
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, (NOVEMBER 2020) 1

Verifying the Correctness of Analytic Query
Results

Masoud Nosrati and Ying Cai

Abstract— Data outsourcing is a cost-effective solution for data owners to tackle issues such as large volumes of data, huge
number of users, and intensive computation needed for data analysis. They can simply upload their databases to a cloud and
let it perform all management works, including query processing. One problem with this service model is how query issuers can
verify the query results they receive are indeed correct. This concern is legitimate because, as a third party, clouds may not be
fully trustworthy, and as a large data center, clouds are ideal targets for hackers. There has been significant work on query
result verification, but most consider only simple queries where query results can be attained by checking the raw data against
the query conditions directly. In this paper, we consider the problem of enabling users to verify the correctness of the results of
analytic queries. Unlike simple queries, analytic queries involve ranking functions to score a database, which makes it difficult to
build data structures for verification purposes. We propose two approaches, namely one-signature and multi-signature, and
show that they work well on three representative types of analytic queries, including top-k, range, and KNN queries, through
both analysis and experiments.

Index Terms— analytic queries, query result verification, signature mesh, I-tree

——————————  ——————————

1 INTRODUCTION

NALYTIC queries involve utility functions in data re-
trieval. A top-k query, for example, applies a function

to compute a score for each record in a database and re-
turns those whose scores are among the 𝑘 highest [1]. An-
other example is range query, i.e., finding the records
whose scores under a utility function are within a specific
range. Such queries are essential to applications such as
finding patients with a high risk of breast cancer [2], dia-
betes and/or Alzheimer [3], [4], customers with minimal fi-
nancial risk [5], and potential money laundering crimes [6],
where functions are used to score a database. In addition
to the ones mentioned above, various types of analytic que-
ries have been developed so far, including reverse top-k [7],
scalar product [8], maximum rank [9], and global immutable re-
gion [10], just to name a few. Despite their differences, an-
alytic queries are common in involving one or more utility
functions in query processing.

In this paper, we consider the problem of verifying the
correctness of analytic query results. Specifically, we con-
sider a data outsourcing model that consists of three par-
ties: data owner, cloud service provider, and data users.
The data owner uploads its database to a cloud server, and
the data users send their queries to the server. Upon receiv-
ing a query, the server processes the query and returns the
result to the query issuer. While delegating the

responsibility of data management to the server, the data
owner wants to provide a mechanism for data users to ver-
ify whether or not the query results they receive are indeed
correct. Here a query result is said to be correct if it is sound
and complete. The former means every record included in
the query result is original in the database and satisfies the
query condition, whereas the latter means all records in the
original database that satisfy the query condition are in-
cluded in the query result. The concern that the server may
return incorrect query results is legitimate. There may be
inside attacks, where the server is intentionally configured
to return incomplete query results for reasons such as sav-
ing costs. There may also be external attacks. Large data
centers like clouds are ideal targets for hackers. Moreover,
the networks which connect the server and data users are
also subject to attacks.

The problem of query result verification was first stud-
ied by Devanbu et al. [11] in the context of simple range
query, where users retrieve data whose value is within a
specific range. In their approach, a data owner sorts the
data items to be outsourced, applies a one-way hash func-
tion on the sorted values, and then builds a Merkle Hash tree
(MH-tree) [12] on the hash results, where the root of the
tree is signed with the data owner’s private key. The data
items and the MH-tree are then uploaded to the cloud
server. When processing a range query, the server returns
not only the query result but also a verification object (VO),
a piece of the MH-tree containing the signed root that can
serve as the proof that the data items in the query result are
indeed sound and complete. An alternative approach was
later proposed by Pang et al. [13], which builds a signature
chain on the one-way hash values of the sorted data items.
The two verification data structures, namely MH-tree and
signature chain, have since been extended to support other
types of queries such as multi-dimensional range query
and spatial queries [14], [15], [16], [17], [18], [19].

A

————————————————
 Masoud Nosrati and Ying Cai are with the Department of Computer Sci-

ence, Iowa State University, Ames, IA 50011.
E-mail: {nosrati, yingcai} @iastate.edu

Citation:
M. Nosrati and Y. Cai, "Verifying the Correctness of Analytic Query
Results," in IEEE Transactions on Knowledge and Data Engineering,
doi: 10.1109/TKDE.2020.3037313

https://ieeexplore.ieee.org/document/9257007

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Most queries considered in existing research are simple
queries in the sense that they can be processed by checking
the raw data directly against a query condition. Given a
range query, for example, one can just check each data item
and return those that are in the specified range. Analytic
queries, however, are complex as they involve utility func-
tion. A top-k query, for example, returns the 𝑘 data items
with the highest scores under a given utility function. The
utility function, which is supplied by the query issuer, is
not known when the raw data is uploaded to the server.
Since the data owner cannot precompute the score for each
data item, it becomes a great challenge to build verification
data structures. To our knowledge, [20] is the only work
that considers the queries with utility functions. Their pro-
posed scheme converts each data item in the database into
a continuous function and partitions the function domain
into a number of subdomains. Since in each of these sub-
domains the functions can be sorted based on their output,
it becomes possible to build a signature mesh on the sorted
lists for verification. This work, however, has some perfor-
mance issues. To process a query, the server performs a lin-
ear search on the subdomains, the number of which can be
very large. For a database of 𝑛 records ranked by 𝑑-variable
linear functions, the number of subdomains can be up to
𝑂(𝑛ଶௗ). This number is even higher when more complex
ranking functions are used. While the efficiency in con-
structing verification objects on the server side is of great
concern, the constructed verification objects may also con-
sist of a large number of signatures and incur high compu-
tation cost in verification. This issue is a concern to data
users, especially when mobile devices are used. In this pa-
per, we address these problems and make the following
contributions:
 We propose a generic solution for verifying the cor-

rectness of analytic query results. While our discus-
sion limits itself to three well-known query types, in-
cluding top-k, range, and KNN queries, for the purpose
of comparing with existing signature mesh head to
head, the proposed technique can be used to support
other types of queries.

 Our technique is more practical. We extend and inte-
grate the concepts of Intersection-tree (I-tree) and
Merkle Hash-tree (MH-tree) to index the database for
efficient query processing and construction of verifica-
tion objects. The proposed technique also minimizes
the cost for data users to perform query result verifi-
cation. Detailed algorithms are given to illustrate how
to build this verification data structure, construct ver-
ification objects, and verify the query results.

 The performance of the proposed techniques is stud-
ied through both analysis and experiments. We prove
that the proposed technique can indeed allow users to
perform query result verification. As for the costs such
as constructing verification objects and verifying
query results, our extensive experiments indicate that
our approach outperforms the existing approach to a
large extent.

The rest of this paper is organized as follows. In section
2, we give the background of this research, including sys-
tem model, adversary model and security goal, and related

work in query result verification and I-tree. Our proposed
technique is presented in Section 3, and the performance
studied in Section 4. We conclude this paper in Section 5.

