
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Many-Class Few-Shot Learning on
Multi-Granularity Class Hierarchy

Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang and Chengqi Zhang

Abstract—We study many-class few-shot (MCFS) problem in both supervised learning and meta-learning settings. Compared to the
well-studied many-class many-shot and few-class few-shot problems, the MCFS problem commonly occurs in practical applications but
has been rarely studied in previous literature. It brings new challenges of distinguishing between many classes given only a few training
samples per class. In this paper, we leverage the class hierarchy as a prior knowledge to train a coarse-to-fine classifier that can
produce accurate predictions for MCFS problem in both settings. The propose model, “memory-augmented hierarchical-classification
network (MahiNet)”, performs coarse-to-fine classification where each coarse class can cover multiple fine classes. Since it is
challenging to directly distinguish a variety of fine classes given few-shot data per class, MahiNet starts from learning a classifier over
coarse-classes with more training data whose labels are much cheaper to obtain. The coarse classifier reduces the searching range
over the fine classes and thus alleviates the challenges from “many classes”. On architecture, MahiNet firstly deploys a convolutional
neural network (CNN) to extract features. It then integrates a memory-augmented attention module and a multi-layer perceptron (MLP)
together to produce the probabilities over coarse and fine classes. While the MLP extends the linear classifier, the attention module
extends the KNN classifier, both together targeting the “few-shot” problem. We design several training strategies of MahiNet for
supervised learning and meta-learning. In addition, we propose two novel benchmark datasets “mcfsImageNet” (as a subset of
ImageNet) and “mcfsOmniglot” (re-splitted Omniglot) specially designed for MCFS problem. In experiments, we show that MahiNet
outperforms several state-of-the-art models (e.g., prototypical networks and relation networks) on MCFS problems in both supervised
learning and meta-learning.

Index Terms—deep learning, many-class few-shot classification, class hierarchy, meta-learning

F

1 INTRODUCTION

THE representation power of deep neural networks
(DNN) has significantly improved in recent years, as

deeper, wider and more complicated DNN architectures
have emerged to match the increasing computation power
of new hardware [1], [2]. Although this brings hope to
complex tasks that could be hardly solved by previous
shallow models, more labeled data is usually required to
train the deep models. The scarcity of annotated data has
become a new bottleneck for training more powerful DNNs.
It is quite common in practical applications such as image
search, robot navigation and video surveillance. For exam-
ple, in image classification, the number of candidate classes
easily exceeds tens of thousands (i.e., many-class), but the
training samples available for each class can be less than
100 (i.e., few-shot). Unfortunately, this scenario is beyond
of the scope of current meta-learning methods for few-shot
classification, which aims to address the data scarcity (few-
shot data per class) but the number of classes in each task
is usually less than 10. Additionally, in life-long learning,
models are always updated once new training data becomes
available, and those models are expected to quickly adapt to
new classes with a few training samples available.

• Corresponding author: Guodong Long
• Lu Liu, Guodong Long, Jing Jiang and Chengqi Zhang are with Centre for

Artificial Intelligence, FEIT, University of Technology Sydney, Ultimo,
NSW 2007, Australia.
E-mails: lu.liu-10@student.uts.edu.au, guodong.long@uts.edu.au,
jing.jiang@uts.edu.au, chengqi.zhang@uts.edu.au

• Tianyi Zhou is with Paul G. Allen School of Computer Science &
Engineering, University of Washington, Seattle, WA 98195, USA.
Email: tianyizh@uw.edu

TABLE 1
Targeted problems of different methods. MahiNet targets many-class

few-shot problem, which is more challenging and practical than others.

many-class few-class
few-shot MahiNet (ours) MAML, Matching Net, etc.
many-shot ResNet, DenseNet, Inception, VGG, etc.

Although previous works of fully supervised learning
have shown the remarkable power of DNN when “many-
class many-shot” training data is available, their perfor-
mance degrades dramatically when each class only has a
few samples available for training. In practical applications,
acquiring samples of rare species or personal data from
edge devices is usually difficult, expensive, and forbidden
due to privacy protection. In many-class cases, annotating
even one additional sample per class can be very expensive
and requires a lot of human efforts. Moreover, the training
set cannot be fully balanced over all the classes in practice.
In these few-shot learning scenarios, the capacity of a deep
model cannot be fully utilized, and it becomes much harder
to generalize the model to unseen data. Recently, several
approaches have been proposed to address the few-shot
learning problem. Most of them are based on the idea of
“meta-learning”, which trains a meta-learner over differ-
ent few-shot tasks so it can generalize to new few-shot
tasks with unseen classes. Thereby, the meta-learner aims
to learn a stronger prior encoding the general knowledge
achieved during learning various tasks, so it is capable to
help a learner model quickly adapt to a new task with new
classes of insufficient training samples. Meta-learning can

ar
X

iv
:2

00
6.

15
47

9v
1

 [
cs

.L
G

]
 2

8
Ju

n
20

20

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

100 images
…

10 fine
classes  

&
 990 images

in totalCat

Bombay Berman…

… … …
77 coarse classes in total

80 images
…

100 images
…

Bird

Parrot Hawk…

90 images
…

80 images
…

root

Dove …

…9 fine
classes

&
800 images

in total

…

Fig. 1. A many-class few-shot learning (MCFS) problem using multi-label class hierarchy information. There are a few coarse classes (blue) and
each coarse class covers a large number of fine classes (red) so that the total number of fine classes is large. Only a few training samples are
available for each fine class. The goal is to train a classifier to generate a prediction over all fine classes with the help of coarse prediction. We
utilize meta-learning to solve the problem of many-class few-shot learning problem, where each task is an MCFS problem sampled from a certain
distribution. The meta-learner’s goal is to help train a classifier for any sampled task with better adaptation to few-shot data within the sampled task.

be categorized into two types: methods based on “learning
to optimize”, and methods based on metric learning. The
former type adaptively modifies the optimizer (or some
parts of it) used for training the task-specific model. It
includes methods that incorporate an Recurrent Neural Net-
works (RNN) meta-learner [3], [4], [5], and model-agnostic
meta-learning (MAML) methods aiming to learn a gener-
ally compelling initialization [6]. The second type learns
a similarity/distance metric [7] or a model generating a
support set of samples [8] that can be used to build K-
Nearest Neighbors (KNN) classifiers from few-shot data in
different tasks.

Instead of meta-learning methods, data augmentation
based approaches, such as the hallucination method pro-
posed in [9], address the few-shot learning problem by gen-
erating more artificial samples for each class. However, most
existing few-shot learning approaches only focus on “few-
class” cases (e.g., 5 or 10) per task, and their performance
drastically collapses when the number of classes slightly
grows to tens to hundreds. This is because the samples per
class no longer provide enough information to distinguish
them from other possible samples within a large number of
other classes. And in real-world few-shot problems, a task
is usually complicated involving many classes.

Fortunately, in practice, multi-outputs/labels informa-
tion such as coarse-class labels in a class hierarchy is usually
available or cheaper to obtain. In this case, the correla-
tion between fine and coarse classes can be leveraged in
solving the MCFS problem, e.g., by training a coarse-to-
fine hierarchical prediction model. As shown in Fig. 1,
coarse class labels might reveal the relationships among
the targeted fine classes. Moreover, the samples per coarse
class are sufficient to train a reliable coarse classifier, whose
predictions are able to narrow down the candidates for the
corresponding fine class. For example, a sheepdog with long
hair could be easily mis-classified as a mop when training
samples of sheepdog are insufficient. However, if we could
train a reliable dog classifier, it would be much simpler to

predict an image as a sheepdog than a mop given a correct
prediction of the coarse class as “dog”. Training coarse-
class prediction models is much easier and less suffered
from the “many class few shot”problem (since the coarse
classes are fewer than the fine classes and the samples per
coarse class are much more than that for each fine class).
It provides helpful information to fine-class prediction due
to the relationship between coarse classes and fine classes.
Hence, class hierarchy might provide weakly supervised
information to help solve the “many-class few-shot (MCFS)”
problem in a framework of multi-output learning, which
aims to predict the class label on each level of the class
hierarchy.

In this paper, we address the MCFS problem in both
traditional supervised learning and in meta-learning set-
tings by exploring the multi-output information on mul-
tiple class hierarchy levels. We develop a neural network
architecture “memory-augmented hierarchical-classification
networks (MahiNet)” that can be applied to both learning
settings. MahiNet uses a Convolutional Neural Network
(CNN), i.e., ResNet [1], as a backbone network to firstly
extract features from raw images. It then trains coarse-class
and fine-class classifiers based on the features, and combines
their outputs to produce the final probability prediction
over the fine classes. In this way, both the coarse-class and
the fine-class classifiers mutually help each other within
MahiNet: the coarse classifier helps to narrow down the
candidates for the fine classifier, while the fine classifier
provides multiple attributes describing every coarse class
and can regularize the coarse classifier. This design lever-
ages the relationship between the fine classes as well as the
relationship between the fine classes and the coarse classes,
which mitigates the difficulty caused by the “many class”
challenge. To the best of our knowledge, we are the first to
successfully train a multi-output model to employ existing
class hierarchy prior for improving both few-shot learning
and supervised learning. It is different from those methods
discussed in related works that use a latent clustering hi-

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

erarchy instead of the explicit class hierarchy we use. In
Table 1, we provide a brief comparison of MahiNet with
other popular models on the learning scenarios they excel.

