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Zohaib Jan, Juan Munoz and Asim Ali1

Abstract—In this paper, a new method is proposed for creating 
an optimized ensemble classifier.  The proposed method 
mitigates the issue of class imbalances by partitioning the input 
data into its various data classes. The partitions are then 
clustered incrementally to generate a pool of class pure data 
clusters. The generated data clusters are then balanced by 
adding samples from all classes which are closest to the cluster 
centroid. In this manner all generated data clusters are 
balanced and classifiers trained on such a data cluster are 
unbiased as well. This creates a diverse input space for training 
of base classifiers. The pool of clusters is then utilized to train a 
set of diverse base classifiers to generate the base classifier pool. 
The pool of classifiers is then treated as a combinatorial 
problem of optimization and an evolutionary algorithm is 
incorporated. The proposed approach generates an optimized 
ensemble classifier that can not only achieve the highest 
classification accuracy but also has a lower component size as 
well. The proposed approach is tested on 31 benchmark 
datasets from UCI machine learning repository and results are 
compared with existing state-of-the-art ensemble classifiers as 
well.   

 
Index Terms—Ensemble classifiers, Fusion of classifiers, 
Clustering, Neural networks.  

I. INTRODUCTION 

NSEMBLE classifier is a notably recent machine 
learning classification technique for improving the 

classification accuracy by suitably combining the class label 
estimates of an individual classifier. An individual classifier 
is deemed to be accurate if it performs better than random 
guessing, and diverse if the error it makes is uncorrelated to 
the errors of other classifiers. Combinations of diverse and 
accurate classifiers have shown improved performance 
compared to a system where only accurate classifiers are 
selected defined by Zhou, Dietterich in [1-3]. Ensemble 
classifiers benefit from the “perturb and combine” strategy 
and over the years many new methods of ensemble 
classifiers have been developed. A number of research has 
pointed to the benefits of diversity in ensemble  classifiers 
however a trade-off between accuracy and diversity must be 
maintained as indicated by Kuncheva and Whitaker in [4].  

Precedence given to diversity only will result in an 
ensemble classifier that is diverse in nature but performs 
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inaccurately; the main objective is to develop an ensemble 
classifier that can achieve higher classification accuracy over 
unseen data. To achieve diversity different measures have 
been proposed over the years with the prime objective to 
increase overall ensemble classification accuracy [4]. 
Generally, diversity in an ensemble classifier can be 
achieved by 1) sub sampling of data, 2) feature 
randomization of data and 3) parameter randomizations of  

classifiers.  In regards to achieving diversity through sub 
sampling two pioneering works to consider are bagging and 
boosting shown by Breiman, Freund and Schapire in [5, 6]. 
Bagging works by creating sub samples of data with 
repeating and unique groups; classifiers are trained on each 
sub sample which are then suitably combined. Boosting on 
the other hand subsequently trains a classifier on data 
patterns where the classifier performed poorly, therefore the 
name boosting. A popular ensemble classifier methodology 
based on boosting is AdaBoost. Over the years many 
variations of AdaBoost have been proposed and they are 
detailed Vezhnevets, Domingo and Avidan in [7-9]. A 
renowned work in achieving diversity through feature 
randomization is random forest  stated by Breiman in [10]. 
Random forest works by training decision trees on random 
subset of records and features from the training dataset. 
Ensemble classifier methodologies based on parameter 
randomization can be classified further into two categories. 
Firstly, are ensemble classifier methodologies that 
randomize classifier parameters using kernel functions 
specified by Gönen and Alpaydın in [11], and secondly are 
methodologies that use evolutionary algorithms to 
manipulate features and/or ensemble classifier components 
suggested by Rahman and Verma [12]. 

Another key aspect to consider when generating an 
ensemble classifier is the ensemble size itself. As stated by 
Wolpert and Macready in  [13] no single model can perform 
well on every dataset and to obtain a better class label 
estimate multiple classifiers should be suitably combined. 
Adding classifiers in an ensemble classifier does contribute 
to classification accuracy, however, according to [14-16] 
adding more than an optimal number of classifiers only 
contributes to ensemble size and complexity of the ensemble. 

A Novel Method for Creating an Optimized 
Ensemble Classifier by Introducing Cluster Size 

Reduction and Diversity  

E
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This is known as “the law of diminishing returns” defined by 
Shephard and Färe in [17].  

The main aim of this research is to address the problem in 
optimizing ensemble classifier in particular finding a best set 
of diverse base classifiers to create an optimized ensemble 
classifier. The original contributions presented in this paper 
are as follows: 
 a novel method that can generate, select and fuse a best 

set of diverse classifiers to produce an optimal 
ensemble classifier is presented.  

 a new approach to obtain diverse base classifiers for 
ensemble via class-based clustering.  

 a new approach of minimizing class imbalances 
through the incorporation of clustering balancing based 
on Euclidean space. 

The rest of the paper is organized as follows. Section II 
entails the current state of the art ensemble classifier 
techniques. Section III discusses the proposed method for 
creating an optimized ensemble classifier. Section IV gives 
details about the experimental setup, experiments, results, 
and analysis of results. Section V summarizes our findings 
and lays out future directions. 