2 BACKGROUND
2.1 System Model
Consider a data owner who outsources a database to a
cloud server and allows data users to perform analytic que-
ries over the database. For this purpose, in addition to the
database, the owner also uploads a template of utility func-
tions to be used in queries. With the template, the server
interprets each record as a math function.

To illustrate, consider the table showed in Fig. 1, where
each tuple records an applicant’s ID, GPA, the number of
awards, and the number of papers. The template of utility
functions for this table is 𝑆𝑐𝑜𝑟𝑒(𝑤ଵ, 𝑤ଶ, 𝑤ଷ) = 𝐺𝑃𝐴 × 𝑤ଵ +
𝐴𝑤𝑎𝑟𝑑 × 𝑤ଶ + 𝑃𝑎𝑝𝑒𝑟 × 𝑤ଷ. Accordingly, the server inter-
prets each tuple 𝑟௜ as a math function 𝑆𝑐𝑜𝑟𝑒௜(𝑤ଵ, 𝑤ଶ, 𝑤ଷ) =
𝐺𝑃𝐴௜ × 𝑤ଵ + 𝐴𝑤𝑎𝑟𝑑௜ × 𝑤ଶ + 𝑃𝑎𝑝𝑒𝑟௜ × 𝑤ଷ, where 𝑤ଵ, 𝑤ଶ,
and 𝑤ଷ are variables, and 𝐺𝑃𝐴௜, 𝐴𝑤𝑎𝑟𝑑௜, and 𝑃𝑎𝑝𝑒𝑟௜ are cor-
responding attribute values of the record 𝑟௜.

Since this paper concerns only analytic queries, we will
simply say the outsourced database is a set of math func-
tions {𝑓ଵ, 𝑓ଶ, … , 𝑓௡}, where 𝑓௜ is the function corresponding
to record 𝑟௜ in the database under the given utility function
template. When causing no ambiguity, we will also use the
terms record and function interchangeably. The functions
have the same set of variables 𝑋 = (𝑥ଵ, 𝑥ଶ, … , 𝑥ௗ). For exam-
ple, the functions in the applicant table have three varia-
bles, i.e., 𝑋 = (𝑤ଵ, 𝑤ଶ, 𝑤ଷ).

Data users send their queries to the server. The server
processes the queries and returns the results to users. In
this paper, we consider three types of analytic queries,
which are representative and popularly used:
 A top-k query 𝑞 = (𝑋, 𝑘) retrieves all records 𝑟௜ whose

function output 𝑓௜(𝑋) is among the top k.
 A range Query 𝑞 = (𝑋, 𝑙, 𝑢) retrieves all records 𝑟௜ such

that 𝑙 ≤ 𝑓௜(𝑋) ≤ 𝑢. We will refer to 𝑙 and 𝑢 as the
query’s lower and upper boundaries, respectively.

 A KNN query 𝑞 = (𝑋, 𝑘, 𝑦) retrieves all records 𝑟௜ whose
function output 𝑓௜(𝑋) is among the k neighbors that
nearest to the given value 𝑦.

Fig. 1. Each record is interpreted as a math function.

NOSRATI AND CAI: VERIFYING THE CORRECTNESS OF ANALYTIC QUERY RESULTS 3

2.2 Adversary Model and Security Goal
In response to a query, the server processes and returns the
result to the query issuer. The adversary model is as fol-
lows. The server may be configured to send out a wrong
query result, intentionally or unintentionally, by an insider
or a malicious intruder. Or the server sends out the correct
result, but then it is modified during the network transmis-
sion. In short, we simply assume the query result received
by a data user may be incorrect for whatever causes. Our
security goal is to provide a mechanism for users to verify
that the query results they receive are indeed correct. A
query result 𝑅(𝑞) is said to be correct if it satisfies two re-
quirements:
 Soundness: Every data item in 𝑅(𝑞) appears in the

original database and satisfies the query condition.
 Completeness: Every data item in the original database

that satisfies the query condition is included in 𝑅(𝑞).

2.3 Related work

2.3.1 Query Result Verification

There has been significant work on developing hardware
(e.g., Trusted Platform Module (TPM) [21], Hardware Se-
curity Module (HSM) [22], [23]) to support secure compu-
tation. Our research is interested in software-based solu-
tions, which do not require special chips. Existing ap-
proaches, such as MH-tree [11] and Signature Chain [13],
are software-based, but as mentioned, they were devel-
oped for simple queries and cannot be applied directly for
verifying the results of analytic queries. The utility

functions used in analytic queries are not known when the
raw data is uploaded to the server. Since the data owner
cannot precompute the score for each data item, verifying
query results becomes significantly challenging.

The above problem was first studied in [20], where a
signature mesh approach was developed. The solution is
based on the theorem of function sortability: Given a set of
functions, their domain 𝐷 can be partitioned into a set of
disjointed subdomains 𝐷 = 𝑆ଵ ∪ 𝑆ଶ ∪ … ∪ 𝑆௡ such that for
each subdomain 𝑠௜(1 ≤ 𝑖 ≤ 𝑛), the functions have the
same order when sorted according to their scores for all
input 𝑋 in 𝑠௜ .

To illustrate, consider four univariate linear functions,
𝑓ଵ(𝑥), 𝑓ଶ(𝑥), 𝑓ଷ(𝑥), and 𝑓ସ(𝑥), shown in Fig. 2a. The four
lines intersect on six points, including 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, and
𝑥଺, which partition their domain 𝑆 into seven subdomains,
(−∞, 𝑥ଵ), [𝑥ଵ, 𝑥ଶ), [𝑥ଶ, 𝑥ଷ), [𝑥ଷ, 𝑥ସ), [𝑥ସ, 𝑥ହ), [𝑥ହ, 𝑥଺), and
[𝑥଺, +∞). It is clear that in each of these subdomains, the
functions can be sorted based on their output. For example,
for all 𝑥 in [𝑥ଵ, 𝑥ଶ), we have 𝑓ଷ(𝑥) ≥ 𝑓ଶ(𝑥) ≥ 𝑓ଵ(𝑥) ≥ 𝑓ସ(𝑥).
That is, the order of the four functions is the same for all 𝑥
in the range [𝑥ଵ, 𝑥ଶ).

In general, a set of n linear functions with 𝑑 variables
can have up to 𝑛 × (𝑛 − 1) intersections, which together
partition their domain into 𝑂(𝑛ଶௗ) subdomains, each being
a hyperplane in a d-dimension domain space. The intersec-
tions of nonlinear functions are more complicated, but re-
gardless of their complexity, it remains true that the inter-
sections of a set of functions partition their domain into a
number of subdomains. In each of these subdomains, the
functions can be sorted according to their output.

