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Context-Aware Path Ranking in Road Networks

Sean Bin Yang, Chenjuan Guo ™, and Bin Yang

Abstract—Ranking paths becomes an increasingly important functionality in many transportation services, where multiple paths
connecting a source-destination pair are offered to drivers. We study ranking such paths under specific contexts, e.g., at a departure
time and for a specific driver. More specifically, we model ranking as a regression problem where we assign a ranking score to each
path with the help of historical trajectories. The intuition is that if a driver’s trajectory used path P at time ¢, we consider this as an
evidence that path P is preferred by the driver at time ¢, thus should have a higher ranking score than other paths connecting the same
source and destination. To solve the regression problem, we first propose an effective training data enriching method to obtain a
compact and diversified set of training paths using historical trajectories, which provides a data foundation for efficient and effective
learning. Next, we propose a multi-task learning framework that considers features representing both candidate paths and contexts.
Specifically, a road network embedding is proposed to embed paths into feature vectors by considering both road network topology and
spatial properties, such as distances and travel times. By modeling different departure times as a temporal graph, graph embedding is
used to embed departure times into feature vectors. The objective function not only considers the discrepancies on ranking scores but

also the reconstruction errors of the spatial properties of the paths, which in turn improves the final ranking estimation. Empirical
studies on a substantial trajectory data set offer insight into the designed properties of the proposed framework, indicating that it is

effective and practical in real world settings.

Index Terms—Path ranking, diversified paths, multi-task learning, road network embedding, graph embedding.

1 INTRODUCTION

EHICULAR transportation reflects the pulse of a city. It plays
V an essential role in people’s daily lives and many businesses
as well as society as a whole [1]. With recent deployment of
sensing technologies and continued digitization, large amounts of
vehicle trajectory data are collected, which provide a solid data
foundation to improve the quality of a wide variety of transporta-
tion services, such as vehicle routing [2], traffic prediction [3], and
urban planning [4].

A fundamental functionality in vehicular transportation is
routing. Given a source and a destination, classic routing algo-
rithms, e.g., Dijkstra’s algorithm, identify a single optimal path
connecting the source and the destination, where the optimal path
is the path with the least travel cost, e.g., the shortest path or the
fastest path. However, a routing service quality study [5] shows
that local drivers often choose paths that are neither shortest nor
fastest, rendering classic routing algorithms often impractical in
many real world routing scenarios. To contend with this challenge,
a wide variety of advanced routing algorithms, e.g., skyline rout-
ing [6] and k-shortest path routing [7], are proposed to identify
a set of optimal paths, where the optimality is defined based on,
e.g., pareto optimality or top-k least costs, which provide drivers
with multiple candidate paths to choose. Commercial navigation
systems, such as Google Maps and TomTom, often follow a similar
strategy that suggests multiple candidate paths to drivers.

Under this context, ranking such candidate paths is essential
for ensuring high routing quality. Existing solutions often rely
on simple heuristics, e.g., ranking paths w.r.t. their travel times.
However, travel times may not always be the most important factor
when drivers choose paths, and a routing quality study shows
that drivers often do not choose the fastest paths [S]. In addition,
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existing solutions often provide the same ranking to all drivers but
ignore distinct preferences which different drivers may have.

In this paper, we propose a data-driven, context-aware rank-
ing framework PathRank to rank paths in road networks. More
specifically, PathRank models ranking candidate paths as a re-
gression problem—for each candidate path, PathRank estimates
a ranking score using local drivers’ trajectories, which in turn
enables ranking the candidate paths w.r.t. their ranking scores.
The framework is flexible where different contextual information
can be accommodated. For example, when accommodating driver
information, it enables personalized ranking. To enable PathRank,
two challenges must be addressed.

Enriching Training Data: To train any regression model, we need
to prepare training data. We borrow the idea often used in ranking
products in online shops. If a user clicks a specific product on a
webpage, it provides evidence that the user is interested in the
product than other products on the same webpage. Then, the
clicked vs. not clicked products are considered as positive vs.
negative training data to enable traning. Similarly, if a driver’s
trajectory used path P from source s to destination d at time ¢, it is
an evidence that the driver considered path P as the preferred path
over other paths from s to d at time . Thus, path P is a positive
training data and should have the largest ranking score. However,
trajectories only provide positive training data and we still lack
negative training data. Since there often exist a large amount of
paths from a source to a destination, it is thus prohibitive to include
all paths other than P as the negative paths. In contrast, randomly
selecting a small subset of such paths may adversely affect the
training effectiveness. Thus, it is challenging to select a compact
and diversified training path set to represent the negative training
data. A compact set ensures training efficiency and a diversified
set ensure training effectiveness.

