

Aalborg Universitet

Context-Aware Path Ranking in Road Networks

Yang, Sean Bin; Guo, Chenjuan; Yang, Bin

Published in:
IEEE Transactions on Knowledge and Data Engineering

DOI (link to publication from Publisher):
10.1109/TKDE.2020.3025024

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Yang, S. B., Guo, C., & Yang, B. (2022). Context-Aware Path Ranking in Road Networks. IEEE Transactions on
Knowledge and Data Engineering, 34(7), 3153-3168. Advance online publication.
https://doi.org/10.1109/TKDE.2020.3025024

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 27, 2024

https://doi.org/10.1109/TKDE.2020.3025024
https://vbn.aau.dk/en/publications/cfdc0d5a-6ce7-4204-b2fd-c046e1420a1b
https://doi.org/10.1109/TKDE.2020.3025024

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

1

Context-Aware Path Ranking in Road Networks
Sean Bin Yang, Chenjuan Guo �, and Bin Yang

Abstract—Ranking paths becomes an increasingly important functionality in many transportation services, where multiple paths
connecting a source-destination pair are offered to drivers. We study ranking such paths under specific contexts, e.g., at a departure
time and for a specific driver. More specifically, we model ranking as a regression problem where we assign a ranking score to each
path with the help of historical trajectories. The intuition is that if a driver’s trajectory used path P at time t, we consider this as an
evidence that path P is preferred by the driver at time t, thus should have a higher ranking score than other paths connecting the same
source and destination. To solve the regression problem, we first propose an effective training data enriching method to obtain a
compact and diversified set of training paths using historical trajectories, which provides a data foundation for efficient and effective
learning. Next, we propose a multi-task learning framework that considers features representing both candidate paths and contexts.
Specifically, a road network embedding is proposed to embed paths into feature vectors by considering both road network topology and
spatial properties, such as distances and travel times. By modeling different departure times as a temporal graph, graph embedding is
used to embed departure times into feature vectors. The objective function not only considers the discrepancies on ranking scores but
also the reconstruction errors of the spatial properties of the paths, which in turn improves the final ranking estimation. Empirical
studies on a substantial trajectory data set offer insight into the designed properties of the proposed framework, indicating that it is
effective and practical in real world settings.

Index Terms—Path ranking, diversified paths, multi-task learning, road network embedding, graph embedding.

F

1 INTRODUCTION

V EHICULAR transportation reflects the pulse of a city. It plays
an essential role in people’s daily lives and many businesses

as well as society as a whole [1]. With recent deployment of
sensing technologies and continued digitization, large amounts of
vehicle trajectory data are collected, which provide a solid data
foundation to improve the quality of a wide variety of transporta-
tion services, such as vehicle routing [2], traffic prediction [3], and
urban planning [4].

A fundamental functionality in vehicular transportation is
routing. Given a source and a destination, classic routing algo-
rithms, e.g., Dijkstra’s algorithm, identify a single optimal path
connecting the source and the destination, where the optimal path
is the path with the least travel cost, e.g., the shortest path or the
fastest path. However, a routing service quality study [5] shows
that local drivers often choose paths that are neither shortest nor
fastest, rendering classic routing algorithms often impractical in
many real world routing scenarios. To contend with this challenge,
a wide variety of advanced routing algorithms, e.g., skyline rout-
ing [6] and k-shortest path routing [7], are proposed to identify
a set of optimal paths, where the optimality is defined based on,
e.g., pareto optimality or top-k least costs, which provide drivers
with multiple candidate paths to choose. Commercial navigation
systems, such as Google Maps and TomTom, often follow a similar
strategy that suggests multiple candidate paths to drivers.

Under this context, ranking such candidate paths is essential
for ensuring high routing quality. Existing solutions often rely
on simple heuristics, e.g., ranking paths w.r.t. their travel times.
However, travel times may not always be the most important factor
when drivers choose paths, and a routing quality study shows
that drivers often do not choose the fastest paths [5]. In addition,

• S. Yang, C. Guo and B. Yang are with the Department of Computer Science,
Aalborg University, Denmark.
E-mail: {seany, cguo, byang}@cs.aau.dk

existing solutions often provide the same ranking to all drivers but
ignore distinct preferences which different drivers may have.

In this paper, we propose a data-driven, context-aware rank-
ing framework PathRank to rank paths in road networks. More
specifically, PathRank models ranking candidate paths as a re-
gression problem—for each candidate path, PathRank estimates
a ranking score using local drivers’ trajectories, which in turn
enables ranking the candidate paths w.r.t. their ranking scores.
The framework is flexible where different contextual information
can be accommodated. For example, when accommodating driver
information, it enables personalized ranking. To enable PathRank,
two challenges must be addressed.
Enriching Training Data: To train any regression model, we need
to prepare training data. We borrow the idea often used in ranking
products in online shops. If a user clicks a specific product on a
webpage, it provides evidence that the user is interested in the
product than other products on the same webpage. Then, the
clicked vs. not clicked products are considered as positive vs.
negative training data to enable traning. Similarly, if a driver’s
trajectory used path P from source s to destination d at time t, it is
an evidence that the driver considered path P as the preferred path
over other paths from s to d at time t. Thus, path P is a positive
training data and should have the largest ranking score. However,
trajectories only provide positive training data and we still lack
negative training data. Since there often exist a large amount of
paths from a source to a destination, it is thus prohibitive to include
all paths other than P as the negative paths. In contrast, randomly
selecting a small subset of such paths may adversely affect the
training effectiveness. Thus, it is challenging to select a compact
and diversified training path set to represent the negative training
data. A compact set ensures training efficiency and a diversified
set ensure training effectiveness.
Effective Feature Representations: Effective regression models
often rely on meaningful feature representations of input data. In
our setting, an input to PathRank is a path that is a sequence of

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

2

vertices in a road network graph. Here, a meaningful feature space
should take into account both the topology of the underlying road
network and the spatial properties of the road network, such as
distances and travel times, which may influence drivers’ choices.
However, no existing methods are able to capture both topological
and spatial properties. In addition, it is also important to embed
context information, such as departure times, into meaningful
representations, where, for example, temporal closeness can be
preserved. This calls far new feature learning methods.

To contend with the first challenge, we propose an effective
method to generate a compact and diversified training path set.
We consider different travel costs that drivers may consider, e.g.,
distance, travel time, and fuel consumption. Next, for each travel
cost, we identify a set of diversified, top-k least-cost paths. Here,
two paths are diversified if the path similarity between them
is smaller than a threshold, where a number of different path
similarity functions can be applied [8]. As an example, diversified
top-3 shortest paths consist of three paths where the path similarity
of every pair of paths is smaller than the threshold and there does
not exist another set of three paths which are mutually diversified
and whose total distance is shorter. Considering diversity avoids
including top-3 shortest paths where they only differ slightly, e.g.,
only one or two edges. This method makes sure that the candidate
path set is diversified because the set (i) considers multiple travel
costs that a driver may consider when making routing decisions;
and (ii) includes paths that are dissimilar with each other. These
together represent a large feature space of the underlying road
network. In addition, the set is also compact since it only includes
a small number of top-k paths.

Next, we address the second challenge by proposing an end-to-
end learning framework to learn feature representations of paths,
which capture both topological and spatial properties. Recall that
the input is a path that is represented as a sequence of vertices in a
road network graph. To capture the topology of the road network,
we utilize unsupervised graph embedding [9] to transform vertices
into feature vectors by considering road network topology. Since
recurrent neural networks (RNNs) are good at modeling sequential
information and since a path is a sequence of vertices, we employ
an RNN to model the sequence of the feature vectors of the
vertices in a path. So far, the framework already considers the
topology of the underlying road network, but still lacks spatial
properties, which are not captured by classic graph embedding.
To accommodate the spatial properties, we let the RNN estimate
multiple values, including a ranking score of the input path and
also the input path’s spatial properties, such as the length, the
travel time, and the fuel consumption of the path. This makes the
framework a multi-task learning framework where the main task is
to estimate the ranking score, which is used for the final ranking,
and the auxiliary tasks enforce to update the feature vectors of
the vertices to also capture the spatial properties of the underlying
road network, which eventually also help improve the accuracy of
the main task.

The proposed learning framework is flexible where contex-
tual information can be seamlessly integrated. For example, we
propose a temporal graph to model peak vs offpeak periods in dif-
ferent days and then departure times can be converted into feature
vectors that reflect temporal closeness. We show how the temporal
features can be integrated into the learning framework and thus
enable temporal ranking. Similarly, when incorporating feature
vectors representing drivers, we enable personalized ranking.

This paper presents the first data-driven, end-to-end solution to

context-aware ranking for paths in road networks. Specifically, we
make four contributions. First, we propose a method to generate
a compact and diversified set of training paths which enables
effective and efficient learning. Second, we propose a multi-
task learning framework to enable spatial network embedding
that captures not only topological information but also spatial
properties. Third, we integrate contextual information embedding
into the framework to enable context-aware ranking. Fourth, we
conduct extensive experiments using a large real world trajectory
set to offer insight into the design properties of the proposed
framework and to demonstrate that the framework is effective. A
preliminary four-page report on the study appeared elsewhere [10].

Paper Outline: Section 2 covers related work. Section 3
covers preliminaries. Section 4 discusses enriching training data.
Section 5 proposes PathRank. Section 6 reports on empirical
evaluations. Section 7 concludes.

2 RELATED WORK

We review related studies on (1) learning to rank in the context
of information retrieval, (2) graph representation learning, (3)
machine learning techniques for path recommendation, and (4)
top-k path finding.

2.1 Learning to rank
Learning to rank plays an important role in ranking in the context
of information retrieval (IR), where the primary goal is to learn
how to rank documents or web pages w.r.t. queries, which are
all represented as feature vectors. Learning to rank methods in
IR can be categorized into point-wise, pair-wise, and list-wise
methods. Point-wise methods estimate a ranking score for each
individual document. Then, the documents can be ranked based on
the ranking scores [11]. Pair-wise methods focus on, for a given
pair of documents, making a binary decision on which document
is better, i.e., a relative order. Here, although we do not know the
ranking scores for individual documents, we are still able to rank
documents based on the estimated relative orders [12]. List-wise
methods take into account a set of documents and estimate the
ranking for the documents [13].