To address the “few-shot” problem, we apply two types
of classifiers in MahiNet, i.e., MLP classifier and KNN
classifier, which respectively have advantages in many-shot
and few-shot situations. In principle, we always use MLP
for coarse classification, and KNN for fine classification.
Specially, with a sufficient amount of data in supervised
learning, MLP is combined with KNN for fine classification;
and in meta-learning when less data is available, we also
use KNN for coarse classification to assist MLP.

To make the KNN learnable and adaptive to new classes
with few-shot data, we train an attention module to provide
the similarity/distance metric used in KNN, and a re-
writable memory of limited size to store and update the
KNN support set during training. In supervised learning, it
is necessary to maintain and update a relatively small mem-
ory (e.g., 7.2% of the dataset in our experiment) by selecting
a few representative samples, because conducting a KNN
search over all available training samples is too expensive
in computation. In meta-learning, the attention module can
be treated as a meta-learner that learns a universal similarity
metric across different tasks.

Since the commonly used datasets in meta-learning do
not have hierarchical multi-label annotations, we randomly
extract a large subset of ImageNet [10] “mcfsImageNet” as a
benchmark dataset specifically designed for MCFS problem.
Each sample in mcfsImageNet has two labels: a coarse class
label and a fine class label. It contains 139,346 images
from 77 non-overlapping coarse classes composed of 754
randomly sampled fine classes, each has only≈ 180 images,
which might be further splitted for training, validation and
test. The imbalance between different classes in the original
ImageNet are preserved to reflect the imbalance in practi-
cal problems. Similarly, we further extract “mcfsOmniglot”
from Omniglot [11] for the same purpose. We will make
them publicly available later. In fully supervised learning
experiments on these two datasets, MahiNet outperforms
the widely used ResNet [1] (for fairness, MahiNet uses the
same network (i.e., ResNet) as its backbone network). In
meta-learning scenario where each test task covers many
classes, it shows more promising performance than popular
few-shot methods including prototypical networks [8] and
relation networks [12], which are specifically designed for
few-shot learning.

Our contributions can be concluded as: In the new ver-
sion, we conclude our contributions at the end of introduc-
tion as follows: Our contributions can be concluded as: 1)
We address a new problem setting called “many-class few-
shot learning (MCFS)” that has been widely encountered
in practice. Compared to the conventional “few-class few-
shot (as in most few-shot learning methods)” or “many-
class many-shot (as in most supervised learning methods)”
settings, MCFS is more practical and challenging but has
been rarely studied in the ML community. 2) To alleviate
the challenge of “many-class few-shot”, we propose to
utilize the knowledge of a predefined class hierarchy to
train a model that takes the relationship between classes
into account when generating a classifier over a relatively
large number of classes. 3) To empirically justify whether

our model can improve the MCFS problem by using class
hierarchy information, we extract two new datasets from
existing benchmarks, each coupled with a class hierarchy
on reasonably specified classes. In experiments, we show
that our method outperforms the other baselines in MCFS
setting.

2 RELATED WORKS

2.1 Few-shot Learning

Generative models [13] were trained to provide a global
prior knowledge for solving the one-shot learning problem.
With the advent of deep learning techniques, some recent
approaches [14], [15] use generative models to encode spe-
cific prior knowledge, such as strokes and patches. More
recently, works in [9] and [16] have applied hallucinations
to training images and to generate more training samples,
which converts a few-shot problem to a many-shot problem.

Meta-learning has been widely studied to address the
few-shot learning problems for fast adaptation to new
tasks with only few-shot data. Meta-learning was first
proposed in the last century [17], [18], and has recently
brought significant improvements to few-shot learning, con-
tinual learning and online learning [19]. For example, the
authors of [20] proposed a dataset of characters “Om-
niglot” for meta-learning while the work in [21] apply a
Siamese network to this dataset. A more challenging dataset
“miniImageNet” [5], [7] was introduced later. miniImageNet
is a subset of ImageNet [10] and has more variety and higher
recognition difficulty compared to Omniglot. Researchers
have also studied a combination of RNN and attention
based method to overcome the few-shot problem [5]. More
recently, the method in [8] was proposed based on metric
learning to learn a shared KNN [22] classifier for different
tasks. In contrast, the authors of [6] developed their ap-
proach based on the second order optimization where the
model can adapt quickly to new tasks or classes from an
initialization shared by all tasks. The work in [23] addresses
the few-shot image recognition problem by temporal con-
volution, which sequentially encodes the samples in a task.
More recently, meta-learning strategy has been studied to
solve other problems and tasks, such as using meta-learning
training strategy to help design a more efficient unsuper-
vised learning rule [24]; mitigating the low-resource prob-
lems in neural machine translation task [25]; alleviating the
few annotations problem in object detection problem [26].

Our model is closely related to prototypical networks,
in which every class is represented by a prototype that
averages the embedding of all samples from that class, and
the embedding is achieved by applying a shared encoder,
i.e., the meta-learner. It can be modified to generate an adap-
tive number of prototypes [27] and to handle extra weakly-
supervised labels [28], [29] on a category graph. Unlike these
few-shot learning methods that produces a KNN classifier
defined by the prototypes, our model produces multi-labels
or multi-output predictions by combining the outputs of an
MLP classifier and a KNN classifier, which are trained in
either supervised learning or few-shot learning settings.

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

2.2 Multi-Label Classification
Multi-label classification aims to assign multiple class labels
to every sample [30]. One solution is to use a chain of
classifiers to turn multi-label problem into several binary
classification problems [31], [32], [33]. Another solution
treats multi-label classification as multi-class classification
over all possible subsets of labels [34]. Other works learn
an embedding or encoding space using metric learning
approaches [35], feature-aware label space encoding, label
propagation, etc. The work in [36] proposes a decision trees
method for multi-label annotation problems. The efficiency
can be improved by using an ensemble of a pruned set of la-
bels [37]. The applications include multi-label classification
for textual data [38], multi-label learning from crowds [39]
and disease resistance prediction [40]. Our approach differs
from these works in that the multi-output labels and predic-
tions serve as auxiliary information to improve the many-
class few-shot classification over fine classes.

2.3 Hierarchical Classification
Hierarchical classification is a special case of multi-label
or multi-output problems [41], [42]. It has been applied
to traditional supervised learning tasks [43], such as text
classification [44], [45], community data [46], case-based rea-
soning [47], popularity prediction [48], supergraph search in
graph databases [49], road networks [50], image annotation
and robot navigation. However, to the best of our knowl-
edge, our paper is the first work successfully leveraging
class hierarchy information in few-shot learning and meta-
learning tasks. Previous methods such as [51], have consid-
ered the class hierarchy information but failed to achieve
improvement and thus did not integrate it in their method,
whereas our method successfully leverage the hierarchical
relationship between classes to improve the classification
performance by using a memory-augmented model.

Similar idea of using hierarchy for few-shot learning has
been studied in [52], [53], which learns to cluster seman-
tic information and task representation, respectively. [28]
utilizes coarsely labeled data in the hierarchy as weakly
supervised data rather than multi-label annotations for few-
shot learning. In computational biology, hierarchy informa-
tion has also been found helpful in gene function predic-
tion, where two main taxonomies are Gene Ontology and
Functional Catalogue. [54] proposed a truth path rule as an
ensemble method to govern both taxonomies. [55] shows
that the key factors for the success of hierarchical ensemble
methods are: (1)the integration and synergy among multi-
label hierarchy, (2) data fusion, (3) cost-sensitive approaches,
and (4) the strategy of selecting negative examples. [56]
and [57] address the incomplete annotations of proteins
using label hierarchy (as studied in this paper) by following
the idea of few-shot learning. Specifically, they learn to
predict the new gene ontology annotations by Bi-random
walks on a hybrid graph [56] and downward random walks
on a gene ontology [57], respectively.

3 TARGETED PROBLEM AND PROPOSED MODEL

In this section, we first introduce the formulation of many-
class few-shot problem in Sec. 3.1. Then we generally elabo-
rate our network architecture in Sec. 3.2. Details for how to

learn a similarity metric for a KNN classifier with attention
module and how to update the memory (as a support set
of the KNN classifier) are given in Sec. 3.3 and Sec. 3.4
respectively.

