
1

A Review for Weighted MinHash Algorithms
Wei Wu, Bin Li, Ling Chen, Junbin Gao and Chengqi Zhang, Senior Member, IEEE

Abstract—Data similarity (or distance) computation is a fundamental research topic which underpins many high-level applications
based on similarity measures in machine learning and data mining. However, in large-scale real-world scenarios, the exact similarity
computation has become daunting due to “3V” nature (volume, velocity and variety) of big data. In such cases, the hashing techniques
have been verified to efficiently conduct similarity estimation in terms of both theory and practice. Currently, MinHash is a popular
technique for efficiently estimating the Jaccard similarity of binary sets and furthermore, weighted MinHash is generalized to estimate
the generalized Jaccard similarity of weighted sets. This review focuses on categorizing and discussing the existing works of weighted
MinHash algorithms. In this review, we mainly categorize the Weighted MinHash algorithms into quantization-based approaches,
“active index”-based ones and others, and show the evolution and inherent connection of the weighted MinHash algorithms, from the
integer weighted MinHash algorithms to real-valued weighted MinHash ones (particularly the Consistent Weighted Sampling scheme).
Also, we have developed a python toolbox for the algorithms, and released it in our github. Based on the toolbox, we experimentally
conduct a comprehensive comparative study of the standard MinHash algorithm and the weighted MinHash ones.

Index Terms—Jaccard Similarity; Generalized Jaccard Similarity; MinHash; Weighted MinHash; Consistent Weighted Sampling; LSH;
Data Mining; Algorithm; Review

F

1 INTRODUCTION

DATA are exploding in the era of big data. In 2017,
Google search received over 63,000 requests per sec-

ond on any given day [1]; Facebook had more than 2 billion
daily active users [2]; Twitter sent 500 million tweets per day
[3] – Big data have been driving machine learning and data
mining research in both academia and industry [4], [5]. Data
similarity (or distance) computation is a fundamental re-
search topic which underpins many high-level applications
based on similarity measures in machine learning and data
mining, e.g., classification, clustering, regression, retrieval
and visualization. However, it has been daunting for large-
scale data analytics to exactly compute similarity because
of “3V” characteristics (volume, velocity and variety). For
example, in the case of text mining, it is intractable to
enumerate the complete feature set (e.g., over 108 elements
in the case of 5-grams in the original data [5]). Therefore,
it is imperative to develop efficient yet accurate similarity
estimation algorithms in large-scale data analytics.

A powerful solution to tackle the issue is to employ
Locality Sensitive Hashing (LSH) techniques [6], [7], which,
as a vital building block for large-scale data analytics, are
extensively used to efficiently and unbiasedly approximate
certain similarity (or distance) measures. LSH aims to map
the similar data objects to the same data points represented
as the hash codes with a higher probability than the dissimi-
lar ones by adopting a family of randomized hash functions.
So far researchers have proposed many LSH methods, e.g.,
MinHash for the Jaccard similarity [8], SimHash for the

W. Wu and J. Gao are with the Discipline of Business Analytics, The
University of Sydney Business School, Darlington, NSW 2006, Australia,
william.third.wu@gmail.com, junbin.gao@sydney.edu.au
B. Li is with the School of Computer Science, Fudan University, Shanghai,
China. E-mail: libin@fudan.edu.cn.
L. Chen and C. Zhang are with the Centre for Artificial Intelligence, FEIT,
University of Technology Sydney, Ultimo, NSW 2007, Australia. E-mail:
{ling.chen,chengqi.zhang}@uts.edu.au.

cosine similarity [9], [10], and LSH with p-stable distri-
bution for the lp distance [11]. Particularly, MinHash has
been verified to be effective in document analysis based
on the bag-of-words model [12] and also, widely used to
solve the real-world problems such as social networks [13],
[14], chemical compounds [15] and information manage-
ment [16]. Furthermore, some variations of MinHash have
improved its efficiency. For example, b-bit MinHash [17],
[18] dramatically saves storage space by preserving only
the lowest b bits of each hash value; while one-permutation
MinHash [19], [20] employs only one permutation to im-
prove the computational efficiency.

MinHash and its variations consider all the elements
equally, thus selecting one element uniformly from the set.
However, in many cases, one wishes that an element can
be selected with a probability proportional to its importance
(or weight). A typical example is the tf-idf adopted in text
mining, where each term is assigned with a positive value
to indicate its importance in the documents. In this case, the
standard MinHash algorithm simply discards the weights.
To address this challenge, weighted MinHash algorithms
have been explored to estimate the generalized Jaccard
similarity [21], which generalizes the Jaccard similarity of
weighted sets. Furthermore, the generalized Jaccard sim-
ilarity has been successfully adopted in a wide variety
of applications, e.g., malware classification [22], malware
detection [23], hierarchical topic extraction [24], etc.

In this review, we give a comprehensive overview of
the existing works of weighted MinHash algorithms, which
would be mainly classified into quantization-based, “active
index”-based approaches and others. The first class aims to
transform the weighted sets into the binary sets by quantiz-
ing each weighted element into a number of distinct and
equal-sized subelements. In this case, the hash value of
each subelement is compulsorily computed. By contrast, the
second one just considers a couple of special subelements
called “active index” and compute their hash values, thus

ar
X

iv
:1

81
1.

04
63

3v
1

 [
cs

.D
S]

 1
2

N
ov

 2
01

8

2

improving the efficiency of the weighted MinHash algo-
rithms. The third category consists of various algorithms
which cannot be classified into the above categories.

In summary, our contributions are three-fold:

1) We review the MinHash algorithm and 12 weighted
MinHash algorithms, and propose categorizing
them into groups.

2) We develop a python toolbox, which consists of
the MinHash algorithm and 12 weighted MinHash
algorithms, for the review, and release the toolbox
in our github1.

3) Based on our toolbox, we conduct comprehensive
comparative study of the ability of all algorithms in
estimating the generalized Jaccard similarity.

The remainder of the review is organized as follows. In
Section 2, we first give a general overview for Locality Sensi-
tive Hashing and MinHash, and the categories of weighted
MinHash algorithms. Then, we introduce quantization-
based Weighted MinHash algorithms, “active index”-based
Weighted MinHash and others in Section 3, Section 4 and
Section 5, respectively. In Section 6, we conduct a compre-
hensive comparative study of the ability of the standard
MinHash algorithm and the weighted MinHash algorithms
in estimating the generalized Jaccard similarity. Finally, we
conclude the review in Section 7.

2 OVERVIEW

2.1 Locality Sensitivity Hashing
One fundamental research topic in data mining and ma-
chine learning is data similarity (or distance) computation.
Based on data similarity, one can further conduct classifica-
tion, clustering, regression, retrieval and visualization, etc.
So far some classical similarity (or distance) measures have
been adopted, e.g., lp distance, cosine similarity, hamming
distance and Jaccard similarity, etc. The problem of simi-
larity computation is defined as the nearest neighbor (NN)
problem as follows.
Definition 1 (Nearest Neighbor). Given a query object q, the

goal is to find an object NN(q), called nearest neighbor,
from a set of objects P = {p1,p2, · · · ,pN} so that
NN(q) = arg minp∈P dist(q,p), where dist(q,p) is a
distance between q and p.

Alternatively, there exists a variant of the nearest neigh-
bor problem, i.e., the fixed-radius near neighbor (R-NN).
Definition 2 (R-Near Neighbor). Given a query object q and

the distance threshold R, the goal is to find all objects
R-NN(q) from a set of objects P = {p1,p2, · · · ,pN} so
that R-NN(q) = {p|dist(q,p) ≤ R,p ∈ P}.
Finding the nearest neighbor or R-near neighbors can

be easily solved in the case of low-dimensional data. How-
ever, some efficient algorithms for them in low-dimensional
spaces will spend high computational cost in the high-
dimensional settings due to curse of dimensionality. To this
end, a large amount of research has concentrated on the
approximation problem.

1. https://github.com/williamweiwu/williamweiwu.github.io/
tree/master/WeightedMinHashToolbox

TABLE 1
Summary of Classical Similarity (Distance) Measures and LSH

Algorithms.

Similarity (Distance) Measure LSH Algorithm

lp distance, p ∈ (0, 2] LSH with p-stable distribution [11]

Cosine similarity SimHash [9]

Jaccard similarity MinHash [8], [25]

Hamming distance [Indyk and Motwani, 1998] [6]

χ2 distance χ2-LSH [26]

Definition 3 (c-Approximate Near Neighbor). Given a query
object q, the distance thresholdR > 0, 0 < δ < 1 and c ≥
1, the goal is to report some cR-near neighbor of q with
the probability of 1−δ if there exists an R-near neighbor
of q from a set of objects P = {p1,p2, · · · ,pN}.

One well-known solution scheme for c-Approximate
Near Neighbor is Locality Sensitivity Hashing (LSH), which
aims to map similar data objects to the same data points
represented as the hash codes with a higher probability than
the dissimilar ones by employing a family of randomized
hash functions. Formally, an LSH algorithm is defined as
follows:

Definition 4 (Locality Sensitivity Hashing). A family ofH is
called (R, cR, p1, p2)-sensitive if for any two data objects
p and q, and h chosen uniformly from H:

• if dist(p,q) ≤ R, then Pr(h(p) = h(q)) ≥ p1,
• if dist(p,q) ≥ cR, then Pr(h(p) = h(q)) ≤ p2,

where c > 1 and p1 > p2.

So far various LSH methods have been proposed based
on lp distance, cosine similarity, hamming distance and
Jaccard similarity, which have been successfully applied in
statistics [27], computer vision [28], [29], multimedia [30],
data mining [31], [32], machine learning [33], [34], natural
language processing [35], [36], etc. Specifically, MinHash
[8], [25] aims to unbiasedly estimate the Jaccard similarity
and has been effectively applied in the bag-of-words model
such as duplicate webpage detection [37], [38], webspam
detection [39], [40], text mining [41], [42], bioinformatics
[15], large-scale machine learning systems [19], [43], content
matching [44], social networks [14] etc. LSH with p-stable
distribution [11] is designed for lp norm ||xi − xj ||p, where
p ∈ (0, 2]. SimHash [9] is able to give the unbiased estimator
for cosine similarity between data objects represented as
vectors. For binary vectors, one LSH method [6] is used to
estimate the hamming distance. Besides, Gorisse et al. [26]
propose χ2-LSH method for the χ2 distance between two
vectors. The above classical similarity (distance) measures
and the corresponding LSH algorithms are summarized in
Table 1.