Although learning to rank techniques have been applied widely
and successfully in IR, they only consider textual documents and
queries and cannot be applied for ranking paths in road networks,
since both graph topology and spatial properties, which are the
two most important factors in road networks, are ignored. We
follow the idea of the point-wise learning to rank techniques in
IR and propose PathRank to rank paths in road networks while
considering both graph topology and spatial properties.

2.2 Graph Representation Learning
Graph representation learning, a.k.a., graph embedding, aims to
learn low-dimensional feature vectors for vertices while preserving
graph topology structure such that the vertices with similar feature
vectors share similar structural properties [9], [14], [15], [16], [17].
We distinguish two categories of methods: random walk based
methods and deep learning based methods.

A representative method in the first category is DeepWalk [14].
DeepWalk first samples sequences of vertices based on trun-
cated random walks, where the sampled vertex sequences capture
the connections between vertices in the graph. Then, skip-gram
model [18] is used to learn low-dimensional feature vectors based

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

3

on the sampled vertex sequences. Node2vec [9] considers higher
order proximity between vertices by maximizing the probability of
occurrences of subsequent vertices in fixed length random walks.
A key difference from DeepWalk is that node2vec employs biased-
random walks that provide a trade-off between breadth-first and
depth-first searches, and hence achieves higher quality and more
informative embedding than DeepWalk does.

To overcome the weaknesses of random walk based methods,
e.g., the difficulty in determining the random walk length and the
number of random walks, deep learning based methods utilize the
random surfing model to capture contextual relatedness between
each pair of vertices and preserves them into low-dimensional
feature vectors for vertices [16]. Deep learning based methods
are also able to take into account complex non-linear relations.
GraphGAN [17] is proposed to learn vertex representations by
modeling the connectivity behavior through an adversarial learn-
ing framework using a minimax game. LINE [15] does not fall
into the above two categories. Instead of exploiting random walks
to capture network structures, LINE [15] proposes a model with a
carefully designed objective function that preserves both the first-
order and second-order proximities.

However, all existing graph embedding methods consider non-
spatial networks such as social networks, citation networks, and
biology networks. They ignore spatial properties, e.g., distances
and travel times, which are crucial features in spatial networks
such as road networks. In this paper, we propose a multi-task
learning framework to extend existing graph embedding to in-
corporate important spatial properties. Experimental results show
that the graph embedding that considers spatial-properties gives
the best performance when ranking paths in road networks.

2.3 Machine Learning on Spatio-Temporal Data

Machine learning has been applied to spatio-temporal data such as
trajectories to improve path recommendation [2], [6], [19], [20],
[21]. Personalized routing [21] and context-aware routing [2], [20]
aim to identify a single, optimal path for a specific driver or under
a specific context. Although such studies do not provide ranking
functions directly, we derive a personalized ranking approach
from [21] and compare with PathRank in Section 6.4. Skyline
routing returns a set of non-dominated paths, which are considered
to be incomparable to each other and thus no ranking is pro-
vided [6], [22]. Additional attempts have been made for estimating
accurate travel time or fuel consumption distributions [3], [23],
[24], [24], [25], [26], [27], which are also different from ranking
paths. RoadRank [28] computes influence scores for all road
segments, i.e., edges, in a road network and then ranks the edges
according to the influence scores. In contrast, our paper proposes
PathRank to rank paths, not edges. Multitask learning is applied to
model different drivers’ driving behavior [29] such that trajectories
from a same driver can be clustered together. However, it cannot
be used directly for ranking paths. In addition, one paper also
considers trajectory clustering [30], which is an unsupervised
learning problem. It cannot be used for solving the path ranking
problem, which is a supervised learning problem.

Some traffic time series prediction methods also consider
graph operations, e.g., graph convolution and graph attention, in
RNNs [31], [32], [33], [34], [35], but the problem settings are
different and their solutions cannot be used for ranking paths.
In such models, the input to an RNN unit is a whole road
network graph and the RNN units capture temporal dependency.

In contrast, the input to our RNN unit is a vertex in a road network
graph and the RNN units capture the spatial dependency along a
path.

2.4 Top-k Queries on Road Networks
A wide variety of top-k queries on road networks exist [8],
[36], [37], [38]. Top-k path selection algorithms often use simple
ranking functions to rank paths [7], [8]. For example, top-k
fastest path finding algorithms rank paths according to the paths’
travel times. In the experiments, we compare PathRank with such
baseline ranking functions used in top-k path finding algorithms.
Some other top-k algorithms consider different problem settings.
For example, top-k optimal sequenced paths aim at finding the top-
k shortest paths that visit a set of points of interest (POIs) such
as a post office, a bank, and a grocery store [38]. Another study
considers ranking a set of POIs in a road network [37], which
cannot be used for ranking paths. Probabilistic top-k shortest
path queries [36], [39] rank paths w.r.t. the probability of arriving
within a time budget, which is provided by end users. Our problem
dose not require end users to provide such time budgets.

3 PRELIMINARIES

3.1 Basic Concepts
A road network is modeled as a weighted, directed graph
G = (V,E, D, T, F). Vertex set V represents road intersections
and road ends; edge set E ⊂ V × V represents road segments.
Functions D, T , and F maintain the travel costs of the edges in
graph G. Specifically, function D : E → R+ maps each edge to
its length. Functions T and F have similar signatures and maps
edges to their travel times and fuel consumption, respectively.

A path P = (v1, v2, v3, . . . , vX) is a sequence of X vertices
where X > 1 and each two adjacent vertices must be connected
by an edge in E. We use P.s and P.d to denote the source and the
destination of path P .

A trajectory T = (p1, p2, p3, . . . , pY) is a sequence of GPS
records pertaining to a trip, where each GPS record pi =
(location, time) represents the location of a vehicle at a par-
ticular timestamp. The GPS records are ordered according to
their corresponding timestamps, where pi.time < pj .time if
1 ≤ i < j ≤ Y .

Map matching [40] is able to map a GPS record to a specific
location on an edge in the underlying road network, thus aligning
a trajectory T with a path in the underlying road network, denoted
as T .P . We call such paths trajectory paths. In addition, a
trajectory T is also associated with a driver identifier, denoted as
T.driver, indicating who made the trajectory. From trajectory
T , we know that driver T.driver used path T .P at time
T .p1.time. Thus, path T .P is considered as a ground truth path
under the contexts, i.e., for driver T.driver at time T .p1.time.

Path Similarities: Multiple similarity functions [2], [8], [21],
[41] are available to calculate the similarity between two paths,
where the most popular functions belong to the Jaccard similarity
function family, in particular, the weighted Jaccard similarity [2],
[21]. In this paper, we use the weighted Jaccard Similarity (see
Equation 1) to evaluate the similarity between two paths.

sim (P1, P2) =

∑
e∈P1∩P2

G.D(e)∑
e∈P1∪P2

G.D(e)
(1)

Here, we use P1∩P2 and P1∪P2 to represent two edge sets: edge
set P1 ∩ P2 consists of the edges that appear in both P1 and P2;

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

4

and edge set P1∪P2 consists of the edges that appear in either P1

or P2. Recall that function G.D(e) returns the length of edge e.
Then, the intuition of the weighted Jaccard similarity is two-fold:
first, the more edges the two paths share, the more similar the two
paths are; second, the longer the shared edges are, the more similar
the two paths are. Note that the proposed PathRank is a generic
path ranking framework, which is able to easily incorporate other
similarity functions.

Ranking scores: Given a trajectory path P and another path
P ′ that also connects P.s and P.d, we use the similarity between
the two paths sim(P, P ′) to represent the ranking score of P ′.
Since we consider trajectory paths as the ground truth path under
the contexts, the more similar P ′ is w.r.t. P , the higher similarity
score P ′ should have and thus should rank higher. The trajectory
path P itself always has a ranking score of 1 and thus ranks the
highest among all paths connecting P.s and P.d.

3.2 Problem Definition
Given a set of N candidate paths P that connect the same source
and destination and optional contexts such as a departure time
and a driver identifier, we aim at (1) estimating a ranking score
sim(P, P ′i) for each candidate path P ′i ∈ P; and (2) providing
a ranked list of the candidate paths 〈P ′1, P ′2, . . . , P ′N 〉, such that
sim(P, P ′i) ≥ sim(P, P ′j) when 1 ≤ i < j ≤ N .

3.3 PathRank Overview
Fig. 1 shows an overview of the proposed PathRank. We distin-
guish a training phase and a testing phase. The training phase
employ historical trajectories to train PathRank, and we use the
trained PathRank in the testing phase.

We proceed to elaborate the training phase. Given a set of
historical trajectory, we first map match them to obtain their
corresponding trajectory paths. The trajectory paths are fed into
the Training Data Enrichment module where an enriched training
data set is generated. Specifically, for each trajectory path P ,
the training data enrichment module generates a compact and
diversified set PS of candidate paths such that each candidate
path P ′ ∈ PS also connects the same source and destination
of the trajectory path P . In addition, for each path P ′ ∈ PS ,
the module computes a similarity score sim(P, P ′) as the ground
truth ranking score of P ′. Thus, the output of the training data
enrichment module is a set of “candidate path” and “ranking
score” pairs, denoted as {P ′, sim(P, P ′)}, where the ranking
scores are labels. This set is used as the input for the PathRank.

In the training phase, for each training instance
(P ′, sim(P, P ′)), the Spatial Network Embedding Module
embeds each vertex in candidate path P ′ into a feature vector.
This transfers path P ′ into a sequence of feature vectors, which
is then fed into a Recurrent Neural Network (RNN). In addition,
Context Embedding Module embeds additional contextual
information such as departure time and driver identifiers into
feature vectors, which is also fed into the RNN. Then, the RNN
estimates a ranking score of P ′. An objective function is designed
to measure the discrepancy between the estimated ranking score
and the ground truth ranking score sim(P, P ′).

