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Maximizing the Diversity of Exposure
in a Social Network

Antonis Matakos, Cigdem Aslay, Esther Galbrun, and Aristides Gionis

Abstract

Social-media platforms have created new ways for citizens to stay informed and participate in public debates. However, to
enable a healthy environment for information sharing, social deliberation, and opinion formation, citizens need to be exposed
to sufficiently diverse viewpoints that challenge their assumptions, instead of being trapped inside filter bubbles. In this paper,
we take a step in this direction and propose a novel approach to maximize the diversity of exposure in a social network. We
formulate the problem in the context of information propagation, as a task of recommending a small number of news articles
to selected users. In the proposed setting, we take into account content and user leanings, and the probability of further
sharing an article. Our model allows to capture the balance between maximizing the spread of information and ensuring the
exposure of users to diverse viewpoints.

The resulting problem can be cast as maximizing a monotone and submodular function, subject to a matroid constraint
on the allocation of articles to users. It is a challenging generalization of the influence-maximization problem. Yet, we are able
to devise scalable approximation algorithms by introducing a novel extension to the notion of random reverse-reachable sets.
We experimentally demonstrate the efficiency and scalability of our algorithm on several real-world datasets.
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1 INTRODUCTION

Over the past decade, the emergence of social-media platforms has changed society in unprecedented ways, completely altering the
landscape of societal debates and creating radically new ways of collective action. In this networked public sphere, members of society
have access to a public podium where they can participate in public debate and speak up about topics they deem to be of public concern.
This emerging environment of participatory culture has made the diversity of citizens’ views more relevant than ever before.

While having the potential to expose individuals to diverse opinions, social-media platforms typically resort to personalization
algorithms that filter content based on social connections and previously expressed opinions, creating filter bubbles [1]. The resulting
echo chambers tend to amplify and reinforce pre-existing opinions, catalyzing an environment that has a corrosive effect on the
democratic debate.

In this paper we propose a novel approach towards breaking filter bubbles. We consider social-media discussions around a topic
that are characterized by a number of viewpoints falling within a predefined spectrum of opinions. To accurately model the dynamics
of social-media platforms, we assume that each viewpoint is represented by a number of items (articles, posts) propagating through the
network, via messages, re-shares, retweets, etc. Furthermore, we assume that each individual is associated with a leaning with respect
to the issue, which impacts whether they will further disseminate any article they come across, depending on how it aligns with their
leaning. We think that this is a realistic assumption, since, for example, an individual with conservative leaning will be reluctant to
share an article with liberal leaning.

We refer to the diversity of the information that a user is exposed to as the user’s “diversity exposure level”. It depends on the
viewpoint expressed in the articles the user consumes, referred to as article leanings, and the users’ existing viewpoint on the matter,
referred to as user leanings. We assume that the diversity exposure level of users can be increased through content recommendations
made by the social-media platform. Considering that filter bubbles result from a lack of exposure to diverse viewpoints, our aim is to
measure and maximize the total diversity exposure levels of all users in the network.
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Our problem can be naturally defined in an information-propagation setting [2]: we ask to select a small number of seed users
and the articles that should be recommended to them so as to maximize the total diversity of exposure in the network. Since the
recommended articles are inserted into the timeline of the users, disrupting the organic flow of the content in the network, we also
consider a limit on the number of articles that can be recommended to a user in this way.

An attractive aspect of our problem setting is that it consolidates many aspects of the functionality of real-life social networks. By
incorporating article leanings, user leanings, and the probabilities of further sharing an article, we ask to find the recommendations that
translate to a good spread and simultaneously maximize the diversity exposure level of the users. To better understand the interplay
between spread and diversity, observe that assigning articles that match the users’ predisposition is likely to result in a high spread but
minimal increase of diversity, while recommending articles that are opposed to users’ predispositions, will likely result in high diversity
locally but hinder the spread of the articles. This trade-off is central to the diversity-maximization problem we consider.

We show that taking all the aforementioned components into account, the problem of maximizing the diversity of exposure in
a social network can be cast as maximizing a monotone and submodular function subject to a matroid constraint on the allocation
of articles to users. We show that this problem is NP-hard and is far more challenging than the classical influence-maximization
problem. We introduce a non-trivial generalization of random reverse-reachable sets (RR-sets) [3], which we call random reverse co-
exposure sets (RC-sets), for accurately estimating the diversity of exposure in a social network. We propose a scalable approximation
algorithm, named Two-phase Diversity Exposure Maximization (TDEM), that leverages random RC-sets and an adaptive sample size
determination procedure, ensuring quality guarantee on the returned solution with high probability.