3.1 Problem Formulation
We study supervised learning and meta-learning. Given a
training set of n samples D = {(xi, yi, zi)}ni=1, where each
sample xi ∈ X is associated with multiple labels. For sim-
plicity, we assume that each training sample is associated
with two labels: a fine-class label yi ∈ Y and a coarse-class
label zi ∈ Z. The training data is sampled from a data set
D, i.e., (xi, yi, zi) ∼ D. Here, X denotes the set of samples;
Y denotes the set of all the fine classes, and Z denotes the
set of all the coarse classes. To define a class hierarchy for Y
and Z, we further assume that each coarse class z ∈ Z covers
a subset of fine classes Yz , and that distinct coarse classes
are associated with disjoint subsets of fine classes, i.e., for
any z1, z2 ∈ Z, we have Yz1 ∩ Yz2 = ∅. Our goal is fine-
class classification by using the class hierarchy information
and the coarse labels of the training data. In particular, the
supervised learning setting in this case can be formulated
as:

min
Θ

E(x,y,z)∼D − log Pr(y|x; Θ), (1)

where Θ is the model parameters and E refers to the expec-
tation w.r.t. the data distribution. In practice, we solve the
corresponding empirical risk minimization (ERM) during
training, i.e.,

min
Θ

n∑
i=1

− log Pr(yi|xi; Θ). (2)

In contrast, meta-learning aims to learn a meta-learner
model that can be applied to different tasks. Its objective
is to maximize the expectation of the prediction likelihood
of a task drawn from a distribution of tasks. Specifically, we
assume that each task is the classification over a subset of
fine classes T sampled from a distribution T over all classes,
and the problem is formulated as

min
Θ

ET∼T
[
E(x,y,z)∼DT

− log Pr(y|x; Θ)
]
, (3)

where DT refers to the set of samples with label yi ∈ T . The
corresponding ERM is

min
Θ

∑
T

[∑
i∈DT

− log Pr(yi|xi; Θ)

]
, (4)

where T represents a task (defined by a subset of fine
classes) sampled from distribution T , and DT is a training
set for task T sampled from DT .

To leverage the coarse class information of z, we write
Pr(y|x; Θ) in Eq. (1) and Eq. (3) as

Pr(y|x; Θ) =
∑
z∈Z

Pr(y|z,x; Θf) Pr(z|x; Θc), (5)

where Θf and Θc are the model parameters for fine classifier
and coarse classifier, respectively1. Accordingly, given a
specific sample (xi, yi, zi) with its ground truth labels for

1. For simplicity, we neglect model parameters θCNN for feature
extraction here.

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

coarse and fine classes, we can write Pr(yi|xi; Θ) in Eq. (2)
and Eq. (4) as follows.

Pr(yi|xi; Θ) = Pr(yi|zi,xi; Θf) Pr(zi|xi; Θc). (6)

Suppose that a DNN model already produces a logit ay
for each fine class y, and a logit bz for each coarse class
z, the two probabilities in the right hand side of Eq. (6) are
computed by applying softmax function to the logit values
in the following way.

Pr(yi|zi,xi; Θf) =
exp(ayi)∑

y∈Yzi
exp(ay)

,

Pr(zi|xi; Θc) =
exp(bzi)∑
z∈Z exp(az)

. (7)

Therefore, we integrate multiple labels (both the fine-
class label and coarse-class label) in an ERM, whose goal
is to maximize the likelihood of the ground truth fine-class
label. Given a DNN that produces two vectors of logits a
and b for fine class and coarse class respectively, we can
train the DNN for supervised learning or meta-learning by
solving the ERM problems in Eq. (2) or Eq. (4) (with Eq. (6)
and Eq. (7) plugged in).

3.2 Network Architecture
To address MCFS problem in both supervised learning and
meta-learning scenarios, we developed a universal model,
MahiNet, as in Figure 2. MahiNet uses a CNN to extract
features from raw inputs, and then applies two modules
to produce coarse-class prediction and fine-class prediction,
respectively. Each module includes one or two classifiers:
either an MLP or an attention-based KNN classifier or both.
Intuitively, MLP performs better when data is sufficient,
while the KNN classifier is more stable in few-shot sce-
nario. Hence, we always apply MLP to coarse prediction
and always apply KNN to fine prediction. In addition, we
use KNN to assist MLP for the coarse module in meta-
learning, and use MLP to assist KNN for the fine module in
supervised learning. We develop two mechanisms to make
the KNN classifier learnable and be able to quickly adapt to
new tasks in the meta-learning scenario. In the attention-
based KNN classifier, an attention module is trained to
compute the similarity between two samples, and a re-
writable memory is maintained with a highly representative
support set for KNN prediction. The memory is updated
during training.

Our method for learning a KNN classifier combines the
ideas from two popular meta-learning methods, i.e., match-
ing networks [7] that aim to learn a similarity metric, and
prototypical networks [8] that aim to find a representative
center per class for NN search. However, our method relies
on an augmented memory rather than a bidirectional RNN
for retrieving of NN in matching networks. In contrast to
prototypical networks, which only has one prototype per
class, we allow multiple prototypes as long as they can
fit in the memory budget. Together these two mechanisms
prevent the confusion caused by subtle differences between
classes in many-class scenario. Notably, MahiNet can also
be extended to “life-long learning” given this memory up-
dating mechanism. We do not adopt the architecture used
in [23] since it requires the representations of all historical
data to be stored.

3.3 Learn a KNN Similarity Metric with an Attention
In MahiNet, we train an attention module to compute the
similarity used in the KNN classifier. The attention module
learns a distance metric between the feature vector fi of a
given sample xi and any feature vector from the support set
stored in the memory. Specifically, we use the dot product
attention similar to the one adopted in [59] for supervised
learning, and use an Euclidean distance based attention
for meta-learning, following the instruction from [8]. Given
a sample xi, we compute a feature vector fi ∈ Rd by
applying a backbone CNN to xi. In the memory, we main-
tain a support set of m feature vectors for each class, i.e.,
M ∈ RC×m×d, where C is the number of classes. The
KNN classifier produces the class probabilities of xi by first
calculating the attention scores between fi and each feature
vector in the memory, as follows.

a(fi,Mj,k) =
g(fi)·h(Mj,k)

‖g(fi)‖‖h(Mj,k)‖
or − ‖g(fi)− h(Mj,k)‖2, ∀j ∈ [C], k ∈ [m], (8)

where g and h are learnable transformations for fi and the
feature vectors in the memory.

We select the top K nearest neighbors, denoted by topk,
of fi among the m feature vectors for each class j, and
compute the sum of their similarity scores as the attention
score of fi to class j, i.e.,

s(fi,Mj) =
∑

k∈[m]

topk(a(fi,Mj,k)), ∀j ∈ [C]. (9)

We usually findK = 1 is sufficient in practice. The predicted
class probability is derived by applying a softmax function
to the attention scores of fi over all C classes, i.e.,

Pr(yi = j) ,
exp (s(fi,Mj))∑C

j′=1 exp (s(fi,Mj′))
, ∀j ∈ [C]. (10)

3.4 Memory Mechanism for the Support Set of KNN
Ideally, the memory M ∈ RC×m×d can store all available
training samples as the support set of the KNN classifier.
In meta-learning, in each episode, we sample a task with C
classes and m training samples per class, and store them in
the memory. Due to the small amount of training data for
each task, we can store all of them and thus do not need to
update the memory. In supervised learning, we only focus
on one task. This task usually has a large training set and it is
inefficient, unnecessary and too computationally expensive
to store all the training set in the memory. Hence, we set up a
budget hyper-parameter m for each class. m is the maximal
number of feature vectors to be stored in the memory for one
class. Moreover, we develop a memory update mechanism
to maintain a small memory with diverse and representative
feature vectors per class (t-SNE visualization of the diversity
and representability of the memory can be found in the
experiment section.). Intuitively, it can choose to forget or
merge feature vectors that are no longer representative, and
select new important feature vectors into memory.

We will show later in experiments that a small memory
can result in sufficient improvement, while the time cost of
memory updating is negligible. Accordingly, the memory in

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

max score per row

Coarse prediction

xi

MLP
classifier prediction

KNN
classifier

Fine prediction

MLP
classifier

KNN
classifier

Meta
learning

Supervised
learning

C
N
N

memory

n classes
m slots

per class

Attention

fi

fi

fi softmax KNN
prediction

M11
M21

M12
M22

Mn1 Mn2

M1m

M2m

Mnm

a11
a21

a12
a22

an1 an2

a1m

a2m

anm

S1
S2

Sn

up
da

te
Eq

. (
13

)

KNN
Classifier

Overview

If prediction is w
rong, w

rite into the cache

If prediction is right, merge into the memory, Eq. (11)

cache

U11
U21

U12
U22

Un1 Un2

U1m

U2m

Unm

Memory
Update

(supervised learning only)

Update
every iteration

Update
every epoch

m attention scores per class (row)

CNN feature
vector of

input sample

KNN support set
of feature vectors

per class

fi

? ?
?

???

? ?
? ?