2.2 Jaccard Similarity and MinHash

The bag-of-words model is widely used in many applica-
tions, especially document analysis. In this section, we will
introduce the Jaccard similarity, which has been successfully
applied in the bag-of-words model [12], and the MinHash

https://github.com/williamweiwu/williamweiwu.github.io/tree/master/WeightedMinHashToolbox
https://github.com/williamweiwu/williamweiwu.github.io/tree/master/WeightedMinHashToolbox

3

U={1, 2, 3, 4, 5, 6, 7}

{7, 3, 5, 1, 2, 4, 6}

π

(a) random permutation on U

U={1, 2, 3, 4, 5, 6, 7}

0 R
(b) uniform mapping on U

S={1, 3, 6, 7}

{7, 3, 1, 6}

π

S={1, 3, 6, 7}

0 R
(c) random permutation on S (d) uniform mapping on S

Fig. 1. A toy example for random permutation and uniform mapping on
U = {1, 2, 3, 4, 5, 6, 7} and its subset S = {1, 3, 6, 7}. Note that global
random permutation or global uniform mapping on the universal set U
and its subset S.

algorithm, which is a well-known LSH algorithm and used
to unbiasedly estimate the Jaccard similarity. Also, we will
introduce their corresponding extended versions.

Given a universal set U and its subset S ⊆ U , if for
any element k ∈ S , its weight Sk = 1 and for any element
k ∈ U − S , its weight Sk = 0, then we call S a binary
set; if for any element k ∈ S , Sk > 0 and for any element
k ∈ U − S , its weight Sk = 0, then we call S a weighted
set. Furthermore, all (sub)sets can be represented as vectors
whose lengths are the size of the universal set, for example,
U = [U1, U2, · · · , Un] and S = [S1, S2, · · · , Sn].

A random permutation π is performed on U , i.e., π :
U 7→ U . Considering the high complexity of the random
permutation, alternatively, we can uniformly and injectively
map each element in U into the real axis, i.e., f : U 7→ R, to
approximate the random permutation [24]. In other words,
each element is assigned with a unique hash value v ∈ R.
Figure 1(a-b) shows the random permutation and uniform
mapping on U = {1, 2, 3, 4, 5, 6, 7}, respectively. The values
on the real axis in Figure 1(b) imply that the elements are
uniformly mapped to the positions in R, which is equivalent
to the random permutation in Figure 1(a).

Furthermore, we can extend uniform mapping on binary
sets into weighted sets, i.e., f : (U , Y) 7→ R, where Y =
[0, Sk], which means that each (Uk, yk), where Uk ∈ U and
yk ∈ Y , is distinct.

Next, we can globally apply random permutation or uni-
form mapping to a subset S of U , as shown in Figure 1(c-d).
In other words, the same random permutation or the same
uniform mapping is imposed on the universal set and all
its subsets. Furthermore, for a subset S , the most important
element is the first one in the leftmost, e.g., 7 in Figure 1(c-d).
From the perspective of functions, taking the first element
is considered as a hash function, i.e., h(S) = min(π(S)) for
random permutation and h(S) = min(f(S)) for uniform
mapping (we adopt π to represent the random permutation
and uniform mapping for unity below). If we repeat the
process D times, we will obtain a fingerprint with D hash
values, i.e., {πd(·)}Dd=1.

Now we give two important definitions of the Jaccard

similarity and the generalized Jaccard similarity as well as
the corresponding solution schemes for the two similarity
measures, i.e., the MinHash scheme and the Consistent
Weighted Sampling (CWS) scheme.

The Jaccard similarity is statistically a measure of com-
paring the similarity of two binary sets.
Definition 5 (Jaccard Similarity). Given two sets S and T ,

the Jaccard similarity is defined as

J(S, T) =
|S ∩ T |
|S ∪ T |

. (1)

The above definition assumes that all elements are equally
important. If we extend the definition on weighted sets, we
will have the generalized Jaccard similarity as follows.
Definition 6 (Generalized Jaccard Similarity). Given two

sets S = [S1, · · · , Sn] and T = [T1, · · · , Tn] with all
real weights Sk, Tk ≥ 0 for k ∈ {1, . . . , n}, then the
generalized Jaccard similarity is

generalizedJ(S, T) =

∑
k min(Sk, Tk)∑
k max(Sk, Tk)

. (2)

It is very time-consuming to compute the (generalized)
Jaccard similarity for all paired sets, especially in the case of
the large-scale universal set, due to the inefficient operations
of union and intersection. To this end, some efficient LSH
algorithms have been successively proposed to approximate
the similarity measures.
Definition 7 (MinHash [8]). Given a universal set U and a

subset S ⊆ U , MinHash is generated as follows: Assum-
ing a set of D hash functions (or D random permuta-
tions), {πd}Dd=1, where πd : U 7→ U , are applied to U , the
elements in S which have the minimum hash value in
each hash function (or which are placed in the first posi-
tion of each permutation), {arg min(πd(S))}Dd=1, would
be the MinHashes of S .

MinHash is used to approximate the Jaccard similarity
of two sets. It is proved that the probability of two sets, S
and T , to generate the same MinHash value (hash collision)
exactly equals the Jaccard similarity of the two sets J(S, T):

Pr[min(πd(S)) = min(πd(T))] = J(S, T). (3)

However, it is very expensive for a large universal set to
generate the explicit random permutations. Therefore, we
generally employ the uniform mapping in practice. To this
end, a hash function as follows is adopted to produce the
permutated index πd(i) = (adi+bd) mod cd, where i is the
index of an element from the universal set U , 0 < ad, bd < cd
are two random integers and cd is a big prime number such
that cd ≥ |U| [8].

It is easy to see that the MinHash algorithm treats all
elements in U equally because each element can be mapped
to the minimum hash value with equal probability. How-
ever, if the method is directly used for a weighted set, the
weights, which imply the importance level of each element,
will have to be simply replaced with 1 or 0. Consequently,
the approach will give rise to serious information loss.

In order to address the aforementioned problem, some
weighted MinHash algorithms have been successively pro-
posed, where the Consistent Weighted Sampling (CWS)
scheme [45] is very remarkable.

4

Definition 8 (Consistent Weighted Sampling [45]). Given
a weighted set S = [S1, . . . , Sn], where Sk ≥ 0 for
k ∈ {1, . . . , n}, Consistent Weighted Sampling (CWS)
generates a sample (k, yk) : 0 ≤ yk ≤ Sk, which is
uniform and consistent.

• Uniformity: The subelement (k, yk) should be uni-
formly sampled from

⋃
k({k}×[0, Sk]), i.e., the prob-

ability of selecting the k-th element is proportional to
Sk, and yk is uniformly distributed in [0, Sk].

• Consistency: Given two non-empty weighted sets, S
and T , if ∀k, Tk ≤ Sk, a subelement (k, yk) is selected
from S and satisfies yk ≤ Tk, then (k, yk) will be also
selected from T .

Similarly, CWS has the following property

Pr[CWS(S) = CWS(T)] = generalizedJ(S, T). (4)

2.3 A Categorization of Weighted MinHash Algorithms

Compared with the MinHash algorithm, the weighted
MinHash algorithms preserve the weight information of
weighted sets for the sake of performance enhancement.
Existing works of weighted MinHash algorithms would
be classified into quantization-based, “active index”-based ap-
proaches and others based on different modes of processing
weights. The algorithms are summarized in Table 2, Table 3
and Figure 2.

• Quantization-based: The methods generate a num-
ber of distinct and equal-sized subelements by ex-
plicitly quantizing each weighted element. Conse-
quently, the subelements are independently treated
in the augmented universal set. Naturally, the com-
putational complexity is proportional to the number
of subelements so that the computational cost is
unaffordable in the case of numerous subelements.

• “Active index”-based: The methods only compute
hash values for special subelements, i.e., “active in-
dices”. In particular, the CWS scheme has been by far
the most successful in terms of theory and practice,
and many researchers have successively proposed
the follow-up works. Surprisingly, most of the CWS-
based algorithms sample only two so-called “active
indices" for each element, thus remarkably decreas-
ing time complexity.

• Others: By contrast, the approaches aim to improve
efficiency via various techniques as far as possible.

3 QUANTIZATION-BASED WEIGHTED MINHASH
ALGORITHMS

The key idea of the quantization-based weighted MinHash
algorithms is to convert a weighted set into a binary
set by explicitly quantizing each weighted element into
a number of distinct and equal-sized subelements, e.g.,
S
(i)
k , i ∈ {1, 2, · · · }. In other words, each subelement has

the length of ∆ = 1. In the augmented binary set, all
subelements are treated independently, even if they are from
the same weighted elements. Subsequently, the MinHash
algorithm will be directly applied to the augmented binary

set. Intuitively, the element with a larger weight is quan-
tized into more subelements than the one with a smaller
weight, and thus the former can be selected with a higher
probability than the latter.

Generally, in order to implement the above conversion,
each weight should be multiplied by a large constant C due
to the fact that the weights are very small in most cases,
e.g., Sk ∈ [0, 10]. Consequently, a large C guarantees that
the real-valued weights are quantized more precisely and,
the accuracy and runtime performance of the algorithms
are both closely related to C . The accuracy performance
gets improved with increasing C , but the time complexity
is proportional to the size of the augmented universal set.
Therefore, it is indispensable to keep a trade-off between
accuracy and runtime when this category of algorithms is
employed. However, the preprocessing step produces the
remaining float part of each weighted element. Naturally,
the remaining float part is either preserved or discarded
because the MinHash algorithm can only process the ex-
istent elements (i.e., Sk = 1) and the non-existent ones (i.e.,
Sk = 0). To this end, two strategies are proposed as follows.