Although our approach belongs to a large body of work on information propagation and breaking filter bubbles, there are significant
differences and novelties. In particular:

• We are the first to address the problem of maximizing the diversity of exposure and breaking filter bubbles in an item-
aware information propagation setting. We leverage several real-world aspects of social-media functionality, such as how users
consume and share articles, while considering user-article dependent propagation probabilities.

• We formally define the problem of maximizing the diversity of exposure, prove its hardness, and develop a simple greedy
algorithm.

• We then introduce the notion of random reverse co-exposure sets and devise a scalable instantiation of the greedy algorithm
with provable guarantees.

• Our extensive experimentation on real-world datasets confirms that our algorithm is scalable and delivers high quality solutions,
significantly outperforming several natural baselines.

A preliminary version of our work provided a first theoretical and experimental treatment of the problem under a simpler
formulation [4]. Specifically, we previously defined the diversity exposure level of a user to be equal to the breadth of leanings
spanned by the items the user is exposed to, in addition to the user’s own leaning. In this paper, we extend our preliminary results in
several directions. First, we propose a refined scheme to quantify the diversity exposure level of a user. The new diversity definition
measures not only the range of leanings in a set of items but also their spread within this range. That is, our refined scores does not
only look at the extremes of represented leanings but also at how well intermediate leanings are covered. Second, we show that the total
diversity exposure function remains submodular and monotone and we extend our scalable approximation framework based on random
reverse co-exposure sets to operate under this new score. Finally, we provide additional experiments on many real-world datasets.

2 RELATED WORK

Our work relates to the emerging line of research on breaking filter bubbles in social media. To the best of our knowledge, this
is the first work to approach this problem from the angle of maximizing the diversity of information exposure in an item-aware
independent-cascade model.

Filter bubbles and echo chambers. Recently, there have been a number of studies on the effects of “echo chambers” [5], [6],
where users are only exposed to information from like-minded individuals, and of “filter bubbles” [1], [5], where algorithms only
present personalized content that agrees with the user’s viewpoint. In particular, Garrett et al. [6] observed that news stories containing
opinion-challenging informations spread less than other news.

In order to measure how strongly these phenomena manifest themselves on social media, a significant body of work has emerged
that focuses on measures for characterizing polarization [7], [8], [9], [10], [11], [12].

In a similar vein to ours, previous works have studied the problem of diversifying exposure. This task presents various aspects, such
as the questions of who to target, what viewpoints to promote, or how best to present possibly opposing viewpoints to users [13]. Recent
approaches focus on targeting users so as to reduce the polarization of opinions and bridge opposing views [7], [12], [14], [15]. These
works consider an opinion-formation model whereas our underlying model is an influence-propagation model. From this angle, the
works by Garimella et al. [16] and Rawal and Khan [17] are closest to our work. They consider an influence propagation setting, where
two conflicting campaigns propagate in the network and aim to maximize the number of users exposed to both campaigns. However,
the granularity of our setting is finer since we consider items with leanings lying across a spectrum rather than two opposing sides.
Additionally, we consider the leanings of users, which affect the propagation probabilities. Since our goal is to identify assignments of
items to users, we aim to identify both the users to target and the viewpoints to expose them to.

Influence maximization. Our problem is also related to the work on influence maximization. Kempe et al. [2] formalized the influence
maximization problem and proposed two propagation models, the independent-cascade model and the linear-threshold model. These
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models were subsequently extended to handle the case of multiple competing campaigns in a network [18], [19], [20]. As other
authors have suggested, we consider a central authority selecting the seed set [16], [21], [22], [23]. Our setting is related to social
advertising [22], [23], which also considers item-aware propagation models, aiming to allocate ads so as to maximize the engagement
of users. Key to our work is the idea of reverse reachable sets introduced by [3], which provides scalable solutions for the influence
maximization problem. Subsequent works [24], [25], [26], [27] introduced techniques to improve upon this idea even further. We extend
these ideas to our setting, and obtain an algorithm that scales to very large datasets.

3 PROBLEM DEFINITION

Notation. The input to the problem of diversifying exposure consists of the following ingredients: (i) a directed social graph G =
(V,E), with |V | = n nodes and |E| = m edges, where nodes represent users and a directed edge (u, v) indicates that user v follows
user u, thus, v can see and propagate posts by u; (ii) a set H of (news) items on a (possibly controversial) topic, with |H| = h; (iii)
item-specific propagation probabilities piuv , for all items i ∈ H and edges (u, v) ∈ E, where piuv represents the probability that item i
will propagate from user u to user v; (iv) a leaning function ` : V ∪H → [−1, 1] that quantifies the polarity of the viewpoints of items
and users with respect to the considered issue or topic.