?
Step 1. Clustering:

r clusters per class (row)

fi

fi

Step 2. replace the
r memory slots

(with the smallest
utility rates) by the
r cluster centroids

memory utility rate

Fig. 2. Left: MahiNet. The final fine-class prediction combines predictions based on multiple classes (both fine classes and coarse classes), each
of which is produced by an MLP classifier or/and an attention-based KNN classifier. Top right: KNN classifier with learnable similarity metric and
updatable support set. Attention provides a similarity metric aj,k between each input sample fi and a small support set per class stored in memory
Mj,k. The learning of KNN classifier aims to optimize 1) the similarity metric parameterized by the attention, detailed in Sec. 3.3; and 2) a small
support set of feature vectors per class stored in memory, detailed in Sec. 3.4. Bottom right: The memory update mechanism. In meta-learning,
the memory stores the features of all training samples of a task. In supervised learning, the memory is updated during training as follows: for each
sample xi within an epoch, if the KNN classifier produces correct prediction, fi will be merged into the memory; otherwise, fi will be written into a
“cache”. At the end of each epoch, we apply clustering to the samples per class stored in the cache, and use the resultant centroids to replace r
slots of the memory with the smallest utility rate [58].

meta-learning does not need to be updated according to a
rule, while in supervised learning, we design the writing
rule as follows. During training, for the data that can be cor-
rectly predicted by the KNN classifier, we merge its feature
with corresponding slots in the memory by computing their
convex combination, i.e.,

Mj,k = { γ ×Mj,k + (1− γ)× fi, if ŷi = yi
Mj,k, otherwise , (11)

where yi is the ground truth label, and γ = 0.95 is a com-
bination weight that works well in most of our empirical
studies; for input feature vector that cannot be correctly
predicted, we write it to a cache C = {C1, ...,CC} that stores
the candidates written into the memory for the next epoch,
i.e.,

Cj = { Cj , if ŷi = yi
Cj ∪ {fi}, otherwise , (12)

Concurrently, we record the utility rate of the feature vectors
in the memory, i.e., how many times each feature vector
being selected into theK nearest neighbor during the epoch.
The rates are stored in a matrix U ∈ RC×m, and we update
it as follows.

Uj,k = { Uj,k × µ, if ŷi = yi
Uj,k × η, otherwise , (13)

where µ ∈ (1, 2) and η ∈ (0, 1) are hyper-parameters.
At the end of each epoch, we apply clustering to the

feature vectors per class in the cache, and obtain r cluster
centroids as the candidates for memory update in the next
epoch. Then, for each class, we replace r feature vectors in
the memory that have the smallest utility rate with the r
cluster centroids.

Algorithm 1 Training MahiNet for Supervised Learning
Input: Training set D = {(xi, yi, zi)}ni=1;

Randomly initialized θKNN
f , pre-trained θCNN ,

θMLP
c and θMLP

f ;
Hyper-parameters: memory update parameters r, γ,

µ and η; learning rate and its scheduler;
1: while no converge do
2: for mini-batch {(xi, yi, zi)}i∈B in D do
3: Compute fine-class logits a and coarse-class logits b

from the outputs of MLP/KNN classifiers;
4: Apply one step of mini-batch SGD for ERM in

Eq. (2) (with Eq. (6) and Eq. (7) plugged in);
5: for sample in the mini-batch do
6: Update the memory M according to Eq. (11);
7: Update the utility rate U according to Eq. (13);
8: Expand the feature cache C according to Eq. (12);
9: end for

10: end for
11: for each fine class j in Y do
12: Find the indexes of the r smallest values in Uj ,

denoted as {k1, k2, ..., kr};
13: Clustering of the feature vectors within cache Cj to

r clusters with centroids {c1, c2, ..., cr};
14: Replace the r memory slots by centroids: Mj,ki

=
ci for i ∈ [r];

15: end for
16: end while

4 TRAINING STRATEGIES

As shown in the network structure in Fig. 2, in supervised
learning and meta-learning, we use different combinations
of MLP and KNN to produce the multi-output predictions

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

of fine-class and coarse-class. The classifiers are combined
by summing up their output logits for each class, and
a softmax function is applied to the combined logits to
generate the class probabilities. Assume the MLP classifiers
for the coarse classes and the fine classes are φ(·; θMLP

c)
and φ(·; θMLP

f), the KNN classifiers for the coarse classes
and the fine classes are φ(·; θKNN

c) and φ(·; θKNN
f). In

supervised learning, the model parameters are θCNN , Θc =
θMLP
c and Θf = {θMLP

f , θKNN
f }; in meta-learning setting,

the model parameters are θCNN , Θc = {θMLP
c , θKNN

c } and
Θf = θKNN

f .
According to Sec. 3.1, we train MahiNet for supervised

learning by solving the ERM problem in Eq. (2). For meta-
learning, we instead train MahiNet by solving Eq. (4). As
previously mentioned, the multi-output logits (for either
fine classes or coarse classes) used in those ERM problems
are obtained by summing up the logits produced by the
corresponding combination of the classifiers.

4.1 Training MahiNet for Supervised learning

In supervised learning, the memory update relies heavily
on the clustering of the merged feature vectors in the cache.
To achieve relatively high-quality feature vectors, we first
pre-train the CNN+MLP model by using standard back-
propagation, which minimizes the sum of cross entropy
loss on both the coarse-classes and fine-classes. The loss is
computed based on the logits of fine-classes and the logits of
coarse-classes, which are the outputs of the corresponding
MLP classifiers. Then, we fint-tune the whole model, which
includes the fine-class KNN classifier, with memory update
applied. Specifically, in every iteration, we firstly update the
parameters of the model with mini-batch SGD based on the
coarse-level and fine-level logits produced by the MLP and
KNN classifiers. Then, the memory that stores a limited
number of representative feature maps for every class is
updated by the rules explained in Sec. 3.4, as well as the
associated utility rates and feature cache. The details of the
training procedure during the fine-tune stage is explained
in Alg. 1.

4.2 Training MahiNet for Meta-learning

When sampling the training/test tasks, we allow unseen
fine classes that were not covered in any training task
to appear in test tasks, but we fix the ground set of the
coarse classes for both training and test tasks. Hence, every
coarse class appearing in any test task has been seen during
training, but the corresponding fine classes belonging to this
coarse class in training and test tasks can be vary.

In the meta-learning setting, since the tasks in different
iterations targets samples from different subsets of classes
and thus ideally need different feature map representa-
tions [60], we do not maintain the memory during training
so every class can have a fixed representation. Instead, the
memory is only maintained within each iteration for a spe-
cific task and it stores feature map representations extracted
from the support set of the task. The detailed training
procedure can be found in Alg. 2. In summary, we generate a
training task by randomly sampling a subset of fine classes,
and then we randomly sample a support set S and a query

Algorithm 2 Training MahiNet for Meta-Learning
Input: Training set D = {(xi, yi, zi)}ni=1 and fine class set

Y;
Parameters: randomly initialized θCNN , θMLP

c ,
θMLP
f , and θKNN

f ;
Hyper-parameters: learning rate, scheduler; for each

class, number of queries ns, support set size nS ;
1: while not converge do
2: Sample a task T ∼ T as a subset of fine classes T ⊆ Y.

3: for class j in T do
4: Randomly sample ns data points of class j from D

to be the support set Sj of class j.
5: Randomly sample nq data points of class j from

D\Sj to be the query set Qj of class j.
6: end for
7: for mini-batch from Q do
8: Compute fine-class logits a and coarse-class logits b

from the outputs of MLP/KNN classifiers;
9: Apply one step of mini-batch SGD for ERM in

Eq. (4) (with Eq. (6) and Eq. (7) plugged in);
10: end for
11: end while

set Q from the associated samples belonging to these classes.
We store the CNN feature vectors of S in the memory, and
train MahiNet to produce correct predictions for the samples
in Q with the help of coarse label predictions.

5 EXPERIMENTS

In this section, we first introduce two new benchmark
datasets specifically designed for MCFS problem, and com-
pare them with other popular datasets in Sec. 5.1. Then,
we show that MahiNet has better generality and can out-
perform the specially designed models in both supervised
learning (in Sec. 5.2) and meta-learning (in Sec. 5.3) sce-
narios. We also present an ablation study of MahiNet to
show the improvements brought by different components
and how they interact with each other. In Sec. 5.4, we report
the comparison with the variants of baseline models in order
to show the broad applicability of our strategy of leveraging
the hierarchy structures. In Sec. 5.6, we present an analysis
of the computational costs caused by the augmented mem-
ory in MahiNet.

5.1 Two New Benchmarks for MCFS Problem:
mcfsImageNet & mcfsOmniglot

Since existing datasets for both supervised learning and
meta-learning settings neither support multiple labels nor
fulfill the requirement of “many-class few-shot” settings,
we propose two novel benchmark datasets specifically for
MCFS Problem, i.e., mcfsImageNet & mcfsOmniglot2. The
samples in them are annotated by multiple labels of dif-
ferent granularity. We compare them with several existing
datasets in Table 2. Our following experimental study fo-
cuses on these two datasets.

2. More details about the class hierarchy split information for mcf-
sImageNet and mcfsOmniglot can be found at: https://github.com/
liulu112601/MahiNet

https://github.com/liulu112601/MahiNet
https://github.com/liulu112601/MahiNet

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

TABLE 2
Comparison of the statistics for mcfsImageNet, mcfsOmniglot and previously popular datasets for supervised learning and few-shot learning. We

propose datasets mcfsImageNet, mcfsOmniglot, in which every image is annotated by multiple labels: a coarse label and a fine label. “#c” and “#f”
denote the number of coarse classes and fine classes, respectively. “-” means “not applicable”.