II. RELATED WORK 

Ensemble classifiers can outperform individual classifiers, 
however there are many problems with ensemble classifiers 
such as finding appropriate diverse base classifiers and their 
fusion. Many individual classifiers such as neural networks, 
decision trees, etc. trained by searching in the local search 
space suffer from converging to a local optimum. Ensemble 
classifiers overcome this by having various learners search 
in the problem space in parallel and find a better estimation 
by converging to a global optimum. It has been pointed out 
by various researchers that in order to traverse the search 
space from multiple angles one key factor is to have a diverse 
set of classifiers [2, 18-20]. Diversity in classifiers can be 
achieved in two ways: 1) training classifiers on a diverse 
input sub space generated from the dataset, and 2) training of 
structurally different classifiers on dataset. This way trained 
classifiers will not produce correlated errors and the 
ensemble classifier will perform well on unseen data. The 
bulk of this section will discuss recent ensemble classifier 
methods that incorporate diversity by generating a diverse 
input space, train classifiers on a subset of features, and 
utilize evolutionary algorithms to optimize diverse sets of 
classifiers.  

A significant amount of research has been conducted in 
creating different methods to promote diversity in an 
ensemble classifier [21-23]. Random Forest (RaF) is a very 
robust and versatile ensemble classifier method and many 
variations have been proposed over the years. In a study [24] 
authors exhaustively compared 179 classifiers on entire UCI 
classification dataset repository and concluded that the best 
ensemble classifier overall is a variation of RaF known as 
parallel RaF. Similarly in [25] authors conducted a 
benchmark study of different ensemble classifiers on 121 

datasets from UCI repository  and concluded that oblique 
decision tree ensemble out performed other ensemble 
classifier methods. The oblique decision tree ensemble was 
originally proposed in [26] and is a variation of RaF known 
as MPRaF.  

Clustering has received much focus when it comes to 
generating ensembles [12, 20, 27-31]. Some authors used 
clustering algorithms to form clusters of classifiers whereas 
others have used clustering to partition training data into 
distinct data clusters  [32]. As such in [33] a cluster oriented 
ensemble classifier was proposed. Dataset was first 
partitioned into distinct data clusters and on each data cluster 
a set of base classifiers were trained. Trained classifiers were 
combined using an artificial neural network to generate the 
ensemble classifier. It was argued that using a fusion 
classifier rather than a typical algebraic method to fuse 
decisions from different base classifier is a better way to 
generate an ensemble. Similarly in [21] a methodology of 
incremental ensemble learning processes was proposed. The 
input data was partitioned into a number of data clusters 
incrementally and a set of base classifiers were trained on all 
generated data clusters. Classifier accuracy and diversity was 
calculated for all trained classifiers and they were added to 
the pool on the basis of accuracy precedence diversity. 
Meaning, a classifier will be added to the pool if it achieved 
higher classification accuracy than the one already in the 
pool; if accuracy is the same then diversity was compared. 
The classifier was discarded if neither the accuracy nor the 
diversity was increased. In another research [34] diversity 
was achieved by clustering data into distinct clusters and 
discarding redundant clusters whose Jaccard index was 
higher than a given threshold. It was also suggested that 
using a maximum value of K for generating clusters 
incrementally should be 𝐾 =  √𝑛, where n is the number of 
records in the training dataset. This not only ensured that the 
computational complexity of clustering remains 𝑂(𝑛 ), but 
also kept the algorithm from creating clusters with few 
records in them.  

In [29] authors achieved diversity by clustering data into 
atomic and non-atomic clusters. An atomic cluster is class 
pure whereas a non-atomic cluster has multiple class labels 
in it. Every non-atomic cluster is fed into a neural network 
classifier to transform it into an atomic cluster; the process 
repeats till every non-atomic cluster is converted into an 
atomic cluster. When all clusters are class pure decisions can 
be formed. In [30] a hybrid sample based clustering 
ensemble was proposed which is based on an extension to 
boosting and bagging. It was suggested to partition input data 
iteratively using a hybrid sampling procedure, inspired by 
the nature of boosting and bagging. On all generated 
partitions a novel consensus function is applied, this encodes 
the local and global cluster structure into a single 
representation which is then consolidated into a single 
partition by a clustering algorithm.  

A significant amount of research has been conducted in 
utilizing evolutionary algorithms such as Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO), etc. 
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to optimize different ensemble classifier hyper-parameters, 
ensemble classifier selection, and or optimizing input space 
[35, 36]. As such  in [12] it was suggested that achieving high 
diversity with accuracy can be classified as a multi objective 
optimization problem and GA can be utilized to find a 
balance between accuracy and diversity. Dataset is 
partitioned into distinct clusters incrementally iteratively and 
in each iteration a different value of K clusters was generated. 
Authors employed GA to search for the optimum value of 𝐾 
which was able to achieve the highest classification 
accuracy. In [36] authors employed multi objective 
optimization to search for the best hyper parameters that can 
generate an optimal pareto front and as an instance selection 
tool to select the best of classifiers from the pool. In [37] a 
multi objective genetic programming framework for 
classification of data with unbalanced majority and minority 
classes as a learning objective. In [38], authors used a divide 
and conquer based hierarchical method to first create a 
diverse input space and train a set of heterogeneous 
classifiers. The trained classifiers are then suitably combined 
by means of a multi objective optimization algorithm. The 
proposed method was not only able to perform well but also 
generated an ensemble classifier with an optimal size. 
Similarly, according to Wu and Bongard in [39] a set of 
heterogeneous classifiers are combined through active 
learning. The proposed method optimizes ensemble size 
iteratively to find the best size and highest classification 
accuracy.  