Effective Feature Representations: Effective regression models
often rely on meaningful feature representations of input data. In
our setting, an input to PathRank is a path that is a sequence of
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vertices in a road network graph. Here, a meaningful feature space
should take into account both the topology of the underlying road
network and the spatial properties of the road network, such as
distances and travel times, which may influence drivers’ choices.
However, no existing methods are able to capture both topological
and spatial properties. In addition, it is also important to embed
context information, such as departure times, into meaningful
representations, where, for example, temporal closeness can be
preserved. This calls far new feature learning methods.

To contend with the first challenge, we propose an effective
method to generate a compact and diversified training path set.
We consider different travel costs that drivers may consider, e.g.,
distance, travel time, and fuel consumption. Next, for each travel
cost, we identify a set of diversified, top-k least-cost paths. Here,
two paths are diversified if the path similarity between them
is smaller than a threshold, where a number of different path
similarity functions can be applied [8]. As an example, diversified
top-3 shortest paths consist of three paths where the path similarity
of every pair of paths is smaller than the threshold and there does
not exist another set of three paths which are mutually diversified
and whose total distance is shorter. Considering diversity avoids
including top-3 shortest paths where they only differ slightly, e.g.,
only one or two edges. This method makes sure that the candidate
path set is diversified because the set (i) considers multiple travel
costs that a driver may consider when making routing decisions;
and (ii) includes paths that are dissimilar with each other. These
together represent a large feature space of the underlying road
network. In addition, the set is also compact since it only includes
a small number of top-k paths.

Next, we address the second challenge by proposing an end-to-
end learning framework to learn feature representations of paths,
which capture both topological and spatial properties. Recall that
the input is a path that is represented as a sequence of vertices in a
road network graph. To capture the topology of the road network,
we utilize unsupervised graph embedding [9] to transform vertices
into feature vectors by considering road network topology. Since
recurrent neural networks (RNNs) are good at modeling sequential
information and since a path is a sequence of vertices, we employ
an RNN to model the sequence of the feature vectors of the
vertices in a path. So far, the framework already considers the
topology of the underlying road network, but still lacks spatial
properties, which are not captured by classic graph embedding.
To accommodate the spatial properties, we let the RNN estimate
multiple values, including a ranking score of the input path and
also the input path’s spatial properties, such as the length, the
travel time, and the fuel consumption of the path. This makes the
framework a multi-task learning framework where the main task is
to estimate the ranking score, which is used for the final ranking,
and the auxiliary tasks enforce to update the feature vectors of
the vertices to also capture the spatial properties of the underlying
road network, which eventually also help improve the accuracy of
the main task.

The proposed learning framework is flexible where contex-
tual information can be seamlessly integrated. For example, we
propose a temporal graph to model peak vs offpeak periods in dif-
ferent days and then departure times can be converted into feature
vectors that reflect temporal closeness. We show how the temporal
features can be integrated into the learning framework and thus
enable temporal ranking. Similarly, when incorporating feature
vectors representing drivers, we enable personalized ranking.

This paper presents the first data-driven, end-to-end solution to

2

context-aware ranking for paths in road networks. Specifically, we
make four contributions. First, we propose a method to generate
a compact and diversified set of training paths which enables
effective and efficient learning. Second, we propose a multi-
task learning framework to enable spatial network embedding
that captures not only topological information but also spatial
properties. Third, we integrate contextual information embedding
into the framework to enable context-aware ranking. Fourth, we
conduct extensive experiments using a large real world trajectory
set to offer insight into the design properties of the proposed
framework and to demonstrate that the framework is effective. A
preliminary four-page report on the study appeared elsewhere [10].

Paper Outline: Section 2 covers related work. Section 3
covers preliminaries. Section 4 discusses enriching training data.
Section 5 proposes PathRank. Section 6 reports on empirical
evaluations. Section 7 concludes.

2 RELATED WORK

We review related studies on (1) learning to rank in the context
of information retrieval, (2) graph representation learning, (3)
machine learning techniques for path recommendation, and (4)
top-k path finding.