Meta-Learning Supervised Learning
#image image

sizeTrain Val Test Train Test
#c #f #c #f #c #f #c #f #c #f

ImageNet-1k - - - - - - 1 1000 1 1000 1.43M 224
miniImageNet 1 64 1 16 1 20 - - - - 0.06M 84
Omniglot 33 1028 5 172 13 423 - - - - 0.03M 28
mcfsOmniglot 50 973 50 244 50 1624 - - - - 0.03M 28
mcfsImageNet 77 482 61 120 68 152 77 754 77 754 0.14M 112

ImageNet [10] is one of the most widely used large-
scale benchmark dataset for image classification. Although
it provides hierarchical information about class labels, it
cannot be directly used to test the performance of MCFS
learning methods. One main reason is that a fine class in
ImageNet may belong to multiple coarse classes, which
introduces unnecessary noise in narrowing down the fine-
class candidates and is outside the scope of MCFS problem,
in which each sample has only one unique coarse-class label.
In addition, ImageNet does not satisfy the criteria of “few-
shot” per class: it has around 1,430 images per class on aver-
age. miniImageNet [7] is a widely used benchmark dataset
in meta-learning community to test the performance on few-
shot learning tasks. miniImageNet is a subset extracted from
ImageNet; however, its data are collected from only 80 fine
classes, which is much less than “many-class” usually refers
to in practice. In addition, it does not provide an associated
class hierarchy.

Hence, to develop a benchmark dataset specifically for
the purpose of testing the performance of MCFS learning,
we extracted a subset of images from ImageNet and cre-
ated a dataset called “mcfsImageNet”. Table 2 compares the
statistics of mcfsImageNet with several benchmark datasets.
Comparing to the original ImageNet, we avoided selecting
the samples that belong to more than one coarse classes
into mcfsImageNet in order to meet the class hierarchy
requirements of MCFS problem, i.e., each fine class only
belongs to one coarse class. Compared to miniImageNet,
mcfsImageNet is about 5× larger, and covers 754 fine classes
in total, which is much more than the 80 fine classes in
miniImageNet. Moreover, on average, each fine class only
has ∼ 185 images for training and test, which matches
the typical MCFS scenarios in practice. Additionally, the
number of coarse classes in mcfsImageNet is 77, which is
much less than 754 of the fine classes. This is consistent
with the data properties found in many practical applica-
tions, where the coarse-class labels can only provide weak
supervision, but each coarse class has sufficient training
samples. Further, we avoided selecting coarse classes which
are too broad or contain too many different fine classes.
For example, the “Misc” class in ImageNet has 20400 sub-
classes, and includes both animal (3998 sub-classes) and
plant (4486 sub-classes). This kind of coarse label covers
too many classes and cannot provide valuable information
to distinguish different fine classes.

Omniglot [11] is a small hand-written character dataset
with two-level class labels. However, in their original train-
ing/test splitting, the test set contains new coarse classes

TABLE 3
The performance (test accuracy) comparison of different models in the

setting of supervised learning on mcfsImageNet.

Model Hierarchy #Params (MB) Accuracy

Prototypical Net [8] N 11 2.7%
ResNet18 [1] N 11 48.6%

MahiNet w/o KNN Y 11 49.1%
MahiNet (ours) Y 12 49.9%

that are not covered by the training set, since this weakly la-
beled information is not supposed to be utilized during the
training stage. This is inconsistent with the MCFS settings,
in which all the coarse classes are exposed in training, but
new fine classes can still emerge during test. Therefore, we
re-split Omniglot to fulfill the MCFS problem requirement.

5.2 Supervised Learning Experiments

5.2.1 Setup

We use ResNet18 [1] as the backbone CNN. The transforma-
tion functions g and h in the attention module are two fully
connected layers followed by group normalization [62] with
a residual connection. We set the memory size to m = 12
and the number of clusters to r = 3, which can achieve a
better trade-off between the memory cost and performance.
Batch normalization [63] is applied after each convolution
and before activation. During pre-training, we apply the
cross entropy loss on the probability predictions in Eq. (7).
During fine-tuning, we fix the θCNN , θMLP

c , and θMLP
f to

ensure the fine-tuning process is stable. We use SGD with a
mini-batch size of 128 and a cosine learning rate scheduler
with an initial learning rate 0.1. µ = 1.05, η = 0.95, a weight
decay of 0.0001, and a momentum of 0.9 are used. We train
the model for 100 epochs during pre-training and 90 epochs
for the fine-tuning. All hyperparameters are tuned on 20%
samples randomly sampled from the training set. we use
20% data randomly sampled from the training set to serve
as the validation set to tune all the hyperparameters.

5.2.2 Experiments on mcfsImageNet

Table 3 compares MahiNet with the supervised learning
model (i.e., ResNet18) and meta-learning model (i.e., pro-
totypical networks) in the setting of supervised learning.
The results show that MahiNet outperforms the specialized
models, such as ResNet18 in MCFS scenario.

We also show the number of parameters for every
method, which indicates that our model only has 9% more

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

TABLE 4
Test accuracy (%) of different approaches in meta-learning scenario on mcfsImageNet. Both the average accuracy over 600 test episodes and the
corresponding 95% confidence intervals are reported. In the first row, “n-k” represents n-way (class) k-shot classification task. e.g., “20-10” refers

to “20-way 10-shot”. To make a fair comparison, all models use the same backbone: ResNet18. In 50-way experiments, Relation Net stops to
improve after the first few iterations and fails to achieve comparable performance (more details in Sec. 5.4).

Model Hierarchy #params (MB) 5-10 20-5 20-10 50-5 50-10

ResNet18 [1] N 11 60.7 58.6 67.2 48.9 56.8
Prototypical Net [8] N 11 78.48±0.66 67.78±0.37 70.11±0.38 57.74±0.24 62.12±0.24
Relation Net [12] N 11 74.12±0.78 52.66±0.43 55.45±0.46 N/A N/A
MAML [6] N 11 61.67±0.01 47.24±0.01 48.10±0.00 11.43±0.00 11.88±0.00
Reptile [61] N 11 36.21±0.01 29.13±0.01 15.23±0.01 18.03±0.00 9.16±0.00
MahiNet (Ours) Y 12 80.74±0.66 70.11±0.41 73.50±0.36 58.80±0.24 62.80±0.24

TABLE 5
Ablation studies of MahiNet in the meta-learning setting. Both the average accuracy over 600 test episodes and the corresponding 95%

confidence intervals are reported. In the first row, “n-k” represents n-way (class) k-shot classification task. “Mem-1” stores the average feature of
all training samples for each class in one task; “Mem-2” stores all features of the training samples in one task.

Memory Attention Hierarchy MLP-classifier KNN-classifier 5-10 20-5 20-10 50-5 50-10Mem-1 Mem-2

X X X 79.04±0.67 68.46±0.38 71.13±0.38 58.09±0.24 62.18±0.22
X X X 77.41±0.71 66.89±0.40 71.72±0.37 55.25±0.23 59.38±0.23
X X X X 76.85±0.67 66.43±0.41 70.01±0.38 55.13±0.23 59.22±0.23

X X X X X 78.27±0.68 67.03±0.41 71.20±0.37 57.98±0.24 62.40±0.23
X X X X X 79.61±0.67 69.49±0.40 72.52±0.37 58.48±0.24 62.62±0.24
X X X X X 79.06±0.66 69.10±0.41 72.15±0.36 58.30±0.23 62.51±0.24
X X X X X 80.64±0.64 68.99±0.40 72.78±0.37 58.56±0.25 62.70±0.24
X X X X X X 80.74±0.66 70.11±0.41 73.50±0.36 58.80±0.24 62.80±0.24

parameters than the baselines. Even using the version with-
out KNN (which has the same number of parameters as
baselines) can still outperform them.

Prototypical networks have been specifically designed
for few-shot learning. Although it can achieve promising
performance on few-shot tasks each covering only a few
classes and samples, it fails when directly used to classify
many classes in the classical supervised learning setting, as
shown in Table 3. A primary reason, as we discussed in
Section 1, is that the resulted prototype suffers from high
variance (since it is simply the average over an extremely
few amount of samples per class) and cannot distinguish
each class from tens of thousands of other classes (few-
shot learning task only needs to distinguish it from 5-
10 classes). Hence, dedicated modifications is necessary to
make prototypical networks also work in the supervised
learning setting. One motivation of this paper is to develop a
model that can be trained and directly used in both settings.

The failure of Prototypical networks in supervised learn-
ing setting is not too surprising since for prototypical net-
work the training and test task in the supervised setting is
significantly different. We keep its training stage the same
(i.e., target a task of 5 classes in every episode). In the
test stage, we use the prototypes as the per-class means
of training samples in each class to perform classification
over all available classes on the test set data. Note the
number of classes in the training tasks and the test task are
significantly different, which introduces a large gap between
training and test that leads to the failure. This can also be
validated by observing the change on performance when we
intentionally reduce the gap: the accuracy improves as the
number of classes in each training task increases.