(a) Intersections of 4 linear functions

(b) Sorted functions lists for each subdomain

(c) Signature mesh

Fig. 2. An example of signature mesh built for four functions

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

In light of the theorem of function sortability, the idea
of signature mesh becomes straightforward. Given a set of
functions, the data owner performs the following steps: 1)
Compute the intersections of the functions and the subdo-
mains created by these intersections; 2) Sort the functions
for each subdomain; 3) Add two special tokens (𝑚𝑖𝑛 and
𝑚𝑎𝑥) to each function list to indicate that they are the first
and the last records (illustrated in Fig. 2b); 4) Create a sig-
nature chain for each function list. Let 𝑓ଵ(∙) ≤ 𝑓ଶ(∙) ≤…≤
𝑓௡(∙) be the sorted list for a subdomain 𝑠௜ . For each pair of
consecutive functions 𝑓௝(∙) and 𝑓௝ାଵ(∙) in the list, the data
owner computes a digest 𝐻൫𝐻൫𝑟௝൯|𝐻൫𝑟௝ାଵ൯|𝐵௜൯, where 𝐻(∙)
is a one-way hash function, 𝑟௝ and 𝑟௝ାଵ are the records cor-
responding to 𝑓௝ and 𝑓௝ାଵ, respectively, 𝐵௜ is the set of inter-
sections that defines subdomain 𝑠௜ . The digest is signed
with the data owner’s private key, which produces signa-
ture 𝑆𝑖𝑔ழௌ೔வ൫𝑟௝|𝑟௝ାଵ൯ = 𝑆𝑖𝑔 ቀ𝐻൫𝐻൫𝑟௝൯|𝐻൫𝑟௝ାଵ൯|𝐵௜൯ቁ.

Note that two functions that are consecutive in one sub-
domain may remain consecutive in a number of consecu-
tive subdomains. In this case, only one signature is needed
for the pair of functions across all these subdomains. This
reduces the number of signatures and turns the whole set
of signatures into a signature mesh, an example of which
is showed in Fig. 2c.

Given two records 𝑟௝ and 𝑟௝ାଵ, subdomain 𝑠௜ , and
𝑆𝑖𝑔ழ௦೔வ൫𝑟௝|𝑟௝ାଵ൯, a user can recompute the digest
𝐻൫𝐻൫𝑟௝൯|𝐻൫𝑟௝ାଵ൯|𝐵௜൯ and decrypt the 𝑆𝑖𝑔ழ௦೔வ൫𝑟௝|𝑟௝ାଵ൯ with the
data owner’s public key. If the two pieces of data match,
the user can be convinced that: 1) the two records are orig-
inal in the database, and 2) they are consecutive in the func-
tion list sorted for the subdomain 𝑠௜ . As such, the signature
mesh can be used for query result verification. Consider a
range query 𝑞 = (𝑋, 𝑙, 𝑢). The server first finds the subdo-
main that contains the user input 𝑋 and the corresponding
sorted list of the function. On the list, the server finds the
sub-list of the functions whose output under 𝑋 is in be-
tween 𝑙 and 𝑢. Let 𝑓௔(∙) ≤ 𝑓௔ାଵ(∙) ≤…≤ 𝑓௕ିଵ(∙) ≤ 𝑓௕(∙) be
the sublist. Then the server sends the query result 𝑅(𝑞) =
{𝑟௔, 𝑟௔ାଵ, … , 𝑟௕ିଵ, 𝑟௕}, where 𝑟௜ is the record corresponding to
𝑓௜ and the corresponding verification object, which in-
cludes 1) 𝑟௔ିଵ and 𝑟௕ାଵ, two additional records that are im-
mediate left and right to the sublist, 2) the signatures for
every pair of the consecutive functions in the list, and 3)
the subdomain that contains 𝑋.

2.3.2 Intersection Tree (I-tree)

The intersection of two functions 𝑓௜(𝑋) and 𝑓௝(𝑋) is a hy-
perspace {𝑋│𝑓௜(𝑋) − 𝑓௝(𝑋) = 0}, which partitions their do-
main into two subdomains, say above and below. As such,
the intersections of a set of functions partition their domain
into a set of subdomains. The I-tree was designed to com-
pute and index these subdomains [14].

An internal node in an I-tree, called an intersection node,
has a form of ൫𝑓௜ , 𝑓௝ , 𝑎, 𝑏൯. It records the fact that two func-
tions 𝑓௜ and 𝑓௝ intersect in some domain X. That is, there
exists at least one 𝑋 in X such that 𝑓௜(𝑋) − 𝑓௝(𝑋) = 0. There
is no need to know the boundary of X, except for the root
node, whose X is the entire domain specified by the data
owner. The intersection of 𝑓௜ and 𝑓௝ , denoted 𝐼௜,௝, partitions
X into two subdomains above and below, which are

represented by two pointers a and b, respectively. The sub-
domain above consists of all inputs 𝑋 such that 𝑓௜(𝑋) −
 𝑓௝(𝑋) ≥ 0, whereas below, all inputs 𝑋 such that 𝑓௜(𝑋) −
 𝑓௝ < 0. If 𝑎𝑏𝑜𝑣𝑒 is further partitioned by another intersec-
tion 𝐼௣,௤, then a links to the intersection node representing
𝐼௣,௤. Otherwise, 𝑎𝑏𝑜𝑣𝑒 is a subdomain where the functions
can be strictly sorted according to their output. In this case,
𝑎 links to a subdomain node. A subdomain node is a tuple of
(𝑠௜ , 𝐿௜), where 𝑠௜ refers to a subdomain and 𝐿௜ the list of
functions sorted for 𝑠௜ . The same rule applies to the subdo-
main 𝑏𝑒𝑙𝑜𝑤: If it is further partitioned, 𝑏 links to another
intersection node; otherwise, it links to a subdomain node.
All subdomain nodes are leaf nodes.

Fig. 3 shows an I-tree built for the four functions illus-
trated in Fig. 2a. The root node records 𝐼ଵ,ଶ, the intersection
of 𝑓ଵ and 𝑓ଶ. The two subdomains created by this intersec-
tion are represented by two subtrees linked by 𝑎 and 𝑏, re-
spectively. The subdomain that is above 𝐼ଵ,ଶ is then parti-
tioned by another intersection 𝐼ଵ,ଷ, while the subdomain
that is below 𝐼ଵ,ଶ is not partitioned further. This infor-
mation is recorded by two nodes at layer 2, i.e., node with
𝐼ଵ,ଷ and node with 𝑠ଵ. The subdomain represented by 𝐼ଵ,ଷ is
further partitioned by the intersection 𝐼ଶ,ଷ into two subdo-
mains, represented by two nodes linked by 𝑎 and 𝑏, respec-
tively.