In [40] authors proposed a method  for ensemble 
classifiers using clustering and PSO. Clusters of classifiers 
are generated and are assigned weights which are calculated 
using PSO. In PSO, each cluster was treated as a particle in 
k dimensions. Relative weights are given to clusters using 
classical PSO. This proved not only efficiency in terms of 
generalization error but also effective in lowering the 
complexity of the ensemble. Similarly, in [41] PSO was used 
as a model selection tool to select the best set of classifiers  
for ensemble classifiers. Authors argued that traditional 
model selection methodologies focus on maximising 
individual models’ accuracy rather than promoting global 
accuracy and diversity of the ensemble. A popular model 
selection approach which overcomes this problem is known 
as Particle Swarm Model Selection (PSMS). In recent studies 
[41-44] PSMS has shown great success and proved to be a 
good contender for optimizing a binary search space. PSMS 
was used to find the best set of features, as a model selection 
tool, and to optimize parameters for classification dataset.  

In another research [22] Attractive and Repulsive PSO 
(ARPSO) was proposed which selects the best set of 
classifiers from an initial pool of classifiers. This is done by 
considering both classification accuracy and diversity. The 
proposed approach improved generalization performance by 
considering diversity of classifiers and adaptively selects the 
number of classifiers. As discussed, PSO has proven to be a 
good optimization tool for ensemble learning methodologies. 
PSO is a metaheuristic optimization algorithm originally 
proposed by Kennedy in 1995 and Eberhart [27]. PSO helps 

in optimizing continuous and unconstrained nonlinear 
optimization problems. PSO mimics the social behaviour of 
a flock of birds. It is a population-based algorithm in which 
each population member becomes a possible solution. The 
population consists of a set of particles and each particle has 
a personal best and a global best. PSO searches in the 
nonlinear search space to find a solution that minimizes the 
global error whilst also minimizing the individual particle’s 
personal error as well. 

According to Feurer et al. [50] there is evidence that no 
single method of AutoML outperform on all datasets under 
experimentation and secondly some methods in machine 
learning essentially depend on hyperparameter optimization. 
However, the successful use of AutoML frameworks which 
effectively uses Bayesian optimization has corrected the 
latter problem. The former problem is interconnected with 
the latter problem since the ranking of calculations rely upon 
whether their hyperparameters are fine-tuned. These two 
problems can be tackled as separated, organized joint 
optimization problem.  The use of Bayesian optimizer for 
meta learning corresponds to a probabilistic model that 
compiles, assess, and connects hyperparameter settings and 
its respectively model result that derives from this iteration. 

Meta-learning approach work hand to hand to Bayesian 
optimization when performing a ML framework and suggest 
some instantiations for the framework. However, it is unable 
to provide fine-grained information on performance. The 
positive side of Bayesian optimization is that can fine-tune 
performance successfully overtime by selecting k 
configurations based on meta learning. While these 
methodologies are promising, they can be restricted to a few 
meta-features and unable to adapt to the highdimensional 
configurations faced in AutoML. 

While Bayesian hyperparameter optimization is efficient 
when processing data or when finding the best-performing 
hyperparameter setting. However, it is an inefficient strategy 
when the objective is essentially to make great forecasts as 
models trained during the span of the search are lost. Feurer 
et al. proposes a post-processing method to store and use the 
models as an automatic ensemble construction using 
multiple hyperparameter setting making it more robust and 
reliable compared to individual models. 

As discussed in the literature a number of methods have 
been proposed to promote diversity in ensemble classifiers, 
and optimize ensemble classifier components, however, a 
careful consideration should be given to create an optimal 
ensemble size by selecting not only diverse but accurate 
classifiers as well. The challenges involved in creating a 
diverse set of classifier involves i) identifying the best set of 
heterogeneous classifiers which can achieve highest 
classification accuracy, ii) identifying the best set of data 
clusters that can contribute to data diversity which in turn 
will result in achieving higher classification accuracy, and 
iii) identifying the means of using optimization algorithm to 
optimize the pool of classifiers to generate a diverse and 
accurate ensemble classifier. This paper contributes to the 
above-mentioned areas by proposing an ensemble classifier 
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generation method by i) introducing data diversity through 
clustering and balancing, and ii) optimizing the pool of 
trained classifiers to achieve higher classification accuracy 
and optimum ensemble size.  

III. PROPOSED METHOD 

A. Preliminaries 

The focus of this paper is to develop a novel method of 
generating an optimized ensemble classifier by selecting the 
best set of classifiers through incorporating an evolutionary 
algorithm. This is achieved by suitably combining a subset 
of base classifiers from the pool that can achieve the highest 
classification accuracy. The proposed method starts off by 
creating a diverse training space that minimizes the class 
imbalances and classifier biasness by clustering input data 
incrementally. The benefit of creating a diverse search space 
is in two folds 1) it allows the proposed ensemble classifier 
approach to train multiple classifiers on different subsets of 
data samples as in bagging therefore allowing smaller 
datasets especially to have a sufficient base classifier pool, 
and 2) since classifiers are trained on dense data clusters 
therefore, they have local expertise and are able to bring with 
them different learning capabilities. All trained classifiers are 
then passed to an optimization algorithm which selects a 
subset of diverse classifiers and fuses them to generate an 
optimized ensemble classifier.  