Another potential method to reduce the training-test gap

is to increase the number of classes/ways per task to the
same number of classes in supervised learning. However,
prototypical net requires an prohibitive memory cost in
such many class setting, i.e, it needs to keep 754(number of
classes)×2(1 for support set, 1 for query set)=1512 samples
in memory for 1 shot learning setting and 754×6(5 for
support set, 1 for query set) = 4536 samples for 5 shots
setting. Unlike classical supervised learning models which
only needs to keep the model parameters in memory, proto-
typical net needs to build prototypes on the fly from the few-
shot samples in the current episode, so at least one sample
should be available to build the prototypes and at least one
sample for query.

To separately measure the contribution of the class hi-
erarchy and the attention-based KNN classifier, we con-
duct an ablation study that removes the KNN classifier
from MahiNet. The results show that MahiNet still outper-
forms ResNet18 even when only using the extra coarse-
label information and an MLP classifier for fine classes
during training. Using a KNN classifier further improves
the performance since KNN is more robust in the few-shot
fine-level classifications. In supervised learning scenario,
memory update is applied in an efficient way. 1) For each
epoch, the average clustering time is 30s and is only 7.6% of
the total epoch time (393s). 2) Within an epoch, the memory
update time (0.02s) is only 9% of the total iteration time
(0.22s).

5.3 Meta-Learning Experiments
5.3.1 Setup
We use the same backbone CNN (i.e., ResNet18) and trans-
formation functions (i.e., g, and h) for attention as in super-
vised learning. In each task, we sample the same number

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

of classes for training and test, and follow the training
procedure in [8]. For a fair comparison, all baselines and
our model are trained on the same number of classes for
all training tasks, since increasing the number of classes in
training tasks improves the performance as indicated in [8].
We initialize the learning rate as 10−3 and halve it after
every 10k iterations. Our model is trained by ADAM [64]
using a mini-batch size of 128 (only in the pre-training
stage), a weight decay of 0.0001, and a momentum of 0.9.
We train the model for 25k iterations in total. Given the
class hierarchy, the training objective sums up the cross
entropy losses computed over the coarse class and over the
fine classes, respectively. All hyper-parameters are tuned
based on the validation set introduced in Table 2. Every
baseline and our method use the same training set and test
test, and the test set is inaccessible during training so any
data leakage is prohibited. In every experimental setting, we
make the comparison fair by applying the same backbone,
same training and test data, the same task setting (we follow
the most popular N way K shot problem setting) and the
same training strategy (including how to sample tasks and
the value of N and K for meta-learning, since higher N and
K generally lead to better performance as indicated in [8]).

5.3.2 Experiments on mcfsImageNet

Table 4 shows that MahiNet outperforms the supervised
learning baseline (ResNet18) and the meta-learning baseline
(Prototypical Net). For ResNet18, we use the fine-tuning
introduced in [6], in which the trained network is first fine-
tuned on the training set (i.e., the support set) provided
in the new task in the test stage and then tested on the
associated query set. To evaluate the contributions of each
component in MahiNet, we show results of several variants
in Table 5. “Attention” refers to the parametric functions for
g and h, otherwise we use identity mapping. “Hierarchy”
refers to the assist of class hierarchy. For a specific task,
“Mem-1” stores the average embedding over all training
samples for each class in one task; “Mem-2” stores all the
embeddings of the training samples in one task; “Mem-3”
is the union of “Mem-1” and “Mem-2”. Table 5 implies: (1)
Class hierarchy information can incur steady performance
across all tasks; (2) Combining “Mem-1” and “Mem-2”
outperforms using either of them independently; (3) Atten-
tion brings significant improvement to MCFS problem only
when being trained with class hierarchy. Because the data is
usually insufficient to train a reliable similarity metric to
distinguish all fine classes, but distinguishing a few fine
classes in each coarse class is much easier. The attention
module is merely parameterized by the two linear layers
g and h, which are usually not expressive enough to learn
the complex metric without the side information of class
hierarchy. With the class hierarchy as a prior knowledge, the
attention module only needs to distinguish much fewer fine
classes within each coarse class, and the learned attention
can faithfully reflect the local similarity within each coarse
class. We also show the number of parameters for every
method in the table. Our method only has 9% more param-
eters compared to baselines.

5.3.3 Experiments on mcfsOmniglot
We conduct experiments on the secondary benchmark
mcfsOmniglot. We use the same training setting as for
mcfsImageNet. Following [65], mcfsOmniglot is augmented
with rotations by multiples of 90 degrees. In order to make
an apple-to-apple comparison to other baselines, we follow
the same backbone used in their experiments. Therefore,
we use four consecutive convolutional layers, each followed
by a batch normalization layer, as the backbone CNN and
compare MahiNet with prototypical networks as in Table 6.
We do ablation study on MahiNet with/without hierarchy
and MahiNet with different kinds of memory. “Mem-3”, i.e.,
the union of “Mem-1” and “Mem-2”, outperforms “Mem-1”,
and “Attention” mechanism can improve the performance.
Additionally, MahiNet outperforms other compared meth-
ods, which indicates the class hierarchy assists to make more
accurate predictions. In summary, experiments on the small-
scale and large-scale datasets show that class hierarchy
brings a stable improvement.

5.4 Comparison to Variants of Relation Net
5.4.1 Relation network with class hierarchy
In order to demonstrate that the class hierarchy information
and the multi-output model not only improves MahiNet but
also other existing models, we train relation network with
class hierarchy in the similar manner as we train MahiNet.
The results are shown in Table 7. It indicates that the class
hierarchy also improves the accuracy of relation network by
more than 1%, which verifies the advantage and generality
of using class hierarchy in other models. Although the rela-
tion net with class hierarchy achieves a better performance,
MahiNet still outperforms this improved variant due to
its advantage in its model architecture, which are specially
designed for utilizing the class hierarchy in the many-class
few-shot scenario.

5.4.2 Relation Network in many-class setting
When relation network is trained in many-class settings
using the same training strategy from [12], we found that
the network usually stops to improve and stays near a sub-
optimal solution. Specifically, after the first few iterations,
the training loss still stays at a high level and the training
accuracy still stays low. They do not change too much
even after hundreds of iterations, and this problem cannot
be solved after trying different initial learning rates. The
training loss quickly converges to around 0.02 and the
training accuracy stays at ∼ 2% no matter what learning
rate is applied to the training procedure. Relation net on
other low way settings have a competitive performance as
shown in Table 7, which is also the settings reported in
their papers. We use the same hyper-parameters as their
paper for both few-class and many-class settings and the
difference is only the parameter of the number of way. Even
if relation network performs well in the few-class settings,
its performance dramatically degrade when given the chal-
lenging high-way settings. One potential reason for this is
that relation net uses MSE loss to regress the relation score to
the ground truth: matched pairs have similarity 1 and mis-
matched pair have similarity 0. When the number of ways
increases, the imbalance between the number of matched

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 6
Test accuracy (%) of basedline, our method and its variants in the meta-learning scenario on mcfsOmniglot. Both the average accuracy over 600
test episodes and the corresponding 95% confidence intervals are reported. In the first row, “n-k” represents n-way (class) k-shot classification

task. e.g., “20-10” refers to “20-way 10-shot”.

Model Hierarchy 5-5 20-5 50-5

Reptile [61] N 54.70±0.02 17.10±0.01 8.34±0.02
MAML [6] N 74.60±0.01 21.61±0.00 9.27±0.20
Prototypical Net [8] N 99.10±0.15 98.84±0.11 97.94±0.08

MahiNet (Mem-1) N 99.17±0.16 98.82±0.11 97.96±0.09
MahiNet (Mem-3) N 99.31±0.18 98.89±0.11 97.93±0.09
MahiNet (Mem-3) Y 99.40±0.15 99.00±0.16 98.10±0.17

TABLE 7
The improvement of class hierarchy on relation network on

mcfsImageNet. The average test accuracy over 600 test episodes and
the corresponding 95% confidence intervals are reported.

Model Hierarchy 5 way 5 shot 5 way 10 shot

Relation Net [12] N 63.02±0.87 74.12±0.78
Relation Net Y 66.82±0.86 75.31±0.90

MahiNet (Mem-3) Y 74.98±0.75 80.74±0.66

pairs and unmatched pairs grows and training is mainly
to optimize the loss generated by the mismatched pairs
instead of the matched ones, so that the objective focuses
more on how to avoid mismatching instead of matching, i.e.,
predicting correctly, and makes the accuracy more difficult
to get improvement. This suggests that relation networks
may need more tricky way to train it successfully in a
many-class setting compared to the few-class settings and
traditional few-class few-shot learning approaches may not
be directly applied in many-class few-shot problems. This is
also one of the drawbacks for relation net and how to make
the model more robust to hyper-parameter tuning is beyond
the scope of our paper.

