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Prediction in Dockless Bike Sharing Systems
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Abstract—Unlike the traditional dock-based systems, dockless bike-sharing systems are more convenient for users in terms of
flexibility. However, the flexibility of these dockless systems comes at the cost of management and operation complexity. Indeed, the
imbalanced and dynamic use of bikes leads to mandatory rebalancing operations, which impose a critical need for effective bike traffic
flow prediction. While efforts have been made in developing traffic flow prediction models, existing approaches lack interpretability, and
thus have limited value in practical deployment. To this end, we propose an Interpretable Bike Flow Prediction (IBFP) framework, which
can provide effective bike flow prediction with interpretable traffic patterns. Specifically, by dividing the urban area into regions
according to flow density, we first model the spatio-temporal bike flows between regions with graph regularized sparse representation,
where graph Laplacian is used as a smooth operator to preserve the commonalities of the periodic data structure. Then, we extract
traffic patterns from bike flows using subspace clustering with sparse representation to construct interpretable base matrices. Moreover,
the bike flows can be predicted with the interpretable base matrices and learned parameters. Finally, experimental results on real-world
data show the advantages of the IBFP method for flow prediction in dockless bike sharing systems. In addition, the interpretability of
our flow pattern exploitation is further illustrated through a case study where IBFP provides valuable insights into bike flow analysis.

Index Terms—Dockless Bike Sharing System, Pattern Exploitation, Interpretable Base Matrices, Flow Prediction.
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1 INTRODUCTION

The dockless bike sharing (DBS) system, serving as a new
mode of public transportation, offers users a green and
convenient way to travel. With the DBS systems, a user can
pick up a bike using a mobile app, and drop off it anytime
and anywhere without seeking an available docking station.
Due to this flexibility, the bike sharing market has attracted a
large number of users and has been growing at an amazing
pace. The number of shared bike users has been up to 235
million, and 30 million new users are expected by 2019 1.
For example, Mobike (mobike.com), one of the largest DBS
companies in the world, has launched bike sharing services
in more than 200 cities all over the world, with more than
30 million rides each day.

Such large GPS-equipped bike sharing systems not only
offer users a convenient way to travel, but also enable
the new paradigm for the city management by providing
ubiquitous sensing capabilities for understanding the city
dynamics, such as traffic flows and the city-wide travel pat-
terns. However, in DBS systems, a major challenge is the im-
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balanced bike distribution due to the uneven distributions
of Points-of-Interests (POIs) and population, which impose
tremendous management and operation challenges for both
companies and governments. Figure 1 shows different loca-
tions in Shanghai with high redundancy (in red dots) and
severe shortage (in blue triangles) of shared bikes, whose av-
erage hourly redundancy ratios (proportion of bikes which
are not claimed in one hour) are more than 50% and less
than 3%, respectively. The scope of the concerned site is the
most popular area in Shanghai from our data, with the lon-
gitude from 121.35 to 121.5 latitude from 31.15 to 31.27. Each
dot may cover one or a few combined grids ( 50m ∗ 50m
per grid). The red locations with high redundancy ratios are
mainly in the neighborhoods of museums and parks, such
as the Shanghai World Expo Park. While the blue ones with
low redundancy ratios are mainly near large commercial
centers and hospitals. Moreover, it is interesting to see that,
in some densely populated areas which usually have high
bike usage demands (e.g. zones near different exits of the
same subway station (9 and 12)), the redundancy ratios are
quite different. Indeed, the imbalanced and dynamic use of
shared bikes requires a constant and mandatory rebalancing
operations [1], and imposes a critical demand for effective
bike traffic flow prediction.

There are some traditional approaches, such as regres-
sion [2], [3] and time series analysis [4], [5] for flow pre-
diction. However, these approaches do not consider the
specific characteristics of bike flows such as the short rid-
ing distance. They have made some efforts on building
more robust models with multi-source data and clustering
techniques [1], [6] for bike flow prediction. Also, other re-
searchers tried to use deep learning models to predict flows
throughout a spatio-temporal network [7], [8]. Nonetheless,
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Fig. 1: Imbalanced distribution of shared bikes: locations
with high redundancy (red) and severe shortage (blue).

they are mainly designed for dock-based shared bikes, and
thus cannot be directly applied in dockless bike-sharing sys-
tems. Recently, some works have been proposed based on
the (graph) convolutional neural network [9], [10], [11], [12],
[13], which have excellent performances on flow prediction
in scenarios for region-level flow (inbound and outbound
flow). However, the (bike) flow between every OD (Origin
to Destination) pairs were not studied. There are a few
works about OD matrix prediciont [5], [14], [15], but the
scenarios they considered about are not closely relevant to
ours.

Furthermore, it is also important to explore the traffic
patterns to understand why and how the bike transfers
within the city. Generally, some existing methods have
incorporated the additional factors, such as rush hours,
holidays, and weather conditions, as the constraints to reg-
ularize the optimization problems, and thus improve the
prediction performances [1], [16]. However, for this very
flexible transportation mode which is available anytime and
anywhere, it is difficult to describe those variables in a
simple and consistent way. For example, intuitively, the bike
traffic will decrease on rainy days. However, with obser-
vations from the real-world data, the bike use sometimes
increase slightly during light rains. A possible reason is that,
compared to walking, users can go fast with bikes, and thus
suffer less in the rain. Moreover, we can hardly incorporate
every factor in a fine-grained way, otherwise the model will
become extremely complex and intractable.

To this end, in this paper, we propose an interpretable
bike flow prediction framework (IBFP), which explores
graph regularized sparse representation based on identified
interpretable traffic patterns, for flow prediction in DBS sys-
tems. Specifically, (1) we partition the whole city into regions
according to different flow distribution densities, rather
than using traditional road segmentation and equal-size
slicing, to avoid inaccessible regions and identify irregular
regions. After this, bike flow matrices can be constructed.
(2) We convert the problem of predicting whole flow ma-
trices to the problem of predicting the components of flow
matrices by modeling the matrix reconstruction problem.
Here, we model the spatio-temporal interactions between
region pairs with a graph regularized sparse representation,
which characterizes the locally-invariant sparse of bike flow
and preserve the commonalities of periodic and temporally
related data structure by a graph smoothing operator. (3)
We cluster flow matrices to represent traffic patterns. Essen-
tially, we characterize the high-dimension and sparse flow
data by sparse representation, and use subspace clustering

Residential Area

Hospital

Commercial Area

Fig. 2: An example of the region partition.

to infer the clustering of data through the sparse coefficients
and similarity graph. Then we construct “interpretable”
base matrices from the corresponding patterns for being
embed in the next prediction framework. (4) The bike flows
between region pairs can be predicted with the constructed
interpretable base matrices and learned coefficients.

Finally, as a summary, the main contributions of this
paper are as the following:
• We design a simple yet exquisite model to learn the traffic

patterns in dockless bike sharing systems, which basically
constructs interpretable base matrices to represent these
patterns.

• We propose a bike flow prediction method (IBFP) for the
flow between each pair of OD regions in dockless bike
sharing systems. IBFP exploits graph regularized sparse
representation and graph smoothing factor to symbolize
the flow attributes, and introduces a probabilistic factor
model to approximate the real bike flow distribution.