3.1 [Haveliwala et. al., 2000]

Haveliwala et. al. (2000) [21] directly rounds off the remain-
ing float part. From the perspective of uniform mapping
of MinHash, the algorithm assigns a hash value to each
subelement. In this case, the approach can be broken down
into two steps: (1) For the k-th element in S , assign each
subelement (k, yk,i) with a hash value and find (k, yk) that
has the minimum hash value; (2) Find (k, y∗k) that has the
minimum hash value in {(k, yk)}nk=1.

3.2 [Haeupler et. al., 2014]

Compared to [Haveliwala et. al., 2000], [Haeupler
et. al., 2014] [46] preserves the remaining float part with
probability being exactly equal to the value of the remaining
float part. Specifically, the float part is uniformly and con-
sistently mapped to the interval [0, 1), that is, the random
hash value is seeded with the element. If the random value
is less than the value of the remaining float part, it will be
added as a subelement into the binary set; otherwise, it will
be abandoned.

By multiplying a constant C , the quantization-based
approaches expand the universal set, where each element
is permuted or computed for a hash value.

4 “ACTIVE INDEX"-BASED WEIGHTED MINHASH
ALGORITHMS

The quantization-based weighted MinHash algorithms need
to compute the hash values for all subelements, so it is very
inefficient when the universal set is augmented remarkably.
In order to address the issue, the researchers proposed the
idea of “active index” [24] and many follow-up works, all
of which improve the efficiency of the quantization-based
weighted MinHash algorithms by just sampling several
“active indices” and then computing the hash values for
them.

5

TABLE 2
An Overview of Weighted MinHash Algorithms.

Category Main Idea Algorithms Preprocessing Characteristics

Quantization-based Quantized into binary sets
[Haveliwala et. al., 2000] [21] Multiply by a large constant Round off the float part

[Haeupler et. al., 2014] [46] Multiply by a large constant Preserve the float part with probability

“Active index”-based Sample “Active index”
[Gollapudi et. al., 2006](1) [24] Multiply by a large constant Only sample “active indices”

The CWS Scheme 1 - Extend “active indices” to real-value

Others -

[Gollapudi et. al., 2006](2) [24] Normalize weights Preserve elements with probability

[Chum et. al., 2008] [47] - Sample with exponential distribution

[Shrivastava, 2016] [48] Require upper bounds of weights Rejection sampling

1 See Table 3.

TABLE 3
The Algorithms of the CWS Scheme.

Algorithms Brief Description

CWS [45] Traverse several “active indices”

ICWS [49] Sample two special “active indices” and generate hash code (k, yk)

0-bit CWS [50] Discard yk produced by ICWS

CCWS [51] Uniformly discretize the original weights instead of the logarithm of weighs in ICWS

PCWS [52] Use one less number of uniform random variables than ICWS

I2CWS [53] Relieve the dependence of two special “active indices” in ICWS

4.1 [Gollapudi et. al., 2006](1)

Quantization-based weighted MinHash algorithms com-
pute a hash value for each subelement, which is computa-
tionally inefficient in practice. In order to accelerate the com-
putation process, Gollapudi and Panigraphy proposed an
efficient weighted MinHash algorithm for integer weighted
sets, which is able to skip much unnecessary hash value
computation by employing the idea of “active index" [24].

The algorithm explores the weights from bottom to top.
In the integer weighted set, the weighted element is first
quantized into a sequence of subelements, each of which
has the length of ∆ = 1 (i.e., the weight of each subelement
is ∆ = 1), and then each subelement can be uniformly
mapped to the interval [0, 1]. Furthermore, we observe an in-
teresting phenomenon that there exists a subsequence which
starts with the subelement at the bottom and whose hash
values are monotonically decreasing from bottom to top,
and the subelements of the subsequence are called as “active
indices”. Considering any interval which is composed of
two adjacent “active indices” in the subsequence, the hash
values of the subelements within the interval are definitely
greater than that of the lower endpoint. Consequently, the
subsequence can be treated as the Bernoulli trials: “success”
is the event that the hash value of a certain subelement is
less than that of the lower endpoint, and the probability of
success is the hash value of the lower endpoint; “failure”
is the event that the hash value of a certain subelement
is greater than that of the lower endpoint. Naturally, the
number of trials that must be run in order to achieve
success, i.e., the length of the interval, can be modeled as
the geometric distribution. Based on the idea, the subele-
ments between two adjacent “active indices” can be directly

skipped by sampling a skipping interval from the geometric
distribution.

Take Sk in the left part of Figure 3 as an illustration,
where we just consider the part below the weight Sk: It
computes and compares hash value of each subelement
from bottom to top. Assuming that for seven subelements,
(k, yk1), (k, yk2), · · · , (k, yk7), we have vk,yk6

< vk,yk4
<

vk,yk1
< {vk,yk2

, vk,yk3
}, yk4 < vk,yk5

and vk,yk6
< vk,yk7

.
When the algorithm starts from the subelement at the bot-
tom yk1, in the following steps, it will directly reach yk4
by skipping subelements yk2 and yk3, because the blue
subelements with larger hash values than yk1 can be ig-
nored when one only needs to maintain the minimum hash
value vk,yk

for the k-th element. Specifically, in the interval
[yk1, yk4], the hash value vk,yk4

of the right endpoint yk4
is uniformly distributed on the interval [0, vk,yk1

], and thus
the number of subelements within this interval conforms
to a geometric distribution with the parameter being vk,yk1

.
Similarly, the algorithm directly goes from yk4 to yk6 while
skipping subelements yk5. Since there exist no subelements,
whose hash value is smaller than that of yk6 between yk6
and Sk, the algorithm ceases to traverse in the element.
Consequently, the method can iteratively sample all the
“active indices” from bottom to top for the sake of (k, yk)
with the minimum hash value. It is easy to see that yk is the
largest “active index” in {1, 2, . . . , Sk}.

Essentially, the method is not able to change the un-
derlying uniform distribution of the minimum hash value
among the subelements generated from the weighted set
according to the properties of the Bernoulli trials and the
geometric distribution. Therefore, it can be considered as
the accelerated version of [Haveliwala et. al., 2000]. We

6

Weighted
MinHash

Quantization-
based

“Active index”-
based

Others

[Haveliwala et. al.,
2000]

[Gollapudi et. al.,
2006] (2)

[Haeupler
et.~al.,~2014]

[Gollapudi et. al.,
2006] (1)

The CWS Scheme

[Chum et.al.,
2008]

[Shrivastava,
2016]

CWS

ICWS

0-bit CWS

CCWS

PCWS

I2CWS

Fig. 2. An Overview of Weighted MinHash Algorithms

observe from Figure 3 that the method traverses all “active
indices" within the weight, i.e, [0, Sk], while skipping non-
active subelements. Consequently, the method remarkably
reduces the computational complexity from O(

∑
k Sk) to

O(
∑

k logSk). However, for real-valued weighted sets, the
method still needs an explicit quantization by multiplying
a large constant C , which brings tremendous overhead in
both time and space.

4.2 The Consistent Weighted Sampling Scheme
[Gollapudi et. al., 2006](1) is still inefficient for real-valued
weighted sets because it is actually a weighted MinHash
algorithm for integer weighted sets, and real-valued weights
have to be transformed into integer weights by multiplying
a large constant C , thus increasing the number of “active in-
dices" which need to be traversed. To this end, by setting the
weight of the subelement ∆ → 0, the Consistent Weighted
Sampling scheme [45] was proposed to address the issue
that [Gollapudi et. al., 2006](1) cannot directly handle real-
valued weights.

As is known from Definition 8, the CWS scheme requires
two conditions: uniformity and consistency. Uniformity
means that each subelement is mapped to the minimum
hash value with equal probability. On the other hand, in
essence, consistency points out that in a hashing process, the
same subelements from different weighted sets are assigned
with the same hash value, i.e., global mapping in Figure
1. If we refer to the decomposition steps of [Haveliwala et.
al., 2000], in order to find the “active index” of a certain
element that has the minimum hash value, a sequence of
“active indices” are shared in the same elements of different

weighted sets and independent of the weights, as shown in
Figure 4.

4.2.1 Consistent Weighted Sampling

The first algorithm of the Consistent Weighted Sampling
scheme, the Consistent Weighted Sampling (CWS) algo-
rithm, extends “active indices" from [0, Sk] in [Gollapudi
et. al., 2006](1) to [0,+∞). As shown in the right part of
Figure 3, a sequence of “active indices" are composed of
yk1, yk4, yk6, yk10 and yk15, although yk10 and yk15 are above
the weight Sk. It is easy for us to observe two special
“active indices", one of which is the largest “active index"
yk = yk6 ∈ [0, Sk] smaller than the weight and the other
of which is the smallest “active index" zk = y10 ∈ (Sk,+∞)
greater than the weight. In order to find the two “active
indices", instead of starting from 0 in [Gollapudi et. al.,
2006](1), CWS explores the “active indices" in both direc-
tions from the weight Sk, towards 0 as well as +∞.

Inspired by the fact that the “active indices” are uni-
formly and independently sampled in [Gollapudi et. al.,
2006](1), the distribution over “active indices” in any in-
terval is independent from the one over “active indices”
in another disjoint interval. Consequently, CWS partitions
(0,+∞) into intervals of the form (2k−1, 2k] so that the “ac-
tive indices” can be explored in each interval independently.
In other words, one can leap directly to any interval and
explore “active indices” within it.

Specifically, in each interval, one starts from the upper
endpoint of the interval, and generates a sequence of “active
indices” from the upper endpoint to the lower one by
uniformly sampling. So the “active indices” are independent

7

k

Sk

0
yk1

yk2

yk3
yk4

yk5
yk=yk6

yk7

[Gollapudi et. al., 2006] (1) CWS

k

zk=yk10

yk15

yk=yk6

yk4

yk1

(8,16]

(16,...]