B. Diverse training space generation  

The proposed method generates a diverse search space by 
first partitioning the input data into its  various data classes.  
Let us assume that 𝑋 = { (𝑥 , 𝑦 ), ( 𝑥 , 𝑦 ) … , ( 𝑥 , 𝑦 )} is 
the training dataset and 𝑛 is the number of records, then 𝑥 is 
a feature vector and 𝑦  is the respective class label. Data 
partitions are generated which are class pure as for example 
subsets 𝑋 , 𝑋 , . . , 𝑋  ⊆ 𝑋  such that 𝑋  will contain data 
samples from only class 𝑣 . If for example in the case of 
breast cancer dataset which has only 2 data classes 
malignant and benign, only 2 subsets are generated. Each 
data partition is clustered using k-means algorithm with the 
value of 𝑘  starting from 2 going up to a maximum of 𝐾 . 
Clustering is achieved by grouping similar data samples into 
different groups (clusters) with a common mean. This is 
achieved by minimizing the squared Euclidean distance from 
the centroid of a data cluster given as: 

 

argmin ∑ ∑ 𝑥 − 𝑐               (1) 

where 𝑥 is a feature vector,  𝑘 is the number of clusters 
that are generated, 𝑛 is the total number of samples in the 
dataset, and 𝑐 is the centroid of a data cluster. Clustering is 
utilised as an alternative to bagging to generate a random 
subspace for training of base classifiers. Another added 
benefit to clustering is that there are several tweakable 
parameters when generating data clusters, this enables us to 
fine-tune the process and generate an input space that can 
maximize the classification accuracy of the ensemble. 

Since the generated data clusters are class pure therefore, 
they must be balanced for a classifier that is trained on them 
to be unbiased as well. In order to balance a strong data 
cluster, data samples from different classes are added to the 
cluster that are closest to the cluster centroid. Assuming 𝑘 =

2, data clusters are generated from the data subsample 𝑋  
then the following holds true for data clusters 𝐶  and 2 :  
𝐶 ∩ 𝐶 = ∅ and 𝐶 ∪ 𝐶 = 𝑋 . Both 𝐶  and 𝐶  now must 
be balanced before they can be utilised in the training 
process. If data cluster 𝐶  has centroid 𝑐  and has 𝑚  data 
samples belonging to one of the classes in 𝑣, let us say 𝑣′, 
then data samples from classes besides 𝑣′ are added to the 
cluster. In order to do this, first normalised Euclidean 
distance from centroid 𝑐 of each sample is computed as 
follows: 

𝑑𝑖𝑠𝑡 =  𝑛𝑜𝑟𝑚 𝑑(𝑥 , 𝑐)    ∀  𝑖 ∈ 𝑉 𝑎𝑛𝑑 𝑖 ∉ 𝑣′         (2) 
where  𝑑(𝑥 , 𝑐) =  ∑ |𝑥 − 𝑐|. Then 𝑚 data samples that are 
closest to the centroid 𝑐  are added to cluster 𝐶 . This 
process is repeated until at most 𝑚 samples from each class 
besides 𝑣′ are added to the cluster 𝐶 . The same is repeated 
for every cluster in the pool, until all generated class-pure 
data clusters are now balanced data clusters.  

C. Train base classifiers 

A set of diverse base classifiers which include Naïve Bayes 
(NB), Discriminant Analysis (DISCR), k-Nearest Neighbour 
(kNN), Decision Trees (DT), Artificial Neural Networks 
(ANN), and Support Vector Machines (SVM) are trained on 
all balanced data clusters. These classifiers are structurally 
different with different learning capabilities and contribute 
to classifier diversity. Additionally, classifier parameters are 
randomized to further increase diversity. The hyper 
parameters and their respective selection criteria are given in 
Table II.  

D. Optimizing the classifier pool 

The search space 𝜑  for an optimization problem for 
ensemble classifier solution 𝜀 is defined as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛 𝑓 (𝜀), 𝑓 (𝜀), … , 𝑓 (𝜀) ≔ { 𝜀 | 𝜀 ∈  𝜑}          (3) 

where 𝑆 is the number of possible ensemble classifier 
solutions. The ith solution 𝜀 (𝜒) = {𝜁 , 𝜁 , 𝜁 } is formed 
by combing 1st, 10th, and bcpth classifiers from the pool of 
generated trained classifiers  𝜁 . The objective of the 
optimization algorithm is formulated by adding the ensemble 
classifier root mean square error(RMSE) over validation 
dataset and the ensemble component size. The RMSE of the 
ensemble is calculated using the class label estimates of the 
ensemble generated over the feature vector 𝑥 ∈  𝑉  of the 
validation dataset. The class estimates of ith solution is 
obtained as follows: 

y = 𝑚𝑜𝑑𝑒(𝜀 (𝜒))                            (4) 

where mode is a mathematical operator which depicts 
majority voting and is used to fuse decisions of different 
classifiers. Finally, the RMSE is calculated as follows: 
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𝑅𝑀𝑆𝐸  =

 ∑ (𝑦 − 𝑦 )
| |

|𝑉|
       ∀ 𝑦 ∈ 𝑉          (5) 

where 𝑦’ is the predicted class labels obtained from (4).  
 

