle block aggregation and dispersal using in-

flight increment.

There are also some work focusing on optimizing shuffling

under a certain circumstance. Kim et al. [101] considered

the I/O optimization for Spark under large memory servers.

It can achieve better data shuffling and intermediate storage

by replacing the existing TCP/IP-based shuffle with a large

shared memory approach. The communication cost of map and

reduce tasks can be reduced significantly through referencing

to the global shared memory compared with data transferring

over the network. Liu et al. [113] studied the data shuffling

in a wide-area network, where data transfers occur between

geographically distributed datacenters. It designed and imple-

mented a data aggregation spark-based system by strategically

and proactively aggregate the output data of map tasks to

a subset of worker datacenters, which replaces the original

passive fetch mechanisms used in Spark across datacenters.

It can avoid repetitive data transfers and hence improves the

utilization of inter-datacenter links.

RDMA-based Data Transfer. Lu et al. [114] accelerated

the network communication of Spark in big data processing

using Remote Direct Memory Access (RDMA) technique.

They proposed a RDMA-based data shuffle engine for Spark

over InfiniBand. With RDMA, the latency of network message

communication is dramatically reduced, which improves the

performance of Spark significantly.

2.4.4 Provence Support

Data-intensive scalable computing (DISC) systems such as

Hadoop and Spark, expose a programming model for author-

ing data processing logic, which is converted to a Directed

Acyclic Graph (DAG) of parallel computing [95]. Debugging

data processing logic in DISC systems is difficult and time

consuming. A library, Titian [95], provides data provenance

support at the velocity of interactive based on Apache Spark.

The contributions of Titian are summarized as follow: A data

lineage capture and query support system while minimally

impacting Spark job performance. Interactive data provenance

query support the expansion of a conversant programming

model Spark RDD with less overhead. Titian extends the

native Spark RDD interface with tracing capabilities and

returns a LineageRDD, traveling by dataflow transformations

at stage boundaries. The user is able to retrospect to the

intermediate data of the program execution from the given

RDD, then leverage local RDD transformations to reprocess

the referenced data.

Currently, researchers use cloud computing platforms to

analyse Big Data in parallel, but debugging massive parallel

computations is time consuming and infeasible for users. To

6

meet the low overhead, scalability and fine-grained demands

of big data processing in Apache Spark, a group of inter-

active and real-time debugging primitives were developed.

BIGDEBUG [90] provides simulated breakpoints and guarded

watchpoints with the trifling influence of performance, which

indicates less than 24% overhead for record-level tracing,

19% overhead for crash monitoring, and 9% overhead for

watchpoint on average. BIGDEBUG supports a real-time rapid

repair and recovery to prevent re-running the job from the

beginning. Besides, BIGDEBUG offers the provenance of the

culprit and fine-grained tracking of records in distributed pipes

to track intermediate results back and forth.

An improved version of the original Titian system is de-

signed to reduce the lineage query time [94]. The two key fea-

tures of Titian are crash culprit determination and automated

fault localization. The culprit information is packaged and

dispatch to users with other run-time records. The delta debug-

ging technique diagnose whether mistakes in code and data. To

promote the performance of lineage queries, they extend Spark

with an available way to retrieve lineage records more prag-

matically. For large-scale data, small tracing queries generate

remarkable overhead from jobs that make little contribution

to the result. Therefore, a new custom Spark scheduler, called

Hyperdrive, is proposed, which utilizes partition statistics to

exclude the situation. Moreover, Hyperdrive decouples task

operations from partitions and dispenses multiple partitions to

one task.

3 STORAGE SUPPORTING LAYER

Spark takes DRAM as caches in its in-memory computation.

Although DRAM has a much higher bandwidth and lower

latency compared with HDD in data communication, its ca-

pacity is often limited due to the high cost of DRAM as well as

its high power consumption [67]. It can significantly constrain

large-scale data applications from gaining high in-memory hit-

rates that is essential for high-performance on Spark. The new

emerging storage devices in recent years give us a chance to

alleviate it in the following ways:

SSD-based In-memory Computing. Solid-State Disk (SSD)

is a new storage device that provides much higher access speed

than traditional HDD. Instead of using HDD, one approach is

to adopt SSD as persistent storage by setting up a multi-tier

storage system as illustrated in Figure 3. In comparison to

HDD, the data movement between memory and SSD is much

faster. We can improve Spark performance by spilling RDDs

to SSD when the memory cache is full. By using SSDs, there

can be up to 10ˆ performance improvement over HDD-based

caching approach for Spark [59].

NVM-based In-memory Computing. Compared to DRAM,

the latency of SSD is still very large (i.e., about 500ˆ slower

than DRAM) although it is much faster than HDD [77].

Emerging Non-Volatile Memory (NVM), such as PCM,

STT-RAM and ReRAM, is considered as an alternative to

SSD [112] due to its much lower latency and higher bandwidth

than SSD. We can integrate DRAM, NVM and SSD to

establish a multi-tier caching system by first caching the data

in DRAM, or putting into NVM when DRAM is full, or in

the SSD when both DRAM and SSD are full.

Spark

Task

Spark

Task

Spark

Task

DRAM CacheAM

SSD SSD SSD SSD

Data R/W Tasks

SSD ArraySDDDDD Array

Fig. 3: Multi-tier storage system consisting of DRAM and SSD.

4 PROCESSOR SUPPORTING LAYER

Since the limited performance and energy efficiency of

general-purpose CPUs have impeded the performance scaling

of conventional data centers, it becomes more and more pop-

ular to deploy accelerators in data centers, such as GPU and

FPGA. Therefore, accelerator-based heterogeneous machine

has become a promising basic block of modern data center

to achieve further performance and efficiency. In this section,

we firstly provide a summary of Spark systems integrating

with GPU to accelerate the computing task. Second, we make

a survey of Spark systems with FPGA.

4.1 GPGPU

GPU has been widely integrated into modern datacenter for

its better performance and higher energy efficiency over CPU.

However, the modern computing framework like Spark cannot

directly leverage GPU to accelerate its computing task. Several

related projects reach out to fill the gap.

1).HeteroSpark. Li et al. [111] present an novel GPU-

enabled Spark HeteroSpark which leverages the compute

power of GPUs and CPUs to accelerate machine learning

applications. The proposed GPU-enabled Spark provides a

plug-n-play design so that the current Spark programmer

can leverage GPU computing power without needing any

knowledge about GPU.

2).Vispark. Choi et al. [78] propose an extension of Spark

called Vispark, which leverages GPUs to accelerate array-

based scientific computing and processing applications. In

particular, Vispark introduces VRDD (Vispark Resilient Dis-

tributed Dataset) for handling the array data on the GPU so

that GPU computing abilities can be fully utilized.

3).Exploring GPU Acceleration of Apache Spark. Manzi et

al. [118] explore the possibilities and benefits of offloading

the computing task of Spark to GPUs. In particular, the non-

shuffling computing tasks can be computed on GPU and then

the computation time is significantly reduced. The experimen-

tal result shows that the performance of K-Means clustering

7

application was optimized by 17X. Its implementation is pub-

licly available (https://github.com/adobe-research/spark-gpu).

4).Columnar RDD. Ishizaki [43] proposes one prototype

which stores the inner data in a columnar RDD, compared

with the conventional row-major RDD, since the columnar

layout is much easier to benefit from using GPU and SIMD-

enabled CPU. Therefore, the performance of the applicatin

logistic regression is improved by 3.15X.

4.2 FPGA

FPGA is integrated into the computing framework Spark to

accelerate inner computing task. In particular, there are two

related projects: FPGA-enabled Spark and Blaze.

1).FPGA-enabled Spark [76]. It explores how to efficiently

integrate FPGAs into big-data computing framework Spark.

In particular, it designs and deploys an FPGA-enabled Spark

cluster, where one representative application next-generation

DNA sequencing is accelerated with two key technologies.

The first one is that they design one efficient mechanism to

efficiently harness FPGA in JVM so that the JVM-FPGA

communication (via PCIe) overhead is alleviated. The other

one is that one FPGA-as-a-Service (FaaS) framework is pro-

posed where FPGAs are shared among multiple CPU threads.

Therefore, the computing abilities of FPGAs can be fully

utilized and then the total execution time is significantly

reduced.

2).Blaze [79]. It provides a high-level programming inter-

face (e.g., Java) to Spark and automatically leverages the ac-

celerators (e.g., FPGA and GPU) in the heterogeneous cluster

to speedup the computing task without the interference of

programmer. In other words, each accelerator is abstracted as

the subroutine for Spark task, which can be executed on local

accelerator when it is available. Therefore, the computation

time can be significantly reduced. Otherwise, the task will be

executed on CPU.

5 DATA MANAGEMENT LAYER

In the age of Big Data, data is generally stored and managed

in distributed filesystems or databases. This sections gives a

survey of widely used data storage and management systems

for Spark.

5.1 Distributed File Systems

1). Hadoop Distributed File System (HDFS). Hadoop Dis-

tributed File System (HDFS) is proposed to be deployed on

low-cost commodity hardware. It is highly scalable and fault-

tolerant, enabling it to run on a cluster includes hundreds

or thousands of nodes where the hardware failure is normal.

It takes a master-slave architecture, which contains a master

called NameNode to manage the file system namespace and

regulating access to files by users, and a number of slaves

called DataNodes each located at a machine for storing the

data. Data uploaded into HDFS are partitioned into plenty

of blocks with fixed size (e.g., 64 MB per data block)

and the NameNode dispatched the data blocks to different

DataNodes that store and manage the data assigned to them.

To improve data reliability, it replicates each data block three

times (the replicator is 3 by default and users can change it)

and stores each replica in a different rack. HDFS data access

has been originally supported by Spark with its provided native

interface1, which enables Spark applications to read/write data

from/to HDFS directly.

2). Ceph. The centralized nature inherent in the client/server

model has testified a important barrier to scalable performance.

Ceph [143] is a distributed file system which offers high

performance and dependability while promising unprecedented

expansibility. Ceph uses generating functions replacing file

allocation tables to decouple the operations of data and meta-

data. Ceph is allowed to distribute the complexity around data

access, update sequence, duplication and dependability, fault

detection, and resume by using the intelligence in OSDs. Ceph

uses a highly adaptive distributed metadata cluster architecture

that greatly enhances the scalability of metadata access and the

scalability of the whole system.

3). Alluxio. With the rapid growth of today’s big data,

storage and networking pose the most challenging bottlenecks

since data writes can become network or disk binding, es-

pecially when duplication is responsible for fault-tolerance.

Alluxio [19], used to be considered as Tachyon, is a fault-

tolerant, memory-centric virtual distributed file system that

can address the bottleneck. It enables reliable operation of

memory speed and data sharing between different applications

and cluster computing frameworks. To obtain high throughput

writes without impairing fault-tolerance, Alluxio leverages

the notion of lineage [71] to recover the lost output by re-

implementing output tasks, without the need of replicating

the data. With Alluxio, users can do transformations and

explorations on large datasets in memory for high performance

while enjoying its high data reliability.

MapReduce Spark Flink Presto

Framework Layer

Native File

System Interface

Hadoop FS

Interface

Native Key-Value

Interface

In-memory File System Layer

Alluxio

S3

Adapter

HDFS

Adapter

Swift

Adapter

GCS

Adapter

ClusterFS

Adapter

S3

Amazon
HDFS Swift GCS ClusterFS

Storage File System Layer

Fig. 4: The Alluxio architecture.

Figure 4 illustrates the memory-centric architecture of Al-

luxio. It manages data access and fast storage for user applica-

tions and computing frameworks by unifying the computing

1. Spark provides users the ’spark-submit’ script to launch applications,
which supports hdfs.

8

frameworks (e.g., MapReduce, Spark and Flink), and tradi-

tional storage systems (e.g., Amazon S3, Apache HDFS and

OpenStack Swift), which facilitates data sharing and locality

between jobs no matter whether they are running on the

same computing system. It serves as a unifying platform for

various data sources and computing systems. There are two

key functional layers for Aullxio: lineage and persistence.

The lineage layer offers high throughput I/O and tracks the

information for tasks which produced a specific output. In

contrast, the persistent layer materializes data into storage,

which is mainly used for checkpoints. Aullxio employs a stand

master-slave architecture. That master mainly manages the

global metadata of the entire system, tracks lineage informa-

tion and interacts with a cluster resource manager to distribute

resources for recalculation. The slaves manage local storage

resources allocated to Alluxio, and storing data and serving

requests from users.