• We conduct extensive experimental studies on real-world
data, whose results show the effectiveness of IBFP for bike
flow prediction. Moreover, we also present several case
studies to further demonstrate the interpretability of our
approach.

2 PROBLEM FORMULATION AND SYSTEM FRAME-
WORK

In this section, we first introduce region partition, a fun-
damental step for dockless bike flow prediction. We then
define our bike flow prediction problem, and finally, provide
an overview of our system framework.

2.1 Region Partition
Without pre-established stations, DBSs calls for a more del-
icate formalization of the problem since bike flows between
two points, e.g., GPS locations, are hard and sometimes
meaningless to predict. An illustration of specific region
partition is shown in the Figure 2. As shown, the con-
cerned area is already divided into regions by the road
network. However, the partition is too coarse to precisely
model bike flow. For example, there are two bike clusters in
the residential area (up middle in the figure), which may
correspond the different exits of the area. Note that the
distribution and demand of the two cluster may differ and
thus require finer-grained partition method. The situation is
similar when using equal-size grids for region partition. On
the other hand, the partition results of DBSCAN can handle
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Fig. 3: An example of bike flow matrix construction

the scenarios of inaccessible regions, irregular regions, and
fine-grained regions well. Inspired by these observations,
we propose to cluster bike parking points into regions based
on DBSCAN algorithm [17], which is a classic density-based
clustering method. To achieve a meaningful region partition,
it works well with detection of clusters that have irregular
shapes and can easily avoid those forbidden areas.

We first choose an arbitrary bike as a starting point
and find all its surrounding bikes within a fixed distance
(referred to as epsilon). For the starting point, if the number
of surrounding bikes is less than a threshold (referred to
as minPts), it is temporally treated as an outlier and gets
skipped. Otherwise, it forms a cluster which includes all its
surrounding bikes and itself. All of these surrounding bikes
will perform the same expansion process until no bikes can
be further included. We then repeat the above process by
choosing a new bike and stop the process if all bikes are
considered. Finally, all bikes marked as outliers are removed
and regions are formed by detecting the boundaries of clus-
ters. In this way, a key concept of the DBSCAN algorithm
is core points which have at least minPts points within
distance epsilon. The minPts is the minimum number of
points required to form a dense region. Therefore, the higher
minPts is, the less regions will be generated. Besides, ε is
the distance for searching surrounding bikes and is propor-
tional to the size of regions. The detailed discussion will be
given in the Section 4.4 “Parameters Sensitivity”.

2.2 Problem Formulation
After partitioning the entire city, a bike flow matrix can
be constructed which records bike flows between any two
regions in one time fragment. More specifically, suppose
we have a total of M regions. For a flow matrix Fn =
{fnij}∈RM×M on the n-th time fragment, fnij denotes the
number of rides from the i-th region to the j-th region
within the time fragment (i = 1, · · ·,M ; j = 1, · · ·,M). Fur-
ther considering a sequence of N time fragments, we then
have a sequence of N flow matrices, which can construct
a flow tensor F = {F 1, F 2, . . ., FN} with dimensionality
N ×M ×M . Figure 3 illustrates an example of bike flow
matrices construction. Specifically, Figure 3 (a) shows the
flow matrix of 6 regions in one time fragment from the
records of bike flows between any two regions. Particularly,
we can also have the total inflow or outflow of any the i
region (f ini and fouti ) from the sum of the corresponding
column or a row. Figure 3 (b) shows a temporal series of
flow matrices in N time fragments.

The DBS flow prediction problem can be formulated as
follows: given a set of historical bike flow matrices, we
aim to predict consecutive h flow matrices from future time
fragment t: {F t, F t+1, . . . , F t+h}. Note that: (a) in this work
we consider a time fragment to be one hour, (b) the historical
time fragments may be temporally non-consecutive due
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Fig. 4: An Overview of the Framework.

to multiple practical reasons such as data missing, (c) we
predict day-level bike flows (h = 24) in the experimental
study.

2.3 System Framework
As aforementioned, we formalize the bike traffic flow as
matrices in time series. So basically, in our formulation,
performing the flow prediction is equal to estimate flow
matrices of future time slots. Figure 4 shows the framework
overview which consists of four major parts: data collection
and processing, interpretable patterns exploitation, flow ma-
trix reconstruction, and bike flow prediction.
• Data collection and processing. We collect a large volume

of bike riding records from Mobike, the largest shared bike
companies in China. Each record specifies a bike ID, a
pick-up location and time, a drop-off location and time.
We first partition the city into regions with the location
information in riding records, as described in Section 2.1,
and then construct flow matrices by mapping each riding
record into the corresponding time fragment and region
pairs according to the spatio-temporal information, as
described in Section 2.2.

• Flow matrix reconstruction. To approximate the original
flow matrices, we systematically specify the matrix recon-
struction optimization problem by using the base matrices
and the reconstruction coefficients. In the formulation, we
notice that the flow matrices in DBS systems are exhibiting
sparse and periodic structures. To solve this problem,
we utilize sparse representation and graph smoothing to
better capture these specific characteristics. After solving
the reconstruction optimization problem, we can learn the
reconstruction coefficients with the base matrices.

• Interpretable flow patterns exploitation. To take advan-
tage of the potential traffic patterns, we cluster the existing
flow matrices by utilizing a subspace clustering method
with a sparse representation. After this, each cluster can
be used to represent a hidden traffic pattern which can
be used to construct interpretable base matrices for being
embed in the prediction framework as a solution of the
flow matrices reconstruction optimization.

• Bike flow prediction. After the flow matrix reconstruc-
tion, in this step, we predict the future bike flows using
a set of fixed bases and estimating the future reconstruc-
tion coefficients. The coefficients are mainly obtained by
learning with transition matrix from previous transitions,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

which captures the historical temporal information and
features of periodic evolving patterns.

3 INTERPRETABLE BIKE FLOW PREDICTION

As aforementioned, the key issue of our prediction approach
is equivalent to predicting the flow matrix. Here, we first
talk about how to reconstruct the flow matrix in section
3.1. Along with sparse representation and graph smoothing
to characterize the bike flow features, and formulate an
overall reconstruction optimization problems, whose the
solution are base matrices and reconstruct coefficients. Then,
in section 3.2, we introduce extracting the bike flow patterns
to construct our interpretable base matrices. Third, in sec-
tion 3.3, we can further predict the flow matrix using the
constructed base matrices and learned coefficients.

3.1 Flow Matrix Reconstruction
Generally, a matrix can be expressed as a sum of a finite
number of base matrices. Following this line, we compute
a set of C base matrices {B1, B2, . . . , BC} ∈ RM×M as
the flow phenotypes, C � N . Then, let Snc be the re-
construction coefficient and S ∈ RN×C be the coefficient
matrix which is a representation for bike flow matrices of
the N time fragments. Therefore, B and S can be used to
reconstruct the observed flow matrix F . Moreover, B and S
can be learned by approximating all the observed bike flow
matrices with a minimized empirical loss function, which
can be represented as 1

2

∑N
i=1 ‖F i −

∑C
c=1 SicB

c‖
2

F , where
‖·‖F denotes the Frobenius norm. The loss function for min-
imizing the reconstruction error can be further formulated
as follows:

L(B,S) =
1

2

N∑
i=1

‖F i −
C∑
c=1

SicB
c‖2F + λϕ(S), (1)

where λ is a trade-off parameter and ϕ(S) is the function
to measure the sparseness of S. A straightforward method
to present the form of sparse constraints is the `1-norm
regularization to approximate of the problem. Thus, we
rewrite Equation 1 and obtain:

L(B,S) =
1

2

N∑
i=1

‖F i −
C∑
c=1

SicB
c‖2F + λ

N∑
i=1

C∑
c=1

‖Sic‖1, (2)

where ‖S‖1 is a `1-norm which is convex and easy to be
solved, and λ controls the severity of the penalty. If λ is too
large, all parameters of the model will tend to be 0, resulting
in under-fitting. On the other hand, if λ is too small, it will
have an over-fitting result.