Algorithm 1: Optimized Ensemble Classifier                   

Input: Training data, 𝑋 = {𝑥 , 𝑦 }  
            n - Data size  
           𝐾 - Number of data clusters/class  
Output: Optimized ensemble classifier 
 
1. Generate 𝑋  subsets of the input data such that  
    𝑋 , 𝑋 , … 𝑋  ⊆ 𝑋   
2. foreach 𝑋  do 
3.    𝑠𝑝  ← partition 𝑋 into 𝐾 data clusters by minimizing  
       the squared Euclidean distance of each sample from the  
       cluster centroid 
4. endfor 
5. foreach class-pure cluster 𝐶 in 𝑠𝑝 do 
6.     determine the dominant class 𝑦 in cluster 
7.     𝑦  ← determine nondominant classes in the cluster  
8.     foreach 𝑦  do: 
9.       add feature vectors 𝑥 from remaining clusters in the  
          pool closest to cluster centroid  
10.    endfor 
11. endfor 
12. foreach data clusters 𝐶 in pool 𝑠𝑝 do 
13.    𝑏𝑐𝑝 ← train a base classifier 𝜁 on the data cluster 𝐶  
         and add to  the pool  
14. endfor 
15.    Initialise a population of |𝑏𝑐𝑝| particles  
16.   while termination criteria 
17.      Map each particle to a trained base classifier in  
           the population by generating a binary bit string  
           pop representing each classifier in the population 
18.      Generate an ensemble solution 𝜉 of classifiers  
           that have a higher value than the threshold 𝜃 
19.      Calculate the fitness of the population using  
            equation (6) with validation dataset  
20.      Update the local best and global best of the  
            population  
21.      Update particle velocity and position 
22.    endwhile 
23.    Use the optimized pool 𝑏𝑐𝑝′ of classifiers  
         predict the class labels of the unseen dataset, the  
         test set and calculate ensemble classification  

         accuracy. 

 
The objective function of the optimization algorithm is given 
as follows: 

𝑓(𝜉) =  𝑅𝑀𝑆𝐸 +  |𝜀 |                          (6) 
 

Which essentially is the sum of the root mean square error 
and the component size of ensemble solution. Therefore, the 
solution that can achieve the lowest error and has the smallest 

component size is selected. Particle Swarm Optimization is 
used here as a black box optimization toolbox. Population in 
PSO is represented is represented as follows as:  
 
 

𝑝𝑜𝑝 = 𝜑 , 𝜑 , … . , 𝜑| |                            (7) 

where 𝜑 =
1,    𝑖𝑓 𝜑 > 𝜃 
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Therefore, the population of particles at the end of 
optimization that have respective 1s are used to identify the 
classifiers that will be utilized to generate the optimized 
ensemble classifier. The algorithm of the proposed ensemble 
classifier framework that utilized clustering and optimization 
to generate an ensemble is given in Algorithm 1. 
 

E. Theoretical analysis of the proposed approach 

The time complexity of the proposed approach can be 
computed as a sum of four tasks i)complexity of generating 
data clusters, ii) complexity of balancing data clusters, iii) 
generate base classifier pool and iv) optimize the pool of 
classifiers. 
 𝑇 = 𝑇 + 𝑇 _ + 𝑇  + 𝑇 _                  
 where 𝑇 , 𝑇 _ , 𝑇 and 𝑇 _  is the time 

complexity of generating data clusters,  balancing data 
clusters, generating base classifier pool, and optimizing 
base classifier pool.  

 The time complexity of k-means clustering is 𝑂(𝑖𝑘𝑛) 
where 𝑖 is the number of iterations, 𝑘 is the number of 
clusters and 𝑛 is the number of data samples.  

 The number of generated data clusters is a factor of 𝐾 
and the number of data classes in the input data. 
Therefore, to balance the data clusters if there are 𝑚 
samples in a data cluster  and 1 − 𝑣  classes exist 
therefore the complexity of balancing data clusters is 
𝑂(𝑚 ∗ 𝑣). 

 On each balanced data cluster a set of base classifier is 
trained. Assuming the worst-case complexity of training 
a classifier is 𝑂(𝑛 )  therefore if there are 𝑠𝑝  data 
clusters in the pool the overall complexity of generating 
the base classifier pool will be 𝑂(𝑠𝑝 × 𝑛 ).  

 Lastly, the cost of optimization is 𝑂((𝑠𝑝 × 𝑛 ) )       
 Therefore, the complexity of the proposed approach is 

the sum of all given as 
o 𝑂(𝑖𝑘𝑛 +  𝑚 ∗ 𝑣 + 𝑛 + 𝑠 × 𝑛 )  the number of 

sapmles 𝑛 is the largest coefficient here, therefore 
the worst-case complexity is 𝑂(𝑛 ).   

IV. EXPERIMENTS AND ANALYSIS 

In this section, we present the benchmark datasets, 
experiments, results and comparative analysis to evaluate the 
proposed method.   

A. Datasets 

Benchmark datasets from UCI Machine Learning Repository 
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[45] were used for experimentation. The details of these 
datasets are given in Table I. We have used UCI benchmark 
datasets so that the results can be compared with other 
researchers as many researchers use UCI benchmark datasets. 
A mix of small and large datasets with few and many classes 
are chosen for experiments. It can be noted from Table I that 
10 datasets have more than 10 classes, and 3 datasets have 
more than 1000 records with Adult having 48000 records. 
There is a good mix of datasets to test the performance of the 
proposed method thoroughly. 