5.5 Analysis of Hierarchy
The main reasons of the improvement in our paper are:
(1) our model can utilize prior knowledge from the class
hierarchy; (2) we use an effective memory update scheme to
iteratively and adaptively refine the support set. We show
how much improvement the class hierarchy can bring to
our model in Table 5 and to other baselines in Table7. The
upper half of Table 5 are variants of our model without
using hierarchy while the lower half are variants with
hierarchy. It shows that the variants with hierarchy consis-
tently outperform the ones without using hierarchy. To see
whether hierarchy can help to improve other baselines, in
Table7, we add hierarchy information to relation net (while
keeping the other components the same) and it achieves 1-
4% improvement on accuracy.

5.6 Analysis of Augmented Memory
5.6.1 Visualization
In order to show how representative and diverse the feature
vectors selected into the memory slots are, we visualize
them together with the unselected images’ feature vectors
using t-SNE in Fig. 3 [66]. In particular, we randomly sample
50 fine classes marked by different colors. Within every

class, we show both the feature vectors selected into the
memory and the feature vectors of the original images
from the same class. The features in the memory (crosses
with a lower transparency) can cover most areas where the
image features (dots of a higher transparency) are located. It
implies that the highly selected feature vectors in memory
are diverse and sufficiently representative of the whole class.

5.6.2 Memory Cost

In the supervised learning experiments, the memory load
required by MahiNet is only 754 × 12/125, 321 = 7.2%
(12 samples per class for all the 754 fine classes, while
the training set includes 125, 321 images in total) of the
space needed to store the whole training set. We tried to
increase the memory size to about 10% of the training set,
but the resultant improvement on performance is negligible
compared to the extra computation costs, meaning that
increasing the memory costs is unnecessary for MahiNet.
In contrast, for meta-learning, in each task, every class only
has few-shot samples, so the memory required to store all
the samples is very small. For example, in the 20-way 1-
shot setting, we only need to store 20 feature vectors in the
memory. Therefore, our memory costs in both supervised
learning and meta-learning scenarios can be kept small and
the proposed method is memory-efficient.

6 CONCLUSION

In this paper, we study a new problem “many-class few-
shot”(MCFS), which is a more challenging problem com-
monly encountered in practice compared to the previ-
ously studied “many-class many-shot”, “few-class few-
shot” and “few-class many-shot” problems. We address
the MCFS problem by training a multi-output model pro-
ducing coarse-to-fine predictions, which leverages the class
hierarchy information and explore the relationship between
fine and coarse classes. We propose “Memory-Augmented
Hierarchical-Classification Network (MahiNet)”, which in-
tegrates both MLP and learnable KNN classifiers with at-
tention modules to produce reliable prediction of both the
coarse and fine classes. In addition, we propose two new
benchmark datasets with a class hierarchy structure and
multi-label annotations for the MCFS problem, and show
that MahiNet outperforms existing methods in both super-
vised learning and meta-learning settings on the benchmark
datasets without losing advantages in efficiency.

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

40 20 0 20 40

40

20

0

20

40

image
memory

Fig. 3. The t-SNE visualization for memory maintained in the setting of
supervised learning. We randomly sample 50 out of 754 fine classes
shown as different colors. The sampled image feature of the training
samples and the stored memory feature for one class share the same
color while the image feature has higher transparency. For each class,
the image features surround the memory feature and features from
different classes are dispersed from each other for classification.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 770–778.

[2] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 4700–4708.

[3] M. Andrychowicz, M. Denil, S. Gómez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. de Freitas, “Learning to learn by
gradient descent by gradient descent,” in Proc. Advances Neural Inf.
Process. Syst., 2016, pp. 3981–3989.

[4] K. Li and J. Malik, “Learning to optimize,” in Proc. Int. Conf. Learn.
Representations, 2017.

[5] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in Proc. Int. Conf. Learn. Representations, 2017.

[6] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proc. Int. Conf. Machine
Learning, 2017, pp. 1126–1135.

[7] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in Proc. Advances Neural Inf.
Process. Syst., 2016, pp. 3630–3638.

[8] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in Proc. Advances Neural Inf. Process. Syst., 2017, pp.
4077–4087.

[9] M. Douze, A. Szlam, B. Hariharan, and H. Jégou, “Low-shot
learning with large-scale diffusion,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 3349–3358.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
ageNet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[11] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum, “One shot
learning of simple visual concepts,” in Proc. of the Annual Meeting
of the Cognitive Science Society (CogSci), 2011, pp. 2568–2573.

[12] F. S. Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 1199–1208.

[13] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,
pp. 594–611, 2006.

[14] A. Wong and A. L. Yuille, “One shot learning via compositions of
meaningful patches,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1197–1205.

[15] B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum, “One-shot
learning by inverting a compositional causal process,” in Proc.
Advances Neural Inf. Process. Syst., 2013, pp. 2526–2534.

[16] Y. Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-shot
learning from imaginary data,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 7278–7286.

[17] D. K. Naik and R. Mammone, “Meta-neural networks that learn
by learning,” in Proc. Int. Joint Conf. on Neural Networks, 1992, pp.
437–442.

[18] J. Schmidhuber, “Evolutionary principles in self-referential learn-
ing, or on learning how to learn: the meta-meta-... hook,” Ph.D.
dissertation, Institut f. Informatik, Tech. Univ. Munich, 1987.

[19] P. Zhao, Y. Zhang, M. Wu, S. C. Hoi, M. Tan, and J. Huang,
“Adaptive cost-sensitive online classification,” IEEE Trans. Knowl.
Data Eng., vol. 31, no. 2, pp. 214–228, 2019.

[20] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-
level concept learning through probabilistic program induction,”
Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[21] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural net-
works for one-shot image recognition,” in Proc. Int. Conf. Machine
Learning Workshop, 2015.

[22] W. Yu, X. Lin, W. Zhang, J. Pei, and J. A. McCann, “Simrank*:
effective and scalable pairwise similarity search based on graph
topology,” The VLDB Journal, Jan 2019. [Online]. Available:
https://doi.org/10.1007/s00778-018-0536-3

[23] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple
neural attentive meta-learner,” in Proc. Int. Conf. Learn. Representa-
tions, 2018.

[24] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein,
“Learning unsupervised learning rules,” in Proc. Int. Conf. Learn.
Representations, 2019.

[25] J. Gu, Y. Wang, Y. Chen, K. Cho, and V. O. Li, “Meta-learning
for low-resource neural machine translation,” in Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2018.

[26] E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder,
S. Pankanti, R. Feris, A. Kumar, R. Giries, and A. M. Bronstein,
“Repmet: Representative-based metric learning for classification
and one-shot object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019.

[27] K. R. Allen, E. Shelhamer, H. Shin, and J. B. Tenenbaum, “Infi-
nite mixture prototypes for few-shot learning,” in Proc. Int. Conf.
Machine Learning, 2019.

[28] L. Liu, T. Zhou, G. Long, J. Jiang, L. Yao, and C. Zhang, “Proto-
type propagation networks (PPN) for weakly-supervised few-shot
learning on category graph,” in Proc. Int. Joint Conf. on AI, 2019.

[29] L. Liu, T. Zhou, G. Long, J. Jiang, and C. Zhang, “Learning to
propagate for graph meta-learning,” in Proc. Advances Neural Inf.
Process. Syst., 2019, pp. 1037–1048.

[30] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” International Journal of Data Warehousing and Mining
(IJDWM), vol. 3, no. 3, pp. 1–13, 2007.

[31] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” in Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases. Springer,
2009, pp. 254–269.

[32] J. Read, L. Martino, and D. Luengo, “Efficient monte carlo methods
for multi-dimensional learning with classifier chains,” Pattern
Recognition, vol. 47, no. 3, pp. 1535–1546, 2014.

[33] J. Read, L. Martino, P. M. Olmos, and D. Luengo, “Scalable
multi-output label prediction: From classifier chains to classifier
trellises,” Pattern Recognition, vol. 48, no. 6, pp. 2096–2109, 2015.

[34] N. SpolaôR, E. A. Cherman, M. C. Monard, and H. D. Lee, “A
comparison of multi-label feature selection methods using the
problem transformation approach,” Electronic Notes in Theoretical
Computer Science, vol. 292, pp. 135–151, 2013.

[35] W. Liu, D. Xu, I. Tsang, and W. Zhang, “Metric learning for multi-
output tasks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 2,
pp. 408–422, 2019.

[36] W. Liu and I. W. Tsang, “Making decision trees feasible in ultra-
high feature and label dimensions,” Journal of Machine Learning
Research, vol. 18, no. 1, pp. 2814–2849, 2017.

[37] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification
using ensembles of pruned sets,” in Proc. IEEE Int. Conf. on Data
Mining. IEEE, 2008, pp. 995–1000.

https://doi.org/10.1007/s00778-018-0536-3

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

[38] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label
data,” in Data mining and knowledge discovery handbook. Springer,
2009, pp. 667–685.