The goal of minimizing the objective function Equation 2
is trying to find a set of base matrices {B1, . . . , BC} and a
coefficient matrix S to best approximate the original bike
flow matrices F. One might further hope that we can use
the intrinsic temporal relationships of the data structure. A
natural assumption could be that if two bike flow matrices
F i and F j , where i, j ∈ {1, . . . , N}& i 6= j from the
same time interval and the same day of different weeks,
they share similar characteristics of the data local structure.
For example, if i and j both represent the time fragment
from 9:00 a.m. to 10:00 a.m. on Monday in different weeks,
we may say that F i and F j tend to have similar inherent
locality which possess a characteristic of manifold structures

approximately. Therefore, we can use a smooth function
to further discriminate periodic evolving patterns between
flow matrices. Thus we let W be the weight matrix of F
and Wij = 1 if F i and F j in the same time intervals,
otherwise Wij = 0. Apparently, W is a the weighted graph
and a symmetric matrix. We further utilize graph smoothing
method to preserve the periodic commonality of flow data
in Equation 2 and we have:

min
B,S

1

2

N∑
i=1

‖F i −
C∑
c=1

SicB
c‖2F + λ

N∑
i=1

C∑
c=1

‖Sic‖1

+ γ
1

2

N∑
i,j=1

‖Si − Sj‖2Wij ,

(3)

where γ ≥ 0 is the regularization parameter.
Moreover, let L = D−W is a Laplacian matrix [18]. Wij

is symmetric and Dii =
∑
jWij . For an arbitrary c ∈ [1, C],

1
2

∑N
i,j=1(Sic − Sjc)2Wij can be written as:

1

2

N∑
i,j=1

(Sic − Sjc)2Wij = ST·cLS·c. (4)

Therefore, given the S = [S·1S·2 · · · S·C ], we can have
1
2

∑N
i,j=1 ‖Si − Sj‖2Wij = tr(STLS) [18].

By incorporating the constructed base matrices and
Laplacian regularization into Equation 3, we can get the
following objective function:

min
B,S

1

2

N∑
i=1

‖F i −
K∑
k=1

SicB
k‖2F + λ

N∑
i=1

K∑
k=1

‖Sic‖1

+ γ tr(STLS).

(5)

Now, the problem of predicting flow matrices can be
converted to the problem of deriving the linear combination
of B and S, which are two solutions of the optimization
problem in Equation 5. Generally, matrix reconstruction
methods are mostly based on the assumption that the data
is following the Gaussian distribution [19], while this as-
sumption does not hold for the bike flow data. Moreover,
incomplete and biased observations [20] which may cause
problems for accurately learning the above model.

To solve this problem, we introduce a joint probabil-
ity factor model to approximate the matrix reconstruction
optimization based on the distribution of real flow data.
Detailed formulations of the model are provided in Ap-
pendix A. Generally, the iterative process is composed of
two steps: first learn the reconstruction coefficient matrix
S while fixing the base matrices B1, B2, . . ., BC , and then
learn these base matrices while fixing S [21].

However, this learning method is lacking of adequate
interpretability. Also, satisfactory performance results may
not be guaranteed due to that it is heavily affected by
the random initialization. To address these problems, we
utilize the extracted traffic patterns described in Section 3.2
to be embedded here. Consequently, we just need to learn
the reconstruction coefficient of the optimization 5 with the
fixedB1, B2, . . ., BC . Detailed processes of the solution are
also provided in Appendix A. Finally, each flow matrix can
be reconstructed via a weighted sum of these base matrices.
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3.2 Extracting Bike Flow Patterns

We are motivated to do so for the following reasons: (1)
Traditional methods always consider the side factors in
traffic flow with adding corresponding constraints to the
optimization problem to regularize and match the target.
This makes the model becomes extremely complex and the
solution becomes intractable. (2) Bike flow naturally shares
similar patterns and are jointly affected by multiple side
factors (including weather, time, and location), which can
hardly be modeled in a simple, regular, and empirical way.
Accordingly, to model these side factors comprehensively,
we cluster the flow matrices to extract features, and repre-
sent hidden traffic patterns using these clusters to construct
the base matrices.

3.2.1 Observations from Data Analysis

We perform data analysis to understand the data charac-
teristics. Figure 5 (a) and (b) show the statistical results of
the straight distance and the time duration of bike trips in
one week, respectively. The straight distance is the distance
in a straight line from the pick-up location to the drop-
off location of the shared bikes. From this figure, we can
observe that the flow matrix F is sparse since most of
the trips are between regions nearby. Another issue here
is that the size of a flow matrix is as large as 766 × 766 (as
described in the section 2.1), which is not measurable by
general similarity measurements, such as Euclidean distance.

100 450 950 14501950 24500

2

4

6

8x 105

Fl
ow

Straight Distance(m)

(a) Distance distribution

5 15 25 35 45 55 650

2

4

6

8x 105

Fl
ow

Riding Time(min)

(b) Time duration distribution
Fig. 5: Statistics of bike trips

To address these issues, we introduce the subspace clus-
tering that seeks clusters in different sub-spaces, with the
similarity graph based on the sparse representation. More
precisely, according to the self-expressiveness property [22],
each data can be efficiently re-represented by a combination
of all the other data in the dataset. Thus reconstructed
sparse coefficients, whose nonzero elements correspond to
the data from the same cluster (i.e. the same subspace), can
be formulated as a similarity graph for clustering.

3.2.2 Interpretable Base Matrices Construction

By taking advantage of the “self-expressiveness” property
of the data,each flow matrix can be written as:

Fn = F cn, cnn = 0, (6)
where cn = [cn1, . . . , cnN ]T and the constraint cnn = 0
eliminates the data that is expressed by itself. From the
Equation 6, there exists a sparse solution cn, whose nonzero
entries n correspond to data from the same subspace as the
Fn. Thus, cn finds flow matrices from the same subspace
where the number of the nonzero elements corresponds to
the dimension of the underlying subspace.

A straightforward method to reduce the possible solu-
tions is to minimize an objective function by the sparse

constraints based on the `1-norm [21]. Thus we can restrict
the set of solutions as:

min ‖ cn ‖1 s.t. Fn = F cn, cnn = 0 (7)

We can also rewrite the sparse optimization program (7)
for all flow matrices i = 1, ..., N in the form as

min ‖ C ‖1 s.t. F = F C, diag(C) = 0 (8)

where C = [c1, . . . , cN ] ∈ RN×N is the matrix whose
n − th column corresponds to the sparse representation
of Fn. Equation 8 can be solved efficiently using convex
programming tools [22].