(2,4]

(4,8]

(0,2]

Fig. 3. An illustration of integer “active indices” on the left side and
real-valued ones on the right side. The line squares or rectangle are
below the weight Sk, while the dash rectangle is above the weight (the
same in Figures 4 and 5). The red squares represent integer “active
indices” and the red lines denote real-valued ones, whose hash values
are monotonically decreasing from bottom to top; the blue squares
are integer non-active subelements and the blue areas are real-valued
non-active ones. In [Gollapudi et. al., 2006](1), vk,yk6

< vk,yk4
<

vk,yk1
< {vk,yk2

, vk,yk3
}, yk4 < vk,yk5

and vk,yk6
< vk,yk7

; In CWS,
vk,yk15

< vk,yk10
< vk,yk6

< vk,yk4
< vk,yk1

. Note that yk and zk
are two special “active indices": The former denotes the largest “active
index" smaller than the weight, while the latter is the smallest “active
index" greater than the weight. [Gollapudi et. al., 2006](1) proceeds
traversing “active indices", yk1, yk4 and yk6, below the weight Sk, from
bottom to top by sampling a skipping interval from the geometric dis-
tribution. By contrast, CWS successively explores the intervals in both
directions of the interval (4, 8] containing Sk until yk and zk are found.

k k k

S T R

yk1

yk4

yk6

yk10

yk15

yk19

yk25

Sk

Tk

Rk

Fig. 4. A sequence of “active indices”, e.g.,
yk1, yk4, yk6, yk10, yk15, yk19, yk25, are shared in the k-th elements
of different weighted sets, e.g., S, T and R, and independent of the
weights, e.g., Sk, Tk and Rk.

of the specific weight and the sampling operation satisfies
the uniformity property of the CWS scheme. In terms of
consistency, the “active indices” are deduced from the upper
endpoints of the intervals, which are shared in the same el-
ements from different weighted sets. Consequently, the two
special “active indices”, yk and zk, are consistent and paired,
which means that the same yk corresponds to the same zk,
and vice versa. In addition, the hash value of (k, yk) is just
related to zk, and thus in the same elements from different
weighted set, the same (k, yk) can be consistently mapped
to the same hash value.

CWS starts with the interval containing Sk, and if yk
or zk is not found, it will seek in the next corresponding

interval until it is observed. As shown in Figure 3, CWS first
seeks yk and zk in the interval (4, 8]. yk = yk6 is found, and
thus CWS stops traversing towards 0. However, zk is not in
this interval, which makes CWS explore in the next interval
(8, 16]. Consequently, zk = y10 is obtained and CWS stops
towards +∞.

CWS runs in expected constant time to find yk and zk,
and thus its average time complexity is O(

∑
k logSk).

4.2.2 Improved Consistent Weighted Sampling
CWS needs to traverse in both directions for the purpose
of the two special “active indices". Subsequently, Ioffe pro-
posed the Improved Consistent Weighted Sampling (ICWS)
algorithm [49] which can directly sample the two special
“active indices", yk and zk.

In [49], the two special “active indices" can be obtained
via the following equations,

ln yk = lnSk − rkbk, (5)
ln zk = rk + ln yk, (6)

where bk ∼ Uniform(0, 1) and rk ∼ Gamma(2, 1).
On the other hand, in the algorithmic implementation of

ICWS, Eq. (5) is replaced with the following one for the sake
of consistency

ln yk = rk

(⌊
lnSk

rk
+ βk

⌋
− βk

)
, (7)

where βk ∼ Uniform(0, 1). It can be proved that ln yk
in Eq. (5) and ln yk in Eq. (7) have the same uniform
distribution in [lnSk − rk, lnSk]. The floor function and the
uniform random variable βk in Eq. (7) ensures that a fixed
yk is sampled in an interval of rk. From the perspective of
Eq. (4), in this case, ICWS can produce the same yk (i.e.,
consistency) if the values of Sk in different weighted sets
change subtly, which makes the collision of (k, yk) possible
and the probability unequal to 0. By contrast, in the case
of Eq. (5), different Sk definitely generates different yk. In
other words, when the weight Sk varies in a certain range,
Eq. (7) guarantees that yk is independent of the weight Sk

conditioned on the range and furthermore, Eq. (6) makes yk
and zk paired and consistent.

We know from the above that ICWS implements con-
sistency in a similar way of CWS. In a unified framework,
CWS can be quantized through lnSk

rk
where rk = 1, while

ICWS is done through lnSk

rk
where rk ∼ Gamma(2, 1).

Subsequently, in the two methods, yk and zk are actually
produced within the intervals which are shared in the same
elements from different weighted sets. When the weight Sk

fluctuates between yk and zk, yk and zk remain the same, as
shown in Figure 5. Consequently, it is possible for different
weights of each element to generate the consistent yk and
zk.

In order to meet the uniformity of the CWS scheme (i.e.,
sample k in proportion to Sk), ICWS implicitly makes use of
a nice property of the exponential distribution: if each hash
value ak′ of the k′-th element is drawn from an exponential
distribution parameterized with the corresponding weight,
i.e., ak′ ∼ Exp(Sk′), the minimum hash value ak will be
sampled in proportion to Sk,

Pr[ak = min{a1, . . . , an}] =
Sk∑
k′ Sk′

. (8)

8

Sk

0 k

zk

yk

ln Sk

k

ln zk

ln yk=ln Sk-rkbk

ln Sk-rk

rk

rk

Fig. 5. A toy example for ICWS. The left bar represents the original
weight, and the right one does the logarithm transformation for the
weight. The red lines denote two special “active indices", i.e., yk and
zk.

To this end, ICWS implicitly constructs an exponential
distribution parameterized with Sk, i.e., ak ∼ Exp(Sk):

ak =
ck
zk
, (9)

where ck ∼ Gamma(2, 1). In [49], it has been proved that
ak follows the exponential distribution Exp(Sk). Based on
Eq. (9), the selected k∗-th element is returned via k∗ =
arg mink ak. In addition, it is easy to observe that the hash
value of (k, yk), ak, is unique, and in turn consistency is
satisfied.

Essentially, ICWS proceeds the sampling process as fol-
lows: It first samples yk using Eq. (10), which is derived from
Eq. (7). Then the sampled yk, as an independent variable, is
fed into Eq. (11), which is derived from Eqs. (6) and (9),
and outputs a hash value conforming to the exponential
distribution parameterized with the corresponding weight
Sk.

yk = exp

(
rk

(⌊
lnSk

rk
+ βk

⌋
− βk

))
, (10)

ak =
ck

yk exp (rk)
. (11)

ICWS calculates the hash value for each element by employ-
ing three random variables (i.e., rk, βk, ck), and the time and
space complexity are both O(3nD) 2.

4.2.3 0-bit Consistent Weighted Sampling
The MinHash code produced by ICWS is composed of
two components, i.e., (k, yk). Consequently, there exist two
drawbacks: 1) it cannot be integrated into the linear learning
systems, which makes it impractical in large-scale indus-
trial applications; 2) yk, as a real value, is theoretically
unbounded, which makes it possible for the storage space
for yk to be very large. Consequently, it is not immediately

2. In Section 4.2.5, we will demonstrate that ICWS actually adopts
five uniform random variables, so it has O(5nD) in terms of time and
space complexity.

k

TS

k

Sk

0

Tk

R

k

Rk

ln Tk

ln Rk

rk

2rk

6rk

5rk

4rk

3rk

ln Sk

Fig. 6. Breach of uniformity. The left bars represent the original weights,
while the right ones take the logarithm of the original weights. The red
arrows show that the samples are mapped from the original weights
into the logarithmic ones. Because of the logarithmic transform, the
samples in different subelements of T and R are mapped into the
same subelement, which increases the collision probability of the “active
indices".

clear how to effectively implement ICWS for building large-
scale linear classifiers.

In order to address the above two issues, Li proposed
the 0-bit Consistent Weighted Sampling (0-bit CWS) algo-
rithm by simply discarding yk of the MinHash code (k, yk)
produced by ICWS, that is, 0-bit CWS generates the original
MinHash code (k, yk) by running ICWS, but finally it adopts
only k to constitute the fingerprint [50]. Although the author
empirically demonstrated the effectiveness of the algorithm,
a rigorous theoretical proof remains a difficult probability
problem.

4.2.4 Canonical Consistent Weighted Sampling
ICWS directly samples yk via Eq. (7), which essentially
conducts an implicit quantization. However, in Eq. (7),
there exists the logarithm transformation, i.e., ln yk and
lnSk, which means that the implicit quantization actually
occurs on the logarithm of the original weights and in
turn gives rise to non-uniform sampling on the original
weights. Consequently, in [51], Wu et. al. argue that ICWS
violates the uniformity property of the MinHash scheme, as
shown in Figure 6, and the Canonical Consistent Weighted
Sampling (CCWS) algorithm was proposed to avoid the
risk of violating the uniformity property of the MinHash
scheme.

In CCWS, Eq. (5) is replaced with the following equation

yk = Sk − rkbk, (12)

where bk ∼ Uniform(0, 1). The above equation effectively
avoids scaling the weight sublinearly. Similarly, to implicitly
quantize the weights in its algorithmic implementation, Wu
et. al. adopt the following equation

yk = rk

(⌊
Sk

rk
+ βk

⌋
− βk

)
, (13)

where βk ∼ Uniform(0, 1). Eq. (13) shows that the quanti-
zation is directly conducted on the original weight Sk. Also,
Eq. (6) is replaced with

rk =
1

2
(

1

yk
− 1

zk
), (14)

9

where rk ∼ Beta(2, 1).
To implement uniformity, CCWS utilizes the property

of the exponential distribution, Eq. (8), and constructs the
exponential distribution via Eq. (9).

CCWS adopts the same framework of ICWS to satisfy
uniformity and consistency: uniformity is implemented via
the property of the exponential distribution, and consistency
is fulfilled by generating consistent yk and zk and uniquely
assigning a hash value to (k, yk).

Although CCWS preserves the uniformity property by
uniformly discretizing the original weights, it decreases the
probability of collision and thus generally performs worse
than ICWS. On the other hand, we would like to note that
there exists limitation in the process of quantization: yk is
sampled from [Sk − rk, Sk] instead of of [0, Sk], which can
be appropriately solved by scaling the weight.