Cascade model. We assume that the propagation of an item i ∈ H from user u to user v follows the independent-cascade model with
parameter piuv , and is independent from the propagation of other items to v from its in-neighbors. Thus, once u becomes active on
item i at time t, the probability piuv that u succeeds in activating v with item i at time t+ 1 is independent of other items with which
user u or other in-neighbors of v might succeeded to activate v at any time. We incorporate the different tendency of users to share
items with leanings diverging from or similar to their own by allowing item-specific propagation probabilities for each edge. Hence,
piuv implicitly takes into account the leanings of users u and v and of item i. The leaning of a user reflects the user’s viewpoint, which
is considered to be stable. Therefore, we assume that the propagation probabilities remain fixed over time, and probabilities piuv are
constant values input to our cascade model. We consider the estimation of user leanings and propagation probabilities as orthogonal to
our work.

Quantifying diversity of exposure. We say that user v is exposed to item i if v is activated on item i, either by an in-neighbor that is
active on item i, or due to being a seed node for item i. Consider a user v that is exposed to a set I ⊆ H of items. It follows that user v
is exposed to a set of leanings {`(v)} ∪ {`(i) : i ∈ I}. Intuitively, we want each user to be aware of a multitude of viewpoints, while
also retaining a balanced perspective. To account for both factors, we define a penalty function that quantifies the lack of diversity of
exposure.

Specifically, we want to penalize large gaps in the spread of leanings, which correspond to ranges of opinions not represented
among items the user is exposed to. Therefore, the function is defined for each user by considering the set of distinct leanings he is
exposed to, sorted by polarity, and taking the sum of squared distances between consecutive leanings, also accounting for the extreme
values of leanings. We consider that each item contributes only once to the diversity of exposure of a user. Therefore seeing the same
article multiple times should have no impact on the objective.

We let L(v, I) = 〈`1, . . . , `η〉 denote the set {`(v)} ∪ {`(i) : i ∈ I} ∪ {−1, 1} sorted by increasing values, i.e., such that `i ≤ `j
for all i < j. This set contains the distinct leanings among the items in I that user v has been exposed to, as well as the two extreme
leanings across the spectrum of opinions, `1 = −1 and `η = 1. Then, we define the penalty for node v, gv : 2H → [0, 4], as

gv(I) =

η−1∑

j=1

(`j+1 − `j)2, ` ∈ L(v, I). (1)

Given the penalty function gv(I) that quantifies the lack of diversity in the leanings of the items I that v is exposed to, we define the
level of diversity exposure fv : 2H → [0, 1] of v as

fv(I) = 1− 1

4
gv(I). (2)

Notice that the range of the diversity exposure function fv is [0, 1], where a value of 1 corresponds to the maximum possible diversity
of exposure.

To motivate the definition of our diversity function fv we provide the following two lemmas, which illustrate some of its desirable
properties.

Lemma 1. For all I ⊆ J ⊆ H , we have fv(I) ≤ fv(J).

Lemma 1, for which the proof is provided as part of Lemma 3, states that fv is monotone, i.e., the diversity exposure level of v
cannot decrease as the user is exposed to more items.

Next we formally show that, if we fix the number of items that user v will see, then the configuration in which fv is maximized
corresponds to the desired scenario where the user leaning of v and the leanings of the items v is exposed to are equally spaced across
[−1, 1].

Lemma 2. Consider a set of items I , so that I has fixed cardinality κ. Then, the diversity function fv(I) is maximized if the leanings
of the items in I are equidistantly positioned in the interval [−1, 1].
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Proof. For the sake of simplicity, and without loss of generality, assume that neither the leaning of v nor the extreme leanings −1 and
1 are represented in I , so that |L(v, I)| = κ + 3. Let rj = `j+1 − `j , for j = 1, . . . , κ + 2. Notice that

∑κ+2
j=1 rj is a constant that

depends only on how we model the range of the leanings, i.e., for [−1, 1], we have
∑κ+2
j=1 rj = 2. Remember that by definition fv(I)

is maximized whenever gv(I) is minimized. Then, solving the equations resulting from g′v(I) = 0 and
∑κ+2
j=1 rj = 2, we see that

gv(I) attends its minimum value when

r1 = . . . = rκ+2 =
2

κ+ 2
.

