
1

Hihooi: A Database Replication Middleware for
Scaling Transactional Databases Consistently

Michael A. Georgiou, Aristodemos Paphitis, Michael Sirivianos, Herodotos Herodotou

Abstract—With the advent of the Internet and Internet-connected devices, modern business applications can experience rapid
increases as well as variability in transactional workloads. Database replication has been employed to scale performance and improve
availability of relational databases but past approaches have suffered from various issues including limited scalability, performance
versus consistency tradeoffs, and requirements for database or application modifications. This paper presents Hihooi, a
replication-based middleware system that is able to achieve workload scalability, strong consistency guarantees, and elasticity for
existing transactional databases at a low cost. A novel replication algorithm enables Hihooi to propagate database modifications
asynchronously to all replicas at high speeds, while ensuring that all replicas are consistent. At the same time, a fine-grained routing
algorithm is used to load balance incoming transactions to available replicas in a consistent way. Our thorough experimental evaluation
with several well-established benchmarks shows how Hihooi is able to achieve almost linear workload scalability for transactional
databases.

F

1 INTRODUCTION

THE recent explosion of data has led to the development
of innovative systems for large-scale data processing

[1]. In the transactional systems arena, systems such as
Google’s Megastore [2] and Spanner [3] were introduced
for handling massive amounts of data, even across data-
center boundaries. However, the majority of transactional
databases are smaller than 1TB in size [4], indicating that
excessive data scalability is a non-requirement for most
small and medium enterprises (SMEs). Rather, modern ap-
plications tend to experience both rapid growth and vari-
ability of users (and consequently application workload)
due to the advent of the Internet and Internet-connected
devices. Therefore, workload scalability, i.e., the ability to
handle increasing workload demands, as well as support for
elasticity to handle variations in those workloads, are critical
for existing database instances.

NoSQL technologies, such as MongoDB [5] and Cas-
sandra [6], were explicitly designed to address scalability
and elasticity requirements. By doing so, NoSQL systems
sacrifice traditional consistency models and the familiarity
of SQL. Hence, they cannot replace existing transactional
database systems. More recently, a new class of systems has
arisen, called NewSQL, that offers similar scalable perfor-
mance as NoSQL while still maintaining the ACID guaran-
tees of a traditional database system [7]. NewSQL systems,
however, are often highly optimized for a narrow set of
use cases (e.g., MemSQL [8] is tuned for clustered analytics)
and require other compromises related to language support
or transaction and workload handling capabilities (e.g., in
VoltDB [9], the unit of transaction is a Java stored proce-
dure). Finally, the evolution of cloud computing has led to
several Database-as-a-Service (DBaaS) offerings (e.g., Amazon
RDS, Azure SQL DB) that natively support scalability and
elasticity in a pay-as-you-go model. Yet, SMEs are cautious

• Cyprus University of Technology, Limassol, Cyprus, 3036.
E-mails: mica.georgiou@edu.cut.ac.cy, am.paphitis@edu.cut.ac.cy,
michael.sirivianos@cut.ac.cy, herodotos.herodotou@cut.ac.cy

in adopting them due to the high costs associated with
rewriting applications and retraining employees, as well as
privacy and security concerns [10].

A typical approach to scaling an existing database sys-
tem is to scale up; i.e., to add more physical resources
(e.g., memory, disks) to the server or upgrade to a higher-
end server or a shared-disk database clustering solution
(e.g., Oracle RAC [11]). Apart from being very expensive
due to both hardware and software licensing costs, such
solutions necessitate over-provisioning for peak and even-
tual volumes [12]. The alternative is to utilize a scale-out
approach, which can help reduce costs by hosting databases
on multiple commodity hardware servers. Data partitioning
(or sharding) is one of the two main scale-out physical
implementations, based on which the database data is parti-
tioned and spread across all nodes [13]. While this approach
does improve scalability (up to a point due to distributed
transactions), it also requires expensive data migration and
extensive manual physical design tuning for partitioning the
data effectively [14].

The second scale-out approach is database replication,
which has been used for increasing performance and avail-
ability of databases under various requirements [12]. This
approach fully replicates data across all nodes and it comes
in two forms, i.e., multi-master and master-slave. In the for-
mer, all replicas serve both read and write transactions
but need explicit synchronization mechanisms in order to
agree to a serializable execution order of transactions, so
that each replica executes them in the same order [15]–[17].
Concurrent transactions might conflict, leading to aborts
and thus limiting the system’s scalability [18]. In master-slave
replication, one primary copy handles all write operations
while the other replicas process only read operations [19],
[20]. As long as the master node can handle the write
workload, the system can scale linearly with the addition
of more slave nodes [12]. The biggest challenge here lies in
the trade-off between performance and consistency of the
overall system.

ar
X

iv
:2

00
3.

07
43

2v
2

 [
cs

.D
B

]
 2

2
M

ar
 2

02
0

2

This paper presents Hihooi, a replication-based master-slave
middleware system that is able to achieve workload scalability,
strong consistency, and elasticity for transactional databases.
An existing database can readily become the master in a
Hihooi deployment. Replication is then used to increase the
processing capacity of the system (which increases through-
put), to spread the load across the nodes (which decreases
latency), and to mask potential failures of individual nodes
(which improves availability). As a middleware system,
Hihooi sits between the database engines and the client,
offering a single database view and masking the complexity
of the underlying replication. Neither the database engines
nor the clients need to be modified as long as the popu-
lar ODBC/JDBC drivers are used. Load distribution, fault
tolerance, and failure recovery are all handled by Hihooi.

The novelty of Hihooi lies in its replication and trans-
action routing algorithms. In particular, Hihooi replicates
all write statements asynchronously and applies them in
parallel at the replica nodes, while ensuring that all replicas
remain consistent with the primary copy. At the same time,
a fine-grained transaction routing algorithm ensures that all
read transactions are load balanced to the replicas, while
maintaining strong consistency semantics. In particular, Hi-
hooi supports global strong snapshot isolation, explained and
proved in Section 5.3. Finally, elasticity is achieved by sup-
porting an easy and quick way to add and remove replicas
from the cluster (partly due to the master-slave architecture).

Existing replication-based approaches fall short of
achieving all of Hihooi’s aforementioned desiderata. Open-
source solutions for replication are database-specific.
MySQL Cluster [21] uses a synchronous replication mech-
anism which limits scalability. Postgres-R [16] integrates
replica control into the kernel of PostgreSQL and utilizes
special multicast primitives to propagate low-level write
operations to the replicas. Middle-R [20] allows all replicas
to execute write transactions and uses a group commu-
nication system to determine a global commit order but
requires database engine modifications for extracting and
applying tuple-based modifications. Finally, Ganymed [19]
is a master-slave replication middleware similar to Hihooi
but applies all changes serially at the replicas and offers only
a coarse-grained load balancing of transactions.

In summary, the contributions of this paper are:
1) A new database replication middleware architecture for

achieving workload scalability with strong consistency.
2) A statement replication algorithm for applying writes in

parallel while ensuring consistent replicas.
3) Transaction- and statement-level routing algorithms for

executing read transactions consistently and efficiently.
4) An extensive evaluation showcasing the workload scal-

ability that is attainable with Hihooi.
Section 2 provides an overview of Hihooi that guides the
rest of the paper until Section 7, which presents the ex-
perimental evaluation. Section 8 presents related work and
Section 9 concludes the paper.

2 HIHOOI OVERVIEW

Hihooi is a replication-based middleware solution that aims
at offering both workload scalability and strong consis-
tency to enterprise databases. As such, Hihooi employs

master-slave replication, a popular technique used to improve
performance for transactional workloads [12]. Transactions
are categorized into write transactions when at least one of
the containing queries modifies the database (e.g., INSERT,
UPDATE, DELETE SQL statements) and read transactions
otherwise. With master-slave replication, all write transac-
tions are sent to the master node, denoted as Primary DB,
while read transactions are directed to the slave nodes,
denoted as Extension DBs. As long as the Primary DB can
handle all writes and the system propagates the writes to the
Extension DBs efficiently, the system can scale linearly by
adding more Extension DBs. However, achieving the dual
goal of scalability and strong consistency introduces three
core challenges addressed by the design choices of Hihooi.

Challenge 1. Replica Control: How to efficiently and consis-
tently propagate updates from Primary DB to Extension DBs.

To ensure that the read transactions running at some Exten-
sion DB see a consistent view of the database, the replica
must reflect a transaction-consistent snapshot of the data at
the Primary DB; that is, the replica must reflect all data mod-
ifications of transactions (up to some transaction) executed
at the Primary DB in the same order of execution. To retain
global system consistency, Hihooi captures the total order
of transaction completions on the Primary DB and utilizes
statement replication (i.e., the write statements are replicated
to the Extension DBs), while ensuring that each replica
applies writes in the same order. The statement replication
takes place asynchronously in order to avoid delaying the
write transactions executing at the Primary DB.

The conventional practice in database replication and
hot standby deployments is to apply the writes serially
at the slaves, even though the master processes them in
parallel [19], [22]. In a heavily loaded production system,
however, the lag between the master and a slave node
can become significant [12]. Hihooi implements a novel
algorithm for applying write transactions in parallel at the
slaves, while maintaining strong consistency guarantees.
The asynchronous propagation and the parallel execution
of writes to the Extension DBs are described in Section 4.

Challenge 2. Concurrency Control: How to efficiently and
consistently route read transactions to Extension DBs.

As a middleware layer between applications and database
engines, Hihooi intercepts all incoming transactions and is
tasked with routing them either to the Primary DB or to
one of the Extension DBs. Since all write transactions are
always executed at the Primary DB, Hihooi can safely route
there any read queries. This tactic, however, goes against
the primary goal of Hihooi to scale performance, which
is maximized when the read queries are distributed to the
available Extension DBs. The main issue here is that Exten-
sion DBs are not always up-to-date with the Primary DB due
to the asynchronous propagation of write transactions to the
Extension DBs. Hence, Hihooi needs an efficient approach
for determining which Extension DBs are consistent with
which incoming read queries.

The solution employed by Hihooi consists of three parts.
First, for each incoming query Q, Hihooi utilizes a custom
light-weight parser for extracting the tables, columns, or
rows that are potentially modified by Q (if Q is a write

3

Transaction Manager

Transactions Buffer

Primary DB

Archiver

Buffer

Archiver

Hihooi API

HController

Hihooi JDBC

Seed DB

Extension DB

 Extractor

Delivery Agent

Extension DB

 Extractor

Delivery Agent

Hihooi ODBCHConsole

Write

transactions

Read

transactions

Transactions

Asyncronous write propagation

Incremental

Backup

Fig. 1: Hihooi Architecture

query) or accessed by Q (if Q is a read query). Second,
Hihooi keeps track of the completed transactions that have
been applied on each of the Extension DBs along with the
transactions that are currently running on the Primary DB.
Hence, Hihooi recognizes which tables, columns, or rows
are up-to-date on each of the Extension DBs. Finally, Hihooi
employs a novel lightweight algorithm for checking which
read queries are safe (from a consistency point of view) to
execute on which Extension DBs. In the case where multiple
Extension DBs can execute an incoming query, Hihooi will
perform load balancing and send the query to the least-
loaded Extension DB. Hihooi is the first middleware system
able to also do this for read queries that are part of multi-
statement write transactions. If no consistent Extension DB
is found, then the system routes the request to the Primary
DB, which is always consistent. The overall query intercep-
tion and routing approach is detailed in Section 5.