5.2 Cloud Data Storage Services

Cloud storage system is able to be typically viewed as

a network of distributed data centers that provides storage

service to users for storing data by using cloud computing

techniques such as virtualization. It often stores the same data

redundantly at different locations for high data availability,

which is transparent to users. The cloud storage service can

be accessed through a co-located cloud computer service, an

application programming interfaces (API) or by applications

that use the API [27]. There are two popular cloud storage

services: Amazon S3 and Microsft Azure.

1). Amazon Simple Storage Service (S3). Amazon S3 is a

web-based storage service that allows the user to store and

fetch data at any time and any place through web services

interfaces such as REST-style HTTP interface, SOSP interface

and BitTorrent protocol [21]. It charges users for on-demand

storage, requests and data transfers.

The data in Amazon S3 is managed as objects with an

object storage architecture, which is opposed to file systems

that manage data as a file hierarchy. Objects are organized

into buckets, each of which is owned by an AWS account.

Users can identify objects within each bucket by a unique,

user-assigned key.

Spark’s file interface can allow users to access data in

Amazon S3 by specifying a path in S3 as input through

the same URI formats2 that are supported for Hadoop [40].

However, the storage of Spark dataframe in Amazon S3 is not

natively supported by Spark. Regarding this, users can utilize

a spark s3 connector library [50] for uploading dataframes to

Amazon S3.

2). Microsft Azure Blob Storage (WASB). Azure Blob stor-

age (WASB) [35] is a cloud service for users to store and

fetch any amount of unstructured data like text and binary

data, in the form of Binary Large Objects (BLOBs). Three

types of blobs are supported, namely, block blobs, append

blobs and page blobs. Block blobs are suitable for storing

and streaming cloud objects. Append blobs are optimized

for append operations. In contrast, page blobs are improved

2. The form of URI is: s3n://ăbucketą/path.

to represent IaaS disks and support random writes. Multiple

Blobs are grouped into a container and a user storage account

can have any number of containers. The stored data can be

accessed via HTTP, HTTPS, or REST API.

Spark is compatible with WASB, enabling the data stored

in WASB to be directly accessed and processed by Spark via

specifying an URI of the format ‘wasb://path’ that represents

the path where the data is located.

5.3 Distributed Database Systems

1). Hbase. Apache Hbase [9] is an open-source implementa-

tion of Google’s BigTable [75], which is a distributed key-

value database with the features of data compression, in-

memory operation and bloom filters on a per-column basis.

It runs on top of Hadoop that leverages the high scalability of

HDFS and strong batch processing capabilities of MapReduce

to enable massive data analysis, and provides real-time data

access with the speed of a key/value store for individual record

query.

It is a column-oriented key-value database that each table is

stored as a multidimensional sparse map, having a timestamp

for each cell tagged by column family and column name. A

cell value can be identified and retrieved by specifying (Table

Id, Row Key, Column-Family:Column, Timestamp). A Hbase

table consists of regions, each of which is defined by a startKey

and endKey. Except for parent column families being fixed in a

schema, users can add columns to tables on-the-fly. All table

accesses are achieved by the primary key through the Java

API, REST, Avro or Thrift gateway APIs.

There are a number of libraries and tools emerged that

enable Spark to interact with HBase. Spark-HBase Connec-

tor [44] is such a library that provides a simple and elegant

API for users’ Spark applications to connect to HBase for

reading and writing data. To enable native and optimized SQL

access to HBase data via SparkSQL/Dataframe interfaces, a

tool called Spark-SQL-on-HBase [51] is developed by Huawei.

Moreover, for efficient scanning, joining and mutating HBase

tables to and from RDDs in a spark environment, there is a

generic extension of spark module called spark-on-hbase [46]

developed.

2). Dynamo. Amazon Dynamo [84] is a decentralized dis-

tributed key-value storage system with high scalability and

availability for Amazon’s applications. It has characteristics of

both databases and distributed hash tables (DHTs) [28]. It is

built to control the state of Amazon’s application programs

which require high reliability over the trade-offs between

consistency, availability, cost-effectiveness and performance.

Several Amazon e-commerce services only need primary-key

access to a data store, such as shopping carts, customer prefer-

ences and sales rank. For these services, it caused inefficiencies

and limited size and availability by using relational databases.

In comparison, Dynamo is able to fulfill these requirements

by providing a simple primary-key only interface.

Dynamo leverages a number of efficient optimization tech-

niques to achieve high performance. It first uses a variant of

consistent hashing to divide and replicate data across machines

for overcoming the inhomogeneous data and workload distri-

9

bution problem. Secondly, the technology is similar to arbitra-

tion and decentralized replication synchronization protocols to

ensure data consistency during the update. Thirdly, it employs

a gossip-style membership protocol that enables each node in

the system to learn about the arrival (or departure) of other

nodes for the decentralized failure detection.

3). DynamoDB. Amazon DynamoDB [20] is a new fast,

high reliability, cost-effective NoSQL database service de-

signed for Internet applications. It is based on strong dis-

tributed systems principles and data models of Dynamo. In

contrast to Dynamo that requires users to run and manage the

system by themselves, DynamoDB is a fully managed service

that frees users from the headaches of complex installation

and configuration operations. It is built on Solid State Drives

(SSD) which offers fast and foreseeable performance with very

low latency at any scale. It enables users to create a database

table that can store and fetch any amount of data through the

ability to disperse data and traffic to a sufficient number of

machines to automatically process requests for any level of

demand.

Medium company [36] creates a library called Spark-

DynamoDB [30] that provides DynamoDB data access for

Spark. It enables to read an DynamoDB table as a Spark

DataFrame, and allows users to run SQL quries against Dy-

namoDB tables directly with SparkSQL.

4). Cassandra. Apache Cassandra [105] is a highly scalable,

distributed structured key-value storage system designed to

deal with large-scale data on top of hundreds or thousands of

commodity servers. It is open sourced by Facebook in 2008

and has been widely deployed by many famous companies.

Cassandra integrates together the data model from Google’s

BigTable [75] and distributed architectures of Amazon’s Dy-

namo [84], making it eventually consistent like Dynamo

and having a columnFamily-based data model like BigTable.

Three basic database operations are supported with APIs:

insert(table, key, rowMutation), get(table, key, columnName)

and delete(table, key, columnName). There are four main

characteristics [22] for Cassandra. First, it is decentralized so

that every node in the cluster plays the same role without

introducing a single fault point of the master. Second, it

is highly scalable that read/write throughput both increase

linearly as the increasement of new machines and there is

no downtime to applications. Third, each data is replicated

automatically on multiple machines for fault tolerance and the

failure is addressed without shutdown time. Finally, it offers a

adjustable level of consistency, allowing the user to balance the

tradeoff between read and write for different circumstances.

To enable the connection of Spark applicaitons to Cas-

sandra, a Spark Cassandra Connector [42] is developed and

released openly by DataStax company. It exposes Cassandra

tables as Spark RDDs and can save RDDs back to Cassandra

with an implicit saveToCassandra call. Moreover, to provide

the python support of pySpark [49], there is a module called

pyspark-cassandra [38] built on top of Spark Cassandra

Connector.

5.4 Comparison

Table 2 shows the comparison of different storage systems

supported by Spark. We summarize them in different ways,

including the type of storage systems they belong to, the

storage places where it supports to store the data, the data

storing model, the data accessing interface and the licence.

Similar to Hadoop, Spark has a wide range support for various

typed storage systems via its provided low-level APIs or

SparkSQL, which is crucial to keep the generality of Spark

from the data storage perspective. Like Spark’s in-memory

computation, the in-memory data caching/storing is also very

important for achieving high performance. HDFS, Alluxio and

Cassandra can support in-memory and in-disk data storage

manners, making them become most popular and widely used

for many big data applications.

6 DATA PROCESSING LAYER

As a general-purpose framework, Spark supports a variety

of data computation, including Streaming Processing, Graph

Processing, OLTP and OLAP Queries Processing, and Ap-

proximate Processing. This section discusses about research

efforts on them.

6.1 Streaming Processing

Spark Streaming allows data engineers and data scientists to

process real-time data from various sources like Kafka, Flume,

and Amazon Kinesis. Spark is built upon the model of data

parallel computation. It provides reliable processing of live

streaming data. Spark streaming transforms streaming compu-

tation into a series of deterministic micro-batch computations,

which are then executed using Spark’s distributed processing

framework. The key abstraction is a Discretized Stream [149]

which represents a stream of data divided into small batches.

The way Spark Streaming works is that it divides the live

stream of data into batches (called microbatches) of a pre-

defined interval (N seconds) and then treats each batch of data

as Resilient Distributed Datasets (RDDs) [147]. This allows

Spark Streaming to seamlessly integrate with any other Spark

components like MLlib and Spark SQL. Due to the popularity

of spark streaming, research efforts are devoted on further

improving it. Das et al. [81] study the relationships among

batch size, system throughput and end-to-end latency.

There are also efforts to extend spark streaming framework.

1). Complex Event Processing. Complex event processing

(CEP) is a type of event stream processing that combines

data from multiple sources to identify patterns and complex

relationships across various events. CEP system helps identify

opportunities and threats across many data sources and pro-

vides real-time alerts to act on them. Over the last decades,

CEP systems have been successfully applied in a variety of

domains such as recommendation, stock market monitoring,

and health-care. There are two open-source projects on build-

ing CEP system on Spark. Decision CEP engine [3] is a

Complex Event Processing platform built on Spark Streaming.

It is the result of combining the power of Spark Streaming as

a continuous computing framework and Siddhi CEP engine

10

Storage System Type Supported Layer Data Model Spark Query Interface License

HDFS Distributed File System In Memory, In Disk Document-Oriented Store Low-Level API Open source- Apache

Ceph Distributed File System In Disk Document-Oriented Store Low-Level API Open source- LGPL

Alluxio Distributed File System In Memory, In Disk Document-Oriented Store Low-Level API Open source- Apache

Amazon S3 Cloud Storage System In Disk Object Store Low-Level API Commercial

Microsoft WASB Cloud Storage System In Disk Object Store Low-Level API Commercial

Hbase Distributed Database In Disk Key-Value Store SparkSQL, Low-Level API Open source- Apache

DynamoDB Distributed Database In Disk Key-Value Store SparkSQL, Low-Level API Commercial

Cassandra Distributed Database In Memory, In Disk Key-Value Store SparkSQL, Low-Level API Open source- Apache

TABLE 2: The comparison of different storage systems.

as complex event processing engine. Spark-cep [5] is another

stream processing engine built on top of Spark supporting

continuous query language. Comparing to the existing Spark

Streaming query engines, it supports more efficient windowed

aggregation and “Insert Into” query.

2). Streaming Data Mining. In this big data era, the growing

of streaming data motivates the fields of streaming data

mining. There are typically two reasons behind the need

of evolving from traditional data mining approach. First,

streaming data has, in principle, no volume limit, and hence it

is often impossible to fit the entire training dataset into main

memory. Second, the statistics or characteristics of incoming

data are continuously evolving, which requires a continuously

re-training and evolving. Those challenges make the traditional

offline model approach no longer fit. To this end, open-

sourced distributed streaming data mining platforms, such as

SOMOA [122] and StreamDM [6] are proposed and have

attracted many attentions. Typically, StreamDM [6], [70] uses

Spark Streaming as the provider of streaming data. A list of

data mining libraries are supported such as SGD Learner and

Perception.

6.2 Graph Processing

Many practical computing problems concern large graphs. As

graph problems grow larger in scale and more ambitious in

their complexity, they easily outgrow the computation and

memory capacities. To this end, distributed graph processing

frameworks such as GraphX [89] are proposed. GraphX is a

library on top of Spark by encoding graphs as collections and

then expressing the GraphX API on top of standard dataflow

operators. In GraphX, a number of optimization strategies are

developed, and we briefly mention a few here.

‚ GraphX includes a range of built-in partitioning func-

tions. The vertex collection is hash-partitioned by vertex

ids. The edge collection is horizontally partitioned by a

user-defined function, supporting vertex-cut partitioning.

A routing table is co-partitioned with the vertex collec-

tion.

‚ For maximal index reuse, subgraph operations produce

subgraphs that share the full graph indexes, and use

bitmasks to indicate which elements are included.

‚ In order to reduce join operation, GraphX uses JVM

bytecode analysis to determine what properties a user-

defined function accesses. With a not-yet materialized

triplets view, and only one property accessed GraphX will

use a two-way join. With no properties accessed, GraphX

can eliminate the join completely.