2.1 Learning to rank

Learning to rank plays an important role in ranking in the context
of information retrieval (IR), where the primary goal is to learn
how to rank documents or web pages w.r.t. queries, which are
all represented as feature vectors. Learning to rank methods in
IR can be categorized into point-wise, pair-wise, and list-wise
methods. Point-wise methods estimate a ranking score for each
individual document. Then, the documents can be ranked based on
the ranking scores [11]. Pair-wise methods focus on, for a given
pair of documents, making a binary decision on which document
is better, i.e., a relative order. Here, although we do not know the
ranking scores for individual documents, we are still able to rank
documents based on the estimated relative orders [12]. List-wise
methods take into account a set of documents and estimate the
ranking for the documents [13].

Although learning to rank techniques have been applied widely
and successfully in IR, they only consider textual documents and
queries and cannot be applied for ranking paths in road networks,
since both graph topology and spatial properties, which are the
two most important factors in road networks, are ignored. We
follow the idea of the point-wise learning to rank techniques in
IR and propose PathRank to rank paths in road networks while
considering both graph topology and spatial properties.

2.2 Graph Representation Learning

Graph representation learning, a.k.a., graph embedding, aims to
learn low-dimensional feature vectors for vertices while preserving
graph topology structure such that the vertices with similar feature
vectors share similar structural properties [9], [14], [15], [16], [17].
We distinguish two categories of methods: random walk based
methods and deep learning based methods.

A representative method in the first category is DeepWalk [14].
DeepWalk first samples sequences of vertices based on trun-
cated random walks, where the sampled vertex sequences capture
the connections between vertices in the graph. Then, skip-gram
model [18] is used to learn low-dimensional feature vectors based

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 30,2021 at 12:05:29 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3025024, IEEE

Transactions on Knowledge and Data Engineering

on the sampled vertex sequences. Node2vec [9] considers higher
order proximity between vertices by maximizing the probability of
occurrences of subsequent vertices in fixed length random walks.
A key difference from DeepWalk is that node2vec employs biased-
random walks that provide a trade-off between breadth-first and
depth-first searches, and hence achieves higher quality and more
informative embedding than DeepWalk does.

To overcome the weaknesses of random walk based methods,
e.g., the difficulty in determining the random walk length and the
number of random walks, deep learning based methods utilize the
random surfing model to capture contextual relatedness between
each pair of vertices and preserves them into low-dimensional
feature vectors for vertices [16]. Deep learning based methods
are also able to take into account complex non-linear relations.
GraphGAN [17] is proposed to learn vertex representations by
modeling the connectivity behavior through an adversarial learn-
ing framework using a minimax game. LINE [15] does not fall
into the above two categories. Instead of exploiting random walks
to capture network structures, LINE [15] proposes a model with a
carefully designed objective function that preserves both the first-
order and second-order proximities.

However, all existing graph embedding methods consider non-
spatial networks such as social networks, citation networks, and
biology networks. They ignore spatial properties, e.g., distances
and travel times, which are crucial features in spatial networks
such as road networks. In this paper, we propose a multi-task
learning framework to extend existing graph embedding to in-
corporate important spatial properties. Experimental results show
that the graph embedding that considers spatial-properties gives
the best performance when ranking paths in road networks.

2.3 Machine Learning on Spatio-Temporal Data

Machine learning has been applied to spatio-temporal data such as
trajectories to improve path recommendation [2], [6], [19], [20],
[21]. Personalized routing [21] and context-aware routing [2], [20]
aim to identify a single, optimal path for a specific driver or under
a specific context. Although such studies do not provide ranking
functions directly, we derive a personalized ranking approach
from [21] and compare with PathRank in Section 6.4. Skyline
routing returns a set of non-dominated paths, which are considered
to be incomparable to each other and thus no ranking is pro-
vided [6], [22]. Additional attempts have been made for estimating
accurate travel time or fuel consumption distributions [3], [23],
[24], [24], [25], [26], [27], which are also different from ranking
paths. RoadRank [28] computes influence scores for all road
segments, i.e., edges, in a road network and then ranks the edges
according to the influence scores. In contrast, our paper proposes
PathRank to rank paths, not edges. Multitask learning is applied to
model different drivers’ driving behavior [29] such that trajectories
from a same driver can be clustered together. However, it cannot
be used directly for ranking paths. In addition, one paper also
considers trajectory clustering [30], which is an unsupervised
learning problem. It cannot be used for solving the path ranking
problem, which is a supervised learning problem.