Challenge 3. Backup and Scalability Management: How to
efficiently create a new Extension DB from a consistent backup
and quickly bring it up-to-date.

Performing backups is a standard management operation
for database systems in order to provide recovery from
failures. For a replicated database system, such as Hihooi,
it is even more important because backups can be used to
add new Extension DBs into the system without affecting the
performance of the Primary DB or the existing Extension DBs.
Hihooi periodically creates a backup, called Seed DB, while
being aware of exactly which transactions are contained in
the backup and which ones must be re-executed to properly
synchronize a new Extension DB.

A new Extension DB is created by cloning the Seed DB
into a new node, followed by the execution of all write trans-
actions missed since the creation of the backup. During the
time needed to create and synchronize the new Extension
DB, new write transactions may have been executed at the
Primary DB. Since Hihooi already allows for Extension DBs
to fall behind and uses a smart query routing algorithm
for executing queries correctly, it is not necessary to enact
a global barrier to ensure consistency. Instead, as soon as
the Extension DB is created and an initial set of write
transactions has been executed, it can join the system and
start executing read transactions, while concurrently apply-
ing the new write transactions. The backup and scalability
management procedures are described in Section 6.

3 SYSTEM ARCHITECTURE

Figure 1 depicts the Hihooi architecture, along with the core
components and the flow of transactions through the sys-
tem. As a middleware system, Hihooi is positioned between
the applications and the database engines. The custom
Hihooi JDBC/ODBC Drivers implement the Hihooi API
and provide database-independent connectivity between
the applications and Hihooi. This approach requires the
database driver to be replaced in the application but it does
not require any other application code changes. Internally,
Hihooi uses JDBC drivers for interacting with the underly-
ing database engines in order to execute the queries and to
manage replication behind the scenes. Hence, Hihooi is not
coupled to the database engines, thus supporting multiple
vendors. Currently, Hihooi supports multiple versions of
the same engine running concurrently (which is important
during database updates) and could support heterogeneous
engines in the future. Finally, HConsole is an interactive
console application that can be used for configuring and
managing Hihooi, including adding and removing replicas,
creating checkpoints, and executing queries.

The Transaction Manager is responsible for intercepting
all queries and sorting them into write and read transac-
tions. The write transactions are executed on the Primary
DB, while the read transactions are load balanced to con-
sistent Extension DBs. Apart from managing the client ses-
sions, the Transaction Manager oversees the available Exten-
sion DBs and keeps track of which write transactions they
have applied. Once a write transaction completes (either
via commit or rollback), the transaction’s statements are
pushed into the Transactions Buffer, which is distributedly
stored in memory using Memcached [23]. The Transactions
Buffer acts as a highly available and fault tolerant propaga-
tion medium for all database modifications, which need to
be applied asynchronously to the Extension DBs.

Each Extension DB node hosts two Hihooi services;
the Extractor and the Delivery Agent. The Extractor is
responsible for fetching the new write transactions from the
Transactions Buffer and applying them to the local database.
The Extractors implement a novel algorithm (discussed in
Section 4) for executing the transactions in parallel, while
respecting the order imposed by the transaction commit
timestamps on the Primary DB. The Delivery Agent is
responsible for executing the read-only queries routed to
the local Extension DB and delivering the results set incre-
mentally to the client when requested, to avoid creating an
execution bottleneck at the Transaction Manager.

The Archiver has a dual role in Hihooi. First, it is respon-
sible for initiating the incremental backups for creating the
Seed DB based on the Primary DB, while keeping track with
which transactions are included in the backup. Hence, the
Seed DB represents a consistent checkpoint of the Primary
DB at some point in time. Second, the Archiver periodically
moves the write transactions that have been applied by all
Extension DBs from the Transactions Buffer to its local and
persistent Archiver Buffer in order to keep the memory
usage of the Transactions Buffer bounded. A new Extension
DB is initialized using the Seed DB, followed by the applica-
tion of the appropriate write transactions from the Archiver
Buffer. Next, the Extension DB notifies the Transaction Man-

4

TABLE 1: Example write transactions on tables R(A1, A2, A3, A4) and S(B1, B2, B3, B4, B5) along with corresponding
write sets, read sets, affecting classes, and transaction state identifiers (TSIDs)

TX SQL Statement Write Sets Read Sets Affecting TSIDTable Column Row Table Column Row Class
W1 UPDATE R SET A2 = ?, A3 = ? WHERE A1 = 100 R A2, A3 A1 = 100 R A1 A1 = 100 RAS 11
W2 UPDATE S SET B2 = ? WHERE B5 > ? S B2 S B5 CAS 12
W3 UPDATE R SET A3 = ?, A4 = ? WHERE A2 < ? R A3, A4 R A2 CAS 13
W4 DELETE FROM R WHERE A1 = 120 R ∗ A1 = 120 R A1 A1 = 120 RAS 14
W5 UPDATE S SET B4 = ? WHERE B5 < ? S B4 S B5 CAS 15

ager that it can start serving read queries, while it starts
applying the latest changes from the Transactions Buffer.
Finally, HController coordinates all system management
operations, such as adding and removing Extension DBs.

4 DATABASE REPLICATION

Hihooi intercepts and redirects all incoming write transac-
tions (i.e., transactions that modify the database) to the Pri-
mary DB for execution. As soon as a transaction completes
on the Primary DB, it must be propagated and executed
on all Extension DBs, while preserving the completion or-
der from the Primary DB. Before explaining our statement
propagation and replication procedure in Section 4.2, we
first introduce the notion of transaction read/write sets in
Section 4.1. Finally, we discuss the benefits and practical
considerations of our approach in Section 4.3.

4.1 Transaction Read/Write Sets
Transactions are naturally divided into single and multi-
statement, depending on the number of SQL statements
included in the transaction. In most database engines, each
SQL statement is considered to be a single transaction by de-
fault, and gets committed automatically when it completes
execution. Multi-statement transactions are either started
with their first statement when automatic commit is dis-
abled (and must be committed manually), or enclosed be-
tween specific keywords (e.g., begin atomic ... end).
Hihooi follows the same conventions. For ease of presen-
tation, we discuss single transactions first, while multi-
statement ones are presented if special handling is needed.

Each transaction T will read and/or modify some tables
in a database instance, defined as the Table Read Set and the
Table Write Set of T , respectively. For example, transactions
W1, W2, and W3 shown in Table 1 modify the respective
tables R, S, and R; these tables form the corresponding
table write sets. Read/write sets allow us to reason about
which transactions affect which tables. Thus, they allow us
to effectively decide when to parallelize the execution of
transactions on the Extension DBs (discussed in Section 4.2)
and how to route read transactions efficiently (see Section
5). Suppose W1–W3 are executed on the Primary DB and
committed in that order. In general, we wish to execute W1–
W3 on the Extension DBs in the same order to ensure the
consistency of the replicas. In this scenario, since W1 and
W2 modify two different tables, we can execute them in
parallel and let them commit in reverse order. W3, on the
other hand, must execute after the completion of W1 (as it
modifies the same table R) in order to preserve consistency.

Operating with table read/write sets constitutes a
coarse-grained mechanism for reasoning about conflicting

TABLE 2: Definitions of read/write sets for relational alge-
bra operations. The read sets of write operations equal the
corresponding read sets of expression E

Operation Notation Read Sets
Table Column Row

Select σp(R) R Ai ∈ p (PK =?) ∈ p
Project ΠAi(R) R Ai

Union R ∪ S R, S R.∗, S.∗
Set Difference R− S R, S R.∗, S.∗
Cartesian Pr. R× S R, S R.∗, S.∗
Aggregation GjGFi(Ai)(R) R Gj , Ai

Operation Notation Write Sets
Table Column Row

Insert (tuple) R← R ∪ t R R.∗ (PK =?) ∈ t
Insert R← R ∪ E R R.∗
Delete R← R− E R R.∗ read set of E
Update R← ΠA′

i
(E) R A′

i if read set of E
A′

i 6= R.Ai

Symbols: R, S = tables; p = predicate; Ai = attribute; Fi = function;
Gj = group by attribute; t = tuple; E = relational algebra expression

transactions. Hence, we define two more levels of gran-
ularity for read/write sets. The Column Read/Write Sets
of a transaction T denote the columns read/written by
T . Consider transaction W2 from Table 1. W2 reads the
column S.B5 (its column read set) and only updates S.B2
(its column write set). Similarly, the column write set of W5

is {S.B4}, which is disjoint from the column write set of W2.
Hence, even though W2 and W5 modify the same table, they
modify different columns and could be executed in parallel
without affecting consistency.

Finally, the Row Read/Write Sets of a transaction T
denote the rows read/written by T based on a primary key
(PK) or a unique key. For instance, transaction W1 (see Table
1) updates the row in table R for which A1 = 100 (A1 is the
primary key of R), whereas W4 deletes the row for which
A1 = 120. Since W1 and W4 operate on different rows of the
same table, they can also run concurrently without affecting
consistency. We restrict the row sets to include only primary
or unique key equality predicates as those are simple to
identify (using a basic query parser) and efficient to compare
against each other. The alternative would require reason-
ing with complex query-level semantics, whose overhead
would potentially outweigh any of the performance benefits
of concurrent execution.

Table 2 formalizes the creation of read/write sets based
on fundamental relational algebra operations. All read op-
erations (i.e., select, project, union, set difference, Cartesian
product, aggregation) result in table and column read sets
that contain the accessed tables and columns, respectively. A
select operation with a conjunctive equality predicate on the
primary or unique key has a non-empty row read set. Insert,

5

TABLE 3: Example read transactions on tables R(A1, A2, A3, A4) and S(B1, B2, B3, B4, B5) along with the corresponding
read sets, affecting classes, and consistent transaction state identifiers (TSIDs)

TX SQL Statement Read Sets Affecting Consistent
Table Column Row Class TSID

R1 SELECT * FROM R WHERE A2 > ? R ∗ TAS 14
R2 SELECT A3, A4 FROM R WHERE A1 = 100 R A1, A3, A4 A1 = 100 RAS 13
R3 SELECT B2, B3 FROM S WHERE B5 < ? S B2, B3, B5 CAS 12
R4 SELECT A1, B2, B3 FROM R JOIN S ON A1 = B2 R,S A1, B2, B3 CAS 14

delete, and update operations have both read and write sets.
The column write sets include all table columns for insert
and delete operations, but only the modified columns for
update operations. The row write sets refer to the rows
that are modified based on a primary or unique key (if
applicable). Finally, the read sets for write operations are
based on the items accessed by their involved expressions.
Tables 1 and 3 list several write and read SQL statements
along with their corresponding write and read sets.