[39] S. Li, Y. Jiang, N. V. Chawla, and Z. Zhou, “Multi-label learning
from crowds,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 7, pp.
1369–1382, July 2019.

[40] D. Heider, R. Senge, W. Cheng, and E. Hüllermeier, “Multilabel
classification for exploiting cross-resistance information in hiv-
1 drug resistance prediction,” Bioinformatics, vol. 29, no. 16, pp.
1946–1952, 2013.

[41] C. N. Silla and A. A. Freitas, “A survey of hierarchical classification
across different application domains,” Data Mining and Knowledge
Discovery, vol. 22, no. 1-2, pp. 31–72, 2011.

[42] A. D. Gordon, “A review of hierarchical classification,” Journal of
the Royal Statistical Society: Series A (General), vol. 150, no. 2, pp.
119–137, 1987.

[43] J. Wehrmann, R. Cerri, and R. Barros, “Hierarchical multi-label
classification networks,” in Proc. Int. Conf. Machine Learning, 2018,
pp. 5225–5234.

[44] S. Dumais and H. Chen, “Hierarchical classification of web con-
tent,” in Proceedings of the International ACM SIGIR conference on
Research and development in Information Retrieval. ACM, 2000, pp.
256–263.

[45] A. Sun and E.-P. Lim, “Hierarchical text classification and evalu-
ation,” in Proc. IEEE Int. Conf. on Data Mining. IEEE, 2001, pp.
521–528.

[46] H. G. Gauch Jr and R. H. Whittaker, “Hierarchical classification of
community data,” The Journal of Ecology, pp. 537–557, 1981.

[47] Q. Zhang, C. Shi, Z. Niu, and L. Cao, “Hcbc: A hierarchical case-
based classifier integrated with conceptual clustering,” IEEE Trans.
Knowl. Data Eng., vol. 31, no. 1, pp. 152–165, Jan 2019.

[48] Y. Yang, Y. Duan, X. Wang, Z. Huang, N. Xie, and H. T. Shen,
“Hierarchical multi-clue modelling for poi popularity prediction
with heterogeneous tourist information,” IEEE Trans. Knowl. Data
Eng., vol. 31, no. 4, pp. 757–768, 2019.

[49] B. Lyu, L. Qin, X. Lin, L. Chang, and J. X. Yu, “Supergraph
search in graph databases via hierarchical feature-tree,” IEEE
Trans. Knowl. Data Eng., vol. 31, no. 2, pp. 385–400, 2019.

[50] D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, and Q. Zhu,
“When hierarchy meets 2-hop-labeling: Efficient shortest distance
queries on road networks,” in Proceedings of the 2018 International
Conference on Management of Data, ser. SIGMOD ’18. New
York, NY, USA: ACM, 2018, pp. 709–724. [Online]. Available:
http://doi.acm.org/10.1145/3183713.3196913

[51] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenen-
baum, H. Larochelle, and R. S. Zemel, “Meta-learning for semi-
supervised few-shot classification,” in Proc. Int. Conf. Learn. Repre-
sentations, 2018.

[52] A. Li, T. Luo, Z. Lu, T. Xiang, and L. Wang, “Large-scale few-shot
learning: Knowledge transfer with class hierarchy,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 7212–7220.

[53] H. Yao, Y. Wei, J. Huang, and Z. Li, “Hierarchically structured
meta-learning,” 2019.

[54] G. Valentini, “True path rule hierarchical ensembles for genome-
wide gene function prediction,” IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics (TCBB), vol. 8, no. 3, pp. 832–847,
2011.

[55] N. Cesa-Bianchi, M. Re, and G. Valentini, “Synergy of multi-label
hierarchical ensembles, data fusion, and cost-sensitive methods for
gene functional inference,” Machine Learning, vol. 88, no. 1-2, pp.
209–241, 2012.

[56] G. Yu, H. Zhu, C. Domeniconi, and J. Liu, “Predicting protein
function via downward random walks on a gene ontology,” BMC
bioinformatics, vol. 16, no. 1, p. 271, 2015.

[57] G. Yu, G. Fu, J. Wang, and Y. Zhao, “Newgoa: Predicting new go
annotations of proteins by bi-random walks on a hybrid graph,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), vol. 15, no. 4, pp. 1390–1402, 2018.

[58] B. Gholami and V. Pavlovic, “Probabilistic temporal subspace
clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 3066–3075.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proc. Advances Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[60] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osin-
dero, and R. Hadsell, “Meta-learning with latent embedding opti-
mization,” in Proc. Int. Conf. Learn. Representations, 2018.

[61] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-
learning algorithms,” arXiv preprint arXiv:1803.02999, 2018.

[62] Y. Wu and K. He, “Group normalization,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 3–19.

[63] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int.
Conf. Machine Learning, 2015, pp. 448–456.

[64] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. Int. Conf. Learn. Representations, 2015.

[65] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in
Proc. Int. Conf. Machine Learning, 2016, pp. 1842–1850.

[66] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, no. 11, pp. 2579–2605,
2008.

Lu Liu received her bachelors degree from
South China University of Technology (SCUT),
Guangzhou, China, in 2017. She is currently pur-
suing the Ph.D. at the Center for Artificial Intelli-
gence, University of Technology Sydney (UTS),
Australia. Her current research interests include
deep learning, machine learning, few-shot learn-
ing and meta-learning.

Tianyi Zhou is a Ph.D student of Paul G.
Allen School of Computer Science and Engi-
neering at University of Washington, Seattle.
His research covers several topics of machine
learning, natural language processing, statistics
and data analysis. He has published 30+ pa-
pers at top conferences and journals including
NeurIPS, ICML, ICLR, AISTATS, ACM SIGKDD,
IEEE ICDM, AAAI, IJCAI, IEEE ISIT, Machine
Learning Journal (Springer), DMKD (Springer),
IEEE TIP, IEEE TNNLS, etc. He is the recipient

of the best student paper award at IEEE ICDM 2013.

Guodong Long received his PhD degree from
the University of Technology Sydney (UTS), Aus-
tralia, in 2014. He is a senior lecturer at the
Centre for Artificial Intelligence (CAI), Faculty of
Engineering and IT, UTS. His research focuses
on data mining, machine learning, and natu-
ral language processing. He has more than 40
research papers published on top-tier journals
and conferences, including IEEE TPAMI, TCYB,
TKDE, ICLR, AAAI, IJCAI, and ICDM.

Jing Jiang received her PhD degree from the
University of Technology Sydney (UTS), Aus-
tralia in 2015. She is currently a Lecturer at the
Centre for Artificial Intelligence, Faculty of Engi-
neering and IT, UTS. Her research interest lies in
data mining and machine learning applications
with the focuses on deep reinforcement learning
and sequential decision-making. She has more
than 20 research papers published on top-tier
journals and conferences including AAAI, IJCAI
and CCGrid.

http://doi.acm.org/10.1145/3183713.3196913

ACCEPTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

Chengqi Zhang has been appointed as a Distin-
guished Professor at the University of Technol-
ogy Sydney from 27 February 2017 to 26 Febru-
ary 2022, an Executive Director UTS Data Sci-
ence from 3 January 2017 to 2 January 2021, an
Honorary Professor at the University of Queens-
land from 1 January 2015 to 31 December 2017,
an Adjunct Professor at the University of New
South Wales from 20 March 2017 to 20 March
2020, and a Research Professor of Information
Technology at UTS from 14 December 2001.

In addition, he has been selected as the Chairman of the Australian
Computer Society National Committee for Artificial Intelligence since
November 2005, and the Chairman of IEEE Computer Society Technical
Committee of Intelligent Informatics (TCII) since June 2014.

	Clipboard Data(1)
	2006.15479v1.pdf
	1 Introduction
	2 Related Works
	2.1 Few-shot Learning
	2.2 Multi-Label Classification
	2.3 Hierarchical Classification

	3 Targeted Problem and Proposed Model
	3.1 Problem Formulation
	3.2 Network Architecture
	3.3 Learn a KNN Similarity Metric with an Attention
	3.4 Memory Mechanism for the Support Set of KNN

	4 Training Strategies
	4.1 Training MahiNet for Supervised learning
	4.2 Training MahiNet for Meta-learning

	5 Experiments
	5.1 Two New Benchmarks for MCFS Problem: mcfsImageNet & mcfsOmniglot
	5.2 Supervised Learning Experiments
	5.2.1 Setup
	5.2.2 Experiments on mcfsImageNet

	5.3 Meta-Learning Experiments
	5.3.1 Setup
	5.3.2 Experiments on mcfsImageNet
	5.3.3 Experiments on mcfsOmniglot

	5.4 Comparison to Variants of Relation Net
	5.4.1 Relation network with class hierarchy
	5.4.2 Relation Network in many-class setting

	5.5 Analysis of Hierarchy
	5.6 Analysis of Augmented Memory
	5.6.1 Visualization
	5.6.2 Memory Cost

	6 Conclusion
	References
	Biographies
	Lu Liu
	Tianyi Zhou
	Guodong Long
	Jing Jiang
	Chengqi Zhang