Assignment to seed nodes. We consider selecting a set of users in V as the seed nodes and expose them to a subset of items
from H . Let E = V × H denote the set of all possible (user, item) pairs and let A ⊆ E denote an assignment such that the set
Ai = {u ∈ V : (u, i) ∈ A} contains the seed nodes selected for initial exposure to item i and the set Au = {i ∈ H : (u, i) ∈ A}
contains the items assigned to seed node u. For each v ∈ V , we denote by Iv(A) the set of items that v is exposed to when the
propagation process started from assignment A converges. The diversity of exposure score F (A) of an assignment A is then defined as
the sum of diversity exposure levels of all the users resulting from the assignment A in G

F (A) =
∑

v∈V
fv
(
Iv(A)

)
. (3)

Note that the function fv(Iv) : 2E → [0, 1] is a composition fv(Iv) = fv ◦ Iv of the functions Iv : 2E → 2H and fv : 2H → [0, 1].
We will later use this fact to show that fv(Iv) is a submodular function over E .
Constraints on assignments. We assume that we are interested in assignments of size at most k ∈ N. Moreover, taking into account
the limited attention bound of users, which can be user-specific [28], we also limit the number of items that a user can be seeded with.1

We model this using an attention bound constraint ku ∈ N for each user u ∈ V . We say that an assignment A is feasible if |A| ≤ k
and |Au| ≤ ku, for each seed node u.
Assumptions. We assume that there exist e, e′ ∈ V ∪ H such that `(e) 6= `(e′). This weak assumption is simply a bare minimum
requirement on the diversity of the leanings of the users and items, aligned with the motivation of the problem. We will use this
assumption in the greedy approximation analysis to constrain the optimal values of expected diversity exposure score to R+.

We are now ready to formally define our problem.

Problem 1 (Diversity Exposure Maximization). Given a directed social graph G = (V,E) with user leanings `(v), for all v ∈ V , a
set of items H with item leanings `(i), for all i ∈ H , item-specific propagation probabilities piuv , for all (u, v) ∈ E and all i ∈ H ,
positive integers ku for the attention bound constraints, for all u ∈ V , and a positive integer k, find a feasible assignment A that
maximizes the expected diversity exposure score

maximize
A⊆E

E [F (A)]

subject to |A| ≤ k,
|Au| ≤ ku, for all u ∈ V.

We use A∗ to denote the optimal solution of Problem 1, and OPT = E [F (A∗)] to denote its expected score in G.

4 THEORETICAL ANALYSIS

4.1 Possible-world semantics
A probabilistic graph G = (V,E, p), comprises a vertex set V and an edge set E, where each edge e is associated with a probability
pe ∈ p. Given a probabilistic graph, a possible world is a deterministic graph obtained from G with edges sampled independently
according to p. We now introduce the possible-world model for our problem that can capture the co-exposure of nodes to items
resulting from any given assignment.

We start by defining a directed edge-colored multigraph G̃ = (V, Ẽ, p̃) from G = (V,E), by creating h copies of each directed
edge (u, v) ∈ E. For each item i ∈ H we create a parallel edge (u, v)i in G̃, having distinct color and associated probability piuv . We
interpret G̃ as a probability distribution over all subgraphs of (V, Ẽ), i.e., we sample each edge (u, v)i ∈ Ẽ independently at random
with probability piuv . The probability of a possible world g v G̃ is given by

Pr[g] =
∏

i∈H

∏

(u,v)i∈g
piuv

∏

(u,v)i∈Ẽ\g
(1− piuv). (4)

Let pathig(u, v) denote an indicator variable that equals 1 if node v ∈ V is reachable by node u via the colored edges of i in g,
and 0 otherwise. We say that a pair (u, i) can color-reach node v if pathig(u, v) = 1. For an assignment A and a node v ∈ V let
Igv (A) be the set of items that v is exposed to, due to A, in network g. It can be written as

Igv (A) = {i ∈ H | exists (u, i) ∈ A and pathig(u, v) = 1}.

1. As in previous work [22], we do not assume any attention bound on the number of items that are not recommendations in our problem definition, i.e., items
that appear in the news-feed of the users in the social network, as such items are part of the organic operation of the network.
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The value of the objective E [F (A)] in Problem 1 is given by

E [F (A)] = E

[∑

v∈V
fv(I

g
v (A))

]

=
∑

gvG̃
Pr[g]

∑

v∈V
fv(I

g
v (A)). (5)

4.2 Hardness and approximation
We will first show that the objective function of Problem 1 is monotone and submodular.

Lemma 3. The function E [F (·)] is monotone and submodular.

Proof. To prove the lemma, we utilize the possible-world semantics. It is well known that a non-negative linear combination of
submodular functions is also submodular. Therefore, to prove submodularity of E [F (·)], it is sufficient to show that in any possible
world g v G̃, fv : 2E → [0, 1] is submodular. Similarly, to prove monotonicity of E [F (·)], it suffices to show the monotonicity of
fv(·) in any possible world g.