Once the I-tree is built, we can then sort the functions
and have a pointer from each subdomain node linking to
its corresponding sorted function list. For simplicity, Fig. 3
shows only one subdomain node (i.e., S4) that links its

Fig. 3. An example of I-tree (for the functions in Fig. 2a)

NOSRATI AND CAI: VERIFYING THE CORRECTNESS OF ANALYTIC QUERY RESULTS 5

sorted function list.
I-tree supports efficient search of subdomains. Given a

function input 𝑋, the search starts from the tree root. It first
checks which half-space 𝑋 belongs to. If 𝑋 belongs to
𝑎𝑏𝑜𝑣𝑒, then follow the link 𝑎; otherwise, follow 𝑏. This pro-
cess is repeated until a subdomain node is reached, which
has a link to a sorted function list. This feature allows the
I-tree to support highly efficient processing of analytic que-
ries, which will be explained in detail later.

3 PROPOSED SOLUTIONS

To our knowledge, the signature mesh approach is the only
approach for verifying the results of analytic queries. This
scheme, however, incurs significant run-time overheads to
both server and data users. Consider a top-k query 𝑞 =
(𝑋, 𝑘), which retrieves all records whose scores under in-
put 𝑋 is among the top k. To construct a verification object,
the server needs to perform a linear search to find the sub-
domain that contains 𝑋. As mentioned, for a database of 𝑛
records ranked by 𝑑-variable linear functions, the number
of subdomains is 𝑂(𝑛ଶௗ). This number is even higher when
more complex ranking functions are used. As such, the cost
of constructing a verification object for a top-k query (and
other queries such as range and KNN) can be prohibitively
high. Moreover, when a verification object consists of a
large number of signatures, the cost of verification is also
high, a great concern to battery-powered mobile devices.
To address these problems, we propose a new verification
data structure called Intersection and Function Merkle Hash
tree (IFMH-tree), which is an extension and combination of
the concepts I-tree and MH-tree. It has two components.
The first one, referred to as Intersection Merkle Hash tree
(IMH-tree), supports efficient search and verification of the
subdomain that contains a given function input. The sec-
ond component, called Function Merkle Hash-tree (FMH-
tree), supports efficient search and verification of the func-
tions on a sorted function list. Depending on where to sign,
the proposed technique has two versions, one-signature and
multi-signature. In the following subsections, we discuss in
detail how to build the IFMH-tree, construct verification
objects, and verify the correctness of the query results.

3.1 Building IFMH-tree
To start with, we illustrate an IFMH-tree in Fig. 4 that is
corresponding to the I-tree in Fig. 3. Note that for every
node in the I-tree, we add a new attribute to store a hash
value. And for every sorted function list, we build an FMH-
tree and add a pointer in the corresponding subdomain
node to link the tree. The steps of creating an IFMH-tree
are as follows.

Step 1: Building an IMH-tree without hash values
Let {𝑓ଵ, 𝑓ଶ, … , 𝑓௡} be the 𝑛 functions corresponding to the 𝑛
record in the database. There is a total of 𝑛 ∗ (𝑛 − 1) pairs
of functions (𝑓௜ , 𝑓௝), where 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑖 ≠ 𝑗. We create
an empty I-tree root node with the domain given to the
function variables. Then for every pair of the functions
(𝑓௜ , 𝑓௝), insert the intersection 𝐼௜,௝ to the tree by creating an
empty queue 𝑄, adding the tree root to 𝑄, and repeating

the following operations until 𝑄 is empty:
 Dequeue a node from 𝑄. Let 𝑁 be this node, and X be

the domain represented by 𝑁.
 Check if 𝐼௜,௝ partitions X. If this is true, handle two sce-

narios accordingly:
 𝑁 is a subdomain node: In this case, record 𝐼௜,௝ in

𝑁, create two new subdomain nodes, and link
them with 𝑁’s two pointers, 𝑁. 𝑎 and 𝑁. 𝑏, respec-
tively.

 N is an intersection node: In this case, enqueue 𝑁′s
two child nodes, which are linked by 𝑁’s two
pointers, 𝑁. 𝑎 and 𝑁. 𝑏, respectively.

After inserting all function pairs, then for each subdo-
main node 𝑁, sort the functions for the subdomain repre-
sented by 𝑁 and have 𝑁’s pointer link to the sorted func-
tion list.

Note in the above algorithm, whenever a new node is
allocated, its hash value is set to be 0, as a default value that
indicates the hash has not been computed yet; i.e., it is in-
valid.

Fig. 4. An IFMH-tree Example

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Step 2: Building an FMH-tree for each sorted function list
In an FMH-tree, each node 𝑁 has four attributes, including
ℎ, 𝑝, 𝑙, and 𝑟, where ℎ stores a hash value, 𝑝, 𝑙, and 𝑟 are
three pointers. Let 𝑓ଵ(∙) ≤ 𝑓ଶ(∙) ≤…≤ 𝑓௡(∙) be a sorted func-
tion list. We add two special token functions, 𝑓௠௜௡ and 𝑓௠௔௫,
to indicate the beginning and the end of this list, i.e.,
𝑓௠௜௡(∙) ≤ 𝑓ଵ(∙) ≤ 𝑓ଶ(∙) ≤…≤ 𝑓௡(∙) ≤ 𝑓௠௔௫(∙). For each func-
tion 𝑓௜, we compute a hash value 𝐻(𝑓௜), where 𝐻(∙) is a one-
way hash function, and create a tree node 𝑁௜ , where 𝑁௜ . ℎ =
𝐻(𝑓௜), and three pointers are set to be null. We then build
the tree layer by layer, starting from the bottom layer. Re-
call the nodes at the bottom layer are 𝑁ଵ, 𝑁ଶ, …, 𝑁௡. We
start from left to right and create a parent node for every
two nodes on the list. That is, for 𝑁௜ and 𝑁௜ାଵ, we create a
new node 𝑁௜,௜ାଵ, and let 𝑁௜,௜ାଵ. ℎ = 𝐻(𝑁௜ . ℎ | 𝑁௜ାଵ. ℎ), 𝑁௜,௜ାଵ. 𝑙
= 𝑁௜ , and 𝑁௜,௜ାଵ. 𝑟 = 𝑁௜ାଵ. For example, for both 𝑁௠௜ and 𝑁ଵ
in Fig. 4, we set their 𝑝 pointers to their parent, i.e.,
𝑁௠௜௡ . 𝑝 = 𝑁௠௜௡,ଵ and 𝑁ଵ. 𝑝 = 𝑁௠௜௡,ଵ.

We then move to 𝑁ଷ and 𝑁ସ, and so on so forth for all
nodes in the list. If the number of nodes is odd, then the
last node will be linked to the tree in the next round. This
process is repeated until the new layer contains only one
node. This node is the root of the FMH-tree. An FMH-tree
for the function list linked by subdomain 𝑆ସ is showed in
Fig. 4. Note that in the original MH-tree, the hash value
stored at the root is signed with the data owner’s private
key. For now, we leave it unsigned.

Step 3: Propagating the hash values to IMH-tree
Recall that every subdomain node in I-tree has a pointer
linking to its corresponding sorted function list. We add
another pointer to each subdomain node to link it to the
FMH-tree that was constructed for the function list. With-
out causing ambiguity, we will say every subdomain node
has a hash value, which is equal to the hash value stored at
the root of the FMH-tree linked by the subdomain node.