After solving the proposed optimization program in (8),
we obtain a subspace-sparse representation for each flow
matrix whose nonzero elements correspond to flow matrices
from the same subspace, i.e. flow matrices that correspond
to the same subspace are connected to each other and there
are no connection between matrices in different sub-spaces.

This provides us a way of building a similarity weighted
graph G = (V, ε,WG), where V and ε denote the set of
N flow matrices and edges between flow matrices, respec-
tively. WG = (|C| + |C|T ),WG ∈ RN×N is a symmetric
non-negative similarity matrix. In the WG, each node F i

connects itself to a node F j by an edge whose weight is
(|cij | + |cji|). Thus all flow matrices which correspond to
nodes from the same subspace are connected to each other.
Then, from C connected components corresponding to the
C subspaces, we can have WG = diag (WG

1 , . . . ,W
G
K ),

where WG
k is the similarity matrix in the subspace Sk.

Then we can have a graph Laplacian matrix: Lw = I −
D−1/2WG D−1/2, where I is an unit matrix and D is a
diagonal matrix, where the ith diagonal element is the sum
of the ith row of WG. Compute the first C eigenvectors
v1, ..., vC of the LW . We obtain the clusters of data by
applying the K-means to the rows of the matrix whose
columns are the C bottom eigenvectors of the LW .

3.3 Bike Flow Prediction

In this sub-section, we study how to predict real-time flow
from the learned parameters. Based on a set of fixed base
matrices {B1 · · · BC} and reconstructed coefficients S from
our model described above, the flow matrix of the n-th
time fragment can be reconstructed as: F i ≈

∑C
c=1 SicB

c,
where Si is the i-th coefficient vector in S and 1 ≤ i ≤ N .
Consequently, if we want to predict the flow of the further
t-th time fragment: F t, which can be reconstructed by∑C
c=1 StcB

c, then we just need to calculate the coefficient
vector St. Specifically, we can use a transition matrix At ∈
RC×C to capture the evolving behavior from the (t − 1)-
th time to the t-th time and represent it as St = S(t−1)At,
where S(t−1) ∈ R1×C .

Generally, it is far from enough to use only the one
flow information F t−1 before the time fragment to predict t.
However, it is impractical to make a prediction by using the
whole training data in online prediction due to expensive
computation cost. Moreover, it is not always true that more
time information would yield a better prediction perfor-
mance [5]. Inspired by this, we select some previous flow
matrices which not only include the temporal information,
but also can capture the inherent pattern information.
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Intuitively, there are some correlations between the be-
havior pattern of the predicting time and those of several
previous times, which can be further divided into two kinds
of time-related data for prediction, as shown in Figure 6,:

• Data with time fragments directly precedent the pre-
dicting time fragment. We assume these historical data
have some correlation with the predicting ones due to
the continuous environmental pattern, such as temperature
and air quality. Assume there are p consecutive time frag-
ments before the predicting one: {F t−1, · · · , F t−p}, whose
coefficient vectors are {St−1, · · · , St−p}. Then we can have
a sequence of transition matrices AP = {APt−1, A

P
t−2, · · ·

, APt−p}, which forms a set of historical transitions:

{St−1 = St−2A
P
t−1; · · · St−P = St−P−1A

P
t−P } (9)

• Data with time fragments repeating every day/week. Such
periodicity helps us to capture common features of periodic
evolving patterns. For example, there is a correlation be-
tween 7 a.m. to 8 a.m. of working days. Subsequently, there
is a transition from the previous day to the present day at a
same time. Assume there are continuous q days before the
predicting time, thus we have a historical sequence of this
fixing prediction time in varying q days: {F t−24, F t−48 · · ·
, F t−q×24} under the condition of 24 time fragments a
day. Similarly, we can also have a sequence of transition
matrices AQ = {AQq−24, A

Q
q−48, · · · , A

Q
t−q×24}, which

forms the corresponding set of historical transitions:

{Sq−24 = Sq−48A
Q
q−24; · · · ;

St−(q×24) = St−(q+1)×24A
Q
t−q×24}

(10)
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Fig. 6: The prediction of coefficient from historical data

From the primarily experiments here, we find generally
p is in the range of 3 to 6 and q is in the range of 12
to 20, the prediction performance are stable. Note that, in
our model, when we predict the weekday flow, we will
omit the weekend flow data, as the flow features may
have great differences between the weekdays and week-
ends. From AP and AQ, we can predicted two transition
matrices APt = 1

p

∑p
i=1APi and AQt = 1

q

∑q
j=1A

Q
j with

the similarities of the highest temporal duration and the
periodic evolving pattern, respectively. By incorporating
two transition matrices, we can have

St =
1

2
· (St−1

1

p
·
p∑
i=1

Ai + St−24 ·
1

Q
·
Q∑
j=1

Aj) (11)

Moreover, we can have an incremental method to predict
the flow of the next (t + h)-th time. From St = St−1At, we
can have St+1 = StAt+1 = (St−1At)At+1. Follow this line,

we can have: St+h = St−1 ·
∏t+h
i=t Ai. As a result, we can

predict bike flows of the (t+ h)-th time as:

F t+h =
C∑
c=1

St+hB
c =

C∑
c=1

(St−1 ·
t+h∏
i=t

Ai)B
c, (12)

where h is the number of future time fragments. After
predicting the flow matrix of the (t + h)-th time, we can
further calculate the outflow and inflow of each region. As
shown in Figure 3, fnij is the flow from region i to j at the
n-th time fragment. Thus, all elements of the i-th row are
flows with the departure region i and all elements of the
j-th column are flows with the destination region j. Thus,
on the time segment t, the outflow fout,ti and inflow f in,ti of
the region i are represented as:

fout,ti =
M∑
i=1

f t:,i f in,ti =
M∑
i=1

f ti,:

4 EXPERIMENTAL RESULTS

In this section, we present an extensive experimental study
of our interpretable IBFP model, compared with six com-
petitive algorithms. Using real-life data, we conduct a sets
of experiments to evaluate the effectiveness of our IBFP
model and study the parameter sensitivity. We also present
an interesting case study as well as our findings regard-
ing the interpretability of bike flow prediction. The source
code for IBFP is available at https://github.com/Enlindn-
NUAA/IBFP.