In the testing phase, we use the trained PathRank to rank can-
didate paths. Given a source, a destination, and optional contexts,
advanced routing algorithms or commercial navigation systems
are able to provide multiple candidate paths, which are used as
candidate paths. Next, PathRank takes as input each candidate

Trajectory Paths
Source, Destination,

and Contexts

Training Data Enrichment Advanced Routing

() , sim ,P P P Candidate Paths

Spatial Network

Embedding

Recurrent Neural Network

Candidate Paths with

Estimated Ranking Scores

P
ath

R
a
n
k

Context

Embedding

Fig. 1: Solution Overview.

path and returns an estimated ranking score. Finally, we rank the
candidate paths according to their estimated ranking scores.

4 TRAINING DATA ENRICHMENT

We proceed to elaborate how to generate a compact and diversified
set of training paths for a trajectory path.

4.1 Intuitions
Ranking paths is similar to ranking products in online shops. If a
user clicks a specific product, it provides evidence that the user
is interested in the product than other similar products. Similarly,
a trajectory path P from a source s to destination d at time t
also provides strong evidence that a driver prefers path P than
other paths that connect s to d at time t. The main difference is
that, in online shops, the other similar products, i.e., competitor
products, can be obtained explicitly, e.g., those products that are
shown to the user in the same web page but are not clicked by
the user. Based on the positive and negative training data, i.e., the
products that are clicked and not clicked by the user, effective
learning mechanism, e.g., learning to rank [42], [43], is available
to learn an appropriate ranking function. However, in our setting,
other candidate paths are often unknown and implicit because we
do not know when the driver made the decision to take path P ,
what other paths were in driver’s mind. Thus, the main target of
the training data enrichment module is to generate a set of paths
PS that include the other paths that the driver has considered. We
call PS competitive path set.

A naive way to generate the competitive path set is to simply
include all paths from s to d. This is infeasible to use in real world
settings since the competitive path set may contain a huge number
of paths in a city-level road network graph, which in turn makes
the training prohibitively inefficient. Thus, we aim to identify a
compact competitive path set, where only a small number of paths,
e.g., less than 10 paths, are included. However, we cannot just
randomly choose a small number of paths. We need to carefully
choose such paths to resemble “the unclicked products” in online
shopping.

4.2 Top-k Shortest Paths
The first strategy is to employ a classic top-k shortest path algo-
rithm, e.g., Yen’s algorithm [7], to include the top-k shortest paths
from s to d into the competitive path set PS . This provides us a

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

5

(a) Top-9 Shortest Paths

P 1 P 2 P 3 P 40 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Sim
ilar

itie
s

T r a j e c t o r y P a t h s
(b) Diversified Top-9 Shortest Paths

�� �� �� ��
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Sim
ilar

itie
s

T r a j e c t o r y P a t h s
(c) Multi-cost Diversified Paths

Fig. 2: Similarity Spreads of Different Strategies.

compact set. In addition, this strategy is simple and efficient since
a wide variety of efficient algorithms are available to generate top-
k shortest paths in the literature [7], [44]. However, a serious issue
of this strategy is that the top-k shortest paths are often highly
similar. For example, the top-2 shortest paths may only differ
with one or two edges. Thus, their similarities w.r.t. the ground
truth, trajectory path P , are also similar, which adversely affect
the effectiveness of the subsequent ranking score regression.

For example, we randomly choose four trajectory paths with
different sources and destinations. For each trajectory path, we
identify its origin and destination. Then, we use the origin and
destination to generate top-9 shortest paths. Then, we compute the
competitive paths’ similarities w.r.t. the trajectory path. Figure 2a
shows the box plots of the similarities per trajectory path. We
observe that the similarities often only spread over a very small
range. For example, for the first trajectory path P1, its correspond-
ing top-9 shortest paths have similarities spreading from 0.65 to
0.75.

If the similarities of competitive paths only spread over a small
range, they only provide training instances for estimating ranking
scores in the small range, which may make the trained model
unable to make accurate estimations for ranking scores outside
the small range. Thus, an ideal strategy should be providing a
set of training paths whose similarities cover a large range. In
other words, we aim at getting a diversified competitive path set to
ensure effectiveness. To this end, we propose the second strategy
using the diversified top-k shortest paths [8].

4.3 Diversified Top-k Shortest Paths
Diversified top-k shortest paths finding aims at identifying top-
k shortest paths such that the paths are mutually dissimilar, or
diverse, with each other. First, we always include the shortest path
into the diversified top-k shortest path set, say DkPS . Next, we
iteratively check the next shortest path Pi until we have included
k paths in DkPS or we have checked all paths connecting the
source and destination. When checking the next shortest path Pi,
we include Pi into DkPS if the similarity between Pi and each
existing path in DkPS is smaller than a threshold δ. This means
that Pi is sufficiently dissimilar with the paths in DkPS , thus
making sure that DkPS is a diversified top-k shortest path set.
The smaller the threshold δ is, the more diverse the paths in DkPS
are. However, if the threshold δ is too small, it may happen that
less than k diverse shortest paths or even only the shortest path
can be included in DkPS .

Figure 2b shows the similarities of the same four trajectory
paths when using diversified top-9 shortest paths with threshold
δ = 0.8. We observe that the similarities spread over larger ranges
compared to Figure 2a when using classic top-k shortest paths.

4.4 Considering Multiple Travel Costs
Recent studies on personalized routing [2], [21], [45] suggest
that a driver may consider different travel costs, e.g., travel time,
distance, and fuel consumption, when making routing decisions.
This motivates us to consider multiple travel costs, but not only
distance, when generating competitive path sets. The first option to
do so is to use Skyline routing [6], which is able to identify a set
of pareto-optimal paths, a.k.a., Skyline paths, when considering
multiple travel costs. However, Skyline routing also suffers the
high similarity problem that the classic top-k shortest paths have—
it often happens that the skyline paths are mutually similar, which
may adversely affect the training effectiveness.

We propose a simple yet effective approach. We run the
diversified top-k shortest paths x times where each time we
consider a specific travel cost. Then, we use the union of the
diverse paths as the final competitive path set PS . For example,
when considering three travel costs, i.e., distances, travel times,
and fuel consumption, we set x = 3 and identify the diversified
top-k shortest, fastest, and most fuel efficient paths, respectively.
Then, the union of the diversified top-k shortest, fastest, and most
fuel efficient paths is used as the final competitive path set PS .

Since we run the diversified top-k shortest path finding mul-
tiple times for different travel costs, we can use a small k for
each run. For example, when we set k = 3 and consider three
travel costs, this makes PS also consist of up to 9 paths including
the top-3 shortest, fastest, and most fuel efficient paths. Figure 2c
shows the similarities of the same four trajectory paths when using
the multi-cost diversified paths that include the top-3 shortest,
fastest, and most fuel efficient paths. The similarities in Figure 2c
spread over larger ranges and the ranges are closer to 1. This is
preferred since it helps us to distinguish the rankings of “good
enough” candidate paths.

To summarize, we use multi-cost, diversified top-k least-cost
paths as the compact competitive path set PS for each trajectory
path P . We use paths in PS and trajectory path P together as the
training data, denoted as {(P ′i , simi)}. Here, path P ′i ∈ PS ∪
{P} is associated with a ranking score label simi = sim(P ′i , P).
If P ′i is a trajectory path, its ranking score simi is 1, which serves
as a positive training data. Otherwise, the ranking score is smaller
than 1, which serves as a negative training data. After identifying
competitive path sets for all trajectory paths, we use {(P ′i , simi)}
as the training data for PathRank. If we do not enrich training
data and only use trajectory paths for training, then they all have
ranking score of 1, making it impossible to rank different paths.

5 RANKING FRAMEWORK

We propose an end-to-end deep learning framework to estimate
similarity scores for paths. We first propose a basic framework that

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

6

Training Data

GRUGRU GRU

GRU GRU GRU

1x 2x

1s

1s

1h 2h

1h
2h

1H 2H

1H

2H

Main Task

Aux. Task-1

Aux. Task-2

Aux. Task-m

Graph Embedding

Road Network G

Initialization

DI

TT

mCost

1 11 12 13 1 1

2 21 22 23 2 2

1 2 3

1 2 3

, , , , sim

, , , , sim

, , , , sim

, , , , sim

Z

Z

i Z i

n n n n nZ n

P v v v v

P v v v v

P v v v v

P v v v v

Zx

Zs

Zs

Zh

Zh

ZH

ZH

1v 2v Zv

P

Vertex Embedding Matrix B

Path

FC

()iF P

isim

Fig. 3: Basic Framework of PathRank.

consists of a spatial network embedding network and a recurrent
neural network. Next, we extend the basic framework with the
help of contextual embedding by considering two contexts, i.e.,
departure time and driver identifiers.

5.1 Basic Framework
Recall that the input for PathRank is a path, i.e., competitive
path P ′i , and the label of the input is its ranking score, i.e.,
similarity, simi. To solve the ranking score regression problem,
a prerequisite is to represent the input path P ′i into an appropriate
feature space. To this end, we propose to use a vertex embedding
network to convert each vertex in the input path to a feature vector.
Since a path is a sequence of vertices, after vertex embedding, the
path becomes a sequence of feature vectors. Next, since recurrent
neural networks (RNNs) are capable of capturing dependency for
sequential data, we employ an RNN to model the sequence of
feature vectors. The RNN finally outputs an estimated ranking
score, which is compared against the ground truth ranking score
simi. This results in the basic framework of PathRank, which
consists of two neural networks—a vertex embedding network
and a recurrent neural network (RNN), as shown in Figure 3.

5.1.1 Vertex Embedding
We represent a vertex vi in road network graph G as a one-hot
vector qi ∈ RN , where N represents the number of vertices in
G, i.e., N = |G.V|. Specifically, the i-th vertex vi in graph G
is represented as a vector qi where the i-th bit is 1 and the other
N−1 bits are 0. Vertex embedding employs an embedding matrix
B ∈ RM×N to transfer a vertex’s one-hot vector qi into a new
feature vector xi = Bqi ∈ RM . The feature vector is often in a
smaller space, where M < N .