Now, recall that we have fv(Igv (A)) = 1 − 1
4gv(I

g
v (A)). We will show that gv(Igv (A)) is supermodular and monotonically

non-increasing in A which will directly imply the submodularity and monotonicity of fv(Igv (A)).
First we show that gv(Igv (A)) is monotonically non-increasing in A by showing that gv(Igv (A)) ≥ gv(Igv (A ∪ e)) for any A ⊆ E

and (w, x) ∈ E \A.
First, consider the case pathxg(w, v) = 0. Notice that in this case we have gv(Igv (A)) = gv(I

g
v (A ∪ {(w, x)})) as Igv (A) =

Igv (A ∪ {(w, x)}). Now, consider the case pathxg(w, v) = 1. In this case, we have Igv (A ∪ {(w, x)}) = Igv (A) ∪ {x}. Let i, j ∈
Igv (A) be such that `(i) and `(j) are the immediate predecessor and successor of `(x) in L(v, Igv (A ∪ {(w, x)})) respectively, i.e.,
6 ∃y ∈ L(v, Igv (A ∪ {(w, x)})) such that `(i) ≤ `(y) ≤ `(x) or `(x) ≤ `(y) ≤ `(j).

Then we have,

gv(I
g
v (A ∪ {(w, x)}))− gv(Igv (A))

= (`(i)− `(x))2 + (`(x)− `(j))2 − (`(i)− `(j))2
= (`(i)− `(x))2 + (`(x)− `(j))2
− (`(i)− `(x) + `(x)− `(j))2

≤ 0.

We have just shown that gv(Igv (A)) is monotonically non-increasing in A.
We now show that gv(Igv (A)) is supermodular in A. Let gv(Igv ((w, x) | A)) denote the marginal decrease in the penalty when

(w, x) is added to the assignment A:

gv(I
g
v ((w, x) | A)) = gv(I

g
v (A ∪ {(w, x)}))− gv(Igv (A)).

To show that gv(Igv (·)) is supermodular, we need to show that

gv(I
g
v ((w, x) | A)) ≤ gv(Igv ((w, x) | B)),

for any A ⊆ B ⊆ E and (w, x) 6∈ B.
Let B = A ∪ {(z, y)} for some (z, y) ∈ E \ A. First, notice that if pathxg(w, v) = 0 and pathyg(z, v) = 0, then the analysis

is trivial, since, Igv ((w, x) | A) = Igv ((w, x) | B) = Igv (A), resulting in gv(Igv ((w, x) | A)) = gv(I
g
v ((w, x) | B)) = 0. Next, we

provide the analysis for the case pathxg(w, v) = 1 and pathyg(z, v) = 1, and omit the analysis of the other two cases in which either
pathxg(w, v) = 0 or pathyg(z, v) = 0 as their analysis use similar arguments.

We now start the analysis for the case pathxg(w, v) = 1 and pathyg(z, v) = 1. To do so, we perform case-by-case analysis based
on how `(x) is compares to the leanings in L(v, Igv (A)) and L(v, Igv (B)).

Let i, j ∈ Igv (A) be such that `(i) and `(j) are the immediate predecessor and successor of `(x) in L(v, Igv (A∪{(w, x)})). Next,
we consider the following two cases.

• Case 1: y is such that `(y) < `(i) or `(y) > `(j). Then we have gv(Igv ((w, x) | B)) = gv(I
g
v ((w, x) | A)).

• Case 2: y is such that `(i) ≤ `(y) ≤ `(x). Then we have

gv(I
g
v ((w, x) | A))− gv(Igv ((w, x) | B))

= (`(i)− `(x))2 − (`(i)− `(j))2 − (`(y)− `(x))2

+ (`(y)− `(j))2
= −2`(i)`(x) + 2`(i)`(j) + 2`(y)`(x)− 2`(y)`(j)

+ (`(x)− `(j))(2`(y)− 2`(i)) ≤ 0

• Case 3: y is such that `(x) ≤ `(y) ≤ `(j). This case is symmetric to Case 2, so we omit the proof for brevity.
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Algorithm 1: Greedy Algorithm

Input : G̃ = (V, Ẽ, p̃); size constraint k; attention bound constraint ku for all u ∈ V ; leanings `(i) for all i ∈ H , and `(u) for all u ∈ V
Output: Greedy solution AG

1 AG ← ∅
2 while |AG| ≤ k do
3 (u∗, i∗)← arg max

(u,i)

E [F ((u, i) | AG)], subject to: |{i : (u, i) ∈ AG}| ≤ ku
4 AG ← AG ∪ {(u∗, i∗)}
5 return AG

Theorem 1. Problem 1 is NP-hard.