 

TABLE I: DETAILS OF UCI DATASETS USED IN EXPERIMENTATION 
 

Datasets # of features # of records # of classes 

Adult 14 48842 2 

Australian 14 690 2 

Balance 4 625 3 

Banknote 4 748 2 
Breast 
Cancer  

9 683 2 

Bupa 6 345 2 

DNA 61 3190 3 

E.coli 7 336 2 

Fertility 9 100 2 

Haberman 3 306 2 

Hayes Roth 5 160 3 

Heart 13 270 2 

Hepatitis 19 80 2 

Ionosphere 33 351 2 

Iris 4 150 3 
Letter 
Recognition 

16 2000 26 

Liver 6 345 2 
Page Blocks 10 5473 5 
Pima 
Diabetic 

8 768 2 

Segment 19 2310 7 

Sonar 60 208 2 

Stat-Image 13 270 2 

Teaching 5 151 3 

Thyroid 5 215 3 

Transfusion 4 748 2 

Vehicle 18 946 4 

Vowel 13 528 11 

WDBC 30 569 2 

Wine 13 178 3 

Zoo 17 101 7 

 

B. Experimental setup 

The proposed methodology is implemented in MATLAB 
[46], a 10-fold cross validation is conducted to accommodate 
for randomness as in other similar works. A set of base 
classifiers (ANN, SVM, DT, DISCR, KNN, NB etc.) are 
used to train on all generated data clusters. Mostly default 
parameters are used besides the ones mentioned in Table II, 
which are randomized to accommodate for further classifier 
diversity.  

TABLE II:  PARAMETERS USED IN EXPERIMENTS 
 

Algorithm / 
Classifier 

Parameter Values 

Neural network 

Hidden neuron  Random between 10-30 

Training 
function 

Levenberg-Marquardt 
backpropagation / 
Bayesian regularization 
backpropagation / 
Scaled conjugate gradient 
backpropagation / 
Resilient backpropagation 

Number of 
epochs 

Random between 500-
1000     

Hidden neuron Random between 5-10 

Error goal 1e-5 

Multi class support 
vector machine  

Kernel function Gaussian / Radial / Linear 

Iteration limit  
Random between 1000 - 
5000         

Naïve Bayes 
Distribution 
function  

Kernel 

K-Nearest neighbor 
Number of 
neighbors 

Random between 4-10 

Decision tree 
Minimum leaf 
size  

No of class labels    

Discriminant 
analysis 

Kernel function Polynomial 

K-means  
Number of 
iterations 

2400 

Particle swarm 
optimization 

Maximum 
iteration 

100 

Stall iteration 10 

Swarm size 100 

 
Particle Swarm Optimization (PSO) from the global 
optimization toolbox in MATLAB (function = 
“particleswarm”)is used as a block box optimization tool. In 
order to binarize the operation of classifier selection from the 
pool the value of 𝜃 is set to 0.5 as in other similar works [52]. 
The number of particles is set to 100, with a maximum stall 
iteration time set to 10 to accommodate for dead locks. The 
number of variables is set to the number of classifiers in the 
pool. The classifiers are represented as particles in the search 
space as a binary row vector with index value (positions) 
limited to 0 and 1. 1 means a classifier is selected in the 
search space and 0 means otherwise. The proposed 
methodology is uploaded on GitHub for reuse purposes [53]. 
For various classifier implementation the following 
functions from MATLAB were used: 

 
 fitcecoc = multi class Support Vector Machine 
 fitcnb    = Naïve Bayes 
 fitcdiscr= Discriminant Analysis 
 fitctree  = Decision Tree 
 train      = Neural Network  
 fitcknn   = K-Nearest Neighbor 

 
Instead of using a single value for the upper bounds of 
clustering 𝐾, a range of values are tested [2, 10]. The highest 
average classification accuracy over 10 folds for a given 
input value of 𝐾 for a given dataset is reported.  
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C. Results  

The highest average classification accuracy that can be 
achieved for a given value of 𝐾 for a given dataset with and 
without the incorporation of optimization is reported in Table 
III, along with standard deviation and the value of 𝐾. It can 
be noted that for each dataset a different value of the upper 
bounds of clustering 𝐾  achieved the highest classification 
accuracy. Moreover, in all cases the optimized ensemble 
classifier outperformed the non-optimized ensemble 
classifier further adding to the fact that not all classifiers in 
the pool are suitable to be included as a part of ensemble and 
thus proving that more is not necessarily better. Different 
values of 𝐾 adds to the fact that each dataset has different 

intrinsic spatial characteristics and therefore, when exploited 
properly can results in creating a diverse input space for 
training. Some datasets are sparse, and others are dense in 
nature which in turn results in the requirement of different 
values of 𝐾.  

Through the incorporation of optimization, not only the 
ensemble classifier which can achieve the highest 
classification accuracy is selected but also the ensemble with 
the lowest component size is selected. This certainly adds to 
the fact that “less is more” [54], and can be seen from figure 
1 that of all the trained classifiers in the pool on average 50% 
were selected to generate the final optimized ensemble 
classifier. 
 