Given a competitive path P ′i = 〈v1, v2, . . . , vZ〉, we apply
the same embedding matrix B to transfer each vertex to a feature
vector. Thus, the competitive path P is represented as a sequence
of features 〈x1, x2, . . . , xZ〉, where xj = Bqj and 1 ≤ j ≤ Z.

Next, we elaborate different means of obtaining embedding
matrix B. An naive method to obtain B is to simply initialize a
random matrix, which is then updated through back-propagation
in the training phase. However, the naive method does not consider
the graph topology and spatial properties, which hinders accuracy.
Capturing Graph Topology with Graph Embedding: Graph
embedding, e.g., DeepWalk [14], node2vec [9], LINE [15], Graph-

GAN [17], aims at learning low-dimensional, feature vectors of
vertices in a graph by taking into account the graph topology. A
typical way to enable graph embedding is to mimic the way of
embedding words for natural languages [9], [14]. In particular,
multiple vertex sequences can be generated by using random
walks, where random walks can consider edge weights or ignore
edge weights. Next, vertices are considered as words and the
generated vertex sequences are considered as sentences, which
enables the use of word embedding techniques to generate em-
beddings for vertices. Since the vertex sequences are generated
by applying random walks on the graph, the obtained vertex
embedding actually already takes into account the graph topology.
The output of graph embedding is an embedding matrix B that
considers graph topology.

We propose two different strategies to incorporate graph em-
bedding into the framework. First, we simply apply an existing
graph embedding method, e.g., DeepWalk or node2vec, to obtain
embedding matrix B that embeds a one-hot representation of a
vertex to a low dimensional feature vector. Then, we use the
feature vector as the input to the RNN. This means that PathRank
only includes an RNN module, whose inputs are sequences of
feature vectors, and the vertex embedding module only provides
the inputs and are then disconnected from PathRank.

Second, inspired by the well-known practice of unsupervised
pre-training [46], we use the embedding matrix obtained from an
existing graph embedding method to initialize the embedding ma-
trix B in the vertex embedding module in PathRank. This allows
PathRank to update the embedding matrix B during training such
that it not only captures the graph topology but also better fits the
similarity regression.
Capturing Spatial Properties with Multi-Task Learning: Al-
though many vertex embedding algorithms exist, they are only
able to capture graph topology because they only focus on graphs
representing, e.g., social networks and citation network. In other
words, they do not consider graphs representing spatial networks
such as road networks. However, in road network graphs, many
spatial attributes, in addition to topology, are also very important.
For example, distances and travel times between two vertices are
crucial features for road networks and also influence drivers’ path
choices. To let the graph embedding also maintain the spatial
properties, we design a multi-task learning framework using pre-
trained graph embedding.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

7

We first employ an existing graph embedding algorithm to
initialize the vertex embedding matrix B in the vertex embedding
module of PathRank. This pre-trained embedding matrix captures
the graph topology. Next, we try to update B such that it also
captures relevant spatial properties during training. To this end, we
employ multi-task learning principles, where the main task is to
estimate similarity and the auxiliary tasks are to reconstruct travel
costs of competitive paths which help learning an appropriate
embedding matrix B that also considers spatial properties of the
underlying road network.

5.1.2 RNN

After vertex embedding, a path is represented by a sequence of
feature vectors 〈x1, x2, . . . , xZ〉. The feature sequence represents
the flow of travel on path P ′i . As a recurrent neural network (RNN)
is known to be effective for modeling sequences, we fed the feature
sequence 〈x1, x2, . . . , xZ〉 into an RNN. Specifically, we employ
a bidirectional gated recurrent neural network (BD-GRU) [47] to
capture the sequential dependencies in both the direction and the
opposite direction of the travel flow on path P ′i .

We consider the direction of the travel flow first, i.e., from left
to right. A GRU unit learns sequential correlations by maintaining
a hidden state hj ∈ RQ at position j, which can be regard as an
accumulated information of the positions to the left of position j.
Specifically, hj = GRU (xj , hj−1), where xj is the input feature
vector at position j and hj−1 is the hidden state at position j − 1,
i.e., the hidden state of the left position. More specifically, the
GRU unit is composed of the following computations.

First, the GRU unit employs a reset gate rj , shown in Equa-
tion 2, to decide how much information from the previous position
should be forgotten. Equation 2 computes rj , which is a value
between 0 and 1, meaning that the reset gate may fully forget to
fully remember. The GRU then uses a similar gate called update
gate to compute zj using Equation 3. Both the reset and update
gates are contributed to control how much information from the
left hidden states should be considered in order to make the
final similarity score estimation accurate. More specifically, In
Equation 4, the GRU computes an internal state h̃j that considers
both inputs xj and hj−1. Here, the output of the reset gate rj is
used to control how much we want to consider the output from the
previous position hj−1. Finally, In Equation 5, the GRU uses the
update gate zj to combine the internal state h̃j and the output from
the previous position hj−1, which produces the output state hj for
the current GRU unit at position j. By doing this, it is possible to
remember and forget left hidden states which are found to be
relevant and irrelevant for the final similarity score estimation.

rj = σ (Wrxj +Urhj−1) (2)

zj = σ (Wzxj +Uzhj−1) (3)

h̃j = φ (Whxj +Uh (rj � hj−1)) (4)

hj = zj � hj + (1− zj)� h̃j (5)

where σ is the logistic function, and � denotes Hadamard product
and φ is hyperbolic tangent function. xj and hj are the feature
vector and hidden state at position j, respectively. Wr , Wz , Wh,
Ur , Uz and Uh are parameters to be learned.

For the opposite direction of the travel flow, i.e., from right
to left, we apply another GRU to generate hidden state h′j =
GRU ′(xj ,h

′
j+1). Here, the input consists of the feature vector

at position j and the hidden state at position j + 1, i.e., the right
hidden state.

The final hidden state Hj at position j is the concatenation of
the hidden states from both GRUs, i.e., Hj = hj ⊕ h′j where ⊕
indicates the concatenation operation. We stack all outputs from
the BD-GRU units into a long feature vector F (P ′i) = 〈H1 ⊕
H2 ⊕ . . .⊕HZ〉 where ⊕ indicates the concatenation operation.
Now, the competitive path P ′i is converted to a feature vector
F (P ′i).

5.1.3 Fully Connected Layer
For each competitive path P ′i , we apply a fully connected layer
with weight vector WFC ∈ R|F (P ′

i)|×X to produce a vector of
X values, including the estimated similarity score ˆsimi and a
number of spatial properties, such as travel time, distance, and
fuel consumption.

5.1.4 Loss Function
To enable the multi-task learning framework, in the final fully
connected layer, PathRank not only estimates a similarity score
but also reconstruct the spatial properties of the corresponding
competitive path P ′i , such as the distance, travel time, and fuel
consumption of P ′i . The loss function for the multi-task learning
framework is defined in Equation 6.

L(W) =
1

|n|
[(1− α) ·

n∑
i=1

(
ˆsimi − simi

)2
+

α ·
n∑

i=1

m∑
k=1

(
ŷ
(k)
i − y(k)i

)2
] + λ‖W‖22

(6)

The first term of the loss function measures the discrepancy
between the estimated similarity ˆsimi and the ground truth
similarity simi. We use the average of square error to measure
the discrepancy, where n is the total number of competitive
paths we used for training. The second term of the loss function
represents auxiliary tasks that consider the discrepancies between
the actual spatial properties vs. the estimated spatial properties.
More specifically, ŷ(k)i and y

(k)
i denote the estimated cost of

the k-th auxiliary task and the ground truth of the k-th auxiliary
task, respectively. For example, when considering distance, travel
time, and fuel consumption, we set m to 3; and ŷ

(k)
i and y(k)i

represent the estimated and ground truth distance, travel time,
or fuel consumption of the i-th competitive path P ′i . α is a
hyper parameter that controls the trade-off between main task and
auxiliary tasks. Finally, the loss function uses a L2 regularizer on
all learnable parameters in the model, including the embedding
matrix B, multiple matrices used in BD-GRU, and the matrix in
the final fully connected layer WFC .

5.2 Advanced Framework
Path ranking is often context dependent. For example, during
peak vs off-peak hours, drivers may consider different paths as
the best paths. To accommodate such contexts, we design an
advanced framework to extend the basic framework with the help
of contextual embedding by considering a departure time t and
a driver ID k. The advanced PathRank framework is shown in
Figure 4.

We proceed to describe the embedding of various contexts
such as departure times and driver IDs. Departure time is an
important context when drivers make routing decisions as it often

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

8

Contextual Embedding

GRUGRU GRU

GRU GRU GRU

Vertex Embedding Matrix

1x 2x

1s

1s

1h 2h

1h
2h

1H 2H

Graph Embedding

Road Network G

Initialization

Zx

Zs

Zs

Zh

Zh

ZH

Temporal

Embedding
t

Driver

Embedding

()F t

Temporal

Features

Driver

Features

()F P

()F t

()F P

B

Path
1v 2v Zv

P

Main Task

Aux. Task-1

Aux. Task-2

Aux. Task-m

DI

TT

mCost

FCk

()F k

()F k

isim

Fig. 4: Advanced PathRank Overview.

correlates with traffic conditions which affect heavily drivers’
routing decisions. We aim at embedding departure time into a
meaningful feature space such that the ranking model is able to
take into account departure time.

We first partition a day into five intervals—a morning peak
interval, an afternoon peak interval, and three off-peak intervals.
Various methods are available to partition a day into peak and
off-peak intervals [6], [48]. For example, an example partition is
shown at the top of Figure 5.

[0,7]

Off Peak

(7,9]

Peak

(9,15]

Off Peak

(15,17]

Peak

(17,0]

Off Peak

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Weekday

Weekend

Fig. 5: Temporal Graph.