Proof. We will show that Problem 1 contains the influence maximization problem as a restricted special case, which is shown to be
NP-hard [2]. Consider the case where H consists of a single item, which we denote by i′. Let `(i′) = 0 and `(v) = 1, for all v ∈ V .
Notice that since h = 1, the multiplicity of each edge in G̃ is 1. In any g v G̃, if a node v is exposed to A then fv(Igv (A)) = 1

2 , while
fv(I

g
v (A)) = 0 if v is not exposed to A. For any assignment A, define the seed set S = {u | (u, i′) ∈ A}. Let Cg(S) denote the

number of nodes reachable by S in g. Notice the equivalence Cg(S) = 2
∑
v∈V fv(I

g
v (A)) in g. Now, let S∗ ⊆ V denote the optimal

solution to the influence maximization problem with parameter k. The expected spread of S∗ is given by E [Cg(S
∗)]. If S∗ is the seed

set that maximizes E [Cg(S)], then, A∗ = {(u, i′) | u ∈ S∗} is the assignment that maximizes E
[∑

v∈V fv(I
g
v (A))

]
. Thus, solving

the influence maximization problem and obtaining S∗, yields the optimal solution A∗ for Problem 1.

Given the monotonicity and submodularity of the objective function, a standard greedy algorithm can be used to solve Problem 1.
The pseudocode is given in Algorithm 1. Let E [F ((u, i) | A)] = E [F (A ∪ {(u, i)})]−E [F (A)] denote the marginal increase in the
expected diversity exposure score of an assignment A if (u, i) is added to A. Let AG denote the greedy solution. At each iteration, the
greedy algorithm chooses the feasible pair (u∗, i∗) that yields the maximum gain in the expected diversity exposure score among all
the feasible pairs.2 The algorithm terminates when |AG| = k.

Before we analyze the approximation guarantee of the greedy algorithm, we remind the reader of the following notions.

Definition 1 (Matroid). A set system (E ,F), defined over a finite ground set E and a familyF of subsets of E , is a matroidM = (E ,F)
if

(i) F is non-empty;

(ii) F is downward closed, i.e., X ∈ F and Y ⊆ X implies Y ∈ F ; and

(iii) F satisfies the augmentation property, i.e., for all X,Y ∈ F with |Y | > |X|, there exists an element e ∈ Y \ X such that
X ∪ {e} ∈ F .

Definition 2 (Uniform Matroid). A matroidM = (E ,F) is a uniform matroid if F = {X ⊆ E : |X| ≤ k}.
Definition 3 (Partition Matroid). Let E1, · · · , EZ be a partition of the ground set E into Z non-empty disjoint subsets. Let dz be an
integer with 0 ≤ dz ≤ |Ez|, for each z = 1, . . . , Z . A matroid M = (E ,F) is a partition matroid if F = {X ⊆ E : |X ∩ Ez| ≤
dz, for all z = 1, · · · , Z}. In other words, a partition matroid contains exactly the sets X ⊆ E that share at most dz elements with
each subset Ez .

Lemma 4. Given the ground set E = V ×H of user× item assignments, an integer k, and integers ku, for all u ∈ V , let F ⊆ 2E

denote the set of feasible solutions to Problem 1. Then,M = (E ,F) is a matroid defined on E .

Proof. To prove this result, we will show that (i) the constraint |A| ≤ k corresponds to a uniform matroid defined on E , which we
denote byMk; (ii) the constraints |{i : (u, i) ∈ A}| ≤ ku, for all u ∈ V , correspond to a partition matroid defined on E , which we
denote byMp; (iii) the intersectionM =Mk ∩Mp is also a matroid defined on E .

Let Fk ⊆ 2E denote the set of assignments of size at most k, i.e., Fk = {A ⊆ E : |A| ≤ k}. It is easy to see thatMk = (E ,Fk)
is a uniform matroid.

Let Fp ⊆ 2E denote the set of assignments that do not violate any user attention bound constraint, i.e., for all A ∈ Fp, we have
|{i : (u, i) ∈ A}| ≤ ku, for all u ∈ V . Define Eu = {(u, i) : i ∈ H}, for all u ∈ V . The sets Eu, with u ∈ V , form a partition of E
into n disjoint sets. Notice that an assignment A ⊆ E can belong in Fp if and only if

|A ∩ Eu| ≤ ku, for all u ∈ V.
Hence,Mp = (E ,Fp) is a partition matroid.

Notice that the set F of feasible solutions to Problem 1 is given by F = Fk ∩Fp. Hence, the set system (E ,F) corresponds to the
intersection of matroidsMk andMp that are both defined on E . Note that the intersection of two matroids is not necessarily a matroid

2. We say that a pair (u, i) is feasible if it can be added to the current assignment AG without breaking the attention bound constraint ku.
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in general. However, in this case we have the intersection of a matroid with a uniform matroid, which is known to always result in a
matroid; this operation is known as the truncation of a matroid [29].

Theorem 2. Algorithm 1 achieves an approximation guarantee of 1/2.

Proof. As we have shown in Lemma 4, the constraints of Problem 1 correspond to a matroid defined on the ground set E . Moreover,
we have shown in Lemma 3 that the objective function of Problem 1 is monotone and submodular. Thus, Problem 1 corresponds to
monotone submodular function maximization subject to a matroid constraint.