4.2.5 Practical Consistent Weighted Sampling
ICWS employs three random variables (i.e., rk, βk, ck) for
each element. Due to the fact that random variables are
derived from the uniform random ones in programming
languages, it essentially generates five uniform random
variables for each element, i.e., rk = − ln(uk1uk2) ∼
Gamma(2, 1), βk ∼ Uniform(0, 1), ck = − ln(vk1vk2) ∼
Gamma(2, 1), where uk1, uk2, vk1, vk2 ∼ Uniform(0, 1). In-
spired by this, Wu et. al. proposed a more efficient algo-
rithm, the Practical Consistent Weighted Sampling (PCWS)
algorithm [52], by transforming the original form Eq. (11)
for sampling ak in ICWS into an equivalent version and
then simplifying it.

Taking into consideration rk = − ln(uk1uk2) ∼
Gamma(2, 1) and ck = − ln(vk1vk2) ∼ Gamma(2, 1), where
uk1, uk2, vk1, vk2 ∼ Uniform(0, 1), Eq. (11) can be rewritten
as

ak =
− ln(vk1vk2)

yk(uk1uk2)−1

=
− ln(vk1vk2)uk2

yku
−1
k1

. (15)

In [52], Wu et. al. has proved that

− ln(vk1vk2)uk2 ∼ Exp(1), (16)

and
E(yku

−1
k1) = E(Ŝk) = Sk, (17)

where Ŝk is an unbiased estimator for Sk, and Ŝk = yku
−1
k1 .

Consequently, Eq. (16) can be simplified as

− lnxk ∼ Exp(1), (18)

where xk ∼ Uinform(0, 1), and

ak =
− lnxk

Ŝk

∼ Exp(Ŝk). (19)

Also, Eq. (7) can be rewritten as

ln yk = − ln(uk1uk2)

(⌊
lnSk

− ln(uk1uk2)
+ βk

⌋
− βk

)
(20)

The only difference between ICWS and PCWS lies in the
specific implementation of uniformity, although they both
employ the property of exponential distribution. The former

adopts Eq. (15), which is equivalent to Eq. (9), while the
latter uses Eq. (19).

We know from Eqs. (19) and (20) that PCWS just em-
ploys four uniform random variables for each element,
i.e., uk1, uk2, βk and xk. Obviously, the time and space
complexity of PCWS are both O(4nD), while the time and
space complexity of ICWS are essentially O(5nD). Also, the
authors shows that PCWS is more efficient empirically than
ICWS.

4.2.6 Improved Improved Consistent Weighted Sampling

ICWS complies with the CWS scheme via the seemingly
reasonable proof. However, Wu et. al. pointed out the la-
tent violation of the independence condition of the “active
indices", and in turn proposed the Improved Improved
Consistent Weighted Sampling (I2CWS) algorithm which
abides by the required conditions of the CWS scheme [53].

Intuitively, in ICWS and its variations (i.e., 0-bit CWS,
CCWS and PCWS), Eq. (6) or Eq. (14) builds the direct
connection between the two special “active indices", yk and
zk, which means that zk is derived from yk instead of
independent sampling on weights. By contrast, in CWS, zk
is obtained by independently exploring the intervals above
the weight.

In depth, inspired by Section 4.2.5, Eqs. (5) and (6) can
be rewritten as

yk = Sk(exp(−rk))bk =Sk(xk1xk2)bk , (21)

zk =
Sk

(exp(−rk))1−bk
=

Sk

(xk1xk2)1−bk
, (22)

where rk = − ln(xk1xk2) ∼ Gamma(2, 1), xk1, xk2, bk ∼
Uniform(0, 1).

It can be observed that yk and zk are acquired via the
shared uniform random variables, xk1, xk2 and bk, which
is the primary cause of the dependence between yk and
zk, and in turn violates the independence condition of the
“active indices" in the CWS scheme.

In order to address the above issue, I2CWS completely
avoids the usage of the shared random variables in Eqs. (21)
and (22), and employs the following equations to generate
yk and zk independently:

yk = Sk(exp(−rk1))bk1 , (23)

zk =
Sk

(exp(−rk2))1−bk2
, (24)

where rk1, rk2 ∼ Gamma(2, 1), bk1, bk2 ∼ Uniform(0, 1).
Similarly, Eqs. (23) and (24) are replaced with, for the sake
of consistency,

yk = exp

(
rk1

(⌊
lnSk

rk1
+ βk1

⌋
− βk1

))
, (25)

zk = exp

(
rk2

(⌊
lnSk

rk2
+ βk2

⌋
− βk2 + 1

))
, (26)

where βk1, βk2 ∼ Uniform(0, 1). Then, Eq. (9) is used to
construct the exponential distribution for the sake of unifor-
mity.

Obviously, the two special “active indices”, yk and zk,
are mutually independent because they are deduced from
random variables which are mutually independent.

10

Similarly, I2CWS still employs Eq. (9) to obtain the hash
values ak of all (k, yk) and maintain uniformity.

Furthermore, note that ak is just a function of zk, which
means that we do not require yk for each element via
Eq. (25). Instead, we only need to compute yk via Eq. (25)
only once, that is, Eq. (25) is not executed until the minimum
ak is acquired and k∗ = arg mink ak. In comparison, ICWS
computes yk and zk for each element, while I2CWS does zk
for each element and yk∗ for the selected element.

In I2CWS, uniformity and independence are maintained
via the property of exponential distribution and indepen-
dence deduction, respectively; consistency is implemented
by complying with the framework of ICWS.

Finally, the space complexity is O(7nD) and the time
complexity is O(5nD).

4.3 Discussion
The key idea of this category of methods is “active indices”
on a weighted element, which are independently sampled
as a sequence of subelements whose hash values monoton-
ically decrease. [Gollapudi et al., 2006](1) designed for the
integer weighted sets quantizes each weighted element into
some subelements, each of which has weight ∆ = 1.

The CWS scheme requires uniformity and consistency.
Essentially, the two conditions can be extended to weighted
MinHash algorithms including the integer and real-valued
versions. Uniformity is implemented by independently and
uniformly sampling subelements. Consistency requires that
the same subelements are mapped to the same hash value,
although they may come from different weighted sets. In
other words, a global hash function is applied to all sets
so that the same subelements from different sets must
correspond to the same value.

In terms of uniformity, in the case of integer weighted
sets, [Gollapudi et. al., 2006](1) models the sampling process
as the Bernoulli trials, which in turn efficiently samples
“active indices” according to the geometric distribution. By
contrast, in the case of real-valued weighted sets, CWS sam-
ples “active indices” sequentially from the upper endpoint
to the lower one of the interval; while ICWS and its varia-
tions (i.e., 0-bit CWS, CCWS, PCWS and I2CWS) sample by
employing the property of exponential distribution to meet
the condition. Interestingly, if we regard the weight in the
real axis as the time axis, the geometric distribution deals
with the time between successes in a series of independent
trials, while the exponential distribution does with the time
between occurrences of successive events as time flows by
continuously. Obviously, the exponential distribution is a
continuous analogue of the geometric distribution, and in
the two distributions, the event (i.e., “active indices”) occurs
independently and with equal probability.

In terms of consistency, “active indices” are shared on
the same elements from different weighted sets. In order to
implement it, [Gollapudi et. al., 2006](1) traverses “active
indices” from 0, and the geometric distributions are con-
sistent on the same elements from different weighted sets,
thus generating a sequence of consistent “active indices”.
On the other hand, CWS seeks “active indices” from the
interval containing the weight, and proceeds towards 0 and
+∞, respectively, while ICWS and its variations (i.e., 0-
bit CWS, CCWS, PCWS and I2CWS) directly sample two

special “active indices” based on the weight. We would
like to note that the weights of the same elements from
different weighted sets are not fixed. Therefore, if “active
indices” depends on the specific value of the weight, it will
be impossible to generate the same “active indices” in the
case of different weights. To this end, the CWS scheme
computes “active indices” based on the endpoints of the
intervals which are produced by partitioning [0,+∞). As a
result, the consistent endpoints can derive consistent “active
indices”. Actually, the consistent “active indices” must be
deduced from the fixed values, for example, [Gollapudi et.
al., 2006](1) starts from 0, while the CWS scheme explores
from the endpoint of the consistent interval.

5 OTHERS

In addition to the above two categories, researchers have
subsequently proposed some weighted MinHash algo-
rithms by employing diverse techniques.

5.1 [Gollapudi et. al., 2006](2)

The second algorithm in [24] preserves each weighted
element by thresholding normalized real-valued weights
with random samples. The original weighted set is lossily
reduced to a smaller-scale binary set by sampling a rep-
resentative subelement for each element. Specifically, each
element is mapped to a real value in [0, 1]: if the value is
not greater than the normalized weight, the element will be
preserved because a certain subelement corresponding to
the element is selected; otherwise, it will be discarded since
no subelements corresponding to the element are sampled,
which is similar to the process of handling the remaining
float part in [Haeupler et. al., 2014]. Consequently, the
weighted set is transformed into a binary set, which is in
turn fed into the MinHash algorithm.

Obviously, the method has to pre-scan the weighted
set in order to normalize it and biasedly estimates the
generalized Jaccard similarity.

5.2 [Chum et. al., 2008]

Chum et. al. [47] proposed a simple weighted MinHash
algorithm which combines quantization and sampling. Sim-
ilar to other quantization-based algorithms, each weighted
element can be quantized into a number of distinct and
equal-sized subelements, e.g., S(i)

k , i ∈ {1, 2, · · · , Sk} in
the case that Sk is a positive integer. Subsequently, each
subelement is assumed to be assigned with a hash value,
e.g., f(S

(i)
k) ∼ Uniform(0, 1). Naturally, the MinHash value

of the k-th element is h(Sk) = min{f(S
(i)
k)}. Furthermore,

Chum et. al. derived the distribution of h(Sk):

Pr(h(Sk) ≤ a) = 1− (1− a)Sk . (27)

Finally, h(Sk) can be expressed as

h(Sk) =
− log x

Sk
, (28)

where x ∼ Uniform(0, 1).
Interestingly, Eq. (28) can be directly used for real-

valued weighted sets without multiplying a large constant.