In contrast to many specialized graph processing system

such as Pregel [117], PowerGraph [88], GraphX is closely

integrated into modern general-purpose distributed dataflow

system (i.e., Spark). This approach avoids the need of com-

posing multiple systems which increases complexity for a

integrated analytics pipelines, and reduces unnecessary data

movement and duplication. Furthermore, it naturally inherited

the efficient fault tolerant feature from Spark, which is usually

overlooked in specialized graph processing framework. The

evaluation also shows that GraphX is comparable to or faster

than specialized graph processing systems.

6.3 OLTP and OLAP Queries Processing

Hybrid Transaction/Analytical Processing (HTAP) systems

support both OLTP and OLAP queries by storing data in

dual formats but need to be used alongside a streaming

engine to support streaming processing. SnappyData [132]

enable streaming, transactions and interactive analytics in a

single unifying system and exploit AQP techniques and a

variety of data synopses at true interactive speeds. SnappyData

consists of a deep integration of Apache Spark and GemFire.

An operational of in-memory data storage is combined with

Spark’s computational model. When Spark executes tasks in

a partitioned manner, it keeps all available CPU cores busy.

Spark’s API are extended to unified API for OLAP, OLTP, and

streaming.

Fig. 5: The Core Components of SnappyData [132].

As shown in Figure 5, Spark’s original components are

highlighted in gray. The storage layer is primarily in-memory

and manages data in either row or column formats. The OLAP

scheduler and job server coordinate all OLAP and Spark jobs

11

and all OLTP operations are routed to appropriate partitions

without any scheduling. A P2P cluster membership service is

utilized to ensure view consistency and virtual synchrony.

6.4 Approximate Processing

Modern data analytics applications demand near real-time

response rates. However, getting exact answer from extreme

large size of data takes long response time, which is some-

times unacceptable to the end users. Besides using additional

resources (i.e., memory and CPU) to decrease data processing

time, approximate processing provides faster query response

by reducing the amount of work need to perform through

techniques such as sampling or online aggregation. It has been

widely observed that users can accept some inaccurate answers

which come quickly, especially for exploratory queries.

1). Approximate Query Processing. In practice, having a

low response time is crucial for many applications such

as web-based interactive query workloads. To achieve that,

Sameer et al. [65] proposed a approximate query processing

system called BlinkDB atop of Shark and Spark, based on

the distributed sampling. It can return the query result for a

large queries of 17 full data terabytes within 2 seconds while

keeping meaningful error bounds relative to the answer with

90 ´ 98%. The strength of BlinkDB comes from two key

ideas: (1) an adaptive optimization framework that builds and

maintains a set of multi-dimensional samples from original

data over time, and (2) a dynamic sample selection strategy

that selects an appropriately sized sample based on a query’s

accuracy and/or response time requirements. Moreover, in

order to evaluate the accuracy of BlinkDB, Agarwal et al. [64]

proposed an effective error estimation approach by extending

the prior diagnostic algorithm [102] to detect when bootstrap

based error estimates are unreliable.

Considering that the join operation is a key building block

for any database system, Quoc et al. [108] proposed a new join

operator called APPOXJOIN that approximates distributed

join computations on top of Spark by interweaving Bloom

filter sketching and stratified sampling. It first uses a Bloom

filter to avoid shuffling non-joinable data and next leverages

the stratified sampling approach to get a representative sample

of the join output.

2).Approximate Streaming Processing. Unlike the batch

analytics where the input data keep unchanged during the

sampling process, the data for streaming analytics is chang-

ing over time. Quoc et al. [107] shows that the traditional

batch-oriented approximate computing are not well-suited for

streaming analytics. To address it, they proposed a stream-

ing analytics system called STREAMAPROX by designing

an online stratified reservoir sampling algorithm to generate

approximate output with rigorous error bounds. It implements

STREAMAPROX on Apache Spark Streaming and experi-

mental results show that there can be a speedup of 1.1ˆ´2.4ˆ

while keeping the same accuracy level over the baseline of

Spark-based approximate computing system leveraging the

existing sampling modules in Apache Spark.

3).Approximate Incremental Processing. Incremental pro-

cessing refers to a data computation that is incrementally

scheduled by repeatedly involving the same application logic

or algorithm logic over an input data that differs slightly

from previous invocation [91] so as to avoid recomputing

everything from scratch. Like approximate computation, it

works over a subset of data items but differ in their choosing

means. Krishnan et al. [104] observe that the two paradigms

are complementary and proposed a new paradigm called

approximate incremental processing that leverages the ap-

proximation and incremental techniques in order for a low-

latency execution. They designed an online stratified sampling

algorithm by leveraging self-adjusting computation to generate

an incrementally updated approximate output with bounded

error and implemented it in Apache Spark Streaming by

proposing a system called INCAPPROX. The experimental

evaluation shows that benefits of INCAPPROX equipping with

incremental and approximate computing.

7 HIGH-LEVEL LANGUAGE LAYER

Spark is written in Scala [41], which is an object-oriented,

functional programming language running on a Java virtual

machine that can call Java libraries directly in Scala code and

vice versa. Thus, it natively supports the Spark programming

with Scala and Java by default. However, some users might

be unfamiliar with Scala and Java but are skilled in other

alternative languages like Python and R. Moreover, Spark

programming is still a complex and heavy work especially for

users that are not familiar with Spark framework. Thereby,

having a high-level language like SQL declarative language

on top of Spark is crucial for users to express their tasks

while leave all of the complicated execution optimization

details to the backend Spark engine, which alleviates users’

programming burdens significantly. In the following section,

we discuss about research efforts that have been proposed to

address these problems.

7.1 R and Python High-level Languages Support

1). SparkR. In the numeric analysis and machine learning

domains, R [39] is a popular programming language widely

used by data scientists for statistical computing and data

analysis. SparkR [142], [53] is a light-weight frontend system

that incorporates R into Spark and enables R programmers to

perform large-scale data analysis from the R shell. It extends

the single machine implementation of R to the distributed

data frame implementation on top of Spark for large datasets.

The implementation of SparkR is on the basis of Spark’s

parallel DataFrame abstraction [121]. It supports all Spark

DataFrame analytical operations and functions including ag-

gregation, filtering, grouping, summary statistics, and mixing-

in SQL queries.

2). PySpark. PySpark [48] is the Python API for Spark,

which exposes the Spark programming model to Python. It

allows users to write Spark applications in Python. There are a

few differences between PySpark and Spark Scala APIs. First,

Python is a dynamically typed language so that the RDDs of

PySpark have the capability to store objects of multiple types.

Second, the RDDs of PySpark support the same functions as

that of Scala APIs but leverage Python functions and return

12

Python collection types. Third, PySpark supports anonymous

functions that can be passed as arguments to the PySpark API

by using Python’s lambda functions.

7.2 SQL-like Programming Language and System

1). Shark. Apache Shark [86], [145] is the first SQL-on-Spark

effort. It is built on top of Hive codebase and uses Spark

as the backend engine. It leverages the Hive query compiler

(HiveQL Parser) to parse a HiveQL query and generate an

abstract syntax tree followed by turning it into the logical

plan and basic logical optimization. Shark then generates a

physical plan of RDD operations and finally executes them

in Spark system. A number of performance optimizations are

considered. To reduce the large memory overhead of JVM,

it implements a columnar memory store based on Spark’s

native memory store. A cost-based query optimizer is also

implemented in Shark for choosing more efficient join order

according to table and column statistics. To reduce the impact

of garbage collection, Shark stores all columns of primitive

types as JVM primitive arrays. Finally, Shark is completely

compatible with Hive and HiveQL, but much faster than

Hive, due to its inter-query caching of data in memory that

eliminates the need to read/write repeatedly on disk. It can

support more complex queries through User Defined Functions

(UDFs) that are referenced by a HiveQL query.

2). Spark SQL. As an evolution of SQL-on-Spark, Spark

SQL [121] is the state-of-art new module of Spark that has

replaced Shark in providing SQL-like interfaces. It is proposed

and developed from ground-up to overcome the difficulty of

performance optimization and maintenance of Shark resulting

from inheriting a large, complicated Hive codebase. Compared

to Shark, it adds two main capabilities. First, Spark SQL

provides much tighter hybrid of relational and procedural

processing. Second, it becomes easy to add composable rules,

control code generation, and define extension points. It is

compatible with Shark/Hive that supports all existing Hive data

formats, user-defined functions (UDF) and the Hive metastore,

while providing the state-of-the-art SQL performance.

Spark SQL

Resilient Distributed Datasets

Spark

JDBC Console
User Programs

(Java, Scala, Python)

Catalyst Optimizer

DataFrame API

Fig. 6: Interfaces to Spark SQL, and interaction with Spark. [121]

Figure 6 presents the programming interface to Spark SQL

containing two main cores of DataFrame API and Catalyst

Optimizer, and its interaction with Spark. It exposes SQL

interfaces through JDBC/ODBC, a command-line console, and

the DataFrame API implemented in Spark’s supported pro-

gramming languages. The DataFrame is the main abstraction

in Spark SQL’s API. It is a distributed collections of records

that can be operated with Spark’s procedural API, or new

relational APIs. The Catalyst, in contrast, is an extensible

query optimizer based on functional programming constructs.

It simplifies the addition of new optimization techniques

and features to Spark SQL and enables users to extend the

optimizer for their application needs.

3). Hive/HiveQL. Apache Hive [138] is an open-source data

warehousing solution built on top of Hadoop by the Facebook

Data Infrastructure Team. It aims to incorporate the classical

relational database notion as well as high-level SQL language

to the unstructured environment of Hadoop for those users

who were not familiar with map-reduce. There is a mechanism

inside Hive that can project the structure of table onto the

data stored in HDFS and enable data queries using a SQL-

like declarative language called HiveQL, which contains its

own type system with support for tables, collections and nested

compositions of the same and data definition language (DDL).

Hive compiles the SQL-like query expressed in HiveQL into

a directed acyclic graph (DAG) of map-reduce jobs that are

executed in Hadoop. There is a metastore component inside

Hive that stores metadata about the underlying table, which

is specified during table creation and reused whenever the

table is referenced in HiveQL. The DDL statements supported

by HiveQL enable to create, drop and alter tables in a

Hive database. Moreover, the data manipulation statements of

HiveQL can be used to load data from external sources such as

HBase and RCFile, and insert query results into Hive tables.

Hive has been widely used by many organizations/users for

their applications [8]. However, the default backend execution

engine for Hive is MapReduce, which is less powerful than

Spark. Adding Spark as an alternative backend execution

engine to Hive is thus an important way for Hive users to

migrate the execution to Spark. It has been realized in the

latest version of Hive [23]. Users can now run Hive on top of

Spark by configuring its backend engine to Spark.

4). Pig/Pig Latin. Apache Pig [24] is an open source

dataflow processing system developed by Yahoo!, which

serves for experienced procedural programmers with the pref-

erence of map-reduce style programming over the pure declar-

ative SQL-style programming in pursuit of more control over

the execution plan. It consists of a execution engine and high-

level data flow language called Pig Latin [128], which is

not declarative but enables the expression of a user’s task

using high-level declarative querying in the spirit of SQL and

low-level procedural programming with MapReduce. Figure 7

gives an example of SQL query and its equivalent Pig Latin

program, which is a sequence of transformation steps each

of which is carried out using SQL-like high-level primitives

(e.g., filtering, grouping, and aggregation). Given a Pig Latin

program, the Pig execution engine generates a logic query

plan, compiles it into a DAG of MapReduce jobs, and finally

submitted to Hadoop cluster for execution.

There are several important characteristics for Pig Latin in

casual ad-hoc data analysis, including the support of a nested

data model as well as a set of predefined and customizable

13

SAKR et al.: A SURVEY OF LARGE SCALE DATA MANAGEMENT APPROACHES IN CLOUD ENVIRONMENTS 327

Fig. 10. An Overview of The Map-Reduce-Merge Framework. [56]

key/value pairs [(, v2)]. The reduce function aggregates the

list of values 2] associated with and produces a list of

values 3] which is also associated with k2. Note that inputs

and outputs of both functions belong to the same lineage

). Another pair of map and reduce functions produce the

intermediate output 4]) from another lineage (). Based

on keys and , the merge function combines the two

reduced outputs from different lineages into a list of key/value

outputs [(, v5)]. This nal output becomes a new lineage

). If then this merge function does a self-merge

which is similar to self-join in relational algebra. The main

differences between the processing model of this framework

and the original MapReduce is the production of a key/value

list from the reduce function instead of just that of values. This

change is introduced because the merge function needs input

datasets organized (partitioned, then either sorted or hashed)

by keys and these keys have to be passed into the function to

be merged. In the original framework, the reduced output is

nal. Hence, users pack whatever needed in 3] while passing

for the next stage is not required. Yang et al. [59] have

also proposed improving the Map-Reduce-Merge framework

by adding a new primitive called Traverse. This primitive

can process index le entries recursively, select data partitions

based on query conditions, and feed only selected partitions

to other primitives.