Also recall that every intersection node in an I-tree has
two pointers, 𝑎 and 𝑏, linking two child nodes. We add a
new attribute ℎ to store a hash value, which is initialized as
0 (an invalid hash value). Let 𝑁 be an intersection node. We
compute its hash value 𝑁. ℎ = 𝐻(𝑁. 𝑎. ℎ | 𝑁. 𝑏. ℎ). That is,
the hash value for 𝑁 is the one-way hash value of the con-
catenation of the hash values stored in its child nodes.

To compute the hash values for all intersection nodes,
we traverse the entire tree. First, create an empty stack 𝑆
and push the root of the tree to 𝑆. Then repeat the following
operations until 𝑆 becomes empty:
 Peek a node 𝑁 from 𝑆;
 If the hash values in both nodes linked by 𝑁. 𝑎 and 𝑁. 𝑏

are valid, then
 Set 𝑁. ℎ = 𝐻(𝑁. 𝑎. ℎ | 𝑁. 𝑏. ℎ),
 Pop the stack to remove 𝑁 from 𝑆.

 Otherwise,
 If the hash value in the node linked by 𝑁. 𝑎 is in-

valid, push the node to the stack.
 If the hash value in the node linked by 𝑁. 𝑏 is in-

valid, push the node to the stack.

Step 4: Signing the tree
As the last step of creating an IFMH-tree, we propose two
approaches. The first approach is to sign only the root
node, i.e., encrypting its hash value with the data owner’s
private key. We refer to this scheme as one-signature, allud-
ing to the fact that the whole tree has only one signature.

The second approach, called multi-signature, is to create
a signature for every subdomain node. Recall every subdo-
main node represented a subdomain that is determined by
a set of inequality functions. For example, the set of ine-
quality functions that determines the subdomain 𝑆ସ in Fig.
3 consists of 𝑓ଵ(𝑋) − 𝑓ଶ(𝑋) < 0, 𝑓ଵ(𝑋) − 𝑓ଷ(𝑋) < 0, 𝑓ଶ(𝑋) −
𝑓ଷ(𝑋) ≥ 0, 𝑓ଵ(𝑋) − 𝑓ସ(𝑋) < 0, 𝑓ଶ(𝑋) − 𝑓ସ(𝑋) ≥ 0, and
𝑓ଷ(𝑋) − 𝑓ସ(𝑋) < 0. We do a one-way hash on these inequal-
ity functions, concatenate the result with the hash value
stored the subdomain node, then do another one-way hash
on the result. The final result is then signed with the data
owner’s private key.

3.2 Constructing Verification Objects
We now proceed to discuss how to process and construct
verification objects for top-k, range, and KNN queries.
While our discussion is limited to these three types, the
IMH-tree can be used for other types of analytic queries.
To process a query with function input 𝑋, the server first
searches the IMH-tree to find the subdomain that contains
𝑋 and then searches the corresponding sorted function list
for the functions that satisfy the query condition. Accord-
ingly, the verification object built for a query has two ob-
jects, one for subdomain verification and the other for func-
tion verification.

Given the input 𝑋, the server searches the IMH-tree for
the subdomain that contains 𝑋 and constructs the subdo-
main verification object at the same time. The algorithm is
as follows.

 Let 𝑁 the tree root and 𝑄 be an empty queue.
 As long as 𝑁 is not a subdomain node, repeat the

following process:
 Enqueue 𝑁 to 𝑄.
 Let 𝐼௣,௤ be the intersection stored in 𝑁.
 If 𝑓௣(𝑋) − 𝑓௤(𝑋) ≤ 0,

o Enqueue the node linked by 𝑁. 𝑏 to 𝑄;
o Set 𝑁 = 𝑁. 𝑎;

 Otherwise,
o Enqueue the node linked by 𝑁. 𝑎 to 𝑄;
o Set 𝑁 = 𝑁. 𝑏;

Once 𝑁 becomes a subdomain node, 𝑄 will have all
nodes in the search path and also their sibling nodes. Sup-
pose 𝑆ସ in Fig. 4 is the subdomain that contains 𝑋. Then at
the end of the search, 𝑄 contains the nodes on the hash path
𝑆ସ along with their siblings. With the hash values stored in
these nodes, one can recompute the hash value stored in
the root node, and then use the data owner’s public key to
verify if these nodes are the part of the original tree where
the search goes through. As such, in the case of the one-
signature approach, the nodes in 𝑄 form the subdomain
verification object. In the case of the multi-signature ap-
proach, then the subdomain verification object is simply
the set of inequality functions that determines the subdo-
main and the signature stored at the subdomain node.

NOSRATI AND CAI: VERIFYING THE CORRECTNESS OF ANALYTIC QUERY RESULTS 7

Regardless the query being a KNN, range, or top-k
query, the query result is a consecutive sub-list from the
sorted function list linked by the subdomain node. With-
out loss of generality, let this sub-list be 𝑓௔(𝑋) ≤
𝑓௔ାଵ(𝑋) ≤…≤ 𝑓௕ିଵ(𝑋) ≤ 𝑓௕(𝑋). The server locates 𝑓௔ିଵ and
𝑓௕ାଵ, the two records that are immediate left and right to
the sub-list, and constructs 𝑉𝑂(𝑞) as follows. Let 𝑁 be the
FMH node corresponding to 𝑓௔ିଵ. It firstly adds 𝑁 and its
sibling node to 𝑉𝑂(𝑞), then set 𝑁 = 𝑁. 𝑝 (i.e., move to 𝑁’s
parent node). This process is repeated until 𝑁 becomes the
root of the FMH node. In the end, all nodes along the hash
path of the node corresponding to 𝑓௠௜௡ and their sibling
nodes are added to 𝑉𝑂(𝑞). The same process is used to add
all nodes along the hash path of the node corresponding to
𝑓௕ାଵ and their corresponding sibling nodes to 𝑉𝑂(𝑞). The
data in 𝑅(𝑞) and 𝑉𝑂(𝑞) are then transmitted to the user.

3.3 Verifying Query Results
A user submitted a query 𝑞 expects to receive a query re-
sult 𝑅(𝑞) and a verification object 𝑉𝑂(𝑞), which includes
an intersection verification object 𝐼𝑉(𝑞), a function verifi-
cation object 𝐹𝑉(𝑞), and a digital signature 𝐷 that is created
with the data owner’s private key. If one-signature ap-
proach is used, this signature is the signed IFMH-tree root.
Otherwise, it is the signed root of the FMH-tree linked by
the subdomain that contains the query’s function input 𝑋
is included.

The verification process is similar for both one-signa-
ture and multi-signature approaches. For the sake of brev-
ity, we discuss only one-signature approach. The verifica-
tion process consists of two steps. The first step is to verify
the authenticity of the tree parts:

 Use the functions included 𝑅(𝑞) and nodes in-
cluded 𝐹𝑉(𝑞) to reconstruct the part of the FMH-
tree.