Some traffic time series prediction methods also consider
graph operations, e.g., graph convolution and graph attention, in
RNNs [31], [32], [33], [34], [35], but the problem settings are
different and their solutions cannot be used for ranking paths.
In such models, the input to an RNN unit is a whole road
network graph and the RNN units capture temporal dependency.

3

In contrast, the input to our RNN unit is a vertex in a road network
graph and the RNN units capture the spatial dependency along a
path.

2.4 Top-k Queries on Road Networks

A wide variety of top-k queries on road networks exist [8],
[36], [37], [38]. Top-k path selection algorithms often use simple
ranking functions to rank paths [7], [8]. For example, top-k
fastest path finding algorithms rank paths according to the paths’
travel times. In the experiments, we compare PathRank with such
baseline ranking functions used in top-k path finding algorithms.
Some other top-k algorithms consider different problem settings.
For example, top-k optimal sequenced paths aim at finding the top-
k shortest paths that visit a set of points of interest (POIs) such
as a post office, a bank, and a grocery store [38]. Another study
considers ranking a set of POIs in a road network [37], which
cannot be used for ranking paths. Probabilistic top-k shortest
path queries [36], [39] rank paths w.r.t. the probability of arriving
within a time budget, which is provided by end users. Our problem
dose not require end users to provide such time budgets.

3 PRELIMINARIES
3.1 Basic Concepts

A road network is modeled as a weighted, directed graph
G = (V,E,D, T, F). Vertex set V represents road intersections
and road ends; edge set E C V x V represents road segments.
Functions D, T, and F' maintain the travel costs of the edges in
graph G. Specifically, function D : E — R™ maps each edge to
its length. Functions 7" and F' have similar signatures and maps
edges to their travel times and fuel consumption, respectively.

A path P = (v1,v2,vs,...,vx) is a sequence of X vertices
where X > 1 and each two adjacent vertices must be connected
by an edge in E. We use P.s and P.d to denote the source and the
destination of path P.

A trajectory T = (p1,p2,D3,---,Py) is a sequence of GPS
records pertaining to a trip, where each GPS record p; =
(location,time) represents the location of a vehicle at a par-
ticular timestamp. The GPS records are ordered according to
their corresponding timestamps, where p;.time < pj;.time if
1<i<j<Y.

Map matching [40] is able to map a GPS record to a specific
location on an edge in the underlying road network, thus aligning
a trajectory 1" with a path in the underlying road network, denoted
as T.P. We call such paths trajectory paths. In addition, a
trajectory T is also associated with a driver identifier, denoted as
T.driver, indicating who made the trajectory. From trajectory
T, we know that driver T.driver used path T.P at time
T .p1.time. Thus, path T'. P is considered as a ground truth path
under the contexts, i.e., for driver T.driver at time T'.p;.time.

Path Similarities: Multiple similarity functions [2], [8], [21],
[41] are available to calculate the similarity between two paths,
where the most popular functions belong to the Jaccard similarity
function family, in particular, the weighted Jaccard similarity [2],
[21]. In this paper, we use the weighted Jaccard Similarity (see
Equation 1) to evaluate the similarity between two paths.

ZeEPlﬂPz G.D(e)

Yeepup, G-D(e)

Here, we use P; NP and P; U P to represent two edge sets: edge
set Py N P; consists of the edges that appear in both P; and Ps;

sim (Py, Py) = (1
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and edge set P; U P, consists of the edges that appear in either P;
or P,. Recall that function G.D(e) returns the length of edge e.
Then, the intuition of the weighted Jaccard similarity is two-fold:
first, the more edges the two paths share, the more similar the two
paths are; second, the longer the shared edges are, the more similar
the two paths are. Note that the proposed PathRank is a generic
path ranking framework, which is able to easily incorporate other
similarity functions.

Ranking scores: Given a trajectory path P and another path
P’ that also connects P.s and P.d, we use the similarity between
the two paths sim(P, P’) to represent the ranking score of P’.
Since we consider trajectory paths as the ground truth path under
the contexts, the more similar P’ is w.r.t. P, the higher similarity
score P’ should have and thus should rank higher. The trajectory
path P itself always has a ranking score of 1 and thus ranks the
highest among all paths connecting P.s and P.d.

3.2 Problem Definition

Given a set of NV candidate paths PP that connect the same source
and destination and optional contexts such as a departure time
and a driver identifier, we aim at (1) estimating a ranking score
sim(P, P}) for each candidate path P/ € P; and (2) providing
a ranked list of the candidate paths (Pj, Py, ..., Py ), such that
sim(P, P}) > sim(P, Pj) when 1 <i < j < N.