Next, we construct a temporal graph based on the intervals
in different days in a week, as shown in Figure 5. In the graph,
each node represents an interval in a specific day. If two nodes
are supposed to have similar traffic, we connect the two nodes by
an edge. For each weekday, we assume that the peak intervals
have similar traffic situations, thus we connect the two nodes
representing the two peak intervals. Similarly, we connect the
nodes representing offpeak hours in the same weekday. We also
connect the two nodes which represent the same interval but on
two adjacent weekdays, e.g., two nodes representing the morning
peak on Wednesday and the morning peak on Thursday. For each
weekend, we connect all nodes in the weekend. Between the
two weekends, we connect the two nodes representing the same
interval.

Based on the temporal graph, we apply graph embedding
to embed the nodes in the temporal graph into feature vectors.
Given a departure time t, we first identify the node node(t) that
t belongs to in the temporal graph and then obtain its embedding

F (t) = GraphEmbed(node(t)). Like the road network embed-
ding, we allow the learning framework to update the temporal
graph embedding to better fit the ranking score regression.

We use one-hot encoding to convert driver ID k into a
multidimensional feature vector F (k).

To incorporate the context features into the framework, we
concatenate the context features with the path feature. Specifically,
assume that the competitive path P ′i corresponds to a trajectory
path that is made by driver k at departure time t, the final feature
vector for the competitive path P ′i is F (t)⊕F (k)⊕F (P ′i). Then,
similar to the basic framework, the feature vector is fed into a fully
connected layer to estimate similarity scores and different spatial
properties using the same loss function shown in Equation 6.

6 EXPERIMENTS

We conduct a comprehensive empirical study to investigate the
effectiveness of the proposed PathRank framework.

6.1 Experiments Setup
6.1.1 Road Network and Trajectories
We obtain the Danish road network from OpenStreetMap, which
consists of 667,950 vertices and 818,020 edges. We use a substan-
tial GPS data set occurred on the road network, which consists of
180 million GPS records for a two-year period from 166 drivers.
The sampling rate of the GPS data is 1 Hz (i.e., one GPS record per
second) and each GPS record is associated with a driver identifier.
We split the GPS records into 22,612 trajectories representing
different trips. A well-known map matching method [40] is used
to map match the GPS trajectories such that for each trajectory,
we obtain its corresponding trajectory path.

6.1.2 Travel costs
We consider three travel costs: travel distance (DI), travel time
(TT), and fuel consumption (FC). The travel distances are com-
puted based on the geometric information provided by Open-
StreetMap. Travel times are obtained as the difference between the
times of the last and first GPS records of the trajectories. We use
the SIDRA-running model to compute fuel consumption based on
the speeds that are obtained from the available GPS records [49]. A
recent benchmark indicates that the SIDRA-running is appropriate
for this purpose [50].

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

9

6.1.3 Ground Truth Data
We split the trajectories into three sets—70% for training, 10%
for validation, and 20% for testing. The distributions of the
cardinalities of the trajectory paths in training, validation, and
testing sets are shown in Figure 6.

For each trajectory T , we obtain its source s, destination d, and
the trajectory path PT . Then, we employ seven different strategies
to generate seven sets of competitive paths according to the source-
destination pairs (s, d).

1) Top-k shortest paths (TkDI);
2) Top-k fastest paths (TkTT);
3) Top-k most fuel efficient paths (TkFC);
4) Diversified top-k shortest paths (D-TkDI);
5) Diversified top-k fastest paths (D-TkTT);
6) Diversified top-k most fuel efficient paths (D-TkFC);
7) Diversified, multi-cost top-k paths (D-TkM).

For each competitive path P , we employ weighted Jaccard simi-
larity sim(P , PT) as the ground truth ranking score of path P .

When training and validation, we use the competitive path
set generated by a specific training data generation strategy to
train a PathRank model. Thus, we are able to train seven different
PathRank models using the same set of training and validation
trajectories, but seven different sets of competitive paths.

When testing, to make the comparison among different
PathRank models fair, for each testing trajectory, we merge all
competitive paths generated by the 7 different strategies and
randomly choose 10 paths from them. This makes sure that (1)
PathRank models that are trained on different training data sets
are tested against on the same set of competitive paths; (2) a
PathRank model that is trained on a specific strategy is tested
against competitive paths that are not generated from the same
strategy.

6.1.4 PathRank Frameworks
We consider different variations of PathRank.

1) PR-B: the vertex embedding just employs a random
initialized embedding matrix B, which ignores the graph
topology. We also let α = 0, meaning that PR-B has a
single task on estimate similarity scores, where α is a
parameter that controls the relative importance between
the main task and auxiliary tasks as shown in Equation 6.

2) PR-A1: vertex embedding employs graph embedding that
considers graph topology, but the vertex embedding is
static and is not updated during training. Only the main
task is considered, i.e., α = 0.

3) PR-A2: similar to PR-A1, graph embedding is used. In
addition, the vertex embedding is updated during training.
Only the main task is considered, i.e., α = 0.

4) PR-A2-Mx: Similar to PR-A2, graph embedding is used
and the vertex embedding is updated during training. In
addition, multi-task learning that considers spatial prop-
erties is used. We use PR-A2-Mx to indicate a PathRank
model that uses an objective function considering x
spatial properties, i.e., x auxiliary tasks.

5) PRC: the advanced framework PRC with contextual em-
bedding and multi-task learning.

For all frameworks that use graph embedding, i.e., PR-A1,
PR-A2, PR-A2-Mx and PRC, we choose node2vec [9] as the
graph embedding method. Node2vec is a generic random walk

based graph embedding method, which outperforms alternative
methods such as DeepWalk [14] and LINE [15]. When new, better
unsupervised graph embedding method becomes available, it can
be easily integrated into PathRank to replace node2vec.

6.1.5 Parameters
When generating diversified top-k paths, we consider two different
similarity thresholds δ—0.6 and 0.8. A smaller threshold enforces
more diversified paths. However, it is also more likely that we
cannot identify k paths that are significantly diversified paths,
especially when k is large. Recall that the vertex embedding
utilizes a embedding matrix B ∈ RM×N to embed each vertex
into a M -dimensional feature vector, where N is the number of
vertices. We consider two settings of M , namely 64 and 128. For
the multi-task learning framework, we vary α from 0, 0.2, 0.4, 0.6,
to 0.8 to study the effect on learning additional spatial properties.

We summary different parameter settings in Table 1, where the
default values are shown in bold.

TABLE 1: Parameters of PathRank

Parameters Values

Similarity Threshold δ 0.6, 0.8
Vertex Embedding Feature Size M 64, 128
Multi-task Learning Parameter α 0, 0.2, 0.4, 0.6, 0.8

6.1.6 Evaluation Metrics
We evaluate the accuracy of the proposed PathRank framework
based on two categories of metrics. The first category includes
metrics that measure how accurate the estimated ranking scores
w.r.t. the ground truth ranking scores. This category includes
Mean Absolute Error (MAE) and Mean Absolute Relative Error
(MARE). Smaller MAE and MARE values indicate higher accu-
racy. Specifically, we have

MAE =
1

n

n∑
i=1

|xi − x̂i| ; MARE =

∑n
i=1 |xi − x̂i|∑n

i=1 |xi|
(7)

where xi and x̂i represent the ground truth ranking score and the
estimated ranking score, respectively; and n is the total number of
estimations.

The second category includes Kendall rank correlation coeffi-
cient (denoted by τ) and Spearman’s rank correlation coefficient
(denoted by ρ), which measure the similarity, or consistency,
between a ranking based on the estimated ranking scores and a
ranking based on the ground truth ranking scores. Sometimes,
although the estimated ranking scores deviate from the ground
truth ranking scores, the two rankings derived by both scores can
be consistent. In this case, we consider the estimated ranking
scores also accurate, since we eventually care the final rankings
of the candidate paths but not the specific ranking scores for
individual candidate paths. Both τ and ρ are able to measure how
consistent between the two rankings. The higher the values are,
the more consistent the two rankings are. If the two rankings are
identical, both τ and ρ values are 1. Specifically, we have

τ =
Ncon −Ndis

n(n− 1)/2
; ρ = 1− 6

∑n
i=1 d

2
i

n(n2 − 1)
(8)

Assume that we have a set of n = 3 candidate paths {P1, P2,
P3}, the ground truth ranking is 〈P1, P2, P3〉, and the estiamted
ranking is 〈P2, P3, P1〉.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

10

(a) Training Set (b) Validation Set (c) Testing Set

Fig. 6: Cardinalities of the trajectory paths.

In τ , Ncon and Ndis represent the number of path pairs
are consistent and inconsistent in the two rankings. We have
Ncon = 1 since in both ranking, P2 appears before P3; and
Ndis = 2 since P1 appears before P3 in the ground truth ranking,
but P3 appears before P1 in the estimated ranking. Similarly, the
orderings between P1 and P2 are also inconsistent in two rankings.

In ρ, di represents the rank difference on the i-th competitive
path in both rankings. Following the running example, we have
d1 = 1− 3 = −2 because path P1 has rank 1 and rank 3 in both
rankings, respectively.

6.1.7 Baselines
Baseline Ranking Heuristics: We consider seven baseline rank-
ing heuristics. The first three baseline ranking heuristics consider
a single cost, i.e., ranking the candidate paths according to only
distances (DI), travel times (TT), and fuel consumption (FC). The
three baseline ranking heuristics represent the ranking part of
top-k path selection algorithms. For example, DI represents the
ranking part of top-k shortest path selection.

Next, we consider four more baseline ranking heuristics that
consider multiple travel costs—ranking the candidate paths ac-
cording to both distance and travel times (DI+TT), both distance
and fuel consumption (DI+FC), both travel times and fuel con-
sumption (TT+FC), and distance, travel times and fuel consump-
tion (DI+TT+FC). When considering more than one travel cost,
we consider each travel cost equally.

1) Distances (DI);
2) Travel times (TT);
3) Fuel consumption (FC);
4) Distance and travel times (DI+TT);
5) Distance and fuel consumption (DI+FC);
6) Travel times and fuel consumption (TT+FC);
7) Distance, travel times and fuel consumption

(DI+TT+FC).