The basic architecture of the MapReduce framework re-

quires that the entire output of each map and reduce task to

be materialized into a local le before it can be consumed

by the next stage. This materialization step allows for the

implementation of a simple and elegant checkpoint/restart fault

tolerance mechanism. Condie et al. [60] proposed a modi ed

architecture in which intermediate data is pipelined between

operators which widens the domain of problems to which the

MapReduce framework can be applied. For example, it can

be then used to support continuous queries where MapReduce

jobs can run continuously, accept new data as it arrives and

analyze it immediately. Hence, it allows MapReduce to be

used for applications such as event monitoring and stream

processing.

Gu and Grossman [61] have reported the following impor-

tant lessons which they have learned from their experiments

with MapReduce framework:

Fig. 11. An Example SQL Query and Its Equivalent Pig Latin Program. [66]

The importance of data locality. Locality is a key factor

especially with relying on inexpensive commodity hard-

ware.

Load balancing and the importance of identifying hot

spots. With poor load balancing, the entire system can

be waiting for a single node. It is important to eliminate

any “hot spots” which can be caused by data access

(accessing data from a single node) or network I/O

(transferring data into or out of a single node).

Fault tolerance comes with a price. In some cases, fault

tolerance introduces extra overhead in order to replicate

the intermediate results. For example, in the cases of

running on small to medium sized clusters, it might be

reasonable to favor performance and re-run any failed

intermediate task when necessary.

Streams are important. Streaming is quite important in

order to reduce the total running time of MapReduce jobs.

Recently, several research efforts have reported about ap-

plying the MapReduce framework for solving challenging

data processing problem on large scale datasets in different

domains. For example, Wang et al. [62] have presented the

MapDupReducer system for detecting near duplicates over

massive datasets. Surfer [63] and Pregel [64] systems have

been designed to achieve ef cient distributed processing of

large scale graphs. Ricardo [65] is a scalable platform for

applying sophisticated statistical methods over huge data

repositories.

B. SQL-Like

For programmers, a key appealing feature in the MapRe-

duce framework is that there are only two high-level declar-

ative primitives (map and reduce) that can be written in any

programming language of choice and without worrying about

the details of their parallel execution. On the other side, the

MapReduce programming model has its own limitations such

as:

Its one-input and two-stage data ow is extremely rigid.

As we previously discussed, to perform tasks having

a different data ow (e.g. joins or stages), inelegant

workarounds have to be devised.

Custom code has to be written for even the most common

operations (e.g. projection and ltering) which leads to

the fact that the code is usually dif cult to reuse and

maintain.

The opaque nature of the map and reduce functions im-

pedes the ability of the system to perform optimizations.

Moreover, many programmers could be unfamiliar with

the MapReduce framework and they would prefer to use

Fig. 7: An example of SQL Query and its equivalent Pig Latin
program. [24]

user-defined functions (UDFs), and the ability of operating

over plain files without any schema information. In Pig Latin,

the basic data type is Atom (e.g., integer, double, and string).

Multiple Automs can be combined into a Tuple and several

Tuples can form a Bag. Map is a more complex data type

supported by Pig Latin, which contains a key and a collection

of data items that can be looked up with its associated key.

Like Hive, the default backend execution engine for Pig is

MapReduce. To enable the execution of Pig jobs on Spark

for performance improvement, there is a Pig-on-Spark project

called Spork [54] that plugs in Spark as an execution engine

for Pig. With Spork, users can choose Spark as the backend

execution engine of the Pig framework optionally for their own

applications.

7.3 Comparison

Table 3 illustrates the comparison of different programming

language systems used in Spark. To be compatible, it supports

Hive and Pig by allowing users to replace the backend

execution engine of MapReduce with Spark. To make the

query efficient, Shark is first developed and later evolves to

SparkSQL. Moroever, SparkR and PySpark are provided in

Spark in order to support R and Python languages which

are widely used by scientific users. Among these languages,

the major differences lie in their supported language types.

SparkR and PySpark can support Dataflow and SQL-like

programming. In contrast, Shark, SparkSQL and Hive are

SQL-like only languages, while Pig is a dataflow language.

8 APPLICATION/ALGORITHM LAYER

As a general-purpose system, Spark has been widely used for

various applications and algorithms. In this section, we first

review the support of machine learning algorithms on Spark.

Next we show the supported applications on Spark.

8.1 Machine Learning Support on Spark

Machine learning is a powerful technique used to develop

personalizations, recommendations and predictive insights in

order for more diverse and more user-focused data products

and services. Many machine learning algorithms involve lots

of iterative computation in execution. Spark is an efficient in-

memory computing system for iterative processing. In recent

years, it attracts many interests from both academia and

industry to build machine learning packages or systems on

top of Spark. In this section, we discuss about research efforts

on it.

8.1.1 Machine Learning Library

1). MLlib. The largest and most active distributed machine

learning library for Spark is MLlib [120], [17]. It consists

of fast and scalable implementations of common machine

learning algorithms and a variety of basic analytical utilities,

low-level optimization primitives and higher-level pipeline

APIs. It is a general machine learning library that provides

algorithms for most use cases and meanwhile allows users to

build upon and extend it for specialized use cases.

There are several core features for MLlib as follows. First,

it implements a number of classic machine learning algo-

rithms, including various linear models (e.g., SVMs, logistic

regression, linear regression), naive Bayes, and ensembles of

decision trees for classification and regression problems; al-

ternating least squares for collaborative filtering; and k-means

clustering and principal component analysis for clustering

and dimensionality reduction; FP-growth for frequent pattern

mining. Second, MLlib provides many optimizations for sup-

porting efficient distributed learning and prediction. Third, It

supports practical machine learning pipelines natively by using

a package called spark.ml inside MLlib, which simplifies the

development and tuning of multi-stage learning pipelines by

providing a uniform set of high-level APIs. Lastly, there is

a tight and seamless integration of MLlib with Spark’s other

components including Spark SQL, GraphX, Spark streaming

and Spark core, bringing in high performance improvement

and various functionality support for MLlib.

MLlib has many advantages, including simplicity, scala-

bility, streamlined end-to-end and compatibility with Spark’s

other modules. It has been widely used in many real applica-

tions like marketing, advertising and fraud detection.

2). KeystoneML. KeystoneML [134] is a framework for ML

pipelines, written in Scala, from the UC Berkeley AMPLab

designed to simplify the construction of large scale, end-to-

end, machine learning pipelines with Apache Spark. It captures

and optimizes the end-to-end large-scale machine learning

applications for high-throughput training in a distributed envi-

ronment with a high-level API [58]. KeystoneML has several

core features. First, it allows users to specify end-to-end

ML applications in a single system using high level logical

operators. Second, it scales out dynamically as data volumes

and problem complexity change. Finally, it Automatically

optimizes these applications given a library of ML operators

and the user’s compute resources. KeystoneML is open source

software and is being used in scientific applications in solar

physics [98] and genomics [31].

3). Thunder. Thunder [55] is an open-source library devel-

oped by Freeman Lab [32] for large-scale neural data analysis

with Spark. It is written in Spark Python API (PySpark) for the

use of robust numerical and scientific computing libraries (e.g.,

NumPy and SciPy), and offers the simplest front end for new

users. Thunder provides a set of data structures and utilities

for loading and saving data using a variety of input formats,

classes for dealing with distributed spatial and temporal data,

and modular functions for time series analysis, processing,

factorization, and model fitting [87]. It can be used in a variety

of domains including medical imaging, neuroscience, video

processing, and geospatial and climate analysis.

14

System Language Type Data Model UDF Access Interface MetaStore

SparkR Dataflow, SQL-like Nested Supported Command line, web, JDBC/ODBC server Supported

PySpark Dataflow, SQL-like Nested Supported Command line, web, JDBC/ODBC server Supported

Shark SQL-like Nested Supported Command line Supported

SparkSQL SQL-like Nested Supported Command line, web, JDBC/ODBC server Supported

Hive SQL-like Nested Supported Command line, web, JDBC/ODBC server Supported

Pig Dataflow Nested Supported Command line Not supported

TABLE 3: The comparison of different programming language systems.

4). ADAM. ADAM [56] is a library and parallel framework

that enables to work with both aligned and unaligned ge-

nomic data using Apache Spark across cluster/cloud comput-

ing environments. ADAM provides competitive performance

to optimized multi-threaded tools on a single node, while

enabling scale out to clusters with more than a thousand cores.

ADAM is built as a modular stack, which is different from

traditional genomics tools. This stack architecture supports

a wide range of data formats and optimizes query patterns

without changing data structures. There are seven layers

of the stack model from bottom to top: Physical Storage,

Data Distribution, Materialized Data, Data Schema, Evidence

Access, Presentation, Application [119]. A “narrow waisted”

layering model is developed for building similar scientific

analysis systems to enforce data independence. This stack

model separates computational patterns from the data model,

and the data model from the serialized representation of

the data on disk. They exploit smaller and less expensive

computers, leading to a 63% cost improvement and a 28ˆ

improvement in read preprocessing pipeline latency [127].

8.1.2 Machine Learning System

1). MLBase. The complexity of existing machine learning

algorithms is so overwhelming that users often do not un-

derstand the trade-offs and challenges of parameterizing and

picking up between different learning algorithms for achieving

good performance. Moreover, existing distributed systems that

support machine learning often require ML researchers to

have a strong background in distributed systems and low-level

primitives. All of these limits the wide use of machine learning

technique for large scale data sets seriously. MLBase [103],

[136] is then proposed to address it as a platform.

The architecture of MLBase is illustrated in Figure 8,

which contains a single master and a set of slave nodes. It

provides a simple declarative way for users to express their

requests with the provided declarative language and submit

to the system. The master parses the request into a logical

learning plan (LLP) describing the most general workflow to

perform the request. The whole search space for the LLP

can be too huge to be explored, since it generally involves

the choices and combinations of different ML algorithms,

algorithm parameters, featurization techniques, and data sub-

sampling strategies, etc. There is an optimizer available to

prune the search space of the LLP to get an optimized logical

plan in a reasonable time. After that, MLBase converts the

logical plan into a physical learning plan (PLP) making up

of executable operations like filtering, mapping and joining.

Finally, the master dispatches these operations to the slave

nodes for execution via MLBase runtime.

ML Developer

Meta-Data

Statistics

User

Declarative

ML Task

ML Contract +

Code

Master Server

….

result

(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
a
s
te

r
S

la
v
e
s

Figure 1: MLbase Architecture

MLbase

the LLP consists of the combinations of ML algorithms, fea-
turization techniques, algorithm parameters, and data sub-
sampling strategies (among others), and is too huge to be
explored entirely. Therefore, an optimizer tries to prune the
search-space of the LLP to find a strategy that is testable in
a reasonable time-frame. Although the optimization process
is significantly harder than in relational database systems,
we can leverage many existing techniques. For example,
the optimizer can consider the current data layout, mate-
rialized intermediate results (pre-processed data) as well as
general statistics about the data to estimate the model learn-
ing time. However, in contrast to a DBMS, the optimizer
also needs to estimate the expected quality for each of the
model configurations to focus on the most promising candi-
dates.

After constructing the optimized logical plan, MLbase
transforms it into a physical learning plan (PLP) to be exe-
cuted. A PLP consists of a set of executable ML operations,
such as filtering and scaling feature values, as well as syn-
chronous and asynchronous MapReduce-like operations. In
contrast to an LLP, a PLP specifies exactly the parameters
to be tested as well as the data (sub)sets to be used. The
MLbase master distributes these operations onto the worker
nodes, which execute them through the MLbase runtime.

The result of the execution—as in the examples of the
previous section—is typically a learned model (fn-model
or some other representation (relevant features) that the
user may use to make predictions or summarize data. ML-
base also returns a summary of the quality assessment of the
model and the learning process (the model’s lineage) to allow
the user to make more informed decisions. In the prototype
we have built, we return the learned model as a higher-order
function that can be immediately used as a predictive model
on new data.