Based on the scope by which an SQL statement affects a
table R, we categorize it in one of three affecting classes:
• Row Affecting Statement (RAS) when it modifies or

accesses particular rows in R;
• Column Affecting Statement (CAS) when it modifies or

accesses some columns of R;
• Table Affecting Statement (TAS) when it modifies or

accesses all columns of R.
These class definitions will be utilized by our algorithms
presented later in Sections 4.2 and 5. Tables 1 and 3 also
include the affecting classes for each example transaction.

All aforementioned definitions are easily extended to a
multi-statement transaction Tm. The table read set of Tm is
simply the union of all table read sets of the individual SQL
statements in Tm. The same applies for the table/colum-
n/row read/write sets of Tm. As for the affecting class of
Tm, the following rules apply: (i) if all statements in Tm

are “RAS” for table R then Tm is a “RAS” for R; (i) if all
statements in Tm are “CAS” for R then Tm is a “CAS” for R;
(iii) otherwise, Tm is a “TAS” for R. Finally, DDL statements
are handled as “TAS” write statements.

4.2 Statement Replication Procedure
For each transaction T intercepted by Hihooi, a Transaction
State (or TState) is built and maintained at the Transaction
Manager. A TState contains the following:
1) a TState identifier (TSID) that uniquely identifies T ;
2) the SQL write statements of T in the order of execution;
3) the read/write sets of each statement and the overall T ;
4) the total execution time of T on the Primary DB; and
5) the completion operation: commit or rollback (the

replication of failed transactions is explained in Table 4).
TSID Generation: TSID is a unique sequential number
given to the TState of T once T commits or rollbacks on
the Primary DB. The purpose of the TSIDs is to capture
the order of transaction completions on the Primary DB,
which is determined by the transaction commit timestamps
as recorded by the underlying database system. In order to
ensure the correct ordering, the Transaction Manager (TM)
performs the following steps after T completes: (1) the TM
obtains the commit timestamp of T and the commit times-
tamps of any other concurrent transactions that have issued

a commit request but have not received a response yet;
(2) the TM issues TSIDs for these transactions in the same
order as the commit timestamps. Typically, T ’s timestamp
is the lowest and it simply receives the next TSID number.
Occasionally though, commit responses are received out of
order (up to 2% of the times in our most write-intensive
experiments) due to multi-thread scheduling in the TM or
network delays. Hence, the procedure above is necessary to
ensure that TSIDs are given in the same order induced by
the commit timestamps. The TState must be given a TSID
before it can be fetched and replayed by the Extension DBs.

Each Extension DB node hosts an Extractor service,
which is responsible for receiving the completed TStates
from the Transactions Buffer and executing them on the
local Extension DB. The goal of the Extractor is to ensure
that the local database replica is consistent with the Primary
DB. Executing the transactions from the TStates in the serial
order imposed by the TSIDs is a sufficient condition to
achieve consistency. However, it is very inefficient and can
cause the Extension DBs to fall significantly behind the
Primary DB, especially in times of heavy write load (given
the parallel execution at the Primary DB). Hence, it is crucial
for the Extractors to execute in parallel as many transactions
as possible while maintaining correct consistency semantics.

As it was alluded in Section 4.1, the read/write (R/W)
sets of the transactions are the backbone for our parallel
execution algorithm. Specifically, the R/W sets of two write
transactions can be used to determine whether the transac-
tions affect the same data items in the database, as shown
in Algorithm 1. If they don’t affect the same items, we say
they are independent. When the table R/W sets of two
write transactions are disjoint, they are independent as they
modify different tables (lines#2-4). Otherwise, we need to
check which columns and/or rows are modified by the two
transactions, but only for the commonly modified tables
(line#6). If the two transactions both belong to class “CAS”
for a table t (i.e., they affect some columns of t) but do not
modify the same columns, then they are independent for t
(lines#8-11). Similarly, if the two transactions both belong to
class “RAS” for a table t (i.e., they affect some rows of t) but
don’t modify the same rows, then they are independent for t
(lines#12-15). If either of the above two conditions holds for
all common tables, then the transactions are independent
and it is safe to execute them concurrently.

One important property of our R/W set definitions is
their cumulative nature. That is, if we take the union of the
R/W sets of multiple statements, we get R/W sets of a
multi-statement transaction with the same correct seman-
tics, as explained in Section 4.1. With the same reasoning,
we can combine the read/write sets of two or more multi-
statement transactions that are running in parallel to build
a transaction state that represents all running statements

6

Algorithm 1 Check independence between 2 write transactions

1: function AREINDEPENDENT(ts1, ts2)
2: if ts1.table w set ∩ ts2.table rw set = ∅ &
3: ts1.table rw set ∩ ts2.table w set = ∅ then
4: return true
5: end if
6: for each t in ts1.table rw set ∩ ts2.table rw set do
7: bool independent← false
8: if ts1.class[t] = CAS & ts2.class[t] = CAS &
9: ts1.col w set[t] ∩ ts2.col rw set[t] = ∅ &

10: ts1.col rw set[t] ∩ ts2.col w set[t] = ∅ then
11: independent← true
12: else if ts1.class[t] = RAS & ts2.class[t] = RAS &
13: ts1.row w set[t] ∩ ts2.row rw set[t] = ∅ &
14: ts1.row rw set[t] ∩ ts2.row w set[t] = ∅ then
15: independent← true
16: end if
17: if independent == false then return false end if
18: end for
19: return true
20: end function
Notation: ∗ w set = (table | column | row) write set; ∗ rw set = union
of (table | column | row) read and write sets

as if they were one bigger multi-statement transaction. For
example, suppose transactions W1 and W2 from Table 1 are
executed together by an Extractor. Then, we can define a
running transaction state that includes the merged states of
W1 and W2. The table write set of this new state would
include tables R and S, meaning both tables are currently
being modified. This combined state allows us to avoid
checking whether a new transaction is independent with
each currently running transaction. Instead, we only need
to check whether the new transaction is independent with
the combined running transaction state.

Algorithm 2 shows the two functions that constitute
the parallel execution algorithm employed by the Extractor.
The new transaction states are received by the Extractor in
the order imposed by the Primary DB execution. For each
new transaction state tsNew, the Extractor checks if it is
independent from both the running and waiting states, i.e.,
the combined states of the already running and waiting
transactions, respectively (lines#5-6). If it is, tsNew can be
executed in parallel with the already running transactions,
after its state is merged with the state of the running
transactions (lines#7-8). Otherwise, tsNew must wait in the
queue and its state must update the waiting state (lines#10-
11). It is important to check tsNew against the waiting
transactions because a conflict indicates that an already
waiting transaction will modify a data item that tsNew will
affect, and these changes must occur in order.

Suppose the five write transaction from Table 1 must
be executed at an Extension DB in that order. Transactions
W1 and W2 will execute in parallel as they modify different
tables, while W3 is placed in the wait queue since it conflicts
with W1. Even though W4 is independent from the two
running transactions (W1 and W2), it is not independent
from the waiting W3 and, hence, will also be placed in the
wait queue. W5 can also run in parallel as it modifies a
different table than W1 and a different column than W2.

When a running transaction completes execution, its
state is removed from the running state (line#15). Next, the
wait queue is iterated, checking if the next waiting transac-

Algorithm 2 Parallel transaction execution at Extension DBs

1: runningState . combined state of running transactions
2: waitingState . combined state of waiting transactions
3: waitQueue . FIFO queue with waiting transaction states
4: function ONNEWTRANSACTION(tsNew)
5: if areIndependent(runningState, tsNew) &
6: areIndependent(waitingState, tsNew) then
7: runningState.merge(tsNew)
8: execute(tsNew)
9: else

10: waitingState.merge(tsNew)
11: waitQueue.enqueue(tsNew)
12: end if
13: end function
14: function ONTRANSACTIONCOMPLETE(tsOld)
15: runningState.remove(tsOld)
16: while waitQueue.isNotEmpty() &
17: areIndependent(runningState, waitQueue.peek()) do
18: tsRun← waitQueue.dequeue()
19: waitingState.remove(tsRun)
20: runningState.merge(tsRun)
21: execute(tsRun)
22: end while
23: end function

tion is independent from the running transactions (lines#16-
17). If it is, its state is moved from the waiting to the running
state and then submitted for execution (lines#18-21). In our
running example, when W1 completes execution, W3 can
then execute, followed by W4.

Even though we refer to the read/write sets as “sets”,
they are internally implemented using hash tables, where
the key is the data item (i.e., table, column, or row) and
the value is a counter to track how many query statements
access that data item. In addition, the column and row
read/write sets are maintained separately per database table
(also using hash tables), to facilitate their direct use in
Algorithms 1 and 3 (presented in Section 5.1). The merging
of two transaction states is a straightforward process. For
each corresponding read/write set, the underlying hash
tables are merged as follows: if the two hash tables contain
the same key, the associated counters are added together;
otherwise the entries are simply put in the resulting table.
The deletion of a transaction state from a previously merged
state involves decreasing the counters kept for each read-
/write set. If a counter reaches zero, then the corresponding
entry is deleted from the hash table. Hence, all operations on
read/write sets are very efficient to implement in practice.

Finally, the Extractor is responsible for notifying the
Transaction Manager with the latest applied TSID in sequen-
tial order without gaps. Suppose the transactions complete
in the order W1, W3, W2. When W1 completes, its TSID is
reported but when W3 completes nothing is reported. Once
W2 completes, the TSIDs of W2 and W3 are reported. Hence,
the Transaction Manager is aware of up to which transaction
has been replayed on each Extension DB in sequential order.
This information is stored in a simple hash table that maps
the Extension DBs to their latest applied TSID.

4.3 Benefits and Practical Considerations of Statement
Replication
Hihooi employs statement replication to ensure consistency
in the replicas; i.e., it replicates and executes all write

7

TABLE 4: Practical issues and resolutions for statement replication

Practical Issue Resolution
Database sequences, used to gen-
erate unique or auto-incremented
keys, are non-transactional objects

Failed transactions are also executed on the Extension DBs to increment any sequences
consistently. Read transactions that perform sequence operations are treated as write
transactions (i.e., executed on the Primary DB and replicated to the Extension DBs).

Time-related macros such as now
or current_timestamp

Query rewriting techniques are used to replace a macro with an actual value that will be
common to all replicas.

User-defined functions in write
transactions

Non-deterministic functions are executed once and their return values are used in the
calling statements. Deterministic functions are left as is.

Stored procedures and database
triggers

The R/W sets are extracted from deterministic procedures and triggers upon their defini-
tion. For deterministic procedures with non-SQL definitions, the DB admin must provide
their table R/W sets during system configuration. Non-deterministic procedures/triggers
are currently not supported.

statements on the Extension DBs. The alternative approach
would be to use row-based replication, which entails capturing
the modified table rows on the Primary DB and replicating
them to the Extension DBs [16], [17], [20]. One method for
achieving row-based replication is to integrate the middle-
ware with the underlying database engine for extracting and
adding table rows. This limits the ability of the middleware
to use different database engines (or even different versions
of the same engine) [24]. Another method is to (i) declare
triggers on every table for extracting the modifications and
(ii) use a complex mechanism for applying the changes to
the replicas. A serious drawback here is the performance
overhead introduced on the primary database from the
multiple trigger executions.