3.3 PathRank Overview

Fig. 1 shows an overview of the proposed PathRank. We distin-
guish a training phase and a testing phase. The training phase
employ historical trajectories to train PathRank, and we use the
trained PathRank in the testing phase.

We proceed to elaborate the training phase. Given a set of
historical trajectory, we first map match them to obtain their
corresponding trajectory paths. The trajectory paths are fed into
the Training Data Enrichment module where an enriched training
data set is generated. Specifically, for each trajectory path P,
the training data enrichment module generates a compact and
diversified set PS of candidate paths such that each candidate
path P’ € PS also connects the same source and destination
of the trajectory path P. In addition, for each path P’ € PS,
the module computes a similarity score sim (P, P") as the ground
truth ranking score of P’. Thus, the output of the training data
enrichment module is a set of “candidate path” and “ranking
score” pairs, denoted as {P’, sim(P, P’')}, where the ranking
scores are labels. This set is used as the input for the PathRank.

In the training phase, for each training instance
(P',sim(P,P')), the Spatial Network Embedding Module
embeds each vertex in candidate path P’ into a feature vector.
This transfers path P’ into a sequence of feature vectors, which
is then fed into a Recurrent Neural Network (RNN). In addition,
Context Embedding Module embeds additional contextual
information such as departure time and driver identifiers into
feature vectors, which is also fed into the RNN. Then, the RNN
estimates a ranking score of P’. An objective function is designed
to measure the discrepancy between the estimated ranking score
and the ground truth ranking score sim(P, P’).

In the testing phase, we use the trained PathRank to rank can-
didate paths. Given a source, a destination, and optional contexts,
advanced routing algorithms or commercial navigation systems
are able to provide multiple candidate paths, which are used as
candidate paths. Next, PathRank takes as input each candidate

Trajectory Paths

|Training Data Enrichmentl | Advanced Routing |

ource, Destination,
and Contexts

{P',sim(P, P")} C Candidate Paths )
S PR k2 =
* [Spatial Network Context | o
| Embedding Embedding | ;&
| ¥ ¥ )
i 1=

Candidate Paths with
Estimated Ranking Scores,

Fig. 1: Solution Overview.

path and returns an estimated ranking score. Finally, we rank the
candidate paths according to their estimated ranking scores.

4 TRAINING DATA ENRICHMENT

We proceed to elaborate how to generate a compact and diversified
set of training paths for a trajectory path.

4.1 Intuitions

Ranking paths is similar to ranking products in online shops. If a
user clicks a specific product, it provides evidence that the user
is interested in the product than other similar products. Similarly,
a trajectory path P from a source s to destination d at time ¢
also provides strong evidence that a driver prefers path P than
other paths that connect s to d at time ¢. The main difference is
that, in online shops, the other similar products, i.e., competitor
products, can be obtained explicitly, e.g., those products that are
shown to the user in the same web page but are not clicked by
the user. Based on the positive and negative training data, i.e., the
products that are clicked and not clicked by the user, effective
learning mechanism, e.g., learning to rank [42], [43], is available
to learn an appropriate ranking function. However, in our setting,
other candidate paths are often unknown and implicit because we
do not know when the driver made the decision to take path P,
what other paths were in driver’s mind. Thus, the main target of
the training data enrichment module is to generate a set of paths
‘PS that include the other paths that the driver has considered. We
call PS competitive path set.

A naive way to generate the competitive path set is to simply
include all paths from s to d. This is infeasible to use in real world
settings since the competitive path set may contain a huge number
of paths in a city-level road network graph, which in turn makes
the training prohibitively inefficient. Thus, we aim to identify a
compact competitive path set, where only a small number of paths,
e.g., less than 10 paths, are included. However, we cannot just
randomly choose a small number of paths. We need to carefully
choose such paths to resemble “the unclicked products” in online
shopping.

4.2 Top-k Shortest Paths

The first strategy is to employ a classic top-k shortest path algo-
rithm, e.g., Yen’s algorithm [7], to include the top-k shortest paths
from s to d into the competitive path set PS. This provides us a
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compact set. In addition, this strategy is simple and efficient since
a wide variety of efficient algorithms are available to generate top-
k shortest paths in the literature [7], [44]. However, a serious issue
of this strategy is that the top-k shortest paths are often highly
similar. For example, the top-2 shortest paths may only differ
with one or two edges. Thus, their similarities w.r.t. the ground
truth, trajectory path P, are also similar, which adversely affect
the effectiveness of the subsequent ranking score regression.