We use the Scala language, which makes it easy to return
and serialize functions.

In contrast to traditional database systems, the task here
is not necessarily complete upon return of the first result.
Instead, we envision that MLbase will further improve the
model in the background via additional exploration. The
first search therefore stores intermediate steps, including
models trained on subsets of data or processed feature val-
ues, and maintains statistics on the underlying data and
learning algorithms’ performance. MLbase may then later
re-issue a better optimized plan to the execution module to
improve the results the user receives.
This continuous refinement of the model in the background

has several advantages. First, the system becomes more
interactive, by letting the user experiment with an initial
model early on. Second, it makes it very easy to create
progress bars, which allow the user to decide on the fly when
the quality is sufficient to use the model. Third, it reduces
the risk of stopping too early. For example, the user might
find, that in the first 10 minutes, the system was not able to
create a model with sufficient quality and he is now consid-
ering other options. However, instead of letting the system
remain idle until the user issues the next request, MLbase
continues searching and testing models in the background.
If it finds a model with better quality, it informs the user
about it. Finally, it is very natural for production systems
to continuously improve models with new data. MLbase
is designed from the beginning with this use case in mind
by making new data one of the dimensions for improving a
model in the background.
Another key aspect of MLbase is its extensibility to novel

ML algorithms. We envision ML experts constantly adding
new ML techniques to the system, with the requirement that
developers implement new algorithms in MLbase primitives
and describe their properties using a special contract (see the
left part of Figure 1). The contract specifies the type of al-
gorithm (e.g., binary classification), the algorithm’s parame-
ters, run-time complexity (e.g., O()) and possible run-time
optimizations (e.g., synchronous vs. asynchronous learning;
see Section 5). The easy extensibility of MLbase will simul-
taneously make it an attractive platform for ML experts and
allow users to benefit from recent developments in statistical
machine learning.

4. QUERY OPTIMIZATION
Having described our architecture, we now turn to a deeper

description of our query optimization techniques and ideas.
Similar to approaches in traditional database systems, we
transform the declarative ML task into a logical plan, op-
timize it, and finally translate it into a physical plan; we
describe each of these three below.

4.1 Logical Learning Plan
The first step of optimizing the declarative ML task into

our machine-executable language is the translation into a
logical learning plan. During this translation many opera-
tions are mapped 1-to-1 to LLP operators (e.g., data load-
ing), whereas ML functions are expanded to their best-practice
workflows.

In what follows, we use binary support vector machine
(SVM) classification (see, e.g., [24]) as our running example
throughout. An SVM classifier is based on a kernel function
, where x, x) is a particular type of similarity measure

between data points x, x . Given a dataset , . . . , x , the

Fig. 8: MLbase Architecture. [103]

2). Sparkling Water. H2O [33] is a fast, scalable, open-

source, commercial machine learning system produced by

H2O.ai Inc. [34] with the implementation of many common

machine learning algorithms including generalized linear mod-

eling (e.g., linear regression, logistic regression), Naive Bayes,

principal components analysis and k-means clustering, as well

as advanced machine learning algorithms like deep learning,

distributed random forest and gradient boosting. It provides

familiar programming interfaces like R, Python and Scala, and

a graphical-user interface for the ease of use. To utilize the

capabilities of Spark, Sparkling Water [52] integrates H2O’s

machine learning engine with Spark transparently. It enables

launching H2O on top of Spark and using H2O algorithms

and H2O Flow UI inside the Spark cluster, providing an ideal

machine learning platform for application developers.

Sparking Water is designed as a regular Spark application

and launched inside a Spark executor spawned after submitting

the application. It offers a method to initialize H2O services on

each node of the Spark cluster. It enables data sharing between

Spark and H2O with the support of transformation between

different types of Spark RDDs and H2O’s H2OFrame, and

vice versa.

3). Splash. Stochastic algorithms are efficient approaches

to solving machine learning and optimization problems.

Splash [152] is a framework for parallelizing stochastic al-

gorithms on multi-node distributed systems, it consists of

a programming interface and an execution engine. Users

use programming interface to develop sequential stochastic

algorithms and then the algorithm is automatically parallelized

15

by a communication-efficient execution engine. Splash can

be called in a distributed manner for constructing parallel

algorithms by execution engine. In order to parallelize the

algorithm, Splash converts a distributed processing task into

a sequential processing task using distributed versions of

averaging and reweighting. Reweighting scheme ensures the

total weight processed by each thread is equal to the number of

samples in the full sequence. This helps individual threads to

generate nearly unbiased estimates of the full update. Using

this approach, Splash automatically detects the best degree

of parallelism for the algorithm. The experiments verify that

Splash can yield orders-of-magnitude speedups over single-

thread stochastic algorithms and over state-of-the-art batch

algorithms.

4). Velox. BDAS(Berkeley Data Analytics Stack) contained

a data storage manager, a dataflow execution engine, a stream

processor, a sampling engine, and various advanced analytics

packages. However, BDAS lacked any means of actually

serving data to end-users, and, there are many industrial users

of the stack rolled their own solutions to model serving and

management. Velox fills this gap. Velox [80] is a system for

performing model serving and model maintenance at scale.

It provides end-user applications and services with a low

latency, intuitive interface to models, transforming the raw

statistical models currently trained using existing offline large-

scale compute frameworks into full-blown, end-to-end data

products capable of recommending products, targeting adver-

tisements, and personalizing web content.Velox consists of

two primary architectural components: Velox model manager

and Velox model predictor. Velox model manager orchestrates

the computation and maintenance of a set of pre-declared

machine learning models, incorporating feedback and new

data, evaluating model performance, and retraining models as

necessary.

8.1.3 Deep Learning

As a class of machine learning algorithms, Deep learning has

become very popular and been widely used in many fields

like computer version, speech recognition, natural language

processing and bioinformatics due to its many benefits: ac-

curacy, efficiency and flexibility. There are a number of deep

learning frameworks implemented on top of Spark, such as

CaffeOnSpark [25], DeepLearning4j [37], and SparkNet [123].

1). CaffeOnSpark. In many existing distributed deep learn-

ing, the model training and model usage are often separated,

as the computing model shown in Figure 9(a). There is a

big data processing cluster (e.g., Hadoop/Spark cluster) for

application computation and a separated deep learning cluster

for model training. To integrate the model training and model

usage as a united system, it requires a large amount of data and

model transferred between two separated clusters by creating

multiple programs for a typical machine learning pipeline,

which increases the system complexity and latency for end-

to-end learning. In contrast, an alternative computing model,

as illustrated in Figure 9(b), is to conduct the deep learning

and data processing in the same cluster.

Caffe [97] is one of the most popular deep learning

frameworks, which is developed in C++ with CUDA by

Berkeley Vision and Learning Center (BVLC). According

to the model of Figure 9(b), Yahoo extends Caffe to Spark

framework by developing CaffeOnSpark [26], [25], which

enables distributed deep learning on a cluster of GPU and

CPU machines. CaffeOnSpark is a Spark package for deep

learning, as a complementary to non-deep learning libraries

MLlib and Spark SQL.
Previous Practice: Multiple Programs on Multiple Clusters

(a) ML Pipeline with multiple programs on
separated clusters.

(b) ML Pipeline with single
program on one cluster.

Fig. 9: Distributed deep learning computing model. [26]

The architecture of CaffeOnSpark is shown in Figure 10. It

supports the launch of Caffe engines on GPU or CPU devices

within the Spark executor by invoking a JNI layer with fine-

grain memory management. Moreover, it takes Spark+MPI ar-

chitecture in order for CaffeOnSpark to achieve similar perfor-

mance as dedicated deep learning clusters by using MPI allre-

duce style interface via TCP/Ethernet or RDMA/Infiniband for

the network communication across CaffeOnSpark executors.
CaffeOnSpark: Scalable Architecture

16

Fig. 10: CaffeOnSpark Architecture. [26]

2). Deeplearning4j/dl4j-spark-ml. Deeplearning4j [37] is

the first commercial-grade, open-source, distributed deep

learning library written for Java and Scala, and a computing

framework with the support and implementation of many

deep learning algorithms, including restricted Boltzmann ma-

chine, deep belief net, deep autoencoder, stacked denoising

autoencoder and recursive neural tensor network, word2vec,

16

doc2vec and GloVe. It integrates with Spark via a Spark

package called dl4j-spark-ml [47], which provides a set of

Spark components including DataFrame Readers for MNIST,

Labeled Faces in the Wild (LFW) and IRIS, and pipeline

components for NeuralNetworkClassification and NeuralNet-

workReconstruction. It supports heterogeneous architecture by

using Spark CPU to drive GPU coprocessors in a distributed

context.

3). SparkNet. SparkNet [123], [29] is an open-source, dis-

tributed system for training deep network in Spark released by

the AMPLab at U.C. Berkley in Nov 2015. It is built on top

of Spark and Caffe, where Spark is responsible for distributed

data processing and the core learning process is delegated

to the Caffe framework. SparkNet provides an interface for

reading data from Spark RDDs and a compatible interface

to the Caffe. It achieves a good scalability and tolerance of

high-latency communication by using a simple palatalization

scheme for stochastic gradient descent. It also allows Spark

users to construct deep networks using existing deep learning

libraries or systems, such as TensorFlow [62] or Torch as a

backend, instead of building a new deep learning library in

Java or Scala. Such a new integrated model of combining

existing model training frameworks with existing batch frame-

works is beneficial in practice. For example, machine learning

often involves a set of pipeline tasks such as data retrieving,

cleaning and processing before model training as well as

model deployment and model prediction after training. All of

these can be well handled with the existing data-processing

pipelines in today’s distributed computational environments

such as Spark. Moreover, the integrated model of SparkNet

can inherit the in-memory computation from Spark that allows

data to be cached in memory from start to complete for fast

computation, instead of writing to disk between operations as

a segmented approach does. It also allows machining learning

algorithm easily to pipeline with Spark’s other components

such as Spark SQL and GraphX.

Moreover, there are some other Spark-based deep learning

libraries and frameworks, including OpenDL [18], Deep-

Dist [15], dllib [57] , MMLSpark [60], and DeepSpark [100].

OpenDL [18] is a deep learning training library based on

Spark by applying the similar idea used by DistBelief [82].

It executes the distributed training by splitting the training

data into different data shards and synchronizes the replicate

model using a centralized parameter server. DeepDist [15] ac-

celerates model training by providing asynchronous stochastic

gradient descent for data stored on HDFS / Spark. dllib [57]

is a distributed deep learning framework based on Apache

Spark. It provides a simple and easy-to-use interface for

users to write and run deep learning algorithms on spark.

MMLSpark [60] provides a number of deep learning tools

for Apache Spark, including seamless integration of Spark

Machine Learning pipelines with Microsoft Cognitive Toolkit

(CNTK) and OpenCV, enabling users to quickly create power-

ful, highly-scalable predictive and analytical models for large

and text datasets. DeepSpark [100] is an alternative deep

learning framework similar to SparkNet. It integrates three

components including Spark, asynchronous parameter updates,

and GPU-based Caffe seamlessly for enhanced large-scale data

processing pipeline and accelerated DNN training.

8.2 Spark Applications

As an efficient data processing system, Spark has been widely

used in many application domains, including Genomics,

Medicine&Healthcare, Finance, and Astronomy, etc.

8.2.1 Genomics

The method of the efficient score statistic is used extensively

to conduct inference for high throughput genomic data due

to its computational efficiency and ability to accommodate

simple and complex phenotypes. To address the resulting

computational challenge for resampling based inference, what

is needed is a scalable and distributed computing approach. A

cloud computing platform is suitable as it allows researchers

to conduct data analyses at moderate costs, participating in

the absence of access to a large computer infrastructure.

SparkScore [68] is a set of distributed computational algo-

rithms implemented in Apache Spark, to leverage the embar-

rassingly parallel nature of genomic resampling inference on

the basis of the efficient score statistics. This computational

approach harnesses the fault-tolerant features of Spark and can

be readily extended to analysis of DNA and RNA sequencing

data, including expression quantitative trait loci (eQTL) and

phenotype association studies. Experiments conducted with

Amazon’s Elastic MapReduce (EMR) on synthetic data sets

demonstrate the efficiency and scalability of SparkScore, in-

cluding high-volume resampling of very large data sets. To

study the utility of Apache Spark in the genomic context,

SparkSeq [144] was created. SparkSeq performs in-memory

computations on the Cloud via Apache Spark. It covers

operations on Binary Alignment/Map (BAM) and Sequence

Alignment/Map (SAM) files, and it supports filtering of reads

summarizing genomic features and basic statistical analyses

operations. SparkSeq is a general-purpose tool for RNA and

DNA sequencing analyses, tuned for processing in the cloud

big alignment data with nucleotide precision. SparkSeq opens

up the possibility of customized ad hoc secondary analyses

and iterative machine learning algorithms.