Hihooi avoids the aforementioned limitations of row-
based replication by using statement replication. Hence,
it is capable of supporting multiple, unmodified database
engines as well as preventing any unnecessary overheads at
the Primary DB. In addition, update and delete statements
that affect multiple rows are very efficient to replicate as
only the SQL statements are propagated to the replicas [24].
Finally, capturing statements is the basis for extracting the
R/W sets, which are used to improve the performance of
both the replication and the query routing procedures.

The main practical issues concerning statement replica-
tion arise due to non-deterministic queries, i.e., queries that
may not produce the same result even when executed on
the same database state. Statement replication requires that
the execution of a write statement has the same effect on
the Primary DB as on the Extension DBs. However, an SQL
statement could legitimately produce different results on
different replicas if, for example, it referenced sequences, or
used the current timestamp, or invoked a non-deterministic
function (e.g., RAND). Hihooi resolves such issues by (i)
performing on-the-fly query rewriting before submitting the
queries for execution; and (ii) replicating all, even failed,
transactions. Table 4 lists the main practical issues along
with Hihooi’s resolutions in the present implementation.
Currently, Hihooi does not support the small set of non-
deterministic procedures and triggers.

5 CONCURRENCY CONTROL

As explained in Section 4, all write transactions are executed
on the Primary DB, are given a sequential TSID upon
completion, and are replicated to the Extension DBs. An
Extension DB is considered consistent if it has replicated
all transactions up to the latest transaction (which has the

largest TSID) that was executed on the Primary DB. Read
transactions can safely be routed either to the Primary DB
or to any consistent Extension DB for execution. However,
the asynchronous replication of write transactions to the
Extension DBs can result in a lag between the Primary DB
and the Extension DBs. In such a scenario, read transactions
must either wait for at least one Extension DB to become
consistent or be redirected to the Primary DB. The first
option introduces latency delays for the read transactions,
while the second further increases the load on the Primary
DB. In either case, performance and scalability can suffer.

Hihooi implements a novel transaction-level routing and
load balancing algorithm that utilizes read/write sets for
directing transactions to Extension DBs, even if they are not
consistent with the Primary DB. The key idea is that it is
safe to route a read transaction T to an Extension DB if the
tables (or columns/rows) accessed by T will not be modified
by the write transactions that have yet to execute on the
Extension DB (see Section 5.1). Further, Hihooi can perform
an even finer-grained load balancing by directing individual
read statements from within multi-statement write transac-
tions to Extension DBs. To the best of our knowledge, Hihooi
is the first replication-based middleware system to offer statement-
based routing, while respecting transaction boundaries and
maintaining consistency (see Section 5.2).

5.1 Transaction-level Load Balancing

The goal of transaction-level load balancing is to direct read
transactions to Extension DBs that are consistent with the
Primary DB but only with regards to the data each read
transaction will access. In order to achieve this efficiently,
Hihooi needs quick access to the tables, columns, or rows
accessed by the read transactions as well as to which tables,
columns, or rows are up-to-date on each Extension DB. The
former is achieved using the transaction read sets, while the
latter using the TSIDs of the completed write transactions
and a set of hash indexes maintained by the Transaction
Manager. In particular, three hash indexes are used for
separately mapping tables, columns, and rows to the latest
write transaction that modified them. Hence, the indexes
can be used to find the transaction after which the replica is
consistent with regards to specific tables, columns, or rows.

Once a write transaction Tw completes, its write sets are
used to update the three indexes, as shown in Algorithm 3.
All tables referenced in the table write set of Tw are added
into the Tables Hash Index (TIndex) and mapped to the
transaction state identifier (TSID) of Tw (line#2). This action

8

Algorithm 3 Update the Transaction Manager hash indexes
after executing a write transaction

1: function UPDATEINDEXES(ts)
2: TIndex.multiPut(ts.table write set, ts.TSID)
3: for each t in ts.table write set do
4: if ts.class[t] = TAS || ts.class[t] = CAS then
5: CIndex.multiPut(ts.col write set[t], ts.TSID)
6: else if ts.class[t] = RAS then
7: RIndex.multiPut(ts.row write set[t], ts.TSID)
8: end if
9: end for

10: end function

TABLE 5: The content of the Tables, Columns, and Rows
Hash Indexes after executing the Table 1 transactions

TIndex CIndex RIndex
R→ 14 A3→ 13 (A1 = 100)→ 11

A4→ 13 (A1 = 120)→ 14
S → 15 B2→ 12

B4→ 15

indicates that the latest transaction to update those tables is
Tw. Next, the modification of the other two indexes depends
on the affecting class of Tw for each table. In particular,
if Tw’s class is “TAS” or “CAS”, then all columns in Tw’s
column write set are added into the Columns Hash Index
(CIndex) and mapped to Tw’s TSID (lines#4-5). Otherwise,
all rows in Tw’s row write set are added into the Rows Hash
Index (RIndex) and mapped to Tw’s TSID (lines#6-7). Row
entries in RIndex that have been applied to all replicas are
periodically pruned to keep the index size bounded.

Consider the five write transactions of our running
example shown in Table 1. After their execution on the
Primary DB, the content of the three hash indexes is shown
in Table 5. Each entry (of any index) shows the last TSID that
modified that particular item. For example, table S was last
modified by transaction W5 with TSID=15, while column
S.B2 was last modified by W2 with TSID=12.

The last step in the transaction-level load balancing is to
determine which Extension DBs are consistent for running
an incoming read transaction Tr . Algorithm 4 shows how
the indexes can be used for finding the TSID of the last
transaction that modified any of the data items accessed by
Tr . For each table t to be accessed by Tr , we utilize the
affecting classes and read sets for guiding our algorithm,
assuming t has been modified before (lines#3-4). If Tr is a
“TAS” for table t (i.e., it will access all columns of t), then
a single lookup on the TIndex is enough to find the latest
TSID (lines#5-6). If Tr is a “CAS” for t (i.e., it will access
some specific columns of t), then we need to (i) lookup
the CIndex to find the latest TSID among all columns in
Tr’s column read set and (ii) search the RIndex to find
the largest TSID from all rows affecting t (lines#7-9). We
search for the rows as well since any row modification can
potentially modify any column. Finally, if Tr is a “RAS” for
t (i.e., it will access some specific rows of t), then we also
lookup both RIndex and CIndex (lines#10-12). Overall,
we return the largest TSID found from all lookups across
all tables to ensure consistency. Any Extension DB that has
replicated at least that TSID can be used for executing Tr .

Table 3 lists some example read transactions along with
their consistent TSID based on the indexes’ content in Table

Algorithm 4 Find the latest consistent TSID for a read transac-
tion on the Transaction Manager

1: function FINDLATESTCONSISTENTTSID(ts)
2: tsid = 0
3: for each t in ts.table read set do
4: if not TIndex.contains(t) then skip iteration
5: if ts.class[t] = TAS then
6: tsid = max{tsid, TIndex.lookup(t)}
7: else if ts.class[t] = CAS then
8: tsid = max{tsid, CIndex.lookup(ts.col read set[t])}
9: tsid = max{tsid, RIndex.maxValue(t)}

10: else if ts.class[t] = RAS then
11: tsid = max{tsid,RIndex.lookup(ts.row read set[t])}
12: tsid = max{tsid, CIndex.lookup(ts.col read set[t])}
13: end if
14: end for
15: return tsid
16: end function

5. Consider transaction R3 that accesses columns B2, B3,
and B5 of table S. Based on Table 5, only the relevant col-
umn S.B2 has been modified by transaction with TSID=12.
Hence, R3 can execute on any Extension DB that has applied
transactions with TSID=12 or higher.

5.2 Statement-level Load Balancing

Master-slave replication dictates that all transactions that
modify the database, including multi-statement ones, must
be executed on the master first. However, multi-statement
write transactions may contain several read SQL statements,
all of which are now executed on the Primary DB. Some of
these reads could potentially be executed on Extension DBs
without violating atomicity or consistency constraints and,
hence, increase the scalability of the entire system.

The premise is that a read statement within a multi-
statement write transaction Tm that is independent of its
preceding write statements in Tm can be safely executed on
a consistent Extension DB. This premise does not hold for
serializable execution, but does hold for Snapshot Isolation,
which is the default consistency level of Hihooi (see Section
5.3), because the read still sees a consistent snapshot of the
database. Algorithms 1 and 4 can be used to efficiently
check independence and find a consistent Extension DB,
respectively. In particular, when the write statements of Tm

are executed on the Primary DB, a running state is kept
by the Transaction Manager (similar to the running state
kept by the Extractors described in Section 4.2). When a read
statement arrives in Tm, Hihooi checks if it is independent
from the running state (recall Algorithm 1). If so, Algorithm
4 is used as in Section 5.1 to find the latest consistent TSID,
and thus, the available Extension DBs for execution. When
the read is not independent from the previous writes, or no
consistent replica is found, it is executed on the Primary DB.

5.3 Consistency Levels

Most database engines (e.g., PostgreSQL, Oracle, DB2) use
snapshot isolation (SI) for enforcing consistency [12]. With
SI, each transaction operates on its own copy of data (a
snapshot), allowing read transactions to complete without
blocking. Similarly, database replication research has been
focusing on SI and its variants, such as Generalized SI,

9

Strong SI, and Weak SI [25]. Hihooi works over a set of SI-
based database replicas and offers the illusion of a single SI
database to the client. Hence, it provides a form of Global
Strong Snapshot Isolation (GSSI) [25].

We follow concepts introduced in [25]–[28] in order to
formalize the notion of GSSI in replicated systems and
develop a direct proof of its support by Hihooi. According
to SI, as introduced in [26], the system assigns a transaction
T a start timestamp s(T) at the beginning of its execution,
before performing any read or write operations. T will
always read data from a snapshot of the (committed) data as
of s(T). In particular, writes performed by any transaction
T ′ that commits before s(T) will be visible to T . On the
other hand, writes performed by any transaction T ′ that
commits after s(T) will not be visible to T . SI also requires
that each transaction T be able to see its own writes, even
though the writes occurred after s(T). After finishing its
operations, T is assigned a commit timestamp, c(T), such
that c(T) is more recent than any start or commit timestamp
assigned to any transaction. T commits only if all other
transactions T ′ that committed during the lifespan of T
(i.e., s(T) < c(T ′) < c(T)) did not modify any data that T
has also written. Otherwise, T is aborted so as to prevent
lost updates. Note that two transactions T1 and T2 are
called concurrent if their lifespan intervals [s(T1), c(T1)] and
[s(T2), c(T2)] overlap.