 Use the nodes included in 𝐼𝑉(𝑞) to reconstruct the
part of the IMH-tree

 Recompute the hash value for the root node and en-
crypted it with the data owner’s public key. Let this
value be 𝑀.

 Decrypt the included signature with the data
owner’s public key. Let this value be 𝑀′.

 If 𝑀 and 𝑀′ are equal, then both parts of the IMH
tree and the FMH tree are authentic. Otherwise,
they are not, i.e., at least one node is forged, or at
least one node in the original tree is not included.

If the tree parts are authentic, then the query issuer pro-
ceeds to the second step of verification, which is to mimic
the server in query processing by searching the con-
structed tree parts. If the query result and the functions
that are immediate left and right to the query result match
those received from the server, the user can be assured that
the functions included in the query result from the server
are sound and complete.

4 PERFORMANCE STUDY
In this section, we study the performance of the proposed
technique through security analysis, overhead analysis,
and simulation.

4.1 Security Analysis
A user submitting a query 𝑞 expects to receive a query re-
sult 𝑅(𝑞), and a verification object that consists of 𝐼𝑉(𝑞) for
intersection verification and 𝐹𝑉(𝑞) for function verifica-
tion. With these data, the user recomputes the one-way
hash value for the root node (either the root of IFMH tree
in the case of one-signature approach or a subdomain node
in the case of multi-signature approach). If the hash value
matches the signature created by the data owner, the user
can be assured that all data included in 𝑅(𝑞), 𝐼𝑉(𝑞), and
𝐹𝑉(𝑞) must be from the original IFMH-tree that is created
by the data owner. This is guaranteed by the properties of
the one-way hash and the way the root hash value is com-
puted in both approaches. If any record or a hash value in-
cluded is forged, the root hash value computed by the user
would be different from the one computed by the data
owner. As such, by checking if the subdomain included in
the verification object contains the query’s function input,
the user can be assured if the records included in 𝑅(𝑞) are
from the correct sorted list.

The question now is completeness. Let 𝑅(𝑞) =
{𝑓௔ , 𝑓௔ାଵ, … , 𝑓௕} be the query result, 𝑓௔ିଵ and 𝑓௕ାଵ be respec-
tively the immediate left and right records included in the
verification object, and they do not satisfy the query condi-
tion, such that 𝑓௔ିଵ(𝑋) < 𝑓௔(𝑋) ≤ 𝑓௔ାଵ(𝑋) ≤ … ≤ 𝑓௕(𝑋)<
𝑓௕ାଵ(𝑋) under the query’s function input 𝑋. There are sev-
eral cases 𝑅(𝑞) is not complete:

Case 1: Two records consecutive in 𝑅(𝑞) are not consec-
utive in the original sorted list. In other words, there exist
two consecutive records 𝑓௜ and 𝑓௜ାଵ in 𝑅(𝑞) and at least one
record 𝑓௣ in the original sorted list such that 𝑓௜(𝑋) ≤
𝑓௣(𝑋) ≤ 𝑓௜ାଵ(𝑋). Since the hash value of 𝑓௣ is part of the
computation for the signature created by the data owner,
the adversary would have to modify the functions in 𝑅(𝑞)
for the user to recompute a hash value that matches. This
is computation infeasible without knowing the data
owner’s private key.

Case 2: At least one boundary record is forged. Suppose
a fake record 𝑓௔ିଵ

ᇱ is created such that 𝑓௔ିଵ
ᇱ (𝑋) does not sat-

isfy the query condition. This fake record is then inserted
somewhere between 𝑓௔ and 𝑓௕, and so the query result be-
comes {𝑓௜ , 𝑓௜ାଵ, … , 𝑓௕}, i.e., functions from 𝑓௔ to 𝑓௜ିଵ are re-
moved from 𝑅(𝑞). Since the forged record 𝑓௔ିଵ

ᇱ (𝑋) will be
used by the user to compute the root hash value, the ad-
versary must change some records in 𝑅(𝑞) to make this
correct. Again, this is computation infeasible without
knowing the private key used to create the signature.

4.2 Overhead Analysis
We analyze the overhead for data owner, server, and query
issuers, respectively. We limit our discussion to linear
functions, which are commonly used in analytic queries.

Data owner overhead: We first consider the size of an
IFMH-tree, which determines the cost for uploading to the
server. A set of 𝑛 linear functions with 𝑑 variables may cre-
ate up to 𝑂(𝑛ଶ) intersections, which may partition a given
domain into 𝑂(𝑛ଶௗ) subdomains. The IMH-tree is essen-
tially a binary tree, so the number of total nodes for this
tree is 𝑂(𝑛ଶௗ). For each subdomain, there is an FMH-tree,
and since each FMH-tree is built on top of a list of 𝑛 sorted

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

functions, the total number of nodes it has is 𝑂(𝑛). As such,
the total nodes for a whole IFMH-tree is 𝑂(𝑛ଶௗ +
 𝑛ଶௗ × 𝑛) = 𝑂((𝑛 + 1) × 𝑛ଶௗ).

Now we analyze the cost of building an IMH-tree. In-
serting an intersection may have to check against every
node in the tree. So, the total number of nodes needed to
be checked for inserting 𝑂(𝑛ଶ) intersections is 𝑂(𝑛ଶௗ). For
each subdomain, the functions need to be sorted according
to their scores. So, the total cost of sorting is 𝑂(𝑛 × log 𝑛 ×
𝑛ଶௗ). For each sorting list, building an FMH-tree requires
to compute 𝑂(𝑛ଶ) times of one-way hash. So, the total
hashes for the whole set of FMH-trees are 𝑂(𝑛ଶ × 𝑛ଶௗ). The
total number of hashes for the IMH-tree is 𝑂(𝑛ଶௗ).

Building the IFMH-tree is still computation-intensive,
but this is a one-time cost, and when compared with the
original signature mesh, this cost has a significant reduc-
tion, given the fact that the number of signatures that need
to be computed is much smaller.

Server overhead: The main advantage of our approach
is in run time. Given a query with a function input 𝑋, the
complexity of searching for the subdomain which contains
𝑋 is 𝑂(log 𝑛ଶௗ) = 𝑂(𝑑 log 𝑛), given the binary form of the
IMH-tree. Since the 𝑛 (i.e., the number of records) is much
larger than 𝑑 (i.e., the number of variables in ranking func-
tions), this cost can be approximated as 𝑂(log 𝑛). In con-
trast, such a search in the signature mesh is linear. Once
the subdomain is located, the server retrieves the query re-
sults in the corresponding sorted function list, which is
also done in a binary search. So, the cost of finding the first
function that satisfies the query condition is 𝑂(log 𝑛). Let
|𝑞| be the query size, i.e., the number of functions in the
query result. Then the total cost for query processing is
𝑂(log 𝑛) + |𝑞|. Since the verification object is constructed
by way of the query processing, the whole cost is
𝑂(log 𝑛 + |𝑞|).