8.2.2 Medicine & Healthcare

In a modern society with great pressure, more and more people

trapped in health issues. In order to reduce the cost of medical

treatments, many organizations were devoted to adopting big

data analytics into practice so as to avoid cost. Large amount

of healthcare data is produced in healthcare industry but the

utilization of those data is low without processing this data

interactively in real-time [66]. But now it is possible to process

real time healthcare data because spark supports automated

analytics through iterative processing on large data set. But in

some circumstances the quality of data is poor, which brings

a big problem. A spark-based approach to data processing and

probabilistic record linkage is presented in order to produce

very accurate data marts [69]. This approach is specifically on

supporting the assessment of data quality, pre-processing, and

linkage of databases provided by the Ministry of Health and

the Ministry of Social Development and Hunger Alleviation.

17

8.2.3 Finance

Big data analytic technique is an effective way to provide

good financial services for users in financial domain. For

stock market, to have an accurate prediction and decision on

the market trend, there are many factors such as politics and

social events needed to be considered. Mohamed et al. [133]

propose a real-time prediction model of stock market trends

by analyzing big data of news, tweets, and historical price

with Apache Spark. The model supports the offline mode that

works on historical data, and real-time mode that works on

real-time data during the stock market session. Li et al. [45]

builds a quantitative investing tool based on Spark that can

be used for macro timing and portifolio rebalancing in the

market.

To protect user’s account during the digital payment and

online transactions, fraud detection is a very important issue

in financial service. Rajeshwari et al.[139] study the credit

card fraud detection. It takes Spark streaming data processing

to provide real-time fraud detection based on Hidden Markov

Model (HMM) during the credit card transaction by analyzing

its log data and new generated data. Carcillo et al. [73] propose

a realistic and scalable fraud detection system called Real-time

Fraud Finder (SCARFF), which integrates Big Data software

(Kafka, Spark and Cassandra) with a machine learning ap-

proach that deals with class imbalance, nonstationarity and

verification latency.

Moreover, there are some other financial applications such

as financial risk analysis [7], financial trading [85], etc.

8.2.4 Astronomy

Considering the technological advancement of telescopes and

the number of ongoing sky survey projects, it is safe to say

that astronomical research is moving into the Big Data era. The

sky surveys deliver huge datasets that can be used for different

scientific studies simultaneously. Kira [154], a flexible and

distributed astronomy processing toolkit using Apache Spark,

is proposed to implement a Source Extractor application for

astronomy s. The extraction accuracy can be improved by

running multiple iterations of source extraction.

 !"#$%&#'()#

*"
+
$
+

,-.

 /0%1'2#"#3

4&5

6
"
*"
78
9
:

;
9
<
*#
9
8

=)*"6"*"%

";;)++

 !"#$%>9#$)#

 /0%1'2#"#3

?9=!'8)6%@'#"%

A!!8';"*'9<

+B2='*

Fig. 11: The Overview of Kira Architecture. [153]

Figure 1 shows the architecture of Kira and inter-component

interactions. Kira runs on top of Spark, which supports a

single driver and multiple workers and the SEP library is

deployed to all worker nodes [153]. Kira reimplements the

Source Extractor algorithm from scratch and connects existing

programs as monolithic pieces. The approach is exposed a

programmable library and allows users to reuse the legacy

code without sacrificing control-flow flexibility. The Kira SE

implementation demonstrates linear scalability with the dataset

and cluster size.

The huge volume and rapid growth of dataset in scientific

computing such as Astronomy demand for a fast and scalable

data processing system. Leveraging a big data platform such

as Spark would enable scientists to benefit from the rapid pace

of innovation and large range of systems that are being driven

by widespread interest in big data analytics.

9 CHALLENGES AND OPEN ISSUES

In this section, we discuss the research challenges and oppor-

tunities for Spark ecosystem.

Memory Resource Management. As an in-memory pro-

cessing platform built with Scala, Spark’s performance is

sensitive to its memory configuration and usage of JVMs.

The memory resource is divided into two parts. One is for

RDD caching. The other is used for tasks’ working memory

to store objects created during the task execution. The proper

configuration of such memory allocation is non-trivial for

performance improvement. Moreover, the overhead of JVM

garbage collection (GC) can be a problem when there are a

large number of “churn” for cached RDDs, or due to serious

interference between the cached RDDs and tasks’ working

memory. For this, Maas et al [115] have a detailed study for

GC’s impact on Spark in distributed environment. The proper

tuning of GC thus plays an important role in performance

optimization. Currently, it is still at early stage and there are

not good solutions for Spark. It opens an important issue on

the memory resource management and GC tuning for Spark.

Regarding this, recently, Spark community starts a new project

for Spark called Tungsten [4] that places Spark’s memory

management as its first concern.

New Emerging Processor Support. In addition to GPU

and FPGA, the recent advancement on computing hardware

make some new processors emerged, such as APU [72] and

TPU [99], etc. These can bring new opportunities to enhance

the performance of Spark system. For example, APU is a

coupled CPU-GPU device that integrates the CPU and the

GPU into a single chip and allows the CPU and the GPU

to communicate with each other through the shared physical

memory by featuring shared memory space between them [72].

It can improve the performance of existing discrete CPU-GPU

architecture where CPU and GPU communicate via PCI-e bus.

TPU is a domain-specific processor for deep neural network.

It can give us a chance to speedup Spark for deep learning

applications by migrating Spark to TPU platform.

Heterogenous Accelerators Support. Besides emerging pro-

cessors, it could be possible in practice that a Spark computing

system consists of a number of diverse processors such as

CPU, GPU, FPGA and MIC as illustrated in Spark ecosystem

of Figure 1. Rather than supporting a single processor only, it

is crucial to have a upgraded Spark that can utilize all of the

18

computing devices simultaneously for maximum performance.

Due to the fact that different accelerators are based on different

programming models (e.g., CUDA for GPU, OpenCL for

FPGA), it open us a new challenge on how to support such

different types of accelerators for Spark at the same time.

RDD Operation and Sharing. There are several open issues

for current Spark’s RDD. First, it allows only coarse-grained

operations (i.e., one operation for all data) on RDDs, whereas

the fine-grained operations (e.g., partial read) are supported.

One work is to design some fine-grained operations on partial

data of RDD. Second, current RDDs are immutable. Instead

of modifying on existing RDD, any update operation would

generate new RDD, some data of which can be redundant

and thus results in a wast of storage resource. Third, for

a RDD, its data partitions can be skewed, i.e., there are

many small partitions coupled with a few number of large-

size partitions. Moreover, a Spark task computation generally

involves a series of pipelined RDDs. Thus, the skewed RDD

partitions can easily incur the chained unbalanced problem for

tasks, which causes some workers much busier than others.

Fourth, Spark itself does not support RDD sharing across

applications. For some applications that have the same input

data or redundant task computation, enabling RDD sharing

can be an effective approach to improve the performance of

the whole applications.

Failure Recovery. In contrast to MapReduce that pro-

vides fault tolerance through replication or checkpoint, Spark

achieves failure recovery via lineage re-computation, which

is much more cost efficient since it saves the costs due to

data replication across the network and disk storage. The

lineage information (e.g., input data, computing function) for

each RDD partition is recorded. Any lost data of RDDs can

be recovered through re-computation based on its lineage

information. However, there is a key assumption that all RDD

lineage information is kept and always available, and the driver

does not fail. It means that Spark is not 100% fault tolerance

without overcoming this assumption. It thus remains us an

open issue on how to enhance fault tolerance for Spark.

10 CONCLUSION

Spark has gained significant interests and contributions both

from industry and academia because of its simplicity, general-

ity, fault tolerance, and high performance. However, there is a

lack of work to summarize and classify them comprehensively.

In view of this, it motives us to investigate the related work

on Spark. We first overview the Spark framework, and present

the pros and cons of Spark. We then provide a comprehensive

review of the current status of Spark studies and related work

in the literature that aim at improving and enhancing the Spark

framework, and give the open issues and challenges regarding

the current Spark finally. In summary, we hopefully expect to

see that this work can be a useful resource for users who are

interested in Spark and want to have further study on Spark.

REFERENCES

[1] Apache flink, url: https://flink.apache.org/.

[2] Apache spark as a compiler: Joining a billion rows per second on a
laptop. In https://databricks.com/blog/2016/05/23/apache-spark-as-a-

compiler-joining-a-billion-rows-per-second-on-a-laptop.html.

[3] Decision cep url: http//github.com/stratio/decision.

[4] Project tungsten: Bringing apache spark closer to bare metal. In
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-
spark-closer-to-bare-metal.html.

[5] Spark cep url: https://github.com/samsung/spark-cep.

[6] Streamdm, url: http: http//huawei-noah.github.io/streamdm/.

[7] Estimating financial risk with apache spark. In
https://blog.cloudera.com/blog/2014/07/estimating-financial-risk-
with-apache-spark/, 2014.

[8] Shark, spark sql, hive on spark, and the future of sql on apache
spark. In https://databricks.com/blog/2014/07/01/shark-spark-sql-hive-

on-spark-and-the-future-of-sql-on-spark.html, 2014.

[9] Apache hbase. In http://hbase.apache.org/, 2015.

[10] Apache knox gateway. In http://hortonworks.com/hadoop/knox-

gateway/, 2015.

[11] Apache ranger. In http://hortonworks.com/hadoop/ranger/, 2015.

[12] Apache security. In https://spark.apache.org/docs/latest/security.html,
2015.

[13] Apache spark. In https://spark.apache.org/, 2015.

[14] Apache storm. In https://storm.apache.org/, 2015.

[15] Deepdist: Lightning-fast deep learning on spark via parallel stochastic
gradient updates. In http://deepdist.com/, 2015.

[16] Introducing sentry. In http://www.cloudera.com/content/cloudera/en/

campaign/introducing-sentry.html, 2015.

[17] Machine learning library (mllib) guide. In MLib:
https://spark.apache.org/docs/latest/mllib-guide.html, 2015.

[18] Opendl: The deep learning training framework on spark. In
https://github.com/guoding83128/OpenDL/, 2015.

[19] Alluxio, formerly known as tachyon, is a memory speed virtual
distributed storage system. In http://www.alluxio.org/, 2016.

[20] Amazon dynamodb. In https://en.wikipedia.org/wiki/Amazon DynamoDB,
2016.

[21] Amazon s3. In https://en.wikipedia.org/wiki/Amazon S3, 2016.

[22] Apache cassandra. In https://en.wikipedia.org/wiki/Apache Cassandra,
2016.

[23] Apache hive. In https://github.com/apache/hive, 2016.

[24] Apache pig. In https://pig.apache.org/, 2016.

[25] Caffeonspark. In https://github.com/yahoo/CaffeOnSpark, 2016.

[26] Caffeonspark open sourced for distributed
deep learning on big data clusters. In
http://yahoohadoop.tumblr.com/post/139916563586/caffeonspark-

open-sourced-for-distributed-deep, 2016.

[27] Cloud storage. In https://en.wikipedia.org/wiki/Cloud storage, 2016.

[28] Distributed hash table. In https://en.wikipedia.org/wiki/Distributed hash table,
2016.

[29] Distributed neural networks for spark. In
https://github.com/amplab/SparkNet, 2016.

[30] Dynamodb data source for apache spark. In
https://github.com/traviscrawford/spark-dynamodb, 2016.

[31] Encode-dream in-vivo transcription factor binding site prediction chal-
lenge. In https://www.synapse.org/#!Synapse:syn6131484, 2016.

[32] Freeman lab. In https://www.janelia.org/lab/freeman-lab, 2016.

[33] H2o. In https://github.com/h2oai/h2o-3, 2016.

[34] H2o.ai. In http://www.h2o.ai/, 2016.

[35] Introduction to microsoft azure storage. In
https://azure.microsoft.com/en-us/documentation/articles/storage-

introduction/, 2016.