4.1 The Experimental Setting

We first introduce the settings of our experimental study.
Experimental Data. We collected the real-life Mobike data
to test our model. It contains 957,357,367 riding records
generated by 314,703 shared bikes from February 2017 to
March 2018 in Shanghai city. Each record specifies a bike
ID, a pick-up location, a pick-up time, a drop-off location,
and a drop-off time. Since bike usage is sensitive to holidays
and weather conditions, we treat the data on working days
and holidays separately. The dataset spans 291 working
days data and 132 holidays, respectively, among which 48
(16.5%) working days and 22 (16.6%) holidays are randomly
selected as test set and the rest are used for formulating
the training dataset. To investigate the impacts of weather
conditions, the test set on working days is further split into
two parts: one consisting of 35 regular working days and
the other consisting of 13 rainy working days. We do not
further split the holiday test data due to the limited number,
i.e., 5, of rainy days. To conclude, we will train our model
based on two training sets, i.e., working days and holidays,
and validate our model with three test sets, i.e., (1) regular
working days, (2) rainy working days and (3) holidays.
Baselines. We compare our IBFP model with six algorithms.
(1) Historical Average (HA) [23] directly uses the average
bike flow at the same day time in training data.
(2) Latent Space Model for Road Networks (LSM-RN) [5]
utilizes Nonnegative Matrix Factorization (NMF) for pre-
dicting speed and we replaced the speed matrix with flow
matrix for flow prediction.
(3) Inter Station Bike Transition (ISBT) [1] predicts station-
based bike traffic flows by modeling bike usage demand and
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trip duration. In our dockless setting, it treats the regions
detected by our IBFP model as stations.
(4) Graph Regularized Sparse Coding (GraphSC) [21] is a
state-of-the-art model for sparse representation.It uses the
same prediction method as our IBFP model after the base
matrices has been constructed.
(5) Convolutional Long Short-Term Memory(ConvLSTM)
[24] extends the traditional fully connected LSTM (FC-
LSTM). It has convolutional structures in both the input-
to-state and state-to-state transitions, which will keep the
spatial information.
(6) Random Bike Flow Predictions (RBFP) is a simplified
version of our IBFP model. It is the same to IBFP except
that the base matrices are learned automatically without
considering the traffic patterns.
Metrics. We evaluate the performance by three metrics,
namely mean absolute error (MAE) and root mean square
error (RMSE). Note that for both of the two metrics, a lower
value indicates a better accuracy.
Implementation. The default parameters are selected as
follows. (a) For all algorithms based on sparse represen-
tation, the number C of base matrices is set to 9. (b) The
dimensionality of the latent space is set to 10 for LSM-RN. (c)
The parameters of ISBT, ConvLSTM and the regularization
parameters of GraphSC are chose following [1], [24] and [21],
respectively. (d) For RBFP and IBFP, please see Section 4.4.

In our experiments, we have partitioned 766 irregular
regions from DBSCAN, which is unsuitable for ConvLSTM.
Thus, to make a fare comparison with ConvLSTM, we
divided the same area into 768 (32 ×24) regular regions.
In this way, the number of regions of all baselines and
our method are almost same. All experiments are run on
a PC with a 3.6 GHz Intel(R) Core i7-4790 CPU, and 16 GB
RAM running the 64-bit Windows 10 system. When quantity
measures are evaluated, the tests are repeated over 10 times
and the average results are reported.

4.2 A Performance Comparison
In the first set of experiments, we compare the flow predic-
tion errors of our IBFP model with the six algorithms on
two test sets which are introduced above.

(1) Effectiveness on regular working days. We first
evaluate the effectiveness on regular working days when
bike usage demands are concentrated on morning and
evening peaks and people are willing to ride bikes. We test
the prediction errors at different day time. The results are
reported in Figure 7.

For (almost) all algorithms, the prediction errors have
two peaks at the morning and evening, which is due to
the sudden increase of bike usage demands. Furthermore,
performances of almost all algorithms are unexpectedly
decreased at around 6 a.m. due to the inaccurate training
data caused by official relocation of the bikes.

Moreover, our IBFP model consistently performs the
best in all our tests. Indeed, compared with (HA, LSM-
RN, ISBT, GraphSC, ConvLSTM, RBFP), IBFP decreases
the errors both under MAE and RMSE. Our simplified
RBFP model already outperforms other approaches, which
demonstrates the superiority of utilizing graph regularized
sparse representation on flow matrices for bike flow predic-
tion. Our IBFP model further outperforms RBFP, indicating
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Fig. 7: Prediction errors on regular working days
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Fig. 8: Prediction errors on rainy working days

that the constructed base matrices are not only more inter-
pretable but also more robust.

The overall performances of GraphSC are not satisfac-
tory, since this model is not designed for dockless bikes,
so does LSM-RN. ConvLSTM basically employs convolution
operator to capture the spatial information at input-to-state
and state-to-state transitions. However, convolution opera-
tor encodes local adjacent information, which is not very
suitable in our scenario. For example, in the introduction,
figure 1 shows zones near different exits of the same sub-
way station (9 and 12), where the redundancy ratios are
extremely imbalanced. Thus, the advantage of ConvLSTM
could not be fully explored in our scenario. In addition,
the training of Conv-LSTM is too costly, which limits the
application scenario of this method.

(2) Effectiveness on rainy working days. We evaluate
the effectiveness on rainy working days when bike usage
demands are concentrated on morning and evening peaks.
Still, same as the data in working days, prediction results at
around 6 a.m. are not also good enough due to the relocation
of bikes. Again, all models are trained on the working day
training set with parameters set to their default values. The
prediction errors at different day time are reported in the
Figure 8. For all algorithms, the general trends of prediction
errors are similar to their counterparts on regular workdays.
According to our results, the riding behavior in normal
raining day is rarely affected. This is somehow counter-
instinct as we notice that the heavy raining surely changed
the riding behavior. The explanation is in the testing data
there is few data connect to such weather, while the effect
of normal or shot time raining is not explicit. However, as
indicated by a few increased errors, the prediction on rainy
days is still non-trivial, possibly because there are more
factors involved in bike traffic flows on rainy days. Despite
the difficulty, our IBFP model still consistently performs the
best in all our tests.

(3) Effectiveness on holidays. We further evaluate the ef-
fectiveness on holidays when bike usage demands are more
dispersed than on working days and people are generally
willing to ride bikes. All models are trained on the holiday
training set with parameters set to their default values.
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Fig. 9: Prediction errors on holidays

Fig. 10: Impacts of varying parameters ε and minPts

The prediction errors at different day time are reported in
Figure 9.

The general trends of prediction errors on holidays are
slightly different from those on working days in the sense
that the errors have an obvious drop between the morning
and evening peaks on working days while they remain in
a relative high level between the two peaks on holidays.
As we state before, bike usage demands on holidays are
more dispersed and random, which makes the prediction
a bit more challenging. This also justifies our separation
of working day and holiday data that govern different
patterns. Again, our IBFP model consistently performs the
best in all our tests.

From these figures, we also can observe that the errors
of our multi-step prediction results slowly increase as the
number of prediction steps increases, especially in the day
time (8:00 - 20:00) in these figures. However, at the first pre-
dicted time ( 00:00 in the midnight ) and the last predicted
time (22:00 in the night), the prediction error recovered to
some extent due to very few riding features.

4.3 Discussion
(1) Analysis of the baselines. Here we expand significantly
in detailed description of why some baselines are not as
good as ours in these scenarios.

ISBT, first of all, is mainly for the rebalancing problem of
dock-based shared bikes, and we just chose the part of flow
prediction. Second, ISBT uses a Gaussian mixture model to
fit the distribution of inter-regional riding distances from
the sharing bike data of New York City. By comparing the
NYC data with our data in Shanghai, we found that the
average riding distance or time of NYC’s was significantly
longer than ours. Statistics of bike trips of our data had
been presented in the Figure 5, whose travel time and
distance are too short (usually ten or twenty minutes) to
fit the appropriate travel time model well. In summary, the
advantages of ISBT are not obvious when used for our data
and scenario.