User overhead: Given a query 𝑞, the verification cost for
the query issuer has to do the query size |𝑞|. In both ap-
proaches, there is one signature included for a verification
object. For multi-signature approach, the number of nodes
in the FMH-tree is 𝑂(|𝑞|). So, the number of hashing that
should be performed is 𝑂(|𝑞|). The one-signature ap-
proach, includes the IMH-tree part, which the cost is deter-
mined by the tree depth. In the worst case, this depth is
𝑂(𝑛ଶ) for a database of 𝑛 records. So, the total number of
hashing in the verification is bounded to 𝑂(𝑛ଶ + |𝑞|).

4.3 Simulation Results
In this part, we study the performance of the proposed
method by comparing it to signature mesh, in terms of the
costs for data owner, server, and users. In most of our ex-
periments, the number of records is considered 1,000 to
10,000 for two reasons. First, the cost of constructing a sig-
nature mesh increases exponentially with respect to the
number of records, making it extremely time-consuming
with our limited computing resources. Second, the limited
data sizes are still clearly indicative of performance trends.
Besides, this study is limited to linear ranking function,
since it is the most common type used in analytic queries.
The experiments were performed on a PC with 16GB of
memory and an Intel i7 quad-core 3.1Gh processor.

(a) Number of signatures needed for creating IFMH-tree/signature

mesh

(b) Time of constructing the IFMH-tree/signature mesh

(c) Size of the IFMH-tree/signature mesh

Fig. 5. Data owner overhead

NOSRATI AND CAI: VERIFYING THE CORRECTNESS OF ANALYTIC QUERY RESULTS 9

4.3.1 Data owner overhead

The cost of the data owner consists of the computation time
needed to construct the verification data structures – the
IFMH-tree, and signature mesh. In signature mesh, the
number of signatures can grow up to the number of sub-
domains times the total number of records. In contrast, our
one-signature approach has only one signature, while the
multi-signature approach, this is equal to the number of
the subdomains – Fig. 5a shows the number of signatures
that each approach needs. The high number of signatures
in the signature mesh also results in high computation time
of creating the mesh (Fig. 5b), and its large size (Fig. 5c).
The signature mesh needs more signatures, but has a
smaller number of hash values when compared to our ap-
proaches. In this study, we use RSA for signatures, the size
of which is 640 bytes, and SHA-256 for one-way hashing.

4.3.2 Server overhead

The server cost is measured by the number of the nodes in
IFMH-tree or the number of the cells in the signature mesh
that the server needs to traverse to process a query and
construct a corresponding 𝑉𝑂(𝑞). Fig. 6a-6c show the aver-
age cost for the server to process top-3, 3NN, and range

queries whose results consists of only three records. As the
number of records increases, the average cost under all ap-
proaches increases. This is not surprising since more data
needs to be processed. In all settings, the signature mesh is
the worst performer, and the performance gap increases as
the number of records increases. This is due to the fact that
this scheme performs a linear search in query processing
and verification object construction. The performance of
the two proposed approaches is quite stable. The one-sig-
nature approach incurs a relatively higher cost than the
multi-signature approach. To build a verification object,
the former requires to search both IMH-tree and FMH-tree,
whereas the latter searches only the FMH-tree linked by
the subdomain that contains the ranking function, which is
much smaller.

In a separate study, the impact of the length of query
results on the server cost is studied. For this purpose, the
number of the records is set to 10,000; and the size of query
results is considered 1,000 to 10,000. The performance re-
sults under the three approaches are plotted in Fig. 6d.
Again, signature mesh always incurs a higher cost, while
the performance of one-signature and multi-signature is
quite comparable.

(a) Number of traversed nodes (or cells) for

creating 𝑉𝑂(𝑞) in Top-3 query

(b) Number of traversed nodes (or cells) for

creating 𝑉𝑂(𝑞) in 3NN query

(c) Number of traversed nodes (or cells) for creating

 𝑉𝑂(𝑞) for range query (length of results = 3)

(d) Number of traversed nodes by the length of results |𝑞|

Fig. 6. Server overhead

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

4.3.3 User overhead

In this experiment, the impact of the length of query re-
sult on the computations in users’ side. The overall perfor-
mance metric is considered to be the average time used in
verifying query results. To provide a better understanding
of this cost, we also collect other types of performance data,
including the number of hashing operations, the actual
time of performing hashing, and the time of decrypting
signatures. The size of the query results varies from 1,000
to 10,000. The results are delineated in Fig. 7. As the length
of the query result increases, the cost under all three ap-
proaches increases as well (Fig. 7a). Signature mesh has the
best performance in terms of the number of hashing func-
tions and the corresponding time (Fig. 7b). However, it has
the most significant number of signatures, which incurs
drastically more computation time in decrypting than one-
way hashing. As such, the total time in verifying query re-
sults under signature mesh is a lot worse than the pro-
posed approaches (Fig. 7d). These experiments also show
that the performance gap increases as the query result size

increases. Note that we use two different signature algo-
rithms, RSA and DSA. Our results demonstrate the RSA is
faster than DSA, but do not make a significant perfor-
mance difference (Fig. 7c).

As for the two proposed approaches, multi-signature
has a smaller number of hashing to perform than one-sig-
nature, while both have only one signature to be included
in a query result. But the proposed approaches are not
much different in terms of the total time incurred in veri-
fying query results. This means that the time for hashing
computation is tiny comparing to decrypting.

4.3.4 Communication overhead

The communication cost is determined by the size of a
query result |𝑞| and the size of the corresponding verifica-
tion object. Since the |𝑞| is the same for all three ap-
proaches, the only concern is the size of the 𝑉𝑂(𝑞), which
is studied through two experiments. First, the size of the
database is fixed to 10,000 records, while the lengths of a
query results vary from 1,000 to 10,000. Fig. 8a illustrates
the difference of the sizes of verification objects. For

(a) Number of hashing operations for

different lengths of query results

(b) Time of hashing operations for
different lengths of query results

(c) Time of decrypting the signatures

(RSA and DSA algorithms)

(d) Total time of verifying the results of

the queries by the user

Fig. 7. User overhead for verifying the results of the queries

NOSRATI AND CAI: VERIFYING THE CORRECTNESS OF ANALYTIC QUERY RESULTS 11

signature mesh, there is a linear relationship between the
length of the results and the size of the query. In contrast,
this relationship is logarithmic for the two proposed tech-
niques. The average sizes of 𝑉𝑂(𝑞) for one- and multi-sig-
nature approaches are around 0.5KB and 1.3KB, respec-
tively. In the second experiment, the length of a query re-
sult is fixed to 100, while the number of records varies from
1,000 to 10,000 (Fig. 8b). Increasing the number of the rec-
ords does not affect the size of the 𝑉𝑂(𝑞) in the signature
mesh. As such, its curve is flat. In proposed approaches, a
larger database results in a larger tree and, thus, a larger
verification object, and the results confirm this fact. The in-
crease, however, is slow for both approaches. The average
size of 𝑉𝑂(𝑞) in one-signature is larger than multi-signa-
ture. A verification object in one-signature approach needs
to include some part of the IMH-tree, the height of which
grows linear (in the worst case) with respect to the data-
base size. Hence, the 𝑉𝑂(𝑞) size is larger in one-signature
approach; still the difference is not significant.