According to the original definition of SI, the system can
choose s(T) to be any time less than or equal to the actual
start time of T . Hence, T can see any snapshot earlier than
its start timestamp and not necessarily the latest one. This
relaxed version of SI is called Weak SI in [27]. With Strong SI,
a transaction T2 that starts after a committed transaction
T1 is guaranteed to see a committed database state that
includes the effects of T1. In other words, T2 will see the
latest snapshot of the database state. Most current database
systems (including PostgreSQL) and research prototypes
[19], [20], [29] offer Strong SI. Finally, the qualifier ‘global’
indicates that the definition of Strong SI applies to the
distributed system as a whole and not to the individual
database replicas.

Summarizing, a transaction history in a replicated
database system satisfies Global Strong SI if its committed
transactions satisfy the following two conditions:

1) Read operations in any transaction T see the database
in the state after the last commit before s(T). Read
operations in T also see the data values that were last
written by T itself;

2) Concurrent transactions do not modify the same data
objects in the database.

Theorem 1. If each underlying database system in the replicas
guarantees Strong SI, the Hihooi guarantees Global Strong SI.

Proof. Given a set of transactions to be executed with Hi-
hooi, we need to show that their transaction history will
satisfy the two conditions of Global Strong SI noted above.
Condition 1: Suppose T is a read transaction arriving for
execution in Hihooi. Algorithm 4 will find the TSID of the
last write transaction that modified any of the data to be
accessed by T (recall Section 5.1). Then, T will be routed
to any Extension DB that replicated at least that TSID,
guaranteeing that T will see the latest relevant state. When

no such Extension DB is found, T is routed to the Primary
DB, which is always up to date and offers Strong SI by itself.
If T is a write transaction, then it will be executed on the
Primary DB. Since all write transactions always execute on
the Primary DB and the Primary DB guarantees Strong SI
locally, any read operations in T will see the latest database
state. With statement-level load balancing (recall Section
5.2), read statements in T that are independent of their
preceding write statements in T , can be routed to Extension
DBs. Since the routing algorithm is the same as the one used
for read-only transactions, these read statements will see the
latest relevant state as explained above. Read statements in
T that access data written by previous write statements in
T are sent to the Primary DB and, hence, will see the data
values that were last written by T .
Condition 2: Since all write transactions are always exe-
cuted on the Primary DB, which offers Strong SI, no con-
current transactions can modify the same data and commit
successfully on the Primary DB. On the Extension DBs,
transactions that modify the same data are never run con-
currently per Algorithm 2 (recall Section 4.2). Only indepen-
dent write transactions are ever executed in parallel on the
Extension DBs, guaranteeing that concurrent transactions
do not modify the same data in the database.

By controlling the replication and routing mechanisms,
Hihooi can offer three additional consistency levels at the
granularity of a database session:
1) Weak SI: Write transactions are asynchronously executed

on the Extension DBs and read transactions are sent to
any Extension DB regardless of their consistency.

2) Replicated SI with Primary Copy (RSI-PC): Write trans-
actions are asynchronously executed on the Extension
DBs and read transactions are sent to any Extension DB
that is fully consistent with the Primary DB (but waits
if none is available). RSI-PC, another form of GSSI, is
implemented by the middleware Ganymed [19].

3) One-copy Serializability (1SR): Write transactions are
synchronously executed on all Extension DBs and read
transactions are sent to any Extension DB. 1SR is the
default consistency level of middleware C-JDBC [15].

6 SCALABILITY MANAGEMENT

Performing backups and adding/removing Extension DBs
are important management operations for ensuring Hihooi’s
fault recovery and proper scalability. This section explains
these operations and discusses some enabling (future) work
on automated backup and elasticity management.

6.1 Backup and Fault Recovery
Hihooi needs to create backups to enable both recovery from
failures and the efficient addition of new Extension DBs. To
avoid building its own complex backup and recovery pro-
cedures on top of the various database engines it manages,
Hihooi uses the existing backup utilities offered by those
engines. Even though the specific implementations differ,
the overall process is the same: use the utilities to set a
checkpoint in the database, associate with it the TSID of
the last committed transaction, and create the backup (Seed
DB) in an incremental way. In PostgreSQL, for example, this

10

process is equivalent to creating a restore point and backing
up the data up to that point. In Oracle, on the other hand, it
is equivalent to performing an online backup and replaying
the redo log up to the checkpoint. At the end, we get a read-
consistent backup of the database at some point in time,
while knowing which transactions it contains.

During and after the Seed DB creation, write transactions
are modifying the Primary DB and are recorded into the
Transactions Buffer. As discussed in Section 3, the Archiver
periodically moves the transaction states that have been
applied to all Extension DBs into the Archiver Buffer (in the
form of text files) to keep the memory of the Transactions
Buffer bounded. In addition, after a Seed DB creation, the
Archiver permanently removes from the Archiver Buffer all
transactions that are already included in the Seed DB. In
case of a Primary DB failure, all write transactions from
both buffers can be replayed on the Seed DB node and the
write workload can be transferred there (i.e., the Seed DB
can also act as a hot standby node). If the Archiver fails or
the Archiver Buffer is lost, recreating the Seed DB resolves
the issue and resets the Archiver Buffer since the Seed DB
becomes up to date with the Primary DB.

The Transaction Manager (TM) builds the Transaction
States (TStates) and pushes them on the Transactions Buffer
as soon as transactions complete execution on the Primary
DB (recall Section 4.2). However, TStates are deleted from
the TM only after they are applied on all Extension DBs.
This greatly simplifies the recovery process of a potential
Transactions Buffer failure as it guarantees that no TStates
are lost. If the Transactions Buffer fails, the Extension DBs
will stop receiving any updates but will still be able to serve
any read transactions that are consistent with their current
database state. Upon recovery of the Transactions Buffer,
all collected TStates will be pushed from the TM to the
Transactions Buffers and from there they will be applied
on the Extension DBs in parallel.

A failure of the TM would sever all connections to the
Primary DB, which would typically cause the abortion of
active transactions [25]. In the event of such failure, a new
TM is launched on the backup node, which retrieves the
previously active TStates from the Transactions Buffer and
checks the Primary DB for their status. If the committed
transactions on the Primary DB are all reflected in the
TStates on the Transactions Buffer, then (i) the new TM
rebuilds its internal state and resumes operation, (ii) the
Extension DBs are notified of the change, and (iii) the
clients are switched over to the new TM. Otherwise, some
transactions must have committed on the Primary DB but
the TM failed before it could push the corresponding TStates
to the Transactions Buffer. In this case, a new Seed DB
is incrementally created from the Primary DB and then
applied to all Extension DBs, before the system resumes
normal operations. The same process is used in the event of
a concurrent failure of the TM and the Transactions Buffer.

6.2 Adding and Removing Extension DBs

The addition of a new Extension DB involves two steps: (i)
the replication of the Seed DB on the new node, and (ii)
the parallel re-execution of all transactions located on the
Archiver Buffer using the procedure described in Section

TABLE 6: Composition of TPC-C workload mixes

Transaction Read- Read- Balanced Write-
Only Heavy Heavy

New-Order 2% 7%
Payment 3% 3% 5%
Order-Status 50% 50% 85% 73%
Stock-Level 50% 47% 10% 15%

4.2. Afterwards, even though the new Extension DB might
not be fully consistent with the Primary DB, it will register
with the Transaction Manager and start serving consistent
read requests, while applying the write transactions from
the Transactions Buffer. Hence, the addition of a new replica
in Hihooi does not require a global synchronization barrier
or the use of resources from other active replicas [12].

Extension DBs may be removed from the system for a
variety of reasons such as maintenance operations, insuffi-
cient workload to justify their presence, and failures. Since
Extension DBs only serve read transactions to the clients, no
complicated failure mechanisms are needed from the client’s
perspective. The Transaction Manager is either notified or
detects the removal of an Extension DB and simply re-
routes the read transactions to other consistent Extension
DBs. During the application of the write transactions from
the Transactions Buffer, the Extractors log all completed
transactions. When the node is re-added to the system, the
write transactions are replayed from that point forward.

6.3 Towards Replica Self-Management
The time required to start an Extension DB depends on the
time needed to replicate the Seed DB (if the new Extension
DB starts on a new node) plus the re-execution time of
the write transactions on the Archiver Buffer. The former
can be easily calculated since the process just entails bulk
I/O transfers of known sizes. The latter can also be com-
puted because the execution time of each write transaction
is recorded into the TState. Hence, Hihooi can accurately
model and estimate the replica synchronization time. This
model can guide the decision on how frequently to create
new backups in order to provide bounded guarantees on
the time needed to deploy a new Extension DB.

The ability to add and remove replicas without ser-
vice interruption in addition to accurately modeling their
cost are key steps towards autonomic middleware-based
replicated databases. Recent work on database workload
monitoring and characterization (e.g., [30], [31]) could guide
the development of elasticity policies that automatically
decide when to add or remove nodes based on the actual
workloads. Another interesting future direction would be
integrating Hihooi with the cloud, which would extend the
type or resources available for hosting the replicas. Finally,
cloud technologies such as Virtual Machine migration or
cloning could be used for creating the backups and launch-
ing new Extension DB nodes.

7 EXPERIMENTAL EVALUATION

The purpose of our evaluation is (1) to evaluate the system’s
performance and scalability under varying workload types
and consistency levels, (2) to study the effects of our fine-
grained statement replication and routing algorithms, and

11

(a) Read-Only (b) Read-Heavy (c) Balanced (d) Write-Heavy

Fig. 2: OLTP workload scalability for TPC-C for different workload mixes and consistency levels

(a) Read-Only (b) Read-Heavy (c) Balanced (d) Write-Heavy

Fig. 3: OLTP workload scalability for YCSB for different workload mixes and consistency levels

(3) to evaluate the key management and fault tolerance
features of Hihooi. All experiments were run on a 13-node
cluster running CentOS Linux 7.2 with 1 Primary DB, 1
Seed DB, 8 Extension DBs, and 3 client nodes (with up to
16 clients each). The Transaction Manager is running on the
Primary DB node, its backup and Archiver on the Seed DB
node, and the Transactions Buffer on an active Extension DB
node. The primary node has an 8-core, 3.2GHz CPU, 64GB
RAM, and 2.1TB HDD storage. The rest nodes have an 8-
core, 2.4GHz CPU, 24GB RAM, and 1.5TB HDD storage.

For our evaluation, we used three well-known bench-
marks, each employing a different kind of workload: (i)
TPC-C [32], the industry standard for OLTP workloads, con-
taining complex and write-intensive transactions; (ii) YCSB
(Yahoo Cloud Serving Benchmark) [33], a collection of web-
based micro-benchmarks that represent data management
applications whose workload is simple but requires high
scalability; and (iii) CHB (CH-benCHmark) [34], a workload
combining OLTP from TPC-C and OLAP from TPC-H [35].

The TPC-C database (also used by CHB) was populated
with 500 warehouses for a total size of 50GB. For the YCSB
database, we used a scalefactor of 50000, resulting in 56GB
of data. The databases were fully replicated to the Extension
DBs. We used PostgreSQL version 9.5.3 in all nodes. The re-
sults presented, unless noted otherwise, are from 10 minute
trials, preceded by 2 minutes of warm up. OLTP-Bench [36]
was used to populate and run the tests for all benchmarks.
The transactions load was injected using 6 clients per 1
Extension DB that continuously issued transactions.