Therefore, the approximation guarantee of Algorithm 1 thus follows from the result of Fisher et al. [30] for submodular function
maximization subject to a matroid constraint.

5 SCALABLE APPROXIMATION ALGORITHMS

The efficient implementation of the greedy algorithm (Algorithm 1) is a challenge as the operation on line 3 translates to a large
number of expected spread computations: in each iteration, the greedy algorithm requires to compute the expected marginal gain
E [F ((u, i) | AG)] for every feasible pair (u, i), which in turn requires to identify the set Igv (A ∪ {(u, i)}) of items that every v is
exposed to in each g v G̃, which is akin to computing the expected influence spread when h = 1.

Computing the expected influence spread of a given set of nodes under the independent-cascade model is #P-hard [31]. A
common practice is to estimate the expected spread using Monte Carlo (MC) simulations [2]. However, accurate estimation requires a
large number of MC simulations.

Hence, considerable effort has been devoted in the literature to developing scalable approximation algorithms. Recently, Borgs et
al. [3] introduced the idea of sampling reverse-reachable sets (RR-sets), and proposed a quasi-linear time randomized algorithm. Tang
et al. improved it to a near-linear time randomized algorithm, called Two-phase Influence Maximization (TIM) [27], and subsequently
tightened the lower bound on the number of random RR-sets required to estimate influence with high probability [26].

Random RR-sets are critical for efficient estimation of the expected influence spread. However, they are designed for the standard
influence-maximization problem, which is a special case of Problem 1. We introduce a non-trivial generalization of reverse-reachable
sets, which we name reverse co-exposure sets (RC-sets), and devise estimators for accurate estimation of the expected diversity exposure
score E [F (·)].

5.1 Reverse co-exposure sets
Recall that we can interpret G̃ as a probability distribution over all subgraphs of (V, Ẽ), where each edge (u, v)i ∈ Ẽ is realized with
probability piuv . Let g ∼ G̃ be a graph drawn from the random graph distribution G̃. Notice that, over the randomness in g, the set
Igv (A) can be regarded as a Multinoulli random variable with 2h outcomes, where each outcome corresponds to one of the subsets of
H . Now, let R̃v,g ⊆ E denote the set of pairs in g that can color-reach v, i.e., R̃v,g = {(u, i) ∈ E : pathig(u, v) = 1}. Also let

I(A ∩ R̃v,g) = {i ∈ H : (u, i) ∈ A ∩ R̃v,g}.
The following lemma establishes the activation equivalence property that forms the foundations of random reverse co-exposure sets

(RC-sets).

Lemma 5. Let I be a subset of H . For any assignment A and for all v ∈ V , we have

Prg∼G̃ (Igv (A) = I) = Prg∼G̃(I(A ∩ R̃v,g) = I).

Proof. Notice that in any possible world g, we have:

Igv (A) = {i ∈ H : ∃ (u, i) ∈ A such that pathig(u, v) = 1}
= {i ∈ H : (u, i) ∈ A ∩ R̃v,g}
= I(A ∩ R̃v,g).

Hence we have

Prg∼G̃ (Igv (A) = I) =
∑

gvG
Pr[g]1[Ig(A)=I]

=
∑

gvG
Pr[g]1[I(A∩R̃v,g)=I]

= Prg∼G̃(I(A ∩ R̃v,g) = I).

Next we formally define the concept of random RC-sets.

Random RC-sets. Given a probabilistic multi-graph G̃ = (V, Ẽ, p̃) and a set H of items, a random RC-set R̃v,g is generated as
follows. First, we remove each edge (u, v)i from G̃ with probability 1 − piuv , generating thus a possible world g. Next, we pick a
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Algorithm 2: TDEM (G̃, k, l, ε, `)

1 R̃ ← Sampling(G̃, k, ε, `)

2 Ã← RC-Greedy(R̃, k, l)
3 return Ã

target node v uniformly at random from V . Then, R̃v,g consists of the pairs that can color-reach v, i.e., all pairs (u, i) for which
pathig(u, v) = 1.

Sampling a random RC-set R̃v,g can be implemented efficiently by first choosing a target node v ∈ V uniformly at random and
then performing a breadth-first search (BFS) from v in G̃. Notice that a random RC-set Rv,g is subject to two levels of randomness:
(i) randomness over g ∼ G̃, and (ii) randomness over the selection of target node v ∼ V .

Lemma 6. For any random RC-set Rv,g , let the random variable w(A ∩ R̃v,g) = fv(I(A ∩ R̃v,g)) represent the diversity exposure
weight of A on R̃v,g . Then, E [F (A)] = n E

v,g

[
w(A ∩ R̃v,g)

]
, where the expectation is taken over the randomness in v ∼ V and

g ∼ G̃.