 
TABLE III: HIGHEST AVERAGE CLASSIFICATION ACCURACY OF THE PROPOSED ENSEMBLE CLASSIFIER APPROACH WITH AND WITHOUT AND INCORPORATION OF 

OPTIMIZATION  
 

Dataset 
 Classification accuracy 

without optimization 
 Std. dev 

Classification accuracy 
with optimization 

 Std. dev  𝑲 

Adult 0.6175 0.099 0.8426 0.002 3 

Australian 0.8449 0.044 0.8652 0.042 10 

Balance 0.5439 0.056 0.8878 0.011 6 

Banknote 0.9920 0.011 0.9998 0.004 2 

Breast Cancer  0.9685 0.020 0.9742 0.017 6 

Bupa 0.6777 0.060 0.7184 0.079 9 

DNA 0.5931 0.053 0.8178 0.023 4 

E.coli 0.7529 0.066 0.8977 0.067 9 

Fertility 0.5200 0.270 0.8300 0.133 8 

Haberman 0.4731 0.132 0.7139 0.033 4 

Hayes Roth 0.7500 0.150 0.7625 0.149 7 

Heart 0.8481 0.079 0.8396 0.070 3 

Hepatitis 0.8375 0.060 0.8750 0.102 4 

Ionosphere 0.8832 0.043 0.8944 0.015 6 

Iris 0.9000 0.056 0.9483 0.063 6 

Letter Recognition 0.6475 0.013 0.8092 0.003 2 

Liver 0.6731 0.093 0.7185 0.099 9 

Page Blocks 0.0941 0.008 0.9564 0.002 3 

Pima Diabetic 0.6588 0.049 0.7525 0.042 8 

Segment 0.9329 0.003 0.9796 0.005 2 

Sonar 0.5914 0.128 0.8012 0.019 10 

Stat-Image 0.7355 0.021 0.8871 0.004 9 

Teaching 0.4763 0.117 0.5767 0.017 7 

Thyroid 0.1843 0.046 0.9988 0.002 10 

Transfusion 0.2606 0.077 0.7236 0.014 7 

Vehicle 0.6254 0.039 0.7776 0.008 2 

Vowel 0.5404 0.037 0.8837 0.008 6 

WDBC 0.9157 0.025 0.9671 0.004 8 

Wine 0.9438 0.053 0.9991 0.014 7 

Zoo 0.9700 0.067 0.9700 0.067 4 
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Figure 1: Effect on ensemble component size with the incorporation of 
optimization 

D. Comparative analysis 

The classification accuracy of the proposed ensemble 
classifier is compared with two existing state-of-the-art 
ensemble classifiers namely boosting, and random forest. 
For fair comparisons these ensembles were implemented in 
the same environment using the fitcensemble function for 
boosting in MATLAB with “adaboostM1” for binary 
classification problems and “adaboostM2” for multi class 
classification problems. As for random forest the function 
treebagger in MATLAB was used with 50 trees given as 
parameter. The average classification accuracies over 10-
folds are reported in the table and used for analysis.  

It can be noted from Table IV, that the proposed ensemble 
classifier outperformed both boosting, and random forest in 
17 out of 30 datasets. In 3 datasets boosting outperformed 
both random forest and the proposed approach and in 9 
datasets random forest outperformed both boosting and the 
proposed ensemble classifier. The highest classification 
accuracies are given in bold in Table IV.  
 

TABLE IV: COMPARATIVE ANALYSIS OF THE PROPOSED ENSEMBLE APPROACH WITH BOOSTING AND RANDOM FOREST. THE HIGHEST CLASSIFICATION 

ACCURACIES ARE GIVEN IN BOLD 
 

Dataset Proposed approach Boosting RaF 

Adult 0.8426±0.002 0.8644±0.001 0.8616±0.001 

Australian 0.8652±0.042 0.8565±0.007 0.8646±0.004 

Balance 0.8878±0.011 0.8799±0.008 0.8410±0.004 

Banknote 0.9998±0.004 0.9976±0.001 0.9926±0.001 

Breast Cancer  0.9742±0.017 0.9642±0.003 0.9669±0.002 

Bupa 0.7184±0.079 0.6917±0.026 0.7164±0.015 

DNA 0.8178±0.023 0.8040±0.001 0.8760±0.002 

E.coli 0.8977±0.067 0.8368±0.018 0.8572±0.011 

Fertility 0.8300±0.133 0.8320±0.022 0.8660±0.018 

Haberman 0.7139±0.033 0.6540±0.009 0.6774±0.014 

Hayes Roth 0.7625±0.149 0.8012±0.010 0.8087±0.008 

Heart 0.8396±0.070 0.7851±0.015 0.8266±0.009 

Hepatitis 0.8750±0.102 0.8375±0.000 0.8650±0.029 

Ionosphere 0.8944±0.015 0.9327±0.004 0.9322±0.002 

Iris 0.9483±0.063 0.3333±0.000 0.9473±0.009 

Letter Recognition 0.8092±0.003 0.6527±0.001 0.9635±0.001 

Liver 0.7185±0.099 0.6928±0.010 0.7181±0.016 

Page Blocks 0.9564±0.002 0.9699±0.001 0.9739±0.001 

Pima Diabetic 0.7525±0.042 0.7374±0.005 0.7516±0.005 

Segment 0.9796±0.005 0.9773±0.001 0.9691±0.001 

Sonar 0.8012±0.019 0.8676±0.019 0.8245±0.016 

Stat-Image 0.8871±0.004 0.8742±0.004 0.9157±0.001 

Teaching 0.5767±0.0175 0.6047±0.017 0.6582±0.022 

Thyroid 0.9988±0.002 0.9972±0.001 0.9961±0.001 

Transfusion 0.7236±0.014 0.7679±0.013 0.7174±0.006 

Vehicle 0.7776±0.008 0.7406±0.013 0.7486±0.008 

Vowel 0.8837±0.008 0.7339±0.007 0.9647±0.003 

WDBC 0.9671±0.004 0.9708±0.003 0.9613±0.003 

Wine 0.9991±0.014 0.5720±0.056 0.9791±0.002 

Zoo 0.9700±0.067 0.4054±0.000 0.9594±0.008 

N
um

b
er

 o
f 

cl
as

si
fi

er
s

Datasets

Ensemble component size

Ensemble size without optimization

Ensemble size withoptimization

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2020.3025173

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9 

 