7.1 OLTP Workload Scalability

This section studies the effectiveness and efficiency of Hi-
hooi in scaling an OLTP workload by measuring its through-
put and latency as we increase the number of Extension

DBs. The comparison is done along two dimensions: (i) for
different read/write workload mixes (i.e., Read-Only, Read-
Heavy, Balanced, and Write-Heavy) and (ii) for different
consistency levels (i.e., Weak-SI, Hihooi, RSI-PC, and 1SR;
recall Section 5.3). Weak-SI is used to show the upper limit
of performance that any system with consistency guarantees
could achieve. RSI-PC is used by Ganymed, a similar mid-
dleware system that does not offer the type of replication
and routing algorithms that Hihooi boasts, while 1SR (used
by C-JDBC) shows the effect of synchronous replication.

For TPC-C, the Read-Only, Read-Heavy, Balanced, and
Write-Heavy workload mixes were set up as 100%, 95%,
85%, and 70% of read statements, respectively, and were
generated via mixing the TPC-C transactions as shown in
Table 6. Figure 2 shows the throughput rates in commit-
ted transactions per second for our workload mixes and
consistency levels. The Read-Only workload scales linearly
as the number of replicas increases; that is, the throughput
doubles each time the number of Extension DBs doubles. As
no writes are performed, there is no difference between the
4 consistency levels. The trend is similar for the Read-Heavy
workload, with the exception of 1SR after 4 or more replicas
are used. This is expected since the system has to wait for
more replicas to apply all modifications before being able
to serve any subsequent reads. As the percentage of writes
increases in the workload, scalability naturally suffers for
all consistency levels, since all writes are executed on the
Primary DB and more reads have to wait for a consistent
replica. Nonetheless, Hihooi is always able to offer compara-
ble performance to Weak-SI and up to 2.6x and 6.7x higher
throughput compared to RSI-PC and 1SR, respectively.

Figure 3 shows the throughput rates for four work-
load mixes and our consistency levels for YCSB. All YCSB
workloads follow a Zipfian distribution (theta=1) and con-
tain unmodified queries. Similar to TPC-C, the Read-Only

12

(a) Read-Heavy (b) Balanced (c) Write-Heavy

Fig. 4: Average latency for TPC-C and YCSB for different workload mixes and consistency levels

YCSB workload exhibits almost perfect linear scalability.
The Read-Heavy workload consists of 5% inserts and 95%
range scan queries, per [33], while the Balanced workload
consists of 85% single-row reads and 15% inserts. Both
Weak-SI and Hihooi are still able to achieve near linear
scalability, while RSI-PC and 1SR do not scale at all for the
Balanced workload. Based on our observations, inserts in
YCSB are 2-3x faster than reads. In Ganymed, this results
in delays in the execution of reads, which need to wait for
all fast inserts to propagate to at least one replica. The use
of row R/W sets by Hihooi’s routing algorithms excels in
this test as it enables the system to route a read transaction
Tr to a replica that might not be fully consistent with the
Primary DB but is consistent for Tr. Finally, the Write-
Heavy workload consists of 50% reads and 50% updates,
per [33]. As this is a more demanding workload, both
throughput and scalability suffer. Nevertheless, Hihooi still
performs considerably better (up to 1.42x) compared to RSI-PC
and 1SR for the same reasons.

Figure 4 shows the average latency of transactions across
different workloads mixes for TPC-C and YCSB. For the
Read-Heavy workloads, there is very little to no increase
in latencies as the number of replicas increases due to
the efficient load balancing of read queries to the replicas.
However, as more writes are introduced in the Balanced and
Write-Heavy workloads, adding more replicas increases the
average latencies (even for Weak-SI) as a bigger percentage
of the workload is sent to the Primary DB. Focusing on
Hihooi, we observe only a small increase in latency as the
number of replicas increase, indicating the low overhead
added due to replication. Conversely, both RSI-PC and 1SR
cause increasingly larger latencies for all workloads due to
waiting reads (as explained above). Once again, Hihooi is able
to offer latencies comparable to Weak-SI in almost all cases due
to its fine-grained transaction routing capabilities.

7.2 OLTP-OLAP Workload Scalability
The execution of OLAP queries on transactional databases
has long been a motivating scenario for database replication
[12], [25]. In this section, we evaluate the OLAP workload
scalability provided by Hihooi, while studying its effects on
an OLTP workload. For these tests, an OLTP client node
executes the CHB transactional workload, while two OLAP
client nodes submit the CHB analytical queries, all using
the default Hihooi consistency level (GSSI). The general
trend, as shown in Figure 5, is that the OLAP workload
scales sub-linearly, while the OLTP one exhibits a small

TABLE 7: Percentage (%) of TAS, CAS, and RAS statements

Benchmark Workload Affecting Class
TAS CAS RAS

TPC-C Read-Only 0 10 90
Read-Heavy 4 10 86
Balanced 23 14 63
Write-Heavy 40 12 48

YCSB Read-Only 0 0 100
Read-Heavy 95 0 5
Balanced 15 0 85
Write-Heavy 50 0 50

CHB OLTP 56 13 31
OLAP 82 18 0

negative impact that worsens as the number of replicas
increases (7-20%) because more OLAP queries are forced
to execute on the Primary DB (due to read-write conflicts).
However, since OLAP workloads do not typically require
strong consistency, we repeated the experiment using Weak-
SI for the OLAP workload and GSSI for the OLTP one.
The new results (see Figure 5) reveal linear scalabilty for the
OLAP workload with almost no overhead for the OLTP one, and
highlight the great benefits offered by Hihooi in this setting.

7.3 Effect of Affecting Classes
Query statements can modify or access data at different lev-
els of granularity, namely at the table, column, or row level,
captured by our definitions of TAS, CAS, and RAS classes,
respectively (recall Section 4.1). Table 7 lists the percentage
of TAS, CAS, and RAS statements for each workload mix
of each benchmark. All TPC-C workloads contains a mix of
all three types of statements, while the percentage of TAS
increases as the workload becomes more write-heavy. YCSB
workloads, on the other hand, contain a significant fraction
of RAS and no CAS statements.

This section studies the effect of letting Hihooi use these
increasing levels of granularity by configuring it to use:
(i) only TAS; (ii) TAS and CAS; and (iii) all classes. We
executed both the TPC-C and YCSB workloads with our
different mixes on Hihooi using two Extension DBs. The
results presented in Figure 6 reveal that the benefits from
utilizing the CAS and RAS classes depend both on the read-write
mix and the workload itself. In particular, the benefits for read-
heavy workloads are relatively small because the replicas
are almost always consistent with the Primary DB and the
reads are typically load-balanced regardless of their affect-
ing class. As the write portion of a workload increases, there
are more opportunities for Hihooi to route read statements

13

Fig. 5: Mixed OLTP-OLAP
workload scalability for CHB

Fig. 6: Effect of using the TAS, CAS,
and RAS classes

Fig. 7: Effect of Hihooi’s parallel replication
algorithm on TPC-C

Fig. 8: Effect of statement-level load
balancing on TPC-C

Fig. 9: YCSB throughput after
removing & adding 1 Extension DB

Fig. 10: YCSB throughput during
Transactions Buffer failure

that access some columns or rows of a table, even though
some other columns or rows of that same table have been
modified. This is more evident with YCSB, whose Balanced
and Write-Heavy workloads contain a significant fraction
of RAS statements. Hence, when Hihooi is able to exploit
RAS, the overall throughput is increased up to 32% in our
experiments. TPC-C on the other hand, uses more complex
transactions that effect tables both at the column or row
level, leading to small benefits from using CAS or RAS (less
than 22%). The effects on average latency follow the same
trends as the effects on throughput shown in Figure 6 and
are not shown due to space constraints. Finally, the memory
overhead from the hash indexes is very low as the maximum
one measured in all experiments was less than 300 KB.

7.4 Parallel Replication Algorithm
This section delves into the performance implications of the
parallel replication algorithm (recall Section 4.2) compared
to the common approach that executes the write transactions
serially on the replicas. The two approaches have no to little
impact on the throughput of the Read-Only & Read-Heavy
TPC-C workloads (see Figure 7) since very few writes are
applied to the replicas. Note that TPC-C contains 1 TAS and
11 RAS write statements, which are amenable to parallelism.
The actual degree of parallelism (dp) when applying the
writes depends on the submission order of the writes as well
as the portion of the data they apply to. As an indicative
example, the average dp for the Balanced workload with 4
Extension DBs was 4. As the percentage of writes increases
for the Balanced and Write-Heavy workloads, the parallel
algorithm has a profound effect on the throughput (up to 1.7x
higher compared to the serial version) because it enables
the Extension DBs to reach consistency quicker and, hence,
be available to serve more reads. There is a drop in per-

formance for the write-heavy workload on 8 Extension DBs
because the writes generated concurrently by the 48 clients
overload the Primary DB. At that point, even the Weak-SI
case experienced a performance drop (see Figure 2(d)).

The 0-Extension DBs setting in Figure 7 corresponds to
processing the workload on a single node without replica-
tion. The difference between having 0 and 1 Extension DBs
reveals the overhead incurred by Hihooi from intersecting
all transactions, which was typically low (<4%) and no more
than 9% across all experiments (not shown due to space
constraints). It is interesting to note that for heavy-write
workloads, Hihooi is very effective in separating the execu-
tion of writes and reads on the Primary and Extension DBs,
respectively, leading to an aggregated higher throughput.

7.5 Statement-level Load Balancing
One of the most novel aspects of Hihooi is its ability
to route individual read statements to consistent replicas,
even within multi-statement write transactions. This section
evaluates the effect of statement-level versus (the typical)
transaction-level load balancing, which always routes all
statements from a write transaction to the Primary DB.
Figure 8 shows the throughput and average latency for our 3
TPC-C workloads executed on Hihooi running with two Ex-
tension DBs using either transaction- or statement-level load
balancing. As the percent of writes increases, so does the benefit
of statement-level load balancing, leading up to 1.43x better
throughput and 14% lower latency compared to transaction-
level load balancing. These benefits are attributed to the
extra read statements that are diverted to the Extension DBs.
Specifically, in the Write-Heavy workload, the transaction-
level algorithm routes 29% of the reads to the Primary DB
either because there are no consistent Extension DBs or
the reads are part of multi-statement write transactions. On

14

the contrary, the statement-level algorithm routes only 15%
of reads to the Primary DB, while the remaining are load
balanced to the Extension DBs. Overall, with more multi-
statement write transactions, Hihooi has more opportunities
to divert the included reads to Extension DBs, increasing
parallelism and, therefore, throughput.