ConvLSTM, is a typical prediction model based on
Convolutional Neural Network (CNN) by spatio-temporal
characteristics. However, our work focused on the flow be-
tween region-region pairs. In the experiments, we basically
partitioned 768 square regions for the ConvLSTM, which
implies that there are 768 channels in the training simultane-
ously. Thus, although ConvLSTM has a good performance
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Fig. 11: Impacts of varying C of basic matrices,
regularization parameters λ and γ on prediction errors
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Fig. 12: Impacts of varying regularization parameters λ and
γ on prediction errors

on prediction, it is too complex in training phase to get
accurate results in our scenario, as it requires independent
training for each pair of regions. The increase of the number
of channels will cause the model complexity souring rapidly.
With dozens of experimental attempts of ConvLSTM, we
found the gradients vanished to a large extent in the training
phase and more than 6 channels will make the experiment
intractable.

LSM-RN, also establishes a matrix res-construction
problem. However, since it predicts the speed of the traffic
through perceived data of sensors, its time interval is set
to 5 minutes (our time interval is 1 hour). So it only uses
one identical transfer matrix (similar to the matrix A in our
paper) for every 20 consecutive time segments. Obviously,
for our task, data in 20 consecutive 1-hour segments con-
tains different traffic patterns, such as morning and evening
peaks, off-peak, and late night, which can not be represented
by only one transfer matrix. Furthermore, it does not exploit
such traffic features as we do.

GraphSC, also learns the graph regularized sparse repre-
sentation. However, GraphSC is originally designed for the
image representation and utilizes the SVM to perform the
classification prediction which is too far from our problem.
Thus, although with great efforts for improvement, the
performance of this method is far worse than our method
in the scenario of our work.

(2) Inapplicability. Some cases where our methods may
not be applicable: bad weather, especially the heavy rain, or
rainstorm. This is mainly because that the city we studied,
Shanghai, only has few days of this extreme weather in
the whole year. In fact, light-rain days are the most rainy
days in our data, whose impact on the bike flow is not
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serious. Therefore, no matter how to generate the training
and testing sample sets, there is always not enough data to
learn meaningful patterns in extreme weather. Furthermore,
our approach does not respond enough well to changes
in traffic due to some unusual or unexpected situations,
especially in high-flow areas in high-flow areas (Detailed
explanation will be represented in sub-setion 4.5.1 ).

4.4 Parameters Sensitivity

In the second set of experiments, we test the sensitivity
results on (1) parameters epsilon and minPts of DBSCAN
clustering used in region segmentation (2) the number C
of base matrices, and (3) the regularization parameters λ
and γ of the loss function. We perform the cross-validation
for training these parameters. We vary different values of
parameters, and fix the rest parameters to their default
values: C of base matrices is set to 9, epsilon and minPts
are fixed to 70m and 30, regularization parameters λ and γ
are set to 0.4 and 10−5, p and q in Section 3.3 are set to 5 and
8.

(1) Impacts of ε&minPts. Recall that our model first
divides the entire city into regions with a density-based
clustering method, i.e., DBSCAN. A key concept of the DB-
SCAN algorithm is core points which have at least minPts
points within distance epsilon. To evaluate the impacts of
epsilon and minPts [17], we vary epsilon from 40m to
110m and minPts from 20 to 40. The results are reported
in the Figure 10. When epsilon and minPts varies, the
prediction errors also change under our two metrics, which
indicates a significant impact of the divided regions on
bike flow prediction. Both epsilon and minPts influence
the prediction accuracy in a complex manner. However,
the best accuracy is obtained under the same setting, i.e.,
epsilon = 70m and minPts = 40, with (MAE and RMSE)
being (1.8172 and 5.1217), respectively.

(2) Impacts of C . To evaluate the impacts of the number
C of base matrices, we vary C from 3 to 15, and test the
prediction errors of the three algorithms that utilize sparse
representation, i.e.,GraphSC, RBFP and IBFP. The results are
reported in the Figure 11. When C varies, the prediction
errors of GraphSC keep increasing while the ones of RBFP
and IBFP first fluctuate and then increase. Moreover, our
IBFP model is consistently better than GraphSC when using
the same number of base matrices, and is generally better
than RBFP. Similar to varying epsilon andminPts, the best
accuracy of IBFP is obtained when fixing C = 9, with (MAE
and RMSE) being (2.8502 and 4.4264), respectively. These
are indeed the best accuracy that can be obtained by all of
the three models.

(3) Impacts of regularization parameters λ and γ.
Recall in Equation 5 that parameters λ and γ regularize
the strength of the sparsity constraint and the temporal
constraint, respectively. To evaluate the impacts of λ, we
vary λ from 0.1 to 1.0, and test the errors of our model
IBFP and its variant RBFP. We do the same for parameter
λ except that we vary λ from 10−8 to 10. The results are
reported in Figure 11. When varying λ and γ, the prediction
errors of both RBFP and IBFP vary in a narrow range, our
IBFP model is consistently better than its simplified version
RBFP in all our tests. Again, the best accuracy of IBFP is

high errors moderate errors low errors

(a) working day (b) holiday

Fig. 13: An example of the prediction errors.

obtained when λ = 0.5 and γ = 10−5, no matter which
metric is used.

4.5 Case Studies

4.5.1 Prediction Accuracy
Figure 13 illustrates the prediction errors of pick-up flows
during 8:00 a.m. and 9:00 a.m. on a randomly selected
working day and holiday in Shanghai, respectively. For
presentation purpose, we compute the pick-up flow at each
region during the concerned period of time, i.e., the sum of
each row in the flow matrix. For both figures, different colors
indicate different error levels, and a larger filled circle fur-
ther indicates a higher error within the corresponding level.
As can be seen from the figures, the circles in the high errors
and low errors are quite similar in terms of locations on both
the working day and the holiday. By matching these regions
on the map of Shanghai, we find that: on the working day,
high flow regions mainly locate around hospitals, CBDs
and governmental buildings; on the holiday, the number
of regions having high flows significantly decreases and the
remaining regions mainly locate around large hospitals such
as Huashan hospital and Shanghai Sixth People’s Hospital.
This information is very useful for rebalancing bikes and,
hence, running an effective bike share systems. Specifically,
from the figure, we find some error-prone areas, which are
mainly high-flow areas in high-flow areas, especially with
entertainment and leisure as the main area functionalities,
such as People’s Square and Nanjing Road Subway Station.
We consider that bike flows in these areas are vulnerable
to some additional factors, such as irregular commercial
activities and traffic accidents. That is, our approach does
not respond enough well to changes in traffic due to these
unusual situations.

4.5.2 Interperablility of Base Matrices.
To illustrate the interpretability of our method, we give a
case study here. Figure 14 shows the frequency statics of
all base matrices in different straight riding distances (d
meters in the figure), where, the histogram visually presents
the total bike flow and composition of the base matrices in
distance interval. For example, B3 and B6 stand for the base
matrix with maximum and minimum of the total flows. It
can be observed that B3 consists of maximum number in
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Fig. 14: Frequency statics of base matrices in different
straight riding distances.

long riding distance intervals, which is marked in the dark-
est color in the figure. We further illustrate the interpretabil-
ity of base matrices in Figure 15 with case studies, where
we show how the base matrices compose traffic patterns
in different environment settings. In Figure 15 (a), the first
and second column stand for the weather and time of the
third column’s flow matrices, which could be approximately
reconstructed with the fourth column’s coefficient vectors
(C) and the nine base matrices. Note that, in the fourth
column, we only list part of the base matrices/matrix with
large coefficients [0.01, 1). In addition, because the size of a
whole flow matrix (the same as a base matrix) is 766 × 766,
it is hard to be clearly visualized. Here, we just present the
distribution of a small part of the whole matrix.