[36] Medium. In https://medium.com/, 2016.

[37] Open-source, distributed, deep-learning library for the jvm. In
http://deeplearning4j.org/, 2016.

[38] Pyspark cassandra. In https://github.com/TargetHolding/pyspark-

cassandra, 2016.

[39] The r project for statistical computing. In https://www.r-project.org/,
2016.

[40] S3 support in apache hadoop. In
http://wiki.apache.org/hadoop/AmazonS3, 2016.

[41] Scala language. In https://spark.apache.org/docs/latest/api/python/index.html,
2016.

[42] Spark cassandra connector. In https://github.com/datastax/spark-
cassandra-connector, 2016.

[43] Spark-gpu wiki. In https://github.com/kiszk/spark-gpu, 2016.

[44] Spark-hbase connector. In https://github.com/nerdammer/spark-hbase-

connector, 2016.

19

[45] Spark-in-finance-quantitative-investing. In
https://github.com/litaotao/Spark-in-Finance-Quantitative-Investing,
2016.

[46] spark-on-hbase. In https://github.com/michal-harish/spark-on-hbase,
2016.

[47] Spark package - dl4j-spark-ml. In
https://github.com/deeplearning4j/dl4j-spark-ml, 2016.

[48] Spark python api. In http://spark.apache.org/docs/latest/api/python/index.html,
2016.

[49] Spark python api docs. In http://www.scala-lang.org/, 2016.

[50] spark-s3. In https://github.com/knoldus/spark-s3, 2016.

[51] Spark-sql-on-hbase. In https://github.com/Huawei-Spark/Spark-SQL-

on-HBase, 2016.

[52] Sparkling water. In https://github.com/h2oai/sparkling-water, 2016.

[53] Sparkr (r on spark). In https://spark.apache.org/docs/latest/sparkr.html,
2016.

[54] Spork: Pig on apache spark. In
https://github.com/sigmoidanalytics/spork, 2016.

[55] Thunder: Large-scale analysis of neural data. In http://thunder-

project.org/, 2016.

[56] Adam. In http://adam.readthedocs.io/en/adam-parent/ 2.11´0.23.0/,
2017.

[57] dllib. In https://github.com/Lewuathe/dllib, 2017.

[58] Keystoneml api docs. In http://keystone-ml.org/, 2017.

[59] Databricks cache boosts apache spark performance-why
nvme ssds improve caching performance by 10x. In
https://databricks.com/blog/2018/01/09/databricks-cache-boosts-
apache-spark-performance.html, 2018.

[60] Mmlspark: Microsoft machine learning for apache spark. In
https://github.com/Azure/mmlspark, 2018.

[61] Davidson Aaron and Or Andrew. Optimizing shuffle performance in
spark. In University of California, Berkeley - Department of Electrical

Engineering and Computer Sciences, 2013.

[62] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[63] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct:
Enabling queries on compressed data. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages
337–350, Oakland, CA, May 2015. USENIX Association.

[64] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar,
Michael Jordan, Samuel Madden, Barzan Mozafari, and Ion Stoica.
Knowing when you’re wrong: Building fast and reliable approximate
query processing systems. Association for Computing Machinery,
pages 481–492, 2014.

[65] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,
Samuel Madden, and Ion Stoica. Blinkdb: Queries with bounded errors
and bounded response times on very large data. In Proceedings of the

8th ACM European Conference on Computer Systems, EuroSys ’13,
pages 29–42, New York, NY, USA, 2013. ACM.

[66] J. Archenaa and E. A. Mary Anita. Interactive Big Data Management

in Healthcare Using Spark. Springer International Publishing, 2016.

[67] Anirudh Badam and Vivek S. Pai. Ssdalloc: Hybrid ssd/ram memory
management made easy. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, NSDI’11, pages
211–224, Berkeley, CA, USA, 2011. USENIX Association.

[68] A. Bahmani, A. B. Sibley, M. Parsian, K. Owzar, and F. Mueller.
Sparkscore: Leveraging apache spark for distributed genomic infer-
ence. In 2016 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), pages 435–442, May 2016.

[69] Marcos Barreto, Robespierre Pita, Clicia Pinto, Malu Silva, Pedro
Melo, and Davide Rasella. A spark-based workflow for probabilistic
record linkage of healthcare data. In The Workshop on Algorithms &
Systems for Mapreduce & Beyond, 2015.

[70] A. Bifet, S. Maniu, J. Qian, G. Tian, C. He, and W. Fan. Streamdm:
Advanced data mining in spark streaming. In 2015 IEEE International

Conference on Data Mining Workshop (ICDMW), pages 1608–1611,
Nov 2015.

[71] Rajendra Bose and James Frew. Lineage retrieval for scientific data
processing: A survey. ACM Comput. Surv., 37(1):1–28, March 2005.

[72] Alexander Branover, Denis Foley, and Maurice Steinman. Amd fusion
apu: Llano. IEEE Micro, 32(2):28–37, March 2012.

[73] Fabrizio Carcillo, Andrea Dal Pozzolo, Yann-Al Le Borgne, Olivier
Caelen, Yannis Mazzer, and Gianluca Bontempi. Scarff: A scalable

framework for streaming credit card fraud detection with spark. Infor-

mation Fusion, 41:182 – 194, 2018.
[74] Josiah L. Carlson. Redis in Action. Manning Publications Co.,

Greenwich, CT, USA, 2013.
[75] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-

orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A distributed storage system for structured
data. In Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation - Volume 7, OSDI ’06, pages 15–
15, Berkeley, CA, USA, 2006. USENIX Association.

[76] Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, and Peng Wei.
When spark meets fpgas: A case study for next-generation dna se-
quencing acceleration. In 8th USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud 16), Denver, CO, June 2016. USENIX
Association.

[77] W. Cheong, C. Yoon, S. Woo, K. Han, D. Kim, C. Lee, Y. Choi, S. Kim,
D. Kang, G. Yu, J. Kim, J. Park, K. W. Song, K. T. Park, S. Cho, H. Oh,
D. D. G. Lee, J. H. Choi, and J. Jeong. A flash memory controller
for 15us ultra-low-latency ssd using high-speed 3d nand flash with 3us
read time. In 2018 IEEE International Solid - State Circuits Conference

- (ISSCC), pages 338–340, Feb 2018.
[78] W. Choi and W. K. Jeong. Vispark: Gpu-accelerated distributed visual

computing using spark. In Large Data Analysis and Visualization

(LDAV), 2015 IEEE 5th Symposium on, pages 125–126, Oct 2015.
[79] Jason Cong, Muhuan Huang, Di Wu, and Cody Hao Yu. Invited -

heterogeneous datacenters: Options and opportunities. In Proceedings

of the 53rd Annual Design Automation Conference, DAC ’16, pages
16:1–16:6, New York, NY, USA, 2016. ACM.

[80] Daniel Crankshaw, Peter Bailis, Joseph E. Gonzalez, Haoyuan Li,
Zhao Zhang, Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan.
The missing piece in complex analytics: Low latency, scalable model
management and serving with velox. European Journal of Obstetrics
& Gynecology & Reproductive Biology, 185:181–182, 2014.

[81] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. Adaptive
stream processing using dynamic batch sizing. In Proceedings of the

ACM Symposium on Cloud Computing, pages 1–13. ACM, 2014.
[82] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior,
Paul A. Tucker, Ke Yang, and Andrew Y. Ng. Large scale distributed
deep networks. In NIPS’12, pages 1232–1240, 2012.

[83] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th Conference

on Symposium on Opearting Systems Design & Implementation -
Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[84] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220,
October 2007.

[85] Kamalika Dutta and Manasi Jayapal. Big data analytics for real time
systems, 02 2015.

[86] Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Shark: Fast data analysis using
coarse-grained distributed memory. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data, SIGMOD
’12, pages 689–692, New York, NY, USA, 2012. ACM.

[87] Jeremy Freeman, Nikita Vladimirov, Takashi Kawashima, Yu Mu,
Nicholas J Sofroniew, Davis V Bennett, Joshua Rosen, Chao-Tsung
Yang, Loren L Looger, and Misha B Ahrens. Mapping brain activity
at scale with cluster computing. Nature methods, 11(9):941–950, 2014.

[88] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. In Proceedings of the 10th USENIX Conference on

Operating Systems Design and Implementation, OSDI’12, pages 17–
30, Berkeley, CA, USA, 2012. USENIX Association.

[89] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. Graphx: Graph processing
in a distributed dataflow framework. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and Implementa-

tion, OSDI’14, pages 599–613, Berkeley, CA, USA, 2014. USENIX
Association.

[90] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep
Tetali, Tyson Condie, Todd Millstein, and Miryung Kim. Bigdebug:
Debugging primitives for interactive big data processing in spark. In
Ieee/acm International Conference on Software Engineering, pages
784–795, 2016.

20

[91] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A.
Thekkath, Yuan Yu, and Li Zhuang. Nectar: Automatic management
of data and computation in datacenters. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’10, pages 75–88, Berkeley, CA, USA, 2010. USENIX
Association.

[92] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:
A platform for fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pages 295–308, Berkeley, CA,
USA, 2011. USENIX Association.

[93] Z. Hu, B. Li, and J. Luo. Time- and cost- efficient task scheduling
across geo-distributed data centers. IEEE Transactions on Parallel and

Distributed Systems, 29(3):705–718, March 2018.

[94] Matteo Interlandi, Ari Ekmekji, Kshitij Shah, Muhammad Ali Gulzar,
Sai Deep Tetali, Miryung Kim, Todd Millstein, and Tyson Condie.
Adding data provenance support to apache spark. Vldb Journal, (4):1–
21, 2017.

[95] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali
Gulzar, Seunghyun Yoo, Miryung Kim, Todd Millstein, and Tyson
Condie. Titian: Data provenance support in spark. Proceedings of
the Vldb Endowment, 9(3):216–227, 2015.

[96] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed data-parallel programs from sequential
building blocks. In Proceedings of the 2Nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007, EuroSys ’07, pages
59–72, New York, NY, USA, 2007. ACM.

[97] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell.
Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

[98] E. Jonas, V. Shankar, M. Bobra, and B. Recht. Flare Prediction Using
Photospheric and Coronal Image Data. AGU Fall Meeting Abstracts,
December 2016.

[99] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt
Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes
Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. In-datacenter performance analysis of a tensor processing unit. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 1–12, New York, NY, USA, 2017. ACM.

[100] Hanjoo Kim, Jaehong Park, Jaehee Jang, and Sungroh Yoon.
Deepspark: Spark-based deep learning supporting asynchronous up-
dates and caffe compatibility. arXiv preprint arXiv:1602.08191, 2016.

[101] Mijung Kim, Jun Li, Haris Volos, Manish Marwah, Alexander Ulanov,
Kimberly Keeton, Joseph Tucek, Lucy Cherkasova, Le Xu, and Pradeep
Fernando. Sparkle: Optimizing spark for large memory machines and
analytics. CoRR, abs/1708.05746, 2017.

[102] Ariel Kleiner, Ameet Talwalkar, Sameer Agarwal, Ion Stoica, and
Michael I. Jordan. A general bootstrap performance diagnostic. In
Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13, pages 419–427,
New York, NY, USA, 2013. ACM.

[103] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J
Franklin, and Michael I Jordan. Mlbase: A distributed machine-learning
system. In CIDR, volume 1, pages 2–1, 2013.

[104] Dhanya R. Krishnan, Do Le Quoc, Pramod Bhatotia, Christof Fetzer,
and Rodrigo Rodrigues. Incapprox: A data analytics system for
incremental approximate computing. In Proceedings of the 25th

International Conference on World Wide Web, WWW ’16, pages 1133–
1144, Republic and Canton of Geneva, Switzerland, 2016. International
World Wide Web Conferences Steering Committee.

[105] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April
2010.

[106] Wang Lam, Lu Liu, Sts Prasad, Anand Rajaraman, Zoheb Vacheri, and
AnHai Doan. Muppet: Mapreduce-style processing of fast data. Proc.

VLDB Endow., 5(12):1814–1825, August 2012.

[107] D. Le Quoc, R. Chen, P. Bhatotia, C. Fetze, V. Hilt, and T. Strufe.
Approximate Stream Analytics in Apache Flink and Apache Spark
Streaming. ArXiv e-prints, September 2017.

[108] D. Le Quoc, I. Ekin Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer,
and T. Strufe. Approximate Distributed Joins in Apache Spark. ArXiv

e-prints, May 2018.