Baseline Regression Methods: To justify the effectiveness of
PathRank, we consider six regression baselines.

1) Linear Regression (LR) [51];
2) Lasso Regression [52];
3) Support Vector Regression (SVR) [53];
4) Decision Tree Regression (DT) [54];
5) Decision Tree Regression with Adaboost (DTA) [55];
6) Long Short-Term Memory (LSTM) [56], we replace the

bi-directional GRU units by LSTM units.

6.1.8 Implementation Details
All algorithms are implemented in Tensorflow. Code is available
at https://github.com/Sean-Bin-Yang/Learning-to-Rank-Paths. We

conduct experiments on a computer node on the CLAAUDIA
cloud (www.claaudia.aau.dk), running Ubuntu 16.04.6 LTS, with
one Intel(R) Xeon(R) CPU @2.50GHz and one Tesla V100 GPU
card.

6.2 Verifying the Design Choices of PathRank

6.2.1 Effects of Training Data Generation Strategies

We investigate how the different training data generation strategies
affect the accuracy of PathRank. We first consider PR-A1, where
we only use graph embedding method node2vec to initialize the
vertex embedding matrix B and do not update B during training.

Table 2 shows the results, where we categorize the training
data generation strategies into three categories based on top-k
paths, diversified top-k paths, and multi-cost, diversified top-k
paths. For each category, the best results are highlighted with
underline. The best results over all categories is also highlighted
with bold. We also show results when the embedding feature sizes
are M = 64 and M = 128, respectively.

The results show that (1) when using the diversified top-k
paths for training, we have higher accuracy (i.e., lower MAE
and MARE and larger τ and ρ) compared to when using top-k
paths; (2) using multi-cost, diversified top-k paths achieves better
accuracy compared to single-cost, diversified top-k paths, thus
achieving the best results; (3) a larger embedding feature size M
achieves better results.

TABLE 2: Training Data Generation Strategies, PR-A1

Strategies M MAE MARE τ ρ

TkDI 64 0.1433 0.2300 0.6638 0.7044
128 0.1168 0.1875 0.6913 0.7330

TkTT 64 0.1302 0.2090 0.6642 0.7046
128 0.1181 0.1896 0.6818 0.7208

TkFC 64 0.1208 0.1940 0.6692 0.7131
128 0.1257 0.2019 0.6699 0.7110

D-TkDI 64 0.1140 0.1830 0.6959 0.7346
128 0.0955 0.1533 0.7077 0.7492

D-TkTT 64 0.1050 0.1686 0.7124 0.7554
128 0.0974 0.1564 0.7271 0.7714

D-TkFC 64 0.1045 0.1678 0.7100 0.7544
128 0.0900 0.1445 0.7238 0.7685

D-TkM 64 0.1077 0.1729 0.7261 0.7679
128 0.0792 0.1271 0.7478 0.7876

Next, we consider PR-A2, where the graph embedding matrix
B is also updated during training to fit better the ranking score
regression problem. Table 3 shows the results. The three obser-
vations from Table 2 also hold for Table 3. In addition, PR-A2

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

11

achieves better accuracy than does PR-A1, meaning that updating
embedding matrix B is useful.

TABLE 3: Training Data Generation Strategies, PR-A2

Strategies M MAE MARE τ ρ

TkDI 64 0.1163 0.1868 0.6835 0.7256
128 0.1130 0.1814 0.7082 0.7481

TkTT 64 0.1218 0.1956 0.6858 0.7282
128 0.1161 0.1864 0.7026 0.7446

TkFC 64 0.1216 0.1952 0.6911 0.7321
128 0.1082 0.1737 0.7070 0.7477

D-TkDI 64 0.0940 0.1509 0.7144 0.7532
128 0.0855 0.1373 0.7339 0.7731

D-TkTT 64 0.1010 0.1622 0.7283 0.7693
128 0.0997 0.1600 0.7169 0.7596

D-TkFC 64 0.0938 0.1506 0.7318 0.7743
128 0.0809 0.1299 0.7386 0.7811

D-TkM 64 0.0966 0.1551 0.7393 0.7771
128 0.0725 0.1164 0.7528 0.7905

From the above experiments, the multi-cost, diversified top-k
strategy D-TkM is the most promising strategy. Thus, we only use
D-TkM for the remaining experiments.

Next, we investigate the effects on the similarity threshold δ
used in the diversified top-k path finding. Specifically, we consider
two threshold values 0.6 and 0.8 and the results are shown in
Table 4. When a smaller threshold is used, i.e., higher diversity in
the top-k paths, the accuracy is improved.

TABLE 4: Effects of Similarity Threshold δ

δ M MAE MARE τ ρ

PR-A1
0.6 64 0.1006 0.1615 0.7321 0.7733

128 0.0770 0.1237 0.7496 0.7874

0.8 64 0.1077 0.1729 0.7261 0.7679
128 0.0792 0.1271 0.7478 0.7876

PR-A2
0.6 64 0.0817 0.1311 0.7404 0.7792

128 0.0710 0.1140 0.7751 0.8109

0.8 64 0.0966 0.1551 0.7393 0.7771
128 0.0725 0.1164 0.7528 0.7905

6.2.2 Effects of Vertex Embedding
We investigate the effects of different vertex embedding strategies.
We consider PR-B where we just use a randomly initialized
embedding matrix B, which totally ignores graph topology. For
PR-A1 and PR-A2 where we both use node2vec to embed vertices.
Here, we use node2vec to embed both weighted and unweighted
graphs, respectively. When embedding weighted graphs, we sim-
ply use distances as edge weights.

Based on the results in Table 5, we observe the following.
First, PR-B gives the worst accuracy: the estimated ranking scores
have the largest errors in terms of both MAE and MARE; and the
ranking based on estimated ranking scores deviates the most from
the ground truth ranking in terms of both τ and ρ. This suggests
that ignoring graph topology when embedding vertices is not a
good choice.

Second, when embedding vertices using node2vec, whether or
not considering edge weights does not significantly change the
accuracy. Thus, it is not a significant design choice.

Third, PR-A2 achieves the best accuracy in terms of both errors
on estimated ranking scores and consistency between two rank-
ings. Thus, this suggests that considering graph topology improves

accuracy and updating the embedding matrix B according to the
loss function on ranking scores makes the embedding matrix fit
better the ranking score regression problem. This also suggests
that, by including spatial properties in the loss function, it has
a potential to tune the embedding matrix B to capture spatial
properties, which in turn should improve ranking score regression.
This is verified in the following experiments on the multi-task
framework.

TABLE 5: Effects of Vertex Embedding Strategies

Embedding MAE MARE τ ρ

PR-B — 0.1159 0.1816 0.7233 0.7611

PR-A1 unweighted 0.0878 0.1410 0.7453 0.7852
weighted 0.0792 0.1271 0.7478 0.7876

PR-A2 unweighted 0.0734 0.1178 0.7640 0.8012
weighted 0.0725 0.1164 0.7528 0.7905

6.2.3 Effects of Multi-task Learning

In the following set of experiments, we study the effects of
the proposed multi-task learning framework. In particular, we
investigate how much we are able to improve when incorporating
different spatial properties in the loss function to let the vertex
embedding also consider spatial properties, which may potentially
contribute to better ranking score regression.

We start by PR-A2-M1, which considers only one auxiliary
task on reconstructing distances. This means that PathRank not
only estimate the ranking score of a competitive path but also
tries to reconstruct the distance of the competitive paths. Table 6
shows the results with varying α values. When α = 0, the
auxiliary task is ignored, which makes PR-A2-M1 into PR-A2,
i.e., its corresponding model with only the main task on estimating
ranking scores. When α > 0, i.e., the auxiliary task on distances is
considered while learning, we observe that the estimated ranking
scores are improved. In particular, the setting with α = 0.6 gives
the best results in terms both τ and ρ, indicating that the ranking
w.r.t. the estimated ranking scores is more consistent with the
ground truth ranking. When α = 0.8, it achieves the smallest
MAE and MARE. Both settings suggest that considering the
additional auxiliary task on reconstructing distance helps improve
the final ranking.

PR-A2-M2 includes two auxiliary tasks on reconstructing both
distances and travel times, and PR-A2-M3 includes three auxiliary
tasks on reconstructing distances, travel times, and fuel con-
sumption. All the three multi-task models show that considering
spatial properties improve the final ranking. In particular, when
considering all the three spatial properties give the best final
ranking in terms of τ and ρ, i.e., achieving the most consistent
ranking w.r.t. the ground truth ranking.

6.2.4 Effects of Contexts Embedding

We also investigate how much we improve when adding the
contextual information to the basic framework. To this end, we
consider the advanced framework PRC where we include the
departure time feature F (t) and driver feature F (k). Table 7
shows that contextual information contributes to improve the
overall accuracy. This also suggests that the proposed temporal
graph embedding is effective. However, recall that the contextual
information is an optional input. In case that departure time and
driver identifiers are not provided as inputs, we can only use the
basic framework.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

12

TABLE 6: Effects of α, PR-A2-Mx

α MAE MARE τ ρ

PR-A2 0 0.0725 0.1164 0.7528 0.7905

PR-A2-M1

0.2 0.0756 0.1214 0.7713 0.8057
0.4 0.0704 0.1129 0.7765 0.8110
0.6 0.0693 0.1113 0.7783 0.8141
0.8 0.0680 0.1029 0.7712 0.8057

PR-A2-M2

0.2 0.0653 0.1048 0.7727 0.8089
0.4 0.0701 0.1125 0.7869 0.8235
0.6 0.0777 0.1247 0.7752 0.8100
0.8 0.0807 0.1296 0.7616 0.7973

PR-A2-M3

0.2 0.0724 0.1162 0.7732 0.8092
0.4 0.0740 0.1188 0.7711 0.8090
0.6 0.0662 0.1063 0.7923 0.8261
0.8 0.0695 0.1116 0.7842 0.8177

TABLE 7: Effects on Context Embeddings

MAE MARE τ ρ

PR-A2-M3 0.0662 0.1063 0.7923 0.8261
PRC 0.0611 0.0929 0.8178 0.8454

6.3 Comparison with Baselines
6.3.1 Comparison with Baseline Ranking Heuristics
We consider the baseline ranking heuristics covered in Sec-
tion 6.1.7. For each heuristics, we obtain a ranking. Then, we
compare the ranking with the ground truth ranking to compute the
corresponding τ and ρ.