Particularly, in Figure 15 (a), matrices represent the traffic
flow in a downtown zone surrounding the Changshou road
in Shanghai city, including residential area, office buildings,
subway stations, malls and schools. The first flow matrix
represents a regular morning peak (Monday, 8 a.m. to 9
a.m.) in a normal weather (sunny, 16 Celsius). Here, we
can find the largest reconstruct coefficient s3 = 0.94, which
indicating the rush hour pattern could be approximate with
the base matrix B3 only. In the other words, the base matrix
B3 could be interpreted as the rush hour base matrix. Com-
paring the second and third flow matrices, which are the
late rush hours but in different weather environment(rainy
and sunny), we find some interesting results: 1) the distri-
bution of the original flow matrices are similar no matter
in rainy or sunny weather. This is because it was not a
heavy rain (just light rain) at this time and in this zone,
the bike user’s demand was very high. 2) The highest
reconstruct coefficients are s2, which denotes the second
one of the coefficient vector. This coefficient associates with
B2, which is found to cluster most flow matrices of late
rush hours, while following the same way, we find that
B8 could presents the flow pattern from the work region
to the residential area. 3) Though the rainy day does not
have much impact on overall bike flow in this case, it does
influence the user’s activity modes. Comparing the second
and third flow matrices and the corresponding coefficients,
we find that the value of s8 and s4 are the key difference.
In our case, B4 is representing the flow to the recreation
area. Thus, possible explanation for the third flow matrix
is that better weather, like sunny, leads to more recreation
activities, e.g. dinner, fitness, movies and etc.

We can also find some interesting patterns regarding
the weekend flows, some of which are illustrated in the
Figure 15(b). In this figure, both rows of matrices represent
traffic pattern of the weekend nights, from which we can

find that the majority component of them is B1. Comparing
with other areas, the majority traffic flows are around two
hot spots, which are The People’s Square and Nanjing East
Road respectively. These two places contain many fashion
malls, large subway stations and theaters. These findings
reveal the common facts that in weekends, recreation activ-
ities are more centered and last late at night.

4.5.3 Analysis of User Mobility

Although, considerable research efforts have been paid in
urban mobility prediction based on big data, there still lacks
research on how to use dockless bike traffic data to probe
the user dynamic, while the fixed-dock shared bikes are not
flexible enough to analyze the user mobility or dynamic.

In this sub-section, with the help of Point-of-Interest
(POI) data, we demonstrate how to use the predicted bike
flow to sense the POI distribution and further expose the
users trajectory and urban lives. Specifically, the bike data
contains the bike ID, travelling time, as well as the location
of pick-up and drop-off. Each location can be linked to
one or multiple specific POI(s). The results are presented
in two categories: (1) The density distribution of shared
bikes’s pick-up and drop-off in a regular working day
and weekend, respectively (Figure 16 ). (2) The top flow
trajectories of shared bikes and the distribution of hot POIs
(Figure 17).

Figure 16 (a) and (b) illustrate the geographical distri-
bution of shared bikes’ pick-up and drop-off respectively
during a regular working day time (8:00am-12:00am), where
the dots colored in red and blue denote high and low
bike densities respectively. Then, the Figure 16 (c) and (d)
show the distribution in a weekend day, from which, we
can observe that the pick-up of shared bikes distribute
evenly in the city, while the distribution of drop-off tends to
concentrate in some agglomerated regions. In addition, the
total amount of shared bikes’ usage in the working day are
much higher than those in the weekend, both in the pick-up
and drop-off.

Figure 17 shows the distribution of POIs with top 10
travel flows, where each circle presents one POI. The larger
the circle, the greater the total flow (including both outflow
and inflow). One POI contains several regions segmented
following the method proposed in the Section 2. The dif-
ferent color lines represent the top flow trajectories from
different categories of POIs. For example, Figure 17 (a) illus-
trates the zone surrounding the Hechuan Road (a famous
downtown area) in the working day, which is the same time
as the Figure 16 (a) and (b). From this sub-figure, we can
observe that the POI with highest flow is the subway station,
which is a transportation transfer and attracts 31% flows.
The second tier of POIs of outflow are business, residential
area, office building, hospital, and education (including
some schools).

Figure 17 (b) illustrates the data analysis result concur-
rent with the Figure 17 (a). The difference is it in the zone
around the Changshou Road with more residents. Thus the
POI with highest flow here is the residential area. Figure 17
(c) and (d) show the analysis results of above zones at the
weekend. Compared with (a) and (b), the circles of POI are
smaller, i.e. the total amount of bike flows is less than that
in the working day. Moreover, the trajectory distances are
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Fig. 15: Examples of flow matrix reconstruction with base matrices and its interpretability.
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Fig. 16: Density distribution.
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(c) Hechuan Road, Weekend
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Fig. 17: The top flow trajectories and the distribution of hot POIs.

much longer, especially in the Figure 17 (c), where some
trajectories are even twice as long as those in the Figure 17
(a). The flow ratios of mall (including restaurant, shopping
and cinema ) are much higher.

From this case study, we can find the prediction of shared
bike flow has a significant value for sensing and analyzing
users attentions and activities, as well as the POIs distribu-
tion e.g. recreational business districts, transportation hubs,
and city landmarks.

5 RELATED WORK

Traffic flow prediction is a long-standing problem in urban
computing, and time series analysis methods or spatio-
temporal correlation have been extensively studied for

this task [13]. In addition, multi-source data such as GPS
trajectories, map data and weather conditions have been
exploited to produce more robust models [1], [16]. But
these existing studies are mainly for vehicle or crowd flow
prediction. Recently, bike sharing systems have attracted
increasingly attention due to the wild spread of sharing
economy [25]. Many methods, such as regression model
[2] and Gradient Boosting Tree [3], have been explored
for predicting the bike flow. Auxiliary techniques have
also been exploited to enhance flow prediction, including
multi-source data analysis [26] and clustering [1], [6], [27].
Other tries include utilizing deep learning frameworks to
predict flow throughout a spatio-temporal network [7], [8],
[28]. However, these approaches, flaw in the interpretablity
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extract the hidden traffic patterns. In addition, most of them
initially proposed for BSSs with docking stations, which
hard to be applied universally in dockless systems.Recently,
some works for the traffic prediction have been proposed
based on the (Graph) Convolution Network [9], [10], [11],
[12], [13], which have excellent performances on flow pre-
diction. However, these (graph) convolution-based models
are more appropriate for predicting the overall region-
level total flow (only inbound and outbound flow). For
the pairwise flow (region to region) prediction, the conv-
based methods are too complex in training phase, as they
require independent training for each pair of OD (Origin-
Destination). There are a few works about OD matrix predi-
ciont [5], [14], [15], but the scenarios they considered are not
closely relevant to ours.