7.6 Adding and Removing Extension DBs
Next, we explore the scenario of adding and removing an
Extension DB at run time. We started running the Balanced
YCSB workload on Hihooi with 18 Clients and 3 Extension
DBs. After 20 minutes, we removed 1 Extension DB to
simulate a failure or planned maintenance operation. The
read transactions executing on the Extension DB failed
at that point but the Transaction Manager automatically
rerouted them to other replicas. Hence, Hihooi continued
serving the workload without any issues, albeit with a 24%
lower throughput and higher average latency, as shown
in Figure 9. After 10 minutes, we restored the Extension
DB and observed the throughput rate return to its normal
level quickly. The Extension DB was able to serve its first
read just 64 seconds after restoration due to our fine-grained
routing algorithm, while it was able to apply all changes it
missed during the outage in 82 seconds. In total, it missed
321786 write transactions, while the memory size of the
Transactions Buffer grew to only 384MB. We repeated the
above procedure using the serial replication approach and
observed a lower throughput and higher average latency
during the entire experiment, while it took the Extension DB
121 seconds to catch up; highlighting once again the benefits
of our parallel replication algorithm.

7.7 Transactions Buffer Failure and Recovery
In this section, we investigate the behavior of Hihooi during
the failure and recovery of the Transactions Buffer. We
started running the Balanced YCSB workload on Hihooi
with 24 Clients and 4 Extension DBs. After 5 minutes, we
induced a failure on the Transactions Buffer, which caused
the Extension DBs to stop receiving any updates. However,
Hihooi kept serving the incoming workload without any
query failures. As the Extension DBs kept falling behind, the
amount of read transactions executing on them decreased
(since the YCSB workload is skewed to favor recent items),
while many read transactions were routed towards the Pri-
mary DB, as shown in Figure 10. The write throughput was
unaffected by the failure due to the asynchronous nature
of the replication procedure. Overall, the total throughput
experienced a small slowdown of only 6.2%. After 6 min-
utes, we recovered the Transactions buffer. At that point, all
Transaction States accumulated at the Transaction Manager
(207220 in total, 247MB in size) were pushed on the Trans-
actions Buffer and the Extension DBs started applying them
in parallel. The overhead caused by the recovery process led
to a small, 5.4% decrease in the overall throughput of the
workload, which lasted for only 97 seconds until it returned
back to its pre-failure level. These results show that Hihooi
is able to gracefully handle a Transactions Buffer failure.

7.8 Comparison with PostgreSQL Replication
PostgreSQL supports master-slave replication, where the
master database server executes both read and write trans-

Fig. 11: Pgpool-II Vs Hihooi for YCSB Balanced workload

actions and the slave (“hot standby”) replicas execute only
read queries. PostgreSQL replicates database modifications
via streaming WAL records from the master to the replicas,
i.e., it employs row-based replication. This replication is asyn-
chronous by default so the data on the standby is eventually
consistent with the primary. On top of a PostgreSQL cluster,
Pgpool-II [37] is used to provide connection pooling and
load balancing of read queries to the replicas. We have setup
Pgpool-II with PostgreSQL replication on our local cluster
and compared its performance against Hihooi.

Figure 11 shows the throughput and average latency of
the YCSB Balanced workload when executed on Pgpool-II
and Hihooi as the number of replicas increases. Our results
show that both systems can scale throughput with more
replicas in a similar fashion, while having a small negative
impact on the average latency. Nonetheless, Hihooi is able
to offer 35-55% higher throughput and 26-35% lower latency
compared to Pgpool-II across all experiments. Hihooi’s bet-
ter performance is attributed to (i) its parallel replication
algorithm (as PostgreSQL applies the WAL records serially),
and (ii) its fine-grained routing algorithm (as Pgpool-II does
not load-balance multi-statement write transactions).

8 RELATED WORK

Database replication comes in two forms: (i) master-slave,
where one primary copy handles all writes and the other
replicas process only reads [19], [20], [38]; and (ii) multi-
master, where all replicas serve both reads and writes
[15]–[17]. Each form can be implemented either inside the
database kernel or outside in a middleware layer. While
the former approach provides opportunities for various
optimizations and a tight coupling of concurrency and
replica control, it is heavily invasive and database-engine
specific [39]. The middleware approach, also employed by
Hihooi, leads to a seamless separation of concerns, supports
unmodified database systems and applications, and can
enable heterogeneous environments.

Postgres-R [16] was one of the first multi-master replica-
tion systems to use group communication primitives with
strong ordering to enable scalability and 1-copy-serializabi-
lity, while a later version offered snapshot isolation (SI) [29].
Middle-R [20] was the middleware extension of Postgres-
R that moved group communication outside the database
engine but still required database modifications for ex-
tracting and applying tuple-based updates. Other similar
systems that rely on group communication primitives and

15

offer SI are Tashkent [17] and SI-Rep [25]. C-JDBC [15] is
also a multi-master middleware system but does not require
database modifications as it uses JDBC drivers like Hihooi.
The system offers consistency guarantees through table-
level locking at the middleware level.

DBFarm [40] builds upon ideas from Middle-R (and thus
requires database engine modifications) but offers a master-
slave middleware system. As such, a read transaction is
delegated to some replica but it is blocked until that replica
is consistent with the primary. [41], [42] present middleware
solutions that require a predeclaration of the access pattern
of all transactions to enable efficient scheduling. In [38], the
middleware will first execute a write transaction on the pri-
mary replica, extract lock-based concurrency information,
and use that to enforce a transaction scheduling to the repli-
cas, which prevents conflicting schedules. Unlike Hihooi,
[38] requires the underlying databases to use strict two-
phase locking and cannot handle snapshot isolation, which
is now widely used. Ganymed [19] is a similar middleware
system that instead blocks a read transaction at the mid-
dleware layer until at least one replica becomes consistent.
On the contrary, Hihooi never blocks any read transactions.
Rather, it uses the transaction read/write sets to find the
replicas, including the Primary DB, that are consistent for
each read transaction to run on. In doing so, Hihooi is the
first replication-based middleware to offer such fine-grained
statement-based routing, even within multi-statement write
transactions. Pgpool-II [37] is another PostgreSQL-specific
replication middleware solution that ships and applies WAL
entries to the replicas. Pgpool-II, similar to DBFarm and
Ganymed, apply all database modifications serially at the
replicas, as opposed to Hihooi that applies them in parallel.

Another way in which Hihooi differs from the state
of the art is its new architecture that uses an in-memory
distributed storage system for statement replication, rather
than relying on command logging propagation or complex
group communication protocols [12], [25]. The Transactions
Buffer acts as a highly available propagation medium for
all database modifications that need to be applied asyn-
chronously to active replicas, improving network load dis-
tribution and simplifying recovery procedures. Amazon Au-
rora [43] has a different architecture that decouples compute
from storage while employing primary copy replication to
achieve read scale-out. Aurora uses physical replication,
where the redo log records are replayed in the replicas,
allowing them to be physically identical to the primary.
Such an approach, however, cannot be used to scale existing
single-node databases (unlike Hihooi).

Other systems such as Hyder [44], [45] and Tango [46]
provide the abstraction of a replicated in-memory data
structure backed by a shared log, and leverage the shared
log to enable fast transactions across different objects. [47]
and [48] provide log shipping from a primary copy. The
former uses synchronous writes so it avoids concurrency
issues from reading from replicas, but it relies on the pres-
ence of InfiniBand and NVRAM to be efficient. The latter
replays logs at the level of records but the approach only
targets the scenario of primary-backup replication with a
single backup instead of multiple replicas. KuaFu [49] is
a primary-backup, row-based replication system that offers
concurrent log replay by constructing and utilizing a graph

to track write-write dependencies in the log; unlike Hihooi
that relies solely on TSIDs and read/write sets. To allow
read operations to be served on backups, KuaFu introduces
barriers every N transactions to create snapshots that are
consistent with some past states on the primary, unlike
Hihooi that never uses barriers.

Commercial clustering solutions such as Oracle RAC [11]
and IBM DB2 pureScale [50] rely on the use of specialized
hardware and network-attached storage to work. Hence, un-
like our approach, the system cannot easily be installed on a
set of commodity servers. Finally, other database replication
products such as Oracle Golden Gate [51] exist, but only
offer weak consistent properties and are meant to be used
for off-line reporting or disaster recovery plans.

Data partitioning is another popular scale-out approach
that partitions and distributes data across cluster nodes [13],
[14]. Such approaches are amenable to dynamic scaling via
migrating data to existing or new nodes in order to diminish
performance issues due to skew or heavy loads. Accor-
dion [52] migrates data at a coarse predefined granularity,
whereas E-Store [53] and Clay [54] work at a finer tuple-level
granularity. The aforementioned approaches perform data
migrations after detecting performance issues, whereas P-
Store [55], another elastic OLTP DBMS, focuses on workload
prediction and proactive migration. One of the key scalabil-
ity hurtles of data partitioning approaches are transactions
spanning multiple partitions as they require locking or other
specialized protocols; a non-existent issue for Hihooi as all
transactions have access to the full database. Finally, the
issue of dynamic scaling is orthogonal to our approach and
something we plan to work on in the near future.

9 CONCLUSIONS

As a replication-based middleware system, Hihooi is able to
provide workload scalability to existing databases without
sacrificing consistency. The parallel replication algorithm
allows the Extension DBs to reach consistency quicker, while
the routing algorithm avoids any delays by routing read
statements to consistent replicas. We believe Hihooi can
jump start interesting research towards automated elasticity
as well as the creation of new cloud-based offerings.

REFERENCES

[1] S. Babu and H. Herodotou, “Massively Parallel Databases and
MapReduce Systems,” FnTDB, vol. 5, no. 1, pp. 1–104, 2013.

[2] J. Baker et al., “Megastore: Providing Scalable, Highly Available
Storage for Interactive Services,” in CIDR, 2011, pp. 223–234.

[3] J. C. Corbett, J. Dean, M. Epstein et al., “Spanner: Google’s Globally
Distributed Database,” ACM TOCS, vol. 31, no. 3, p. 8, 2013.

[4] C. Diaconu et al., “Hekaton: SQL Server’s Memory-optimized
OLTP Engine,” in Proc. of SIGMOD. ACM, 2013, pp. 1243–1254.

[5] K. Chodorow, MongoDB: The Definitive Guide: Powerful and Scalable
Data Storage. O’Reilly Media, Inc., 2013.

[6] A. Lakshman and P. Malik, “Cassandra: A Decentralized Struc-
tured Storage System,” ACM SIGOPS Review, vol. 44, no. 2, pp.
35–40, 2010.

[7] K. Grolinger et al., “Data Management in Cloud Environments:
NoSQL and NewSQL Data Stores,” JoCCASA, vol. 2, no. 1, 2013.

[8] MemSQL, “MemSQL: The Database for Real-time Applications,”
2018. [Online]. Available: https://www.memsql.com/

[9] M. Stonebraker and A. Weisberg, “The VoltDB Main Memory
DBMS,” IEEE Data Eng. Bulletin, vol. 36, no. 2, pp. 21–27, 2013.

https://www.memsql.com/

16

[10] I. A. T. Hashem, I. Yaqoob, N. B. Anuar et al., “The Rise of Big
Data on Cloud Computing: Review and Open Research Issues,”
Information Systems, vol. 47, pp. 98–115, 2015.