Table 8 shows the comparison, where we categorize the testing
cases based on the distances of the lengths of their corresponding
trajectory paths into three categories (0, 5], (5, 10], and (10, 15]
km. The results show that the ranking obtained by the proposed
framework PRC is clearly the best in all categories, suggesting that
the proposed multitask framework outperforms baseline heuristics.

TABLE 8: Comparison with Baseline Ranking Heuristics

(0, 5] (5, 10] (10, 15]
τ /ρ τ /ρ τ /ρ

DI 0.7515/0.7806 0.6630/0.6860 0.3784/0.3370
TT 0.6776/0.7054 0.6712/0.7024 0.6053/0.6625
FC 0.6885/0.7192 0.3920/0.3986 0.0279/-0.0210

DI+TT 0.7146/0.7430 0.6681/0.6942 0.4919/0.4998
DI+FC 0.7200/0.7499 0.5275/0.5423 0.2032/0.1580
TT+FC 0.6831/0.7123 0.5316/0.5505 0.3166/0.3208

DI+TT+FC 0.7059/0.7351 0.5754/0.5957 0.3372/0.3262
PRC 0.8239/0.8521 0.8115/0.8382 0.6497/0.6620

6.3.2 Comparison with Regression Baselines
For the regression baseline methods covered in Section 6.1.7, we
consider two different types of features.

• Basic features (BF): each path is represented as a 3-
dimensional vector that represents its distance, travel time,
and fuel consumption.

• Advanced features (AF): each path is represented as an
N ×M matrix, where N is the cardinality of the path.
For each vertex in the path, we obtain a M -dimensional
vector using node2vec. This makes an N ×M matrix.

Table 9 shows the comparison. The results show that the
ranking obtained by the proposed framework PRC outperforms

all baselines. This suggests that simply using basic features and
advanced features do not offer meaningful representations for
ranking paths. Our design on path representation that captures
both road network topology and spatial properties is effective.

TABLE 9: Comparison with Regression Baselines

Method MAE MARE τ ρ

BF

LR 0.2640 0.4012 0.6879 0.7150
Lasso 0.2876 0.4371 0.6245 0.6678
SVR 0.2390 0.3632 0.6543 0.6683
DT 0.2516 0.3824 0.6530 0.6777

DTA 0.2686 0.4082 0.6784 0.7135

AF

LR 0.3430 0.5213 0.0864 0.0854
Lasso 0.2955 0.4484 0.6260 0.6686
SVR 0.3369 0.5120 0.0857 0.0846
DT 0.4141 0.6284 0.0450 0.0693

DTA 0.4301 0.6527 0.0812 0.0395

Deep Learning LSTM 0.2682 0.4076 0.4569 0.4619
PRC 0.0611 0.0929 0.8178 0.8454

6.4 Comparison with Driver Specific PathRank

We investigate if driver specific models are able to provide more
accurate personalized ranking. We select two drivers with the
largest amount training trajectories. Driver 1 has 2,068 trajectories
and Driver 2 has 1,457 trajectories. We train two driver-specific
PRC models, PRC-Dr1 and PRC-Dr2, using only the trajectories
from the corresponding driver. In addition, we consider a baseline
BA from a personalized routing algorithm [21], which learns a 3-
dimensional vector to combine the distance, travel time, and fuel
consumption of a path to derive a personalized cost for the path.
Then, the paths are ranked according to their personalized costs.
The vector is learned from individual drivers’ trajectories and thus
different drivers have different vectors. BR-Dr1 and BR-Dr2 use
trajectories from the corresponding drivers to learn the vectors.

We test the models on two testing sets Dr1 and Dr2 which
consist of testing trajectories from Driver 1 and Driver 2, re-
spectively. Table 10 shows that for the testing trajectories from
Driver 1, PRC-Dr1 outperforms PRC-Dr2; and for the testing
trajectories from Driver 2, PRC-Dr2 outperforms PRC-Dr1. This
is not surprising and this indicates that different drivers do have
different preferences; and a ranking model trained on one driver
may not provide accurate ranking for a different driver. In ad-
dition, PRC-Dr1 outperforms BA-Dr1 and PRC-Dr2 outperforms
BA-Dr2, indicating that the proposed PathRank outperforms the
baseline. Note that BA ranks path according to the personalized
costs but does not estimate the ranking scores. Thus, BA has no
MAE and MARE values but only τ and ρ values.

The proposed PRC performs the best on both testing sets.
This suggests that the proposed method is able to learn a better
ranking when using much more trajectories from different drivers.
Together with the context embedding, it enables accurate person-
alized ranking.

Next, we report statistics on a case-by-case comparison, where
Table 11 shows the percentages of the cases where a driver specific
PathRank outperforms PRC. Specifically, PRC-Dr1 outperforms
PRC in ca. 22% of the testing cases from Driver 1, and PRC-Dr2
outperforms PRC in ca. 19% of the testing cases from Driver 2.

The results from the above two tables suggest that user-specific
PathRank models still have a potential to achieve personalized
ranking, which may outperform the PathRank model trained on all
trajectories, i.e., PRC. We plan to explore attention mechanisms
on driver feature vectors to achieve this in future work.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

13

TABLE 10: Comparison with Driver Specific PathRank

Testing
Data Model MAE MARE τ ρ

Dr1

PRC-Dr1 0.1037 0.1532 0.8395 0.8531
PRC-Dr2 0.2557 0.3975 0.6544 0.6419
PR-A2-M3 0.0786 0.1162 0.8309 0.8513
PRC 0.0658 0.0972 0.8466 0.8710
BA-Dr1 — — 0.7298 0.7392

Dr2

PRC-Dr1 0.1476 0.2182 0.7741 0.7851
PRC-Dr2 0.1079 0.1677 0.8535 0.8750
PR-A2-M3 0.0851 0.1323 0.8571 0.8900
PRC 0.0625 0.0971 0.8668 0.8945
BA-Dr2 — — 0.7573 0.7800

TABLE 11: Percentage when PR-Dr Outperforms PRC

PR-Dr1 PR-Dr2
τ ρ τ ρ

22.70% 22.70% 19.31% 18.81%

6.5 Effects on Training Data Size
We conduct the next experiment to investigate the performance
when varying the sizes of training data. Specifically, we use
25%, 50%, 75%, 100% of the total training data to train PRC,
respectively. Based on the results shown in Table 12, more training
data gives better performance.

TABLE 12: Effects of the Size of Training Data

Percentage MAE MARE τ ρ

25% 0.1071 0.1672 0.7574 0.7898
50% 0.0871 0.1323 0.7873 0.8179
75% 0.0892 0.1355 0.7928 0.8227
100% 0.0611 0.0929 0.8178 0.8454

6.6 Online Efficiency
Since ranking candidate paths is conducted online, we report the
runtime. Table 13 reports the runtime for estimating a path when
using different PathRank models. It shows that the non-multi-task
learning models, i.e., PR-B, PR-A1, and PR-A2, have similar run
time. Multi-task learning models take longer time and the more
auxiliary tasks are included in a model, the longer time the model
takes. PRC takes the longest time, on average 58.2 ms. Suppose
that an advanced routing algorithm or a commercial navigation
system returns 10 candidate paths, PRC is able to return a ranking
in 58.2 ms on average, which is within a reasonable response time.

TABLE 13: Average Testing Runtime Per Path (ms)

PR-B PR-A1 PR-A2 PR-A2-M1 PR-A2-M2 PR-A2-M3 PRC

11.4 11.3 11.5 22.8 34.4 45.1 58.2

6.7 Offline Training Efficiency
We study training efficiency by varying road network graph sizes
and path lengths. First, we consider three road network graphs
with different sizes in Table 14. When the road network graph has
1 million vertices, each epoch takes 24.7 seconds, which is still
within a reasonable time. Note that the main application scenario
is intra-city, where multiple path candidates connecting the same

source and destination exist. When traveling inter-cities, there are
often very few path alternatives, e.g., using highways. Thus, a road
network graph with 1 million vertices should already be able to
model a very large city.

TABLE 14: Effects of Graph Size for Training Time

of Vertices 50K 500K 1000K

Run time per epoch (s) 8.3 12.1 24.7

Next, Table 15 shows the training time when the training paths
are with different numbers of vertices. For long paths with more
vertices, the RNN needs to go through more GRU units. Thus, it
takes longer time.

TABLE 15: Effects of Path Lengths, Training Time

of vertices per path 60 120 180 240

Run time per epoch (s) 7.8 12.6 21.3 24.8

7 CONCLUSION AND FUTURE WORK

We propose a context-aware, multitask learning framework to
rank paths in road networks. We propose an effective method
to generate a compact and diverse set of training paths to en-
able efficient and effective learning. Then, we propose a multi-
task learning framework to enable road network embedding that
takes into account spatial properties. A recurrent neural network,
together with the learned road network embedding, is employed
to estimate the ranking scores which eventually enable ranking
paths. In addition, a temporal graph is proposed to embed tem-
poral contexts. Empirical studies conducted on a large real world
trajectory set demonstrate that the proposed framework is effective
and efficient for practical usage. As future work, it is of interest to
exploit different means, e.g., attention mechanisms on path lengths
and outlier trajectories removal [57], [58], to further improve the
ranking quality of PathRank. It is also of interest to explore parallel
computing [59] to improve efficiency.

REFERENCES

[1] C. Guo, C. S. Jensen, and B. Yang, “Towards total traffic awareness,”
SIGMOD Record, vol. 43, no. 3, pp. 18–23, 2014.

[2] C. Guo, B. Yang, J. Hu, and C. S. Jensen, “Learning to route with sparse
trajectory sets,” in ICDE, 2018, pp. 1073–1084.