6 CONCLUSION

In this paper, we developed an interpretable bike flow
prediction (IBFP) method, which can provide effective bike
flow prediction with interpretable flow patterns. Specifi-
cally, we first divided the entire city into regions accord-
ing to the flow density. Then, we extracted interpretable
patterns by subspace clustering with sparse representa-
tion. Next, we modeled the spatio-temporal interactions
between regions with a graph regularized sparse repre-
sentation method, and characterized the commonalities of
periodic data structure by graph smoothing. After that, we
constructed interpretable base matrices from traffic patterns
and learned the coefficients. Finally, experimental results
on real-world dockless bike sharing data demonstrated that
the proposed IBFP outperformed state-of-the-art methods in
terms of prediction accuracy and interpretability. In partic-
ular, to ensure better generalization, we propose a purely
data-driven model which extracts bike flow patterns from
historical flow data. However, external features like weather
data can be readily incorporated into our model: we can
manually form a base matrix with flow data related a
specific weather.
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APPENDIX

A. Joint probability factor model

(1) Reformulating the optimization problem by a joint
probability factor model.

The optimization problem 5 can be shortened as:

minL(B,S) + λ · K(S) + γ · Ω(S), (13)

where L(B,S) is the loss function 1
2

∑N
i=1 ‖F i −∑C

c=1 SicB
c‖2F , K(S) is the lasso term

∑N
i=1

∑C
c=1 ‖Sic‖1,

and Ω(S) represents the graph regularization tr(STLS).
We now discuss how to learn the coefficient matrix S of
problem in Equation 5 with the constructed base matricesB.
Generally, matrix reconstruction methods are mostly based
on the assumption that the data is following the Gaussian
distribution [19], while this assumption does not hold for
the bike flow data (from Figure 18). Moreover, incomplete
and biased observations [20] which may cause problems for
accurately learning the above model. To solve this problem,
we first propose a joint probability factor model to approx-
imate the matrix reconstruction optimization base on the
distribution of real flow data. Then we learn the coefficients.
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Fig. 18: Statistics of flow distribution

Figure 18 shows distributions of the average bike flow
count per hour for each pair region in weekdays and week-
ends, respectively. From them, we find that Poisson distribu-
tion can approximate these flow distributions well and also
provide non-negative responses. Therefore, each flow record
fnij from the i-th to the j-th region at the N -th time fragment
can be approximated by a Poisson distribution with a base
element B∗

ij :

f ijl ∼ Poisson(〈Si∗ , B∗
jl〉) , ∀i, j, l (14)

where 〈Si∗, B∗
jl〉 =

∑
c SicB

c. Basis Bc denotes some
attribute interaction pattern of bike flow which also fol-
lows the Poisson distribution. Furthermore, we can use the
Gamma distribution as a prior since it is the conjugate one
of Poisson. S is a coefficient matrix which generally follows
the Gaussian distribution [29]. Then we have the following
generative process:

1. Sic ∼ Gaussian(0 , σ) , ∀i, c
2. Bcjl ∼ Gamma(η , θ) , ∀c, j, l

(15)

where σ is the parameter of Gaussian distribution, η and θ
are the parameters of Gamma distribution. With the above

formulation, we have the joint probability density:

Pr(F |S,B)Pr(S)Pr(B)

=
∏
i,j,l

(
(〈Si∗, B∗

jl〉)F
i
jl

Γ(F ijl + 1)
exp(−〈Si∗, B∗

jl))
Iijl

×
∏
i,c

1√
2πσA

exp(− (Sic)
2

2σ2
A

)

×
∏
c,j,l

θη

Γ(η)
(Bcjl)

η−1 exp(−θBcjl),

(16)

where Γ(·) is the gamma function Γ(n+1) = n!, and Iijl = 1
if and only if F ijl > 0, otherwise Iijl = 1. For much simpler
calculation, we re-formulate the loss function Equation 13
in Equation 16 to Equation 17 by taking the (negative) log-
likelihood.

L(B,S) = − logPr(F |S,B)Pr(S)Pr(B) + const

= −
N∑
i=1

M∑
j=1

M∑
l=1

Iijl(F
i
jl ln〈Si∗, B∗

jl〉

− 〈Si∗, B∗
jl〉) +

1

2σ2
S

‖S‖2

−
C∑
c=1

M∑
j=1

M∑
l=1

((η − 1) logBcjl − θBcjl).

(17)

Consequently, The reconstruction error L(B,S) can be
rewritten as L(S).

(2) Solving the optimization problem.

Because a `1-norm in lasso is non-differentiable at the
origin, the problem of Equation 13 can not be solved by the
standard Gradient method. Instead, we introduce Proximal
Gradient (PG) method to solve this problem [30].

First, we consider the problem without `1-norm and
mark f(S) = L(S) + γ · Ω(S). Suppose Si is the i-th line of
the coefficient matrix S , which is related to the bike flow of
the i-th time fragment. (Si)t and (Si)t+1 are the values after
t-th times and (t + 1)-th times iterations of Si, respectively.
Thus, by the second order Taylor expansion of f(Si) around
(Si)t, we have:

f(Si) ∼= f((Si)t) + 〈∇f((Si)t), Sn − (Si)t〉

+
L

2
‖Si − (Si)t‖2

=
L

2
‖Si − ((Si)t −

1

L
∇f((Si)t))‖22 + const,

(18)

where L > 0 is a constant which satisfies L-Lipschitz
constraint, const is a constant independent of Si . As a
result, the problem of learning the Si to minimize f(Si) can
be shortened as:

arg min
Sic

L

2
‖Si − ((Si)t −

1

L
∇f((Si)t))‖22, (19)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Thus, combing Equation 13, we can obtain (Si)t+1 as fol-
lows:

(Si)t+1 = arg min
Si0

+λ‖Si‖1

= arg min
Si

L

2
‖Si − ((Si)t

− 1

L
∇f((Si)t))‖22 + λ‖Si‖1.

(20)

For each element, we can obtain:

(Sic)t+1 = arg min
Sic

(
L

2
(Sic((Sic)t

− 1

L
∇f((Sic)t)))

2 + λ|Sic|
(21)

Now, the solution process of complex optimal problem in
Equation 13 without Lasso regularization can be replaced by
those of the problem of Equation 20. Combine Equation 20
with the probabilistic approximation in Equation 17, the
element-wise gradients are given as below:

∂(L(S) + γ · Ω(S))

∂Sic

=
∂(f(Si))

∂Sic

= −
M∑
j,l=1

Injl · (
F ijl ·Bcjl
〈Ac,∗, Bcjl〉

−Bcjl) +
1

σ2
S

Sic

+
N∑
i=1

M∑
j=1

M∑
l=1

Iijl · (F ijl −
C∑
c=1

Ajl ·Bcjl) · (−Bcjl)

+ γ
∂tr(STLS)

∂Sic
.

(22)

Let z = (Si)t − 1
L∇f((Si)t), from the solution of proximal

gradient method, we can obtain:

(Sic)t+1 =


zc − λ

L ,
λ
L < zc

0, |zc| ≤ λ
L

zc + λ
L , zc < − λ

L .

(23)
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