For example, we randomly choose four trajectory paths with
different sources and destinations. For each trajectory path, we
identify its origin and destination. Then, we use the origin and
destination to generate top-9 shortest paths. Then, we compute the
competitive paths’ similarities w.r.t. the trajectory path. Figure 2a
shows the box plots of the similarities per trajectory path. We
observe that the similarities often only spread over a very small
range. For example, for the first trajectory path P4, its correspond-
ing top-9 shortest paths have similarities spreading from 0.65 to
0.75.

If the similarities of competitive paths only spread over a small
range, they only provide training instances for estimating ranking
scores in the small range, which may make the trained model
unable to make accurate estimations for ranking scores outside
the small range. Thus, an ideal strategy should be providing a
set of training paths whose similarities cover a large range. In
other words, we aim at getting a diversified competitive path set to
ensure effectiveness. To this end, we propose the second strategy
using the diversified top-k shortest paths [8].

4.3 Diversified Top-k Shortest Paths

Diversified top-k shortest paths finding aims at identifying top-
k shortest paths such that the paths are mutually dissimilar, or
diverse, with each other. First, we always include the shortest path
into the diversified top-k shortest path set, say DkPS. Next, we
iteratively check the next shortest path P; until we have included
k paths in DEPS or we have checked all paths connecting the
source and destination. When checking the next shortest path P;,
we include P; into DEPS if the similarity between P; and each
existing path in DEPS is smaller than a threshold §. This means
that P; is sufficiently dissimilar with the paths in DEPS, thus
making sure that DkPS is a diversified top-k shortest path set.
The smaller the threshold ¢ is, the more diverse the paths in DkPS
are. However, if the threshold ¢ is too small, it may happen that
less than k diverse shortest paths or even only the shortest path
can be included in DkPS.

Figure 2b shows the similarities of the same four trajectory
paths when using diversified top-9 shortest paths with threshold
0 = 0.8. We observe that the similarities spread over larger ranges
compared to Figure 2a when using classic top-k shortest paths.

4.4 Considering Multiple Travel Costs

Recent studies on personalized routing [2], [21], [45] suggest
that a driver may consider different travel costs, e.g., travel time,
distance, and fuel consumption, when making routing decisions.
This motivates us to consider multiple travel costs, but not only
distance, when generating competitive path sets. The first option to
do so is to use Skyline routing [6], which is able to identify a set
of pareto-optimal paths, a.k.a., Skyline paths, when considering
multiple travel costs. However, Skyline routing also suffers the
high similarity problem that the classic top-k shortest paths have—
it often happens that the skyline paths are mutually similar, which
may adversely affect the training effectiveness.

We propose a simple yet effective approach. We run the
diversified top-k shortest paths x times where each time we
consider a specific travel cost. Then, we use the union of the
diverse paths as the final competitive path set PS. For example,
when considering three travel costs, i.e., distances, travel times,
and fuel consumption, we set x = 3 and identify the diversified
top-k shortest, fastest, and most fuel efficient paths, respectively.
Then, the union of the diversified top-k shortest, fastest, and most
fuel efficient paths is used as the final competitive path set PS.

Since we run the diversified top-k shortest path finding mul-
tiple times for different travel costs, we can use a small k£ for
each run. For example, when we set £k = 3 and consider three
travel costs, this makes PS also consist of up to 9 paths including
the top-3 shortest, fastest, and most fuel efficient paths. Figure 2¢
shows the similarities of the same four trajectory paths when using
the multi-cost diversified paths that include the top-3 shortest,
fastest, and most fuel efficient paths. The similarities in Figure 2¢
spread over larger ranges and the ranges are closer to 1. This is
preferred since it helps us to distinguish the rankings of “good
enough” candidate paths.

To summarize, we use multi-cost, diversified top-k least-cost
paths as the compact competitive path set P.S for each trajectory
path P. We use paths in P.S and trajectory path P together as the
training data, denoted as {(P/, sim;)}. Here, path P/ € PS U
{P} is associated with a ranking score label sim; = sim (P}, P).
If P/ is a trajectory path, its ranking score sim; is 1, which serves
as a positive training data. Otherwise, the ranking score is smaller
than 1, which serves as a negative training data. After identifying
competitive path sets for all trajectory paths, we use {(P/, sim;)}
as the training data for PathRank. If we do not enrich training
data and only use trajectory paths for training, then they all have
ranking score of 1, making it impossible to rank different paths.