[109] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Baldeschwieler Eric, Scott
Shenker, and Ion Stoica. Tachyon: Memory throughput i/o for cluster
computing frameworks. In 7th Workshop on Large-Scale Distributed

Systems and Middleware, LADIS’13, 2013.

[110] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.
Tachyon: Reliable, memory speed storage for cluster computing frame-
works. In Proceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, pages 6:1–6:15, New York, NY, USA, 2014. ACM.

[111] Peilong Li, Yan Luo, Ning Zhang, and Yu Cao. Heterospark: A hetero-
geneous cpu/gpu spark platform for machine learning algorithms. In
Networking, Architecture and Storage (NAS), 2015 IEEE International

Conference on, pages 347–348, Aug 2015.

[112] Haikun Liu, Yujie Chen, Xiaofei Liao, Hai Jin, Bingsheng He, Long
Zheng, and Rentong Guo. Hardware/software cooperative caching
for hybrid dram/nvm memory architectures. In Proceedings of the
International Conference on Supercomputing, ICS ’17, pages 26:1–
26:10, New York, NY, USA, 2017. ACM.

[113] S. Liu, H. Wang, and B. Li. Optimizing shuffle in wide-area data
analytics. In 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), pages 560–571, June 2017.

[114] Xiaoyi Lu, Md. Wasi Ur Rahman, Nusrat Islam, Dipti Shankar, and
Dhabaleswar K. Panda. Accelerating spark with rdma for big data
processing: Early experiences. In Proceedings of the 2014 IEEE 22Nd

Annual Symposium on High-Performance Interconnects, HOTI ’14,
pages 9–16, Washington, DC, USA, 2014. IEEE Computer Society.

[115] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz.
Taurus: A holistic language runtime system for coordinating distributed
managed-language applications. In Proceedings of the Twenty-First

International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 457–471. ACM, 2016.

[116] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. Trash
day: Coordinating garbage collection in distributed systems. In 15th
Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

[117] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:
A system for large-scale graph processing. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.

[118] D. Manzi and D. Tompkins. Exploring gpu acceleration of apache
spark. In 2016 IEEE International Conference on Cloud Engineering

(IC2E), pages 222–223, April 2016.

[119] Massie, MattNothaft, FrankHartl, ChristopherKozanitis, ChristosSchu-
macher, AndreJoseph, Anthony D. Patterson, and David A. Eecs.
Adam: Genomics formats and processing patterns for cloud scale
computing.

[120] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, et al. Mllib: Machine learning in apache spark. arXiv

preprint arXiv:1505.06807, 2015.

[121] Armbrust Michael, S. Xin Reynold, Lian Cheng, Huai Yin, Liu Davies,
K. Bradley Joseph, Meng Xiangrui, Kaftan Tomer, J. Franklin Michael,
Ghodsi Ali, and Zaharia Matei. Spark sql: Relational data processing in
spark. In Proceedings of the 2015 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’15, Melbourne, Victoria,
Australia, 2015. ACM.

[122] Gianmarco De Francisci Morales and Albert Bifet. Samoa: Scalable
advanced massive online analysis. Journal of Machine Learning

Research, 16:149–153, 2015.

[123] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jor-
dan. Sparknet: Training deep networks in spark. arXiv preprint

arXiv:1511.06051, 2015.

[124] Thomas Neumann. Efficiently compiling efficient query plans for
modern hardware. Proceedings of the VLDB Endowment, 4(9):539–
550, 2011.

21

[125] Bogdan Nicolae, Carlos H. A. Costa, Claudia Misale, Kostas Katrinis,
and Yoonho Park. Leveraging adaptive i/o to optimize collective data
shuffling patterns for big data analytics. IEEE Trans. Parallel Distrib.

Syst., 28(6):1663–1674, June 2017.
[126] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski,

Herman Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel
Peek, Paul Saab, David Stafford, Tony Tung, and Venkateshwaran
Venkataramani. Scaling memcache at facebook. In Proceedings

of the 10th USENIX Conference on Networked Systems Design and

Implementation, nsdi’13, pages 385–398, Berkeley, CA, USA, 2013.
USENIX Association.

[127] Frank Austin Nothaft, Matt Massie, Timothy Danford, Carl Yeksigian,
Carl Yeksigian, Carl Yeksigian, Jey Kottalam, Arun Ahuja, Jeff Ham-
merbacher, and Michael Linderman. Rethinking data-intensive science
using scalable analytics systems. In ACM SIGMOD International
Conference on Management of Data, pages 631–646, 2015.

[128] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins. Pig latin: A not-so-foreign language for data
processing. In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’08, pages 1099–1110,
New York, NY, USA, 2008. ACM.

[129] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica.
Sparrow: Distributed, low latency scheduling. In Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 69–84, New York, NY, USA, 2013. ACM.

[130] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula,
Aditya Akella, Paramvir Bahl, and Ion Stoica. Low latency geo-
distributed data analytics. In Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication, pages 421–434.
ACM, 2015.

[131] Josep M. Pujol, Vijay Erramilli, Georgos Siganos, Xiaoyuan Yang,
Nikos Laoutaris, Parminder Chhabra, and Pablo Rodriguez. The little
engine(s) that could: Scaling online social networks. In Proceedings of

the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages 375–
386, New York, NY, USA, 2010. ACM.

[132] Jags Ramnarayan, Barzan Mozafari, Sumedh Wale, Sudhir Menon,
Neeraj Kumar, Hemant Bhanawat, Soubhik Chakraborty, Yogesh Ma-
hajan, Rishitesh Mishra, and Kishor Bachhav. Snappydata: A hybrid
transactional analytical store built on spark. In Proceedings of the

2016 International Conference on Management of Data, SIGMOD ’16,
pages 2153–2156, New York, NY, USA, 2016. ACM.

[133] Mostafa Mohamed Seif, Essam M. Ramzy Hamed, and Abd El Fatah
Abdel Ghfar Hegazy. Stock market real time recommender model
using apache spark framework. In Aboul Ella Hassanien, Mohamed F.
Tolba, Mohamed Elhoseny, and Mohamed Mostafa, editors, The In-

ternational Conference on Advanced Machine Learning Technologies

and Applications (AMLTA2018), pages 671–683, Cham, 2018. Springer
International Publishing.

[134] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht.
Keystoneml: Optimizing pipelines for large-scale advanced analytics.
In 2017 IEEE 33rd International Conference on Data Engineering

(ICDE), pages 535–546, April 2017.
[135] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,

Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam
Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan
Zdonik. C-store: A column-oriented dbms. In Proceedings of the 31st

International Conference on Very Large Data Bases, VLDB ’05, pages
553–564. VLDB Endowment, 2005.

[136] A Talwalkar, T Kraska, R Griffith, J Duchi, J Gonzalez, D Britz, X Pan,
V Smith, E Sparks, A Wibisono, et al. Mlbase: A distributed machine
learning wrapper. In NIPS Big Learning Workshop, 2012.

[137] Shanjiang Tang, Ce Yu, Jizhou Sun, Bu-Sung Lee, Tao Zhang, Zhen
Xu, and Huabei Wu. Easypdp: An efficient parallel dynamic program-
ming runtime system for computational biology. IEEE Trans. Parallel

Distrib. Syst., 23(5):862–872, May 2012.
[138] A. Thusoo, J.S. Sarma, N. Jain, Zheng Shao, P. Chakka, Ning Zhang,

S. Antony, Hao Liu, and R. Murthy. Hive - a petabyte scale data
warehouse using hadoop. In Data Engineering (ICDE), 2010 IEEE
26th International Conference on, pages 996–1005, March 2010.

[139] Rajeshwari U and B. S. Babu. Real-time credit card fraud detection
using streaming analytics. In 2016 2nd International Conference on

Applied and Theoretical Computing and Communication Technology
(iCATccT), pages 439–444, July 2016.

[140] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason
Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen
O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler.

Apache hadoop yarn: Yet another resource negotiator. In Proceedings

of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages
5:1–5:16, New York, NY, USA, 2013. ACM.

[141] Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan,
Michael J. Franklin, and Ion Stoica. The power of choice in data-aware
cluster scheduling. In Proceedings of the 11th USENIX Conference on

Operating Systems Design and Implementation, OSDI’14, pages 301–
316, Berkeley, CA, USA, 2014. USENIX Association.

[142] Shivaram Venkataraman, Zongheng Yang, Eric Liang Davies Liu,
Hossein Falaki, Xiangrui Meng, Reynold Xin, Ali Ghodsi, Michael
Franklin, Ion Stoica, and Matei Zaharia. Sparkr: Scaling r programs
with spark.

[143] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, OSDI ’06, pages 307–320, Berkeley, CA,
USA, 2006. USENIX Association.

[144] Marek S Wiewiórka, Antonio Messina, Alicja Pacholewska, Sergio
Maffioletti, Piotr Gawrysiak, and Michał J Okoniewski. Sparkseq: fast,
scalable and cloud-ready tool for the interactive genomic data analysis
with nucleotide precision. Bioinformatics, 30(18):2652–2653, 2014.

[145] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Shark: Sql and rich analytics at scale. In
Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’13, pages 13–24, New York, NY,
USA, 2013. ACM.

[146] Ying Yan, Yanjie Gao, Yang Chen, Zhongxin Guo, Bole Chen, and
Thomas Moscibroda. Tr-spark: Transient computing for big data
analytics. In Proceedings of the Seventh ACM Symposium on Cloud
Computing, SoCC ’16, pages 484–496, New York, NY, USA, 2016.
ACM.

[147] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th USENIX Con-

ference on Networked Systems Design and Implementation, NSDI’12,
pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[148] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working sets.
In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association.

[149] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, SOSP ’13, pages 423–
438, New York, NY, USA, 2013. ACM.

[150] Hao Zhang, Bogdan Marius Tudor, Gang Chen, and Beng Chin Ooi.
Efficient in-memory data management: An analysis. Proc. VLDB

Endow., 7(10):833–836, June 2014.
[151] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J.

Freedman. Riffle: Optimized shuffle service for large-scale data ana-
lytics. In Proceedings of the Thirteenth EuroSys Conference, EuroSys
’18, pages 43:1–43:15, New York, NY, USA, 2018. ACM.

[152] Yuchen Zhang and Michael I. Jordan. Splash: User-friendly pro-
gramming interface for parallelizing stochastic algorithms. CoRR,
abs/1506.07552, 2015.

[153] Zhao Zhang, Kyle Barbary, Frank A Nothaft, Evan R Sparks, Oliver
Zahn, Michael J Franklin, David A Patterson, and Saul Perlmutter.
Kira: Processing astronomy imagery using big data technology. IEEE

Transactions on Big Data, 2016.
[154] Zhao Zhang, Kyle Barbary, Frank Austin Nothaft, Evan Sparks, Oliver

Zahn, Michael J Franklin, David A Patterson, and Saul Perlmutter.
Scientific computing meets big data technology: An astronomy use
case. In Big Data (Big Data), 2015 IEEE International Conference
on, pages 918–927. IEEE, 2015.

	1 Introduction
	2 Core Techniques of Spark
	2.1 Programming Model
	2.2 Spark Architecture
	2.3 Pros and Cons of Spark
	2.3.1 Strength
	2.3.2 Weakness
	2.3.3 Comparison

	2.4 Spark System Optimization
	2.4.1 Scheduler Optimization
	2.4.2 Memory Optimization
	2.4.3 I/O Optimization
	2.4.4 Provence Support

	3 Storage Supporting Layer
	4 Processor Supporting Layer
	4.1 GPGPU
	4.2 FPGA

	5 Data Management Layer
	5.1 Distributed File Systems
	5.2 Cloud Data Storage Services
	5.3 Distributed Database Systems
	5.4 Comparison

	6 Data Processing Layer
	6.1 Streaming Processing
	6.2 Graph Processing
	6.3 OLTP and OLAP Queries Processing
	6.4 Approximate Processing

	7 High-level Language Layer
	7.1 R and Python High-level Languages Support
	7.2 SQL-like Programming Language and System
	7.3 Comparison

	8 Application/Algorithm Layer
	8.1 Machine Learning Support on Spark
	8.1.1 Machine Learning Library
	8.1.2 Machine Learning System
	8.1.3 Deep Learning

	8.2 Spark Applications
	8.2.1 Genomics
	8.2.2 Medicine & Healthcare
	8.2.3 Finance
	8.2.4 Astronomy

	9 Challenges and Open Issues
	10 Conclusion
	References