[3] J. Hu, C. Guo, B. Yang, and C. S. Jensen, “Stochastic weight completion
for road networks using graph convolutional networks,” in ICDE, 2019,
pp. 1274–1285.

[4] Z. Ding, B. Yang, Y. Chi, and L. Guo, “Enabling smart transportation
systems: A parallel spatio-temporal database approach,” IEEE Trans.
Computers, vol. 65, no. 5, pp. 1377–1391, 2016.

[5] V. Ceikute and C. S. Jensen, “Routing service quality - local driver
behavior versus routing services,” in MDM, 2013, pp. 97–106.

[6] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang, “Stochastic
skyline route planning under time-varying uncertainty,” in ICDE, 2014,
pp. 136–147.

[7] J. Y. Yen, “Finding the k shortest loopless paths in a network,” manage-
ment Science, vol. 17, no. 11, pp. 712–716, 1971.

[8] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k shortest paths with
diversity,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 3, pp. 488–502,
2018.

[9] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD, 2016, pp. 855–864.

[10] S. B. Yang and B. Yang, “Learning to rank paths in spatial networks,” in
ICDE, 2020, pp. 2006–2009.

[11] Y. Lei, W. Li, Z. Lu, and M. Zhao, “Alternating pointwise-pairwise
learning for personalized item ranking,” in CIKM, 2017, pp. 2155–2158.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE
Transactions on Knowledge and Data Engineering

14

[12] Z. Hu, Y. Wang, Q. Peng, and H. Li, “Unbiased lambdamart: An unbiased
pairwise learning-to-rank algorithm,” in WWW, 2019, pp. 2830–2836.

[13] Q. Ai, K. Bi, J. Guo, and W. B. Croft, “Learning a deep listwise context
model for ranking refinement,” in SIGIR, 2018, pp. 135–144.

[14] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning of
social representations,” in KDD, 2014, pp. 701–710.

[15] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW, 2015, pp. 1067–1077.

[16] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations,” in AAAI, 2016, pp. 1145–1152.

[17] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “Graphgan: Graph representation learning with generative
adversarial nets,” CoRR, vol. abs/1711.08267, 2017.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR, 2013.

[19] J. Hu, B. Yang, C. Guo, and C. S. Jensen, “Risk-aware path selection
with time-varying, uncertain travel costs: a time series approach,” VLDB
J., vol. 27, no. 2, pp. 179–200, 2018.

[20] C. Guo, B. Yang, J. Hu, C. S. Jensen, and L. Chen, “Context-aware,
preference-based vehicle routing.” VLDB Journal, online first, 2020.

[21] B. Yang, C. Guo, Y. Ma, and C. S. Jensen, “Toward personalized, context-
aware routing,” VLDB J., vol. 24, no. 2, pp. 297–318, 2015.

[22] S. A. Pedersen, B. Yang, and C. S. Jensen, “Fast stochastic routing under
time-varying uncertainty.” VLDB Journal, vol. 29, no. 4, pp. 819–839,
2020.

[23] J. Hu, B. Yang, C. S. Jensen, and Y. Ma, “Enabling time-dependent
uncertain eco-weights for road networks,” GeoInformatica, vol. 21, no. 1,
pp. 57–88, 2017.

[24] S. A. Pedersen, B. Yang, and C. S. Jensen, “Anytime stochastic routing
with hybrid learning,” PVLDB, vol. 13, no. 9, pp. 1555–1567.

[25] B. Yang, C. Guo, and C. S. Jensen, “Travel cost inference from sparse,
spatio-temporally correlated time series using markov models,” PVLDB,
vol. 6, no. 9, pp. 769–780, 2013.

[26] B. Yang, J. Dai, C. Guo, C. S. Jensen, and J. Hu, “PACE: a path-centric
paradigm for stochastic path finding,” VLDB J., vol. 27, no. 2, pp. 153–
178, 2018.

[27] S. A. Pedersen, B. Yang, and C. S. Jensen, “A hybrid learning approach
to stochastic routing,” in ICDE, 2020, pp. 2010–2013.

[28] T. Anwar, C. Liu, H. L. Vu, and M. S. Islam, “Roadrank: Traffic diffusion
and influence estimation in dynamic urban road networks,” in CIKM,
2015, pp. 1671–1674.

[29] T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Distinguishing trajectories
from different drivers using incompletely labeled trajectories,” in CIKM,
2018, pp. 863–872.

[30] J. Won, S. Kim, J. Baek, and J. Lee, “Trajectory clustering in road
network environment,” in CIDM, 2009, pp. 299–305.

[31] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in ICLR, 2018.

[32] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang, “Urban traffic
prediction from spatio-temporal data using deep meta learning,” in KDD,
2019, pp. 1720–1730.

[33] J. Hu, C. Guo, B. Yang, C. S. Jensen, and H. Xiong, “Stochastic origin-
destination matrix forecasting using dual-stage graph convolutional,
recurrent neural networks,” in ICDE, 2020, pp. 1417–1428.

[34] R.-G. Cirstea, B. Yang, and C. Guo, “Graph attention recurrent neural
networks for correlated time series forecasting.” in MileTS19@KDD,
2019.

[35] R. Cirstea, D. Micu, G. Muresan, C. Guo, and B. Yang, “Correlated
time series forecasting using multi-task deep neural networks,” in CIKM,
2018, pp. 1527–1530.

[36] M. Hua and J. Pei, “Probabilistic path queries in road networks: traffic
uncertainty aware path selection,” in EDBT, 2010, pp. 347–358.

[37] K. Mouratidis, Y. Lin, and M. L. Yiu, “Preference queries in large multi-
cost transportation networks,” in ICDE, 2010, pp. 533–544.

[38] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k optimal sequenced
routes,” in ICDE, 2018, pp. 569–580.

[39] G. Andonov and B. Yang, “Stochastic shortest path finding in path-centric
uncertain road networks,” in MDM, 2018, pp. 40–45.

[40] P. Newson and J. Krumm, “Hidden markov map matching through noise
and sparseness,” in SIGSPATIAL, 2009, pp. 336–343.

[41] E. Erkut and V. Verter, “Modeling of transport risk for hazardous
materials,” Operations research, vol. 46, no. 5, pp. 625–642, 1998.

[42] T. Joachims, “Optimizing search engines using clickthrough data,” in
KDD, 2002, pp. 133–142.

[43] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li, “Learning to rank: from
pairwise approach to listwise approach,” in ICML, 2007, pp. 129–136.

[44] J. Hershberger, M. Maxel, and S. Suri, “Finding the k shortest simple
paths: A new algorithm and its implementation,” ACM Trans. Algorithms,
vol. 3, no. 4, p. 45, 2007.

[45] J. Dai, B. Yang, C. Guo, and Z. Ding, “Personalized route recommenda-
tion using big trajectory data,” in ICDE, 2015, pp. 543–554.

[46] D. Erhan, Y. Bengio, A. C. Courville, P. Manzagol, P. Vincent, and
S. Bengio, “Why does unsupervised pre-training help deep learning?”
J. Mach. Learn. Res., vol. 11, pp. 625–660, 2010.

[47] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
in EMNLP, 2014, pp. 103–111.

[48] Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu, “Multi-task
representation learning for travel time estimation,” in KDD, 2018, pp.
1695–1704.

[49] C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul, “Ecomark: evaluating
models of vehicular environmental impact,” in SIGSPATIAL, 2012, pp.
269–278.

[50] C. Guo, B. Yang, O. Andersen, C. S. Jensen, and K. Torp, “Ecomark
2.0: empowering eco-routing with vehicular environmental models and
actual vehicle fuel consumption data,” GeoInformatica, vol. 19, no. 3,
pp. 567–599, 2015.

[51] Y. Shi, J. Li, and Z. Li, “Gradient boosting with piece-wise linear
regression trees,” arXiv preprint arXiv:1802.05640, 2018.

[52] S. Wang, B. Ji, J. Zhao, W. Liu, and T. Xu, “Predicting ship fuel
consumption based on lasso regression,” Transportation Research Part
D: Transport and Environment, vol. 65, pp. 817–824, 2018.

[53] T. Chen and S. Lu, “Accurate and efficient traffic sign detection using
discriminative adaboost and support vector regression,” IEEE Trans.
Vehicular Technology, vol. 65, no. 6, pp. 4006–4015, 2016.

[54] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree,” in NIPS,
2017, pp. 3146–3154.

[55] S. Y. Kim and A. Upneja, “Predicting restaurant financial distress using
decision tree and adaboosted decision tree models,” Economic Modelling,
vol. 36, pp. 354–362, 2014.

[56] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[57] T. Kieu, B. Yang, and C. S. Jensen, “Outlier detection for multidimen-
sional time series using deep neural networks,” in MDM, 2018, pp. 125–
134.

[58] T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Outlier detection for time
series with recurrent autoencoder ensembles,” in IJCAI, 2019, pp. 2725–
2732.

[59] P. Yuan, C. Sha, X. Wang, B. Yang, A. Zhou, and S. Yang, “XML
structural similarity search using mapreduce,” in WAIM, 2010, pp. 169–
181.

Sean Bin Yang received his bachelor and mas-
ter degrees from Chongqing University of Posts
and Telecommunications in 2012 and 2015, re-
spectively. He is a Ph.D. student in the Depart-
ment of Computer Science, Aalborg University,
Denmark. His research interests include ma-
chine learning and spatio-temporal data mining.

Chenjuan Guo is an Associate Professor at
Aalborg University, Denmark. She received her
Ph.D. degree in computer science from the Uni-
versity of Manchester, UK, in 2011. Her research
interests include spatial-temporal data manage-
ment, heterogeneous data management, and
data analytics.

Bin Yang is a Professor at Aalborg University,
Denmark. He was previously at Aarhus Univer-
sity, Denmark and at MaxPlanck-Institut fur Infor-
matik, Germany. He received his Ph.D. degree in
computer science from Fudan University, China.
His research interests include machine learning
and data management.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.