5 RANKING FRAMEWORK

We propose an end-to-end deep learning framework to estimate
similarity scores for paths. We first propose a basic framework that
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Fig. 3: Basic Framework of PathRank.

consists of a spatial network embedding network and a recurrent
neural network. Next, we extend the basic framework with the
help of contextual embedding by considering two contexts, i.e.,
departure time and driver identifiers.

5.1 Basic Framework

Recall that the input for PathRank is a path, i.e., competitive
path PZ-’, and the label of the input is its ranking score, i.e.,
similarity, sim;. To solve the ranking score regression problem,
a prerequisite is to represent the input path P/ into an appropriate
feature space. To this end, we propose to use a vertex embedding
network to convert each vertex in the input path to a feature vector.
Since a path is a sequence of vertices, after vertex embedding, the
path becomes a sequence of feature vectors. Next, since recurrent
neural networks (RNNs) are capable of capturing dependency for
sequential data, we employ an RNN to model the sequence of
feature vectors. The RNN finally outputs an estimated ranking
score, which is compared against the ground truth ranking score
stm;. This results in the basic framework of PathRank, which
consists of two neural networks—a vertex embedding network
and a recurrent neural network (RNN), as shown in Figure 3.

5.1.1 Vertex Embedding

We represent a vertex v; in road network graph G as a one-hot
vector ¢; € RN, where N represents the number of vertices in
G, ie., N = |G.V|. Specifically, the i-th vertex v; in graph G
is represented as a vector g; where the ¢-th bit is 1 and the other
N —1 bits are 0. Vertex embedding employs an embedding matrix
B € RM*N o transfer a vertex’s one-hot vector g; into a new
feature vector x; = Bq; € RM . The feature vector is often in a
smaller space, where M < N.

Given a competitive path P/ = (v1,vq,...,vz), we apply
the same embedding matrix B to transfer each vertex to a feature
vector. Thus, the competitive path P is represented as a sequence
of features (21, x2,...,2z), where ; = Bgjand 1 < j < Z.

Next, we elaborate different means of obtaining embedding
matrix B. An naive method to obtain B is to simply initialize a
random matrix, which is then updated through back-propagation
in the training phase. However, the naive method does not consider
the graph topology and spatial properties, which hinders accuracy.
Capturing Graph Topology with Graph Embedding: Graph
embedding, e.g., DeepWalk [14], node2vec [9], LINE [15], Graph-

GAN [17], aims at learning low-dimensional, feature vectors of
vertices in a graph by taking into account the graph topology. A
typical way to enable graph embedding is to mimic the way of
embedding words for natural languages [9], [14]. In particular,
multiple vertex sequences can be generated by using random
walks, where random walks can consider edge weights or ignore
edge weights. Next, vertices are considered as words and the
generated vertex sequences are considered as sentences, which
enables the use of word embedding techniques to generate em-
beddings for vertices. Since the vertex sequences are generated
by applying random walks on the graph, the obtained vertex
embedding actually already takes into account the graph topology.
The output of graph embedding is an embedding matrix B that
considers graph topology.

We propose two different strategies to incorporate graph em-
bedding into the framework. First, we simply apply an existing
graph embedding method, e.g., DeepWalk or node2vec, to obtain
embedding matrix B that embeds a one-hot representation of a
vertex to a low dimensional feature vector. Then, we use the
feature vector as the input to the RNN. This means that PathRank
only includes an RNN module, whose inputs are sequences of
feature vectors, and the vertex embedding module only provides
the inputs and are then disconnected from PathRank.

Second, inspired by the well-known practice of unsupervised

pre-training [46], we use the embedding matrix obtained from an
existing graph embedding method to initialize the embedding ma-
trix B in the vertex embedding module in PathRank. This allows
PathRank to update the embedding matrix B during training such
that it not only captures the graph topology but also better fits the
similarity regression.
Capturing Spatial Properties with Multi-Task Learning: Al-
though many vertex embedding algorithms exist, they are only
able to capture graph topology because they only focus on graphs
representing, e.g., social networks and citation network. In other
words, they do not consider graphs representing spatial networks
such as road networks. However, in road network graphs, many
spatial attributes, in addition to topology, are also very important.
For example, distances and travel times between two vertices are
crucial features for road networks and also influence drivers’ path
choices. To let the graph embedding also maintain the spatial
properties, we design a multi-task learning framework using pre-
trained graph embedding.
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We first employ an existing graph embedding algorithm to
initialize the vertex embedding matrix B in the vertex embedding
module of PathRank. This pre-trained embedding matrix captures
the graph topology. Next, we try to update B such that it also
captures relevant spatial properties during training. To this end, we
employ multi-task learning principles, where the main task is to
estimate similarity and the auxiliary tasks are to reconstruct travel
costs of competitive paths which help learning an appropriate
embedding matrix B that also considers spatial properties of the
underlying road network.