[11] “Oracle Real Application Cluster,” March 2017, http://www.
oracle.com/technetwork/database/options/clustering/.

[12] E. Cecchet, G. Candea, and A. Ailamaki, “Middleware-based
Database Replication: The Gaps between Theory and Practice,”
in Proc. of SIGMOD. ACM, 2008, pp. 739–752.

[13] R. Cattell, “Scalable SQL and NoSQL Data Stores,” ACM SIGMOD
Record, vol. 39, no. 4, pp. 12–27, 2011.

[14] A. Thomson, T. Diamond, S.-C. Weng et al., “Calvin: Fast Dis-
tributed Transactions for Partitioned Database Systems,” in Proc.
of SIGMOD. ACM, 2012, pp. 1–12.

[15] E. Cecchet et al., “C-JDBC: Flexible Database Clustering Middle-
ware,” in Proc. of USENIX ATC. USENIX, 2004, pp. 9–18.

[16] B. Kemme and G. Alonso, “Don’T Be Lazy, Be Consistent:
Postgres-R, A New Way to Implement Database Replication,” in
Proc. of VLDB. Morgan Kaufmann Publishers, 2000, pp. 134–143.

[17] S. Elnikety et al., “Tashkent: Uniting Durability with Transaction
Ordering for High-performance Scalable Database Replication,”
ACM SIGOPS Review, vol. 40, no. 4, pp. 117–130, 2006.

[18] J. Gray, P. Helland et al., “The Dangers of Replication and a
Solution,” ACM SIGMOD Record, vol. 25, no. 2, pp. 173–182, 1996.

[19] C. Plattner and G. Alonso, “Ganymed: Scalable Replication for
Transactional Web Applications,” in Proc. of MIDDLEWARE.
Springer-Verlag, 2004, pp. 155–174.

[20] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso,
“MIDDLE-R: Consistent Database Replication at the Middleware
Level,” ACM Trans. Comput. Syst, vol. 23, no. 4, pp. 375–423, 2005.

[21] M. Ronstrom and L. Thalmann, “MySQL Cluster Architecture
Overview,” MySQL, Tech. Rep., 2014.

[22] L. Marcotte, “Database Replication with Slony-I,” Linux Journal,
vol. 2005, no. 134, p. 1, 2005.

[23] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux
Journal, vol. 2004, no. 124, p. 5, 2004.

[24] D. Qin et al., “Scalable Replay-Based Replication For Fast Data-
bases,” PVLDB Endowment, vol. 10, pp. 2025–2036, 2017.

[25] Y. Lin et al., “Middleware Based Data Replication Providing Snap-
shot Isolation,” in Proc. of SIGMOD. ACM, 2005, pp. 419–430.

[26] H. Berenson, P. Bernstein, J. Gray et al., “A Critique of ANSI SQL
Isolation Levels,” in Proc.of SIGMOD. ACM, 1995, pp. 1–10.

[27] K. Daudjee and K. Salem, “Lazy Database Replication with Snap-
shot Isolation,” in Proc. of VLDB. VLDB End., 2006, pp. 715–726.

[28] A. Adya, B. Liskov, and P. O’Neil, “Generalized Isolation Level
Definitions,” in Proc. of ICDE. IEEE, 2000, pp. 67–78.

[29] S. Wu and B. Kemme, “Postgres-R (SI): Combining Replica Control
with Concurrency Control based on Snapshot Isolation,” in Proc.
of ICDE. IEEE, 2005, pp. 422–433.

[30] C. Curino et al., “Workload-aware Database Monitoring and Con-
solidation,” in Proc. of SIGMOD. ACM, 2011, pp. 313–324.

[31] J. Duggan et al., “Performance Prediction for Concurrent Database
Workloads,” in Proc. of SIGMOD. ACM, 2011, pp. 337–348.

[32] “TPC-C Benchmark, Revision 5.11.0,” 2010, www.tpc.org/tpcc/.
[33] B. F. Cooper et al., “Benchmarking Cloud Serving Systems with

YCSB,” in Proc. of SoCC. ACM, 2010, pp. 143–154.
[34] R. Cole, F. Funke et al., “The Mixed Workload CH-benCHmark,”

in Proc. of DBTest Workshop. ACM, 2011, pp. 8:1–8:6.
[35] “TPC-H Benchmark, Revision 2.17.3,” 2017, www.tpc.org/tpch/.
[36] D. E. Difallah et al., “OLTP-Bench: An Extensible Testbed for

Benchmarking Relational Databases,” PVLDB Endowment, vol. 7,
no. 4, pp. 277–288, 2013.

[37] J. Maymala, PostgreSQL for Data Architects. Packt Publishing, 2015.
[38] B. Vandiver et al., “Tolerating Byzantine Faults in Transaction Pro-

cessing Systems using Commit Barrier Scheduling,” ACM SIGOPS
Review, vol. 41, no. 6, pp. 59–72, 2007.

[39] B. Kemme and G. Alonso, “Database Replication: A Tale of Re-
search Across Communities,” PVLDB, vol. 3, no. 1, pp. 5–12, 2010.

[40] C. Plattner, G. Alonso, and M. T. Özsu, “DBFarm: A Scalable
Cluster for Multiple Databases,” in Proc. of MIDDLEWARE, vol.
4290. Springer, 2006, pp. 180–200.

[41] C. Amza et al., “Distributed Versioning: Consistent Replication for
Scaling Back-End Databases of Dynamic Content Web Sites,” in
Proc. of MIDDLEWARE. Springer-Verlag, 2003, pp. 282–304.

[42] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso,
“Improving the Scalability of Fault-Tolerant Database Clusters,”
in Proc. of ICDCS. IEEE, 2002, pp. 477–484.

[43] A. Verbitski, A. Gupta, D. Saha et al., “Amazon Aurora: De-
sign Considerations for High Throughput Cloud-native Relational
Databases,” in Proc. of SIGMOD. ACM, 2017, pp. 1041–1052.

[44] P. A. Bernstein et al., “Hyder-A Transactional Record Manager for
Shared Flash,” in Proc. of CIDR, vol. 11, 2011, pp. 9–20.

[45] P. A. Bernstein, S. Das, B. Ding, and M. Pilman, “Optimizing Op-
timistic Concurrency Control for Tree-structured, Log-structured
Databases,” in Proc. of SIGMOD. ACM, 2015, pp. 1295–1309.

[46] M. Balakrishnan et al., “Tango: Distributed Data Structures over a
Shared Log,” in Proc. of SOSP. ACM, 2013, pp. 325–340.

[47] T. Wang, R. Johnson, and I. Pandis, “Query Fresh: Log Shipping
on Steroids,” PVLDB, vol. 11, no. 4, pp. 406–419, 2017.

[48] D. Qin et al., “Scalable Replay-based Replication for Fast Data-
bases,” PVLDB, vol. 10, no. 13, pp. 2025–2036, 2017.

[49] M. Yang et al., “KuaFu: Closing the Parallelism Gap in Database
Replication,” in Proc. of ICDE. IEEE, 2013, pp. 1186–1195.

[50] “IBM DB2 pureScale,” 2014, http://www-01.ibm.com/software/
data/db2/linux-unix-windows/purescale/.

[51] A. Gupta, Oracle Goldengate 11g Complete Cookbook. Packt Publish-
ing, 2013.

[52] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem et al., “Accordion:
Elastic Scalability for Database Systems Supporting Distributed
Transactions,” PVLDB, vol. 7, no. 12, pp. 1035–1046, 2014.

[53] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore et al., “E-
Store: Fine-grained Elastic Partitioning for Distributed Transaction
Processing Systems,” PVLDB, vol. 8, no. 3, pp. 245–256, 2014.

[54] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo et al., “Clay: Fine-grained
Adaptive Partitioning for General Database Schemas,” PVLDB,
vol. 10, no. 4, pp. 445–456, 2016.

[55] R. Taft, N. El-Sayed, M. Serafini, Y. Lu, A. Aboulnaga, M. Stone-
braker et al., “P-Store: An Elastic Database System with Predictive
Provisioning,” in Proc. of SIGMOD. ACM, 2018, pp. 205–219.

Michael A. Georgiou is a PhD Candidate at
the Cyprus University of Technology and works
at the National Bank of Greece (Cyprus) as a
Senior Oracle Database Administrator. He is an
Oracle Certified Professional, Oracle RAC Ex-
pert, and Red-Hat Certified Engineer. His re-
search interests are in parallel and distributed
databases, cloud database technologies, and
dynamic workload management.

Aristodemos Paphitis is a PhD Candidate at
the Cyprus University of Technology. He holds
a MSc from University of Cyprus on Advanced
Technologies in Computer Science and BSc
in Electronics and Telecommunications Engi-
neering from the Hellenic Airforce Academy.
His research interests lie in the fields of wire-
less networks, transactional workload scalability,
blockchain technologies, and repeatability engi-
neering.

Michael Sirivianos is an Assistant Professor
in Computer Engineering and Informatics at the
Cyprus University of Technology. His current re-
search interests lie in the fields of trust-aware
design of distributed systems, device-centric
authentication, federated identity management,
discrimination based on personal data, cyber-
safety, suppression of false information in the so-
cial web, and transactional workload scalability.

Herodotos Herodotou is an Assistant Professor
in Computer Engineering and Informatics at the
Cyprus University of Technology. His research
interests are in large-scale data processing sys-
tems, database systems, and cloud computing.
In particular, his work focuses on ease-of-use,
manageability, and automated tuning of both
centralized and distributed data-intensive com-
puting systems.

http://www.oracle.com/technetwork/database/options/clustering/
http://www.oracle.com/technetwork/database/options/clustering/
www.tpc.org/tpcc/
www.tpc.org/tpch/
http://www-01.ibm.com/software/data/db2/linux-unix-windows/purescale/
http://www-01.ibm.com/software/data/db2/linux-unix-windows/purescale/

	1 Introduction
	2 Hihooi Overview
	3 System Architecture
	4 Database Replication
	4.1 Transaction Read/Write Sets
	4.2 Statement Replication Procedure
	4.3 Benefits and Practical Considerations of Statement Replication

	5 Concurrency Control
	5.1 Transaction-level Load Balancing
	5.2 Statement-level Load Balancing
	5.3 Consistency Levels

	6 Scalability Management
	6.1 Backup and Fault Recovery
	6.2 Adding and Removing Extension DBs
	6.3 Towards Replica Self-Management

	7 Experimental Evaluation
	7.1 OLTP Workload Scalability
	7.2 OLTP-OLAP Workload Scalability
	7.3 Effect of Affecting Classes
	7.4 Parallel Replication Algorithm
	7.5 Statement-level Load Balancing
	7.6 Adding and Removing Extension DBs
	7.7 Transactions Buffer Failure and Recovery
	7.8 Comparison with PostgreSQL Replication

	8 Related Work
	9 Conclusions
	References
	Biographies
	Michael A. Georgiou
	Aristodemos Paphitis
	Michael Sirivianos
	Herodotos Herodotou