5 CONCLUSIONS
We have presented a generic data structure for verifying
the correctness of the results of analytic queries. It has two
components, namely IMH-tree and FMH-tree. The former
is an extension of the existing I-tree, whereas, the latter, an
extension of the existing MH-tree. We showed that the two
components together support efficient execution and con-
struction of verification objects of three representative
types of analytic queries, namely top-k, range, and KNN
queries. We proposed two versions of implementation,
one-signature and multi-signature. The former signs the
root for the IMH-tree, thus it has only one signature. In
contrast, the latter creates a signature for every FMH-tree.
The two approaches have their own pros and cons. How-
ever, when compared to the existing signature mesh, both
approaches have significant performance improvements in
terms of the overheads of data owner, server, and data
user.

REFERENCES
[1] Choi, S., Lim, H. S., & Bertino, E. (2012, September). Authenti-

cated top-k aggregation in distributed and outsourced data-
bases. In Privacy, Security, Risk and Trust (PASSAT), 2012 Interna-
tional Conference on and 2012 International Confernece on Social
Computing (SocialCom) (pp. 779-788). IEEE.

[2] Tyrer, J., Duffy, S. W., & Cuzick, J. (2004). A breast cancer predic-
tion model incorporating familial and personal risk factors. Sta-
tistics in medicine, 23(7), 1111-1130.

[3] Lindström, J., & Tuomilehto, J. (2003). The diabetes risk score: a
practical tool to predict type 2 diabetes risk. Diabetes care, 26(3),
725-731.

[4] Reitz, C., Tang, M. X., Schupf, N., Manly, J. J., Mayeux, R., &
Luchsinger, J. A. (2010). A summary risk score for the prediction
of Alzheimer disease in elderly persons. Archives of neurol-
ogy, 67(7), 835-841.

[5] Basch, C. A., Bruesewitz, B. J., Siegel, K., & Faith, P. (2000). U.S.
Patent No. 6,119,103. Washington, DC: U.S. Patent and Trade-
mark Office.

[6] Zhang, Z., Salerno, J. J., & Yu, P. S. (2003, August). Applying data
mining in investigating money laundering crimes. In Proceedings
of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 747-752).

[7] Vlachou, A., Doulkeridis, C., Kotidis, Y., & Nørvåg, K. (2010,
March). Reverse top-k queries. In 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010) (pp. 365-376). IEEE.

[8] Khan, A., Yanki, P., Dimcheva, B., & Kossmann, D. (2014, June).
Towards indexing functions: Answering scalar product queries.
In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (pp. 241-252). ACM.

[9] Mouratidis, K., Zhang, J., & Pang, H. (2015). Maximum rank
query. Proceedings of the VLDB Endowment, 8(12), 1554-1565.

[10] Zhang, J., Mouratidis, K., & Pang, H. (2014, June). Global immu-
table region computation. In Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data (pp. 1151-
1162). ACM.

(a) Size of the verification object for

different lengths of query results

(b) Size of the verification object for

different sizes of database

Fig. 8. Communication overhead in terms of the size of 𝑉𝑂(𝑞)

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

[11] Devanbu, P., Gertz, M., Martel, C., & Stubblebine, S. G. (2003).
Authentic data publication over the Internet. Journal of Computer
Security, 11(3), 291-314.

[12] Merkle, R. C. (1989, August). A certified digital signature. In Con-
ference on the Theory and Application of Cryptology (pp. 218-238).
Springer, New York, NY.

[13] Pang, H., Jain, A., Ramamritham, K., & Tan, K. L. (2005, June).
Verifying completeness of relational query results in data pub-
lishing. In Proceedings of the 2005 ACM SIGMOD international con-
ference on Management of data (pp. 407-418). ACM.

[14] Yang, G., Cai, Y. (2018). Querying a Collection of Continuous
Functions. IEEE Transactions on Knowledge and Data Engineering,
30(9), 1783-1795

[15] Cheng, W., Pang, H., & Tan, K. L. (2006, July). Authenticating
multi-dimensional query results in data publishing. In IFIP An-
nual Conference on Data and Applications Security and Privacy (pp.
60-73). Springer, Berlin, Heidelberg.

[16] Yang, Y., Papadopoulos, S., Papadias, D., & Kollios, G. (2008,
April). Spatial outsourcing for location-based services. In 2008
IEEE 24th International Conference on Data Engineering (pp. 1082-
1091). IEEE.

[17] Yang, Y., Papadopoulos, S., Papadias, D., & Kollios, G. (2009).
Authenticated indexing for outsourced spatial databases. The
VLDB Journal, 18(3), 631-648.

[18] Tang, Y., Liu, L., Wang, T., Hu, X., Sailer, R., & Pietzuch, P. (2014,
March). Outsourcing multi-version key-value stores with verifi-
able data freshness. In 2014 IEEE 30th International Conference on
Data Engineering (pp. 1214-1217). IEEE.

[19] Tang, Y., Wang, T., Hu, X., Jang, J., Liu, L., & Pietzuch, P.
(2014). Authentication of Freshness for OutsourcedMulti-Version
Key-Value Stores. Georgia Institute of Technology.

[20] Yang, G., Cai, Y., & Hu, Z. (2016, May). Authentication of func-
tion queries. In Data Engineering (ICDE), 2016 IEEE 32nd Interna-
tional Conference on (pp. 337-348). IEEE.

[21] Perez, R., Sailer, R., & van Doorn, L. (2006, July). vTPM: virtual-
izing the trusted platform module. In Proc. 15th Conf. on USENIX
Security Symposium (pp. 305-320).

[22] Wolf, M., & Gendrullis, T. (2011, November). Design, implemen-
tation, and evaluation of a vehicular hardware security module.
In International Conference on Information Security and Cryptology
(pp. 302-318). Springer, Berlin, Heidelberg.

[23] Hosseini, S. (2018, April). Fingerprint vulnerability: A survey.
In 2018 4th International Conference on Web Research (ICWR) (pp.
70-77). IEEE.

Masoud Nosrati received his B.S. and M.S. in 2012
and 2016, respectively, in computer engineering from
Islamic Azad University, Iran. He is now a PhD student
in the Department of Computer Science at Iowa State
University. His current research interests include query
processing and security in outsourced databases.

Ying Cai received his B.S. and M.S. degrees from
Xi’an Jiaotong University, China. He graduated from
the University of Central Florida with a PhD in com-
puter science in 2002. Since 2003, Dr. Cai has been
with the Department of Computer Science at Iowa
State University. His current research interests include
cloud computing, and privacy and security.