5.1.2 RNN

After vertex embedding, a path is represented by a sequence of
feature vectors (x1, Ta, ..., xz). The feature sequence represents
the flow of travel on path P;. As a recurrent neural network (RNN)
is known to be effective for modeling sequences, we fed the feature
sequence (%1, T2, ...,%z) into an RNN. Specifically, we employ
a bidirectional gated recurrent neural network (BD-GRU) [47] to
capture the sequential dependencies in both the direction and the
opposite direction of the travel flow on path P;.

We consider the direction of the travel flow first, i.e., from left
to right. A GRU unit learns sequential correlations by maintaining
a hidden state h; € R at position j, which can be regard as an
accumulated information of the positions to the left of position j.
Specifically, hj = GRU (z;, h;j_1), where z; is the input feature
vector at position j and h;_1 is the hidden state at position j — 1,
i.e., the hidden state of the left position. More specifically, the
GRU unit is composed of the following computations.

First, the GRU unit employs a reset gate 7;, shown in Equa-
tion 2, to decide how much information from the previous position
should be forgotten. Equation 2 computes 7;, which is a value
between 0 and 1, meaning that the reset gate may fully forget to
fully remember. The GRU then uses a similar gate called update
gate to compute z; using Equation 3. Both the reset and update
gates are contributed to control how much information from the
left hidden states should be considered in order to make the
final similarity score estimation accurate. More specifically, In
Equation 4, the GRU computes an internal state /; that considers
both inputs z; and h;_;. Here, the output of the reset gate 7; is
used to control how much we want to consider the output from the
previous position h;_;. Finally, In Equatiop 5, the GRU uses the
update gate z; to combine the internal state /; and the output from
the previous position h;_1, which produces the output state h; for
the current GRU unit at position j. By doing this, it is possible to
remember and forget left hidden states which are found to be
relevant and irrelevant for the final similarity score estimation.

I'j =0 (er'j —+ Urhj—l) (2)
Z; = O’(Wzl’j + Uzhj—l) (3)
flj = qb (thj + Uh (I‘j O) hjfl)) (4)

hj =z; ©h; + (1 —z;) ©h, ()
where o is the logistic function, and ® denotes Hadamard product
and ¢ is hyperbolic tangent function. z; and h; are the feature
vector and hidden state at position j, respectively. W,., W, W,
U,, U, and Uy, are parameters to be learned.

For the opposite direction of the travel flow, i.e., from right
to left, we apply another GRU to generate hidden state h;- =
GRU'(x;, 1/, ). Here, the input consists of the feature vector

7

at position j and the hidden state at position j + 1, i.e., the right
hidden state.

The final hidden state /{; at position j is the concatenation of
the hidden states from both GRUs, i.e., H; = h; © h;- where &
indicates the concatenation operation. We stack all outputs from
the BD-GRU units into a long feature vector F'(P}) = (Hy ®
Hs; @ ... ® Hyz) where & indicates the concatenation operation.
Now, the competitive path P/ is converted to a feature vector
F(P)).

5.1.3 Fully Connected Layer

For each competitive path P/, we apply a fully connected layer
with weight vector Wro € RIF (PHIXX o produce a vector of
X values, including the estimated similarity score sim; and a
number of spatial properties, such as travel time, distance, and
fuel consumption.

5.1.4 Loss Function

To enable the multi-task learning framework, in the final fully
connected layer, PathRank not only estimates a similarity score
but also reconstruct the spatial properties of the corresponding
competitive path P/, such as the distance, travel time, and fuel
consumption of P/. The loss function for the multi-task learning
framework is defined in Equation 6.

(1—a)- zn: (sims - simi)Q +

i=1
o303 (3 ) T+ AW
i=1 k=1

The first term of the loss function measures the discrepancy
between the estimated similarity sim; and the ground truth
similarity sim;. We use the average of square error to measure
the discrepancy, where n is the total number of competitive
paths we used for training. The second term of the loss function
represents auxiliar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>