11

0 U1 U1+U2 U1+U2+U3 U1+U2+U3+U4 U1+U2+U3+U4+U5

S S1 S2 S3 S4 S5

0 U1 U1+U2 U1+U2+U3 U1+U2+U3+U4 U1+U2+U3+U4+U5

T T1 T2 T3 T4 T5

Fig. 7. A toy example of Red-Green partition on S and T . Ui represents
the maximum weight of each element in the universal set U , and the
length of the green area does the weight of each element, i.e., Si and
Ti.

Also, we observe that the approach essentially samples
an element proportionally to its weight because Eq. (28)
is an exponential distribution with parameter being Sk,
i.e., − log x

Sk
∼ Exp(Sk), as shown in Eq. (19), and also,

the sampled subelement is used to supersede the whole
element. Apparently, the exponential distribution makes
each element sampled proportionally to its weight, so it is
unnecessary to deduce Eq. (28) from Eq. (27).

The Chum’s algorithm, ICWS and its variations all em-
ploy the exponential distribution so that each element is se-
lected proportionally to its weight. However, the algorithm
only offers a biased estimate to the generalized Jaccard sim-
ilarity since it cannot satisfy the consistency. Superficially,
compared with ICWS and its variations, the algorithm just
returns k, that is, no yk, and thus the specific subelement
cannot be positioned. Essentially, the sampled subelement
does not depend on the interval but the weight, and thus
once the weight fluctuates, the sampled subelement will
change. This is possibly because each subelement from the
same elements might be mapped to different hash values in
different weighted sets in the case of no explicit function.

5.3 [Shrivastava, 2016]
Shrivastava proposed a simple weighted MinHash algo-
rithm [48], which can unbiasedly estimate the generalized
Jaccard similarity by uniformly sampling.

The algorithm constructs an area in the real axis by
concatenating the maximum weight of each element in the
data set. As shown in Figure 7, Ui, where i = {1, 2, 3, 4, 5},
represents the maximum weight of the i-th element and the
length of the i-th interval. Naturally, each element in a set
can split the corresponding interval into two parts, the green
area and the red one. The former denotes the region within
the weight, and thus the length is indeed the weight, while
the latter does the one outside the weight. The algorithm
globally draws an independent and uniform random value
from [0, U1 + U2 + U3 + U4 + U5]. If the variable lies in a
certain red region, we repeat the above sampling operation
until the sample comes from a certain green region. The
hash value is the number of steps taken before stopping.
Obviously, the global sampling operation guarantees that
in one hashing process, all sets share the same sequence of
random variables, i.e., consistency, and the same hash values
from two sets show that the two samples are both located
in the same point within the green area in the real axis, i.e.,
collision.

Essentially, the algorithm is based on rejection sampling,
where all the green regions represent the true distribution
while all the maximum weights of elements constitute a

proposal distribution. Consequently, uniform sampling does
not stop until the desired sample is acquired, which obvi-
ously meets uniformity.

However, we would like to note that it inherits the
disadvantage of rejection sampling, which is that if the
prefixed upper bound is set very loosely, the acceptance rate
will be low and thus the valid samples which are located
in the interval [0, Sk] will be difficult to obtain and further
give rise to inefficiency. In order to remedy the drawback,
we have to acquire the tight upper bound of each element
by pre-scanning the whole data set before sampling. Obvi-
ously, such a “pre-scanning” step increases the workload,
especially in large-scale scenarios; it will also prohibit its
applications to streaming scenarios where unseen data may
exceed the prefixed upper bound. Therefore, the approach
is impractical due to the limitation of rejection sampling.

6 EXPERIMENTS

In this section, we conduct a comparative study on a num-
ber of synthetic data sets with power-law distributions to
investigate the effectiveness and efficiency of the reviewed
methods for the quality of estimators of the generalized
Jaccard similarity.

6.1 Data sets

The experiments aim to test the efficiency and the bias of
estimators, which are calculated by the MinHash algorithm
and the weighted MinHash algorithms, for the Jaccard
similarity or the generalized Jaccard similarity, by looking
into the difference between the estimation result and the
real similarity, so toy data are sufficient and we do not
need to validate via specific machine learning tasks, e.g.,
classification or retrieval. In order to simulate the “bag-of-
words" in real text data following power-law distributions,
we generate a number of synthetic data sets, each of which
contain 1,000 samples and 100,000 features. Similarly, we
uniformly produce the dimensions, but the nonzero weights
in each vector sample conform to a power-law distribution
with the exponent parameter e and the scale parameter s.
After repeating 1,000 times, we obtain a data set dubbed
SyneEsS, where “eE" indicates that the exponent parameter
of the power-law distribution is e and “sS" indicates that the
scale parameter of the power-law distribution is s. The data
sets are summarized in Table 4.

6.2 Experimental Preliminaries

Thirteen state-of-the-art methods, which consist of one
standard MinHash algorithm for binary sets and twelve
weighted MinHash algorithms for weighted sets, are com-
pared in our experiments:

1) MinHash [8]: The standard Min-Hash scheme is
applied by simply treating weighted sets as binary
sets;

2) [Haveliwala et. al., 2000] [21]: This method applies
MinHash to the collection of subelements which
are generated by explicitly quantizing weighted sets
and rounding the remaining float part of the subele-
ments;

12

TABLE 4
Summary of the Data Sets

Data Set # of Docs # of Features Average Density Average Mean of Weights Average Std of weights

Syn3E0.2S 1,000 100,000 0.005 0.2999 0.1035

Syn3E0.22S 1,000 100,000 0.005 0.3151 0.1288

Syn3E0.24S 1,000 100,000 0.005 0.3300 0.1441

Syn3E0.26S 1,000 100,000 0.005 0.3451 0.1576

Syn3E0.28S 1,000 100,000 0.005 0.3602 0.1703

Syn3E0.3S 1,000 100,000 0.005 0.3753 0.1829

“# of Docs”: size of the data set. “# of Features”: size of the dictionary (universal set) of the data set. “Average Density”: ratio of the elements
with positive weights to all the elements in the universal set (a small value indicates a sparse data set). “Average Mean of Weights”: mean of the
weights of the documents for each element (a large value indicates that the weights of elements are large). “Average Std of Weights”: standard
deviation of the weights of the documents for each element (a large value indicates that the documents have very different weights for the
corresponding element).

3) [Haeupler et. al., 2014] [46]: Compared to [Haveli-
wala et. al., 2000] [21], the method preserves the
remaining float part with probability.

4) [Gollapudi et. al., 2006](1) [24]: This method pro-
poses the idea of “active indices” and remark-
ably improves the efficiency of [Haveliwala et. al.,
2000] [21] by skipping a number of “non-active
indices”.

5) CWS [45]: This is the first algorithm under the CWS
scheme which finds two special “active indices", i.e.,
yk and zk, by traversing intervals.

6) ICWS [49]: This method dramatically improves ef-
fectiveness and efficiency of the weighted MinHash
algorithms by sampling only two special “active
indices”, yk and zk.

7) 0-bit CWS [50]: This method approximates ICWS by
simply discarding one of the two components, yk, in
the hash code (k, yk) of ICWS;

8) CCWS [51]: Instead of uniformly discretizing the
logarithm of the weight as ICWS, this method di-
rectly uniformly discretizes the original weight.

9) PCWS [52]: This approach improves ICWS in both
space and time complexities by simplifying the
mathematical expressions of ICWS.

10) I2CWS [53]: This method guarantees that the two
special “active indices”, yk and zk, are sampled
independently by avoiding dependence between yk
and zk in ICWS.

11) [Gollapudi et. al., 2006](2) [24]: This method trans-
forms weighted sets into binary sets by thresholding
real-valued weights with random samples and then
applies the standard MinHash scheme;

12) [Chum et. al., 2008] [47]: This method essentially
samples an element proportionally to its weight
via an exponential distribution with the parameter
being the weight.

13) [Shrivastava, 2016] [48]: By uniformly sampling the
area which is composed of the upper bound of each
element in the universal set, this method unbiasedly
estimates the generalized Jaccard similarity.

All the compared algorithms are implemented in MAT-
LAB. We first apply all the algorithms to generate the finger-

prints of the data. For [Haveliwala et. al., 2000] [21], [Gol-
lapudi et. al., 2006](1) [24] and [Haeupler et. al., 2014] [46],
each weight is scaled up by a factor of 1,000 for the quan-
tization of the subelements. Suppose that each algorithm
generates xS and xT , which are the fingerprints with a
length of D for the two real-valued weighted sets, S and
T , respectively. The similarity between S and T is

SimS,T =
D∑

d=1

1(xS,d = xT,d)

D
,

where 1(state) = 1 if state is true, and 1(state) = 0
otherwise. The above equation calculates the ratio of the
same MinHash values (i.e., collision) between xS and xT ,
which is used to approximate the probability that S and
T generate the same MinHash value, and to estimate the
generalized Jaccard similarity. We set D, the parameter of
the number of hash functions (or random samples), such
that D ∈ {10, 20, 50, 100, 120, 150, 200}. All the random
variables are globally generated at random in one sampling
process, that is, the same elements in different weighted sets
share the same set of random variables. All the experiments
are conducted on a node of a Linux Cluster with 2 × 2.3
GHz Intel Xeon CPU (64 bit) and 128GB RAM.

6.3 Experimental Results

We empirically present the mean square errors (MSEs) of
the estimators of the generalized Jaccard similarity by com-
paring the estimation results from the compared methods
and the real generalized Jaccard similarity calculated using
Eq. (2), and runtime of encoding each data set into finger-
prints. We repeat each experiment 10 times and compute the
mean and the standard derivation of the results.