TABLE V: COMPARATIVE ANALYSIS OF THE PROPOSED ENSEMBLE 

APPROACH WITH A WEIGHTED VOTING FRAMEWORK (WMV) ENSEMBLE 
 

Dataset Proposed approach 
WMV 
[48] 

Balance 0.887 0.829 

Breast Cancer  0.974 0.958 

Bupa 0.718 0.688 

DNA 0.818 0.932 

E.coli 0.898 0.822 

Heart 0.839 0.807 

Hepatitis 0.875 0.810 

Ionosphere 0.894 0.915 

Iris 0.948 0.933 

Letter Recognition 0.809 0.909 

Page Blocks 0.956 0.971 

Pima Diabetic 0.753 0.757 

Segment 0.980 0.961 

Sonar 0.801 0.759 

Stat-Image 0.887 0.895 

Vehicle 0.778 0.724 

Vowel 0.884 0.913 

Zoo 0.970 0.830 

 
 

 
TABLE VI: COMPARATIVE ANALYSIS OF THE PROPOSED ENSEMBLE 

APPROACH WITH A RANDOM FOREST BASED ENSEMBLE (MPROF-T) 

ENSEMBLE 

 

Dataset Proposed approach 
MPRoF-T 

[26] 

Adult 0.843 0.839 

Australian 0.865 0.864 

Balance 0.887 0.893 

Banknote 1.000 1.000 

Breast Cancer  0.974 0.963 

DNA 0.818 0.912 

E.coli 0.898 0.852 

Fertility 0.830 0.880 

Haberman 0.732 0.712 

Heart 0.840 0.831 

Hepatitis 0.875 0.847 

Ionosphere 0.894 0.933 

Iris 0.948 0.967 

Page Blocks 0.956 0.972 

Pima Diabetic 0.753 0.749 

Segment 0.980 0.956 

Sonar 0.801 0.835 

Teaching 0.577 0.547 

Vehicle 0.778 0.770 
Wine 0.999 0.979 

 

The classification accuracies of the proposed ensemble 
classifier approach is also compared with already published 
state-of-the-art ensemble classifiers presented in WMV [26], 
and MPRoF-T [48]. WMV is a weighted voting framework-
based ensemble classifier that combines suitable classifiers 
from the pool by assigning them weights. MPRoF-T is a 
rotation forest-based ensemble classifier that uses multi 
proximal rotation forest with Tikhonov regularization to 
generate an ensemble classifier.  

The classification accuracies are taken directly from their 
respective papers and the results are given in Table V, and 
Table VI, with the highest classification accuracies given in 
bold. It can be noted from Table V that the proposed approach 
outperformed WMV in 11 out of 18 common datasets, and 
from Table VI it can be noted that the proposed approach 
outperformed in 12 out of 20 common datasets against 
MPRoF-T. 

 

E. Significance test 

To test the significance of the results a series of non-
parametric signed rank tests with Holme Bonferroni 
correction [49]  were conducted with alpha significance value 
of 0.05. The p values are listed in Table VII below. 

 
TABLE VII: P-VALUES OF WILCOXON SIGNED RANK TEST WITH HOLM 

BONFERRONI CORRECTION 

Classifiers p-values 

Random Forest 0.333 

AdaBoost 0.017 

WMV 0.080 

MPRoF-T 0.490 

 
 

It can be noted from Table VII that the proposed approach 
performed significantly better than AdaBoost with 
significance performance gains and the null hypothesis can 
be rejected at an alpha significance of 0.01. In comparison to 
WMV the null hypothesis can be rejected at a significance of 
0.08, 0.33 in comparison to Random Forest, and 0.49 in 
comparison to MPRoF-T.  

V. CONCLUSION 

In this paper we proposed an ensemble framework that 
utilizes clustering and an evolutionary algorithm. The 
proposed ensemble classifier mitigates the problem of class 
imbalances by partitioning input data into its constituent 
classes and then by clustering the partitions into various class 
pure data clusters. The generated data clusters are then 
balanced by adding samples from all remaining classes that 
are closest to the centroid. A set of diverse base classifiers is 
trained on all generated data clusters and a base classifier pool 
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is generated. The generated pool of base classifier is then 
optimized to generate the final ensemble that can not only 
achieve the highest classification accuracy but also has a 
lower component size.  

The proposed technique has been tested on a variety of 
benchmark classification datasets from the UCI machine 
learning repository. The highest classification accuracies that 
can be achieved with a given value of 𝐾 were reported. This 
proved to the fact that a single static input value of 𝐾  for 
different datasets is not ideal to generate an ensemble 
classifier and a dynamic way of finding the optimal value 
would be a better approach. The results of the proposed 
ensemble were also compared with existing state-of-the-art 
ensemble classifiers and significance testing is conducted to 
further validate the efficacy.  

Although the results from the proposed technique can 
improve the accuracy on selected benchmark datasets, it may 
not perform well in cases where the training and test patterns 
follow a denser distribution. We will further experiment and 
analyze the proposed technique for the improvement of such 
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