Proof. First, notice that over the randomness in g, fv(Igv (A)) is a function of a random variable Igv (A), hence, by the LOTUS
theorem [32], which defines expectation for functions of random variables, its expectation can be computed as

E
g

[fv(I
g
v (A))] =

∑

I∈2H
Pr
g

(Igv (A) = I) fv(I). (6)

Then, by Equation (6) and the activation equivalence property shown in Lemma 5, we have

E [F (A)] = E
g

[∑

v∈V
fv(I

g
v (A))

]

=
∑

v∈V
E
g

[fv(I
g
v (A))]

=
∑

v∈V

∑

I∈2H
Prg (Igv (A) = I) fv(I)

= n
∑

I∈2H
Prv,g(I(A ∩ R̃v,g) = I) fv(I)

= n E
v,g

[
fv(I(A ∩ R̃v,g))

]
.

Lemma 6 shows that we can estimate E [F (A)] by estimating nE
[
fv(I(A ∩ R̃v,g))

]
on a set of random RC-sets. This suggests

that if we have a sample R̃ of random RC-sets from which we can obtain, with high probability, accurate estimations of E [F (A)] for
every assignment A such that |A| ≤ k, then, we can accurately solve Problem 1 on the sample R̃ with high probability, as we show
next.

Given a sample R̃ of random RC-sets, let

WR̃(A) =

∑
R̃v,g∈R̃ w(A ∩ R̃v,g)

|R̃|
,

denote the diversity exposure weight of A on the sample. Notice that, as a direct consequence of Lemma 6, the quantity nWR̃(A) is
an unbiased estimator of E [F (A)].

Moreover, let
WR̃((u, i) | A) =WR̃(A ∪ {(u, i)})−WR̃(A),

denote the marginal increase in the diversity exposure weight of A if the pair (u, i) is added to A.

5.2 Two-phase Diversity Exposure Maximization
We now present our Two-phase Diversity Exposure Maximization algorithm (TDEM), which provides an approximate solution to
Problem 1. The pseudocode is shown in Algorithm 2. As it names suggests, TDEM operates in two phases: a sampling phase and a
greedy pair-selection phase. In the sampling phase, a sample R̃ of random RC-sets is generated (details later). This sample is provided
as input to RC-Greedy (Algorithm 3), which greedily selects feasible pairs (u, i) into Ã. The algorithm terminates when |Ã| = k and
it returns Ã as a solution to Problem 1.
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Algorithm 3: RC-Greedy(R̃, k, l)

1 Ã← ∅
2 while |Ã| ≤ k do
3 (u∗, i∗)← arg max(u,i)WR̃((u, i) | Ã), subject to: |{i : (u, i) ∈ Ã}| ≤ ku
4 Ã← Ã ∪ {(u∗, i∗)}
5 return Ã

Theorem 3. Assume that the algorithm RC-Greedy receives as input a sample R̃ of random RC-sets such that for any assignment A
of size at most k it holds that

∣∣nWR̃(A)− E [F (A)]
∣∣ < ε

2
OPT, (7)

with probability at least 1 − n−`/
(nh
k

)
. Then, RC-Greedy returns a ( 1

2 − ε)-approximate solution to Problem 1 with probability at
least 1− n−`. The running time of RC-Greedy is O(

∑
R̃∈R̃|R̃|), that is, linear in the total size of the RC-sets in the sample.

Proof. First, notice that, WR̃(·) is a linear combination of submodular fv(·)’s, hence is also submodular. Moreover, the activation
equivalence property depicted in in Lemma 5 shows that we can approximately solve Problem 1 by finding the assignment that
maximizesWR̃(·) on a sample R̃ of RC-sets. Now, let

Ã∗ = arg max
A∈F

WR̃(A).

Then by submodularity and monotonicity ofWR̃(·), we have

WR̃(Ã) ≥ 1

2
WR̃(Ã∗).

Given that Ã∗ is the optimal solution on the sample, we also haveWR̃(Ã∗) ≥ WR̃(A∗) whereA∗ is the optimal solution of Problem 1.
Reminding that Eq.7 holds for any assignment of size at most k w.p. at least 1− n−`/

(nh
k

)
, by a union bound, w.p. at least 1− 1/n`,

we have:

E
[
F (Ã)

]
≥ nWR̃(Ã)− ε

2
OPT,

≥ 1

2
WR̃(Ã∗)− ε

2
OPT,

≥ 1

2
WR̃(A∗)− ε

2
OPT,

≥ 1

2
(E [F (A∗)]− ε

2
OPT)− ε

2
OPT,

=
1

2
(OPT − ε

2
OPT)− ε

2
OPT,

≥ 1

2
OPT − εOPT.

Therefore the result follows.
Now we analyze the running