Figure 8 and Figure 9 report the mean square errors
(MSEs) of the estimators of the generalized Jaccard simi-
larity from 13 compared methods, and their runtime, re-
spectively. Generally, MinHash performs worst but runs
faster than most of algorithms because it simply discards the
auxiliary weight information of elements. [Haeupler et. al.,
2014] performs nearly the same as [Haveliwala et. al., 2000]
in terms of accuracy so that they cannot be distinguished.
This is largely because the two algorithms both completely

13

10 100

Length of Fingerprints

10-5

10-4

10-3

M
ea

n
S

qu
ar

e
E

rr
or

 (
M

S
E

)

Syn3A0.2B

10 100

Length of Fingerprints

10-4

10-3

M
ea

n
S

qu
ar

e
E

rr
or

 (
M

S
E

)

Syn3A0.22B

10 100

Length of Fingerprints

10-4

10-3

M
ea

n
S

qu
ar

e
E

rr
or

 (
M

S
E

)

Syn30.24B

10 100

Length of Fingerprints

10-4

10-3

M
ea

n
S

qu
ar

e
E

rr
or

 (
M

S
E

)

Syn3A0.26B

10 100

Length of Fingerprints

10-4

10-3

M
ea

n
S

qu
ar

e
E

rr
or

 (
M

S
E

)

Syn3A0.28B

10 100

Length of Fingerprints

10-4

10-3

M
ea

n
S

qu
ar

e
E

rr
or

 (
M

S
E

)

Syn3A0.3B

Fig. 8. Mean square errors (MSEs) on the synthetic weighted sets with powerlaw distributions. The x-axis denotes the length of fingerprints,D. Note
that in the experiment, each algorithm is given a cutoff of 24 hours. [Shrivastava, 2016] is forced to stop due to running overtime on Syn3A0.2B.

preserve the integer parts of elements and the float parts
trivially impact the estimators. Also, the two methods main-
tain the same empirical time level.

“Active index”-based algorithms not only give more
accurate estimators, but also remarkably improve efficiency
of the above methods by sampling several and even only
two special subelements called “active indices”. Compared
with [Haveliwala et. al., 2000], [Gollapudi et. al., 2006](1)
is actually an accelerated version: It transforms a weighted
set into a binary set by employing the same preprocessing
as [Haveliwala et. al., 2000], i.e, multiplying by a large
constant, and then in each element iteratively generates
“active indices” whose number is less than the value of
the augmented weight, thus improving the efficiency of
[Haveliwala et. al., 2000] and [Gollapudi et. al., 2006](1),
as shown in Figure 9. Obviously, the time complexity of
[Gollapudi et. al., 2006](1) is closely related to the large
constant, and it can be further enhanced. It performs the
same as [Haveliwala et. al., 2000] and [Haeupler et. al.,
2014] in terms of accuracy so that their curves cannot be
distinguished in Figure 8.

By contrast, the Consistent Weighted Sampling (CWS)
scheme, as an important category of the real-value weighted
MinHash algorithms, can directly handle with real-valued
weighted sets. The CWS algorithm, as the first proposed
method of the CWS scheme, generally performs best but
runs very slowly, possibly because the algorithm iterates
many times in order to find the yk as well as zk for CWS.
Furthermore, the iteration process happens on real values
instead of integers, which further increases the number of

iterations, because the number of real values to explore
is infinite. ICWS performs almost the same performance
as 0-bit CWS in terms of accuracy and runtime since one
component of ICWS, yk, is trivial to approximate Eq. (2)
for most data sets, which has been experimentally verified
in [50]. PCWS improves ICWS in terms of accuracy and
runtime by adopting one less number of uniform random
variables than ICWS. I2CWS obtains similar accuracy with
CWS in most cases and meanwhile, defeats other CWS-
based algorithms, which demonstrates that I2CWS is able
to better approximate Eq. (2) by fixing the dependence
problem of ICWS, but it increases a little time cost. Also,
we would like to note that the accuracy performance gain
of I2CWS is clear in the case of small D, which implies that
I2CWS is powerful in the scenarios of limited computational
and spatial budget.

In terms of accuracy, CCWS is inferior to all other CWS-
based algorithms because CCWS uniformly discretizes the
original weights instead of discretizing the logarithm of the
weights in ICWS, 0-bit CWS, PCWS and I2CWS. It is worth
noting that the performance of CCWS is getting worse with
the increase of the variance of weights of data sets. As
shown in [51], taking a logarithm on the weights generates
an increased probability of collision, and thus CCWS is suit-
able to data sets with small variance. Surprisingly, CCWS
runs more efficiently than ICWS, 0-bit CWS, PCWS and
I2CWS because the former directly adopts variables from
the Beta distribution and the Gamma distribution instead of
the Uniform distribution as the latter do.

The accuracy gap between [Gollapudi et. al., 2006](2) and

14

10 100

Length of Fingerprints

100

101

102

103

104

T
im

e
(s

)

Syn3A0.2B

10 100

Length of Fingerprints

100

101

102

103

104

T
im

e
(s

)

Syn3A0.22B

10 100

Length of Fingerprints

101

102

103

104

T
im

e
(s

)

Syn3A0.24B

10 100

Length of Fingerprints

101

102

103

104

T
im

e
(s

)

Syn3A0.26B

10 100

Length of Fingerprints

101

102

103

104

T
im

e
(s

)

Syn3A0.28B

10 100

Length of Fingerprints

101

102

103

104

T
im

e
(s

)

Syn3A0.3B

Fig. 9. Runtime on the synthetic weighted sets with powerlaw distributions. The x-axis denotes the length of fingerprints, D. Note that in the
experiment, each algorithm is given a cutoff of 24 hours. [Shrivastava, 2016] is forced to stop due to running overtime on Syn3A0.2B.

MinHash narrows down with D increasing, which largely
results from the accumulated errors. In terms of runtime,
[Gollapudi et. al., 2006](2) performs worse because it has to
scan the set twice. [Shrivastava, 2016](2), which has been
proved to exactly estimate Eq. (2), shows good performance
in terms of accuracy and runtime except for Syn3A0.2B. The
high efficiency is due to the fact that [Shrivastava, 2016](2)
only makes use of a small number of samples, while it fails
on Syn3A0.2B, possibly due to the small weights. In this
case, small weights make the value of sx =

∑n
k=1 Sk∑n

k=1 max(Sk)
3

small, where max(Sk) represents the maximum weight (i.e.,
the upper bound) of each element in the whole data set, thus
decelerating the algorithm. However, we would like to note
that it is infeasible to obtain the upper bound of the weight
of each element in practice, and thus the method is limited
in applying to the real-world problems. [Chum et. al., 2008]
performs worse than most of the weighted MinHash algo-
rithms since it just biasedly estimates Eq. (2), but it runs very
fast by simply computation for each element, i.e, Eq. (28).

7 CONCLUSION AND FUTURE WORK

In this paper, we have reviewed the existing works of
weighted MinHash algorithms. The weighted MinHash al-
gorithms can be categorized into quantization-based and
“active index”-based approaches and others.

Currently, most of algorithms come from “active index”-
based methods because they generally improve efficiency
by sampling special subelements called “active indices”.

3. The formula is in Section 5 of [48].

Furthermore, the CWS scheme is remarkable in both theory
and practice, and considered as the state-of-the-art methods.
Particularly, ICWS and its derivation keep good balance
between accuracy and runtime and furthermore, I2CWS
and PCWS perform best in terms of accuracy and runtime,
respectively 4 Therefore, they can be applied in large-scale
data analytics.

Furthermore, the above methods are designed for static
data. However, streaming data, where the elements of a
data instance are continuously received in an arbitrary order
from the data stream, have been becoming increasingly pop-
ular in a wide range of applications such as similarity search
in a streaming database and classification over data streams,
etc. In this case, some important research issues need to be
addressed. First, how to efficiently encode the expandable
feature space? The feature space is rapidly expanding due
to the fact that the elements continuously arrive. [Gollapudi
et. al., 2006](2) and [Shrivastava, 2016] need to construct
the complete feature space by pre-scanning, so they are
infeasible in streaming data. ICWS and its variations are
good solutions, but they require a set of random variables
for each element. [Chum et. al., 2008] is efficiently applied
to the problem of user activity streams in [54]. Although
it is efficient because only one random variable is required
for each element, it cannot unbiasedly estimate the Jaccard
similarity, and give the error bound in terms of theory,
either. An interesting challenge is whether we are able

4. As mentioned in Section 6.3, CCWS runs efficiently because some
variables are directly sampled from the complicated distributions, and
thus it is not considered here.

15

to further improve the CWS scheme for the purpose of
memory-efficiency.

In addition, concept drift should be considered in
streaming data because the underlying distribution of
streaming data changes over time. The above methods as-
sume that the historical data and the latest data are equally
important. However, in the real scenarios, we wish that
the algorithms pay more attention to the latter than the
former because the latter are commonly more important
than the former. So far HistoSketch [55] has been proposed
to solve the problem by employing the strategy of gradual
forgetting. Therefore, it is worth exploring a combination of
the weighted MinHash algorithms and various strategies of
conquering concept drift.

REFERENCES

[1] K. Pritchard, 15 Google SEO Statistics for 2018 and
What You Can Learn From Them, November 2017,
https://www.impactbnd.com/blog/seo-statistics.

[2] M. Osman, 28 Powerful Facebook Stats Your
Brand Can’t Ignore in 2018, February 2018,
https://sproutsocial.com/insights/facebook-stats-for-
marketers/.

[3] S. Aslam, Twitter by the Numbers: Stats, Demographics & Fun
Facts, January 2018, https://www.omnicoreagency.com/twitter-
statistics/.

[4] E. Dumbill, “A Revolution That Will Transform How We Live,
Work, and Think: An Interview with the Authors of Big Data,”
Big Data, vol. 1, no. 2, pp. 73–77, 2013.

[5] A. Rajaraman, J. D. Ullman, J. D. Ullman, and J. D. Ullman, Mining
of Massive Datasets. Cambridge University Press Cambridge, 2012,
vol. 1.

[6] P. Indyk and R. Motwani, “Approximate Nearest Neighbors: To-
wards Removing the Curse of Dimensionality,” in STOC, 1998, pp.
604–613.

[7] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashing,” in VLDB, 1999, pp. 518–529.

[8] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise Independent Permutations,” in STOC, 1998, pp. 327–
336.

[9] M. S. Charikar, “Similarity Estimation Techniques from Rounding
Algorithms,” in STOC, 2002, pp. 380–388.

[10] G. S. Manku, A. Jain, and A. Das Sarma, “Detecting Near-
Duplicates for Web Crawling,” in WWW, 2007, pp. 141–150.

[11] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
Sensitive Hashing Scheme Based on p-Stable Distributions,” in
SOCG, 2004, pp. 253–262.

[12] A. Shrivastava and P. Li, “In Defense of Minhash Over SimHash,”
in AISTATS, 2014, pp. 886–894.

[13] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Pan-
conesi, and P. Raghavan, “On Compressing Social Networks,” in
KDD, 2009, pp. 219–228.

[14] W. Wu, B. Li, L. Chen, and C. Zhang, “Efficient Attributed Net-
work Embedding via Recursive Randomized Hashing.” in IJCAI,
2018, pp. 2861–2867.

[15] W. Wu, B. Li, L. Chen, X. Zhu, and C. Zhang, “K-Ary Tree Hashing
for Fast Graph Classification,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 5, pp. 936–949, 2018.

[16] L. Cherkasova, K. Eshghi, C. B. Morrey, J. Tucek, and A. Veitch,
“Applying Syntactic Similarity Algorithms for Enterprise Infor-
mation Management,” in KDD, 2009, pp. 1087–1096.

[17] P. Li and C. König, “b-Bit Minwise Hashing,” in WWW, 2010, pp.
671–680.

[18] M. Mitzenmacher, R. Pagh, and N. Pham, “Efficient Estimation for
High Similarities Using Odd Sketches,” in WWW, 2014, pp. 109–
118.

[19] P. Li, A. Owen, and C.-H. Zhang, “One Permutation Hashing,” in
NIPS, 2012, pp. 3113–3121.

[20] A. Shrivastava and P. Li, “Densifying One Permutation Hashing
via Rotation for Fast Near Neighbor Search,” in ICML, 2014, pp.
557–565.

[21] T. H. Haveliwala, A. Gionis, and P. Indyk, “Scalable Techniques
for Clustering the Web,” in WebDB, 2000, pp. 129–134.

[22] E. Raff and C. Nicholas, “Malware Classification and Class Imbal-
ance via Stochastic Hashed LZJD,” in AISec, 2017, pp. 111–120.

[23] J. Drew, T. Moore, and M. Hahsler, “Polymorphic Malware Detec-
tion Using Sequence Classification Methods,” in SPW, 2016, pp.
81–87.

[24] S. Gollapudi and R. Panigrahy, “Exploiting Asymmetry in Hierar-
chical Topic Extraction,” in CIKM, 2006, pp. 475–482.

[25] A. Z. Broder, “On the Resemblance and Containment of Docu-
ments,” in Compression and Complexity of Sequences 1997. Proceed-
ings, 1997, pp. 21–29.

[26] D. Gorisse, M. Cord, and F. Precioso, “Locality-Sensitive Hashing
for Chi2 Distance,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 34, no. 2, pp. 402–409, 2012.

[27] K. Eshghi and S. Rajaram, “Locality Sensitive Hash Functions
Based on Concomitant Rank Order Statistics,” in KDD, 2008, pp.
221–229.

[28] Y. Ke, R. Sukthankar, L. Huston, Y. Ke, and R. Sukthankar, “Effi-
cient Near-Duplicate Detection and Sub-Image Retrieval,” in ACM
MM, 2004, pp. 869–876.

[29] W.-L. Zhao, H. Jégou, and G. Gravier, “Sim-Min-Hash: An Efficient
Matching Technique for Linking Large Image Collections,” in
ACM MM, 2013, pp. 577–580.

[30] Y. Yu, M. Crucianu, V. Oria, and E. Damiani, “Combining Multi-
Probe Histogram and Order-Statistics Based LSH for Scalable
Audio Content Retrieval,” in ACM MM, 2010, pp. 381–390.

[31] Y. Xiong, Y. Zhu, and S. Y. Philip, “Top-K Similarity Join in Hetero-
geneous Information Networks,” IEEE Transactions on Knowledge
and Data Engineering, vol. 27, no. 6, pp. 1710–1723, 2015.

[32] C. Yu, S. Nutanong, H. Li, C. Wang, and X. Yuan, “A Generic
Method for Accelerating LSH-Based Similarity Join Processing,”
IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 4,
pp. 712–726, 2017.

[33] V. Satuluri and S. Parthasarathy, “Bayesian Locality Sensitive
Hashing for Fast Similarity Search,” Proceedings of the VLDB En-
dowment, vol. 5, no. 5, pp. 430–441, 2012.

[34] B. Neyshabur and N. Srebro, “On Symmetric and Asymmetric
LSHs for Inner Product Search,” in ICML, 2015, pp. 1926–1934.

[35] D. Ravichandran, P. Pantel, and E. Hovy, “Randomized Algo-
rithms and NLP: Using Locality Sensitive Hash Function for High
Speed Noun Clustering,” in ACL, 2005, pp. 622–629.

[36] F. Ture, T. Elsayed, and J. Lin, “No Free Lunch: Brute Force vs.
Locality-Sensitive Hashing for Cross-Lingual Pairwise Similarity,”
in SIGIR, 2011, pp. 943–952.

[37] D. Fetterly, M. Manasse, M. Najork, and J. Wiener, “A Large-Scale
Study of the Evolution of Web Pages,” in WWW, 2003, pp. 669–
678.

[38] M. Henzinger, “Finding Near-Duplicate Web Pages: A Large-Scale
Evaluation of Algorithms,” in SIGIR, 2006, pp. 284–291.

[39] N. Jindal and B. Liu, “Opinion Spam and Analysis,” in WSDM,
2008, pp. 219–230.

[40] T. Urvoy, E. Chauveau, P. Filoche, and T. Lavergne, “Tracking Web
Spam with HTML Style Similarities,” ACM Transactions on the Web,
vol. 2, no. 1, pp. 3:1–3:28, 2008.

[41] L. Chi, B. Li, and X. Zhu, “Context-Preserving Hashing for Fast
Text Classification.” in SDM, 2014, pp. 100–108.

[42] C. Kim and K. Shim, “Text: Automatic Template Extraction from
Heterogeneous Web Pages,” IEEE Transactions on Knowledge and
Data Engineering, vol. 23, no. 4, pp. 612–626, 2011.

[43] P. Li, A. Shrivastava, J. L. Moore, and A. C. König, “Hashing
Algorithms for Large-Scale Learning,” in NIPS, 2011, pp. 2672–
2680.

[44] S. Pandey, A. Broder, F. Chierichetti, V. Josifovski, R. Kumar, and
S. Vassilvitskii, “Nearest-Neighbor Caching for Content-Match
Applications,” in WWW, 2009, pp. 441–450.

[45] M. Manasse, F. McSherry, and K. Talwar, “Consistent Weighted
Sampling,” Unpublished technical report, 2010.

[46] B. Haeupler, M. Manasse, and K. Talwar, “Consistent Weighted
Sampling Made Fast, Small, and Easy,” arXiv preprint
arXiv:1410.4266, 2014.

[47] O. Chum, J. Philbin, and A. Zisserman, “Near Duplicate Image
Detection: Min-Hash and Tf-Idf Weighting.” in BMVC, vol. 810,
2008, pp. 812–815.

[48] A. Shrivastava, “Simple and Efficient Weighted Minwise Hash-
ing,” in NIPS, 2016, pp. 1498–1506.

16

[49] S. Ioffe, “Improved Consistent Sampling, Weighted Minhash and
L1 Sketching,” in ICDM, 2010, pp. 246–255.

[50] P. Li, “0-Bit Consistent Weighted Sampling,” in KDD, 2015, pp.
665–674.

[51] W. Wu, B. Li, L. Chen, and C. Zhang, “Canonical Consistent
Weighted Sampling for Real-Value Weighted Min-Hash,” in
ICDM, 2016, pp. 1287–1292.

[52] ——, “Consistent Weighted Sampling Made More Practical,” in
WWW, 2017, pp. 1035–1043.

[53] W. Wu, B. Li, L. Chen, C. Zhang, and P. S. Yu, “Improved
Consistent Weighted Sampling Revisited,” IEEE Transactions on
Knowledge and Data Engineering, 2018, in press.

[54] D. Yang, B. Li, and P. Cudré-Mauroux, “POIsketch: Semantic Place
Labeling over User Activity Streams,” in IJCAI, 2016, pp. 2697–
2703.

[55] D. Yang, B. Li, L. Rettig, and P. Cudré-Mauroux, “HistoSketch: Fast
Similarity-Preserving Sketching of Streaming Histograms with

Concept Drift,” in ICDM, 2017, pp. 545–554.

	1 Introduction
	2 Overview
	2.1 Locality Sensitivity Hashing
	2.2 Jaccard Similarity and MinHash
	2.3 A Categorization of Weighted MinHash Algorithms

	3 Quantization-based Weighted MinHash Algorithms
	3.1 [Haveliwala et. al., 2000]
	3.2 [Haeupler et. al., 2014]

	4 ``Active index"-based Weighted MinHash Algorithms
	4.1 [Gollapudi et. al., 2006](1)
	4.2 The Consistent Weighted Sampling Scheme
	4.2.1 Consistent Weighted Sampling
	4.2.2 Improved Consistent Weighted Sampling
	4.2.3 0-bit Consistent Weighted Sampling
	4.2.4 Canonical Consistent Weighted Sampling
	4.2.5 Practical Consistent Weighted Sampling
	4.2.6 Improved Improved Consistent Weighted Sampling

	4.3 Discussion

	5 Others
	5.1 [Gollapudi et. al., 2006](2)
	5.2 [Chum et. al., 2008]
	5.3 [Shrivastava, 2016]

	6 Experiments
	6.1 Data sets
	6.2 Experimental Preliminaries
	6.3 Experimental Results

	7 Conclusion and Future Work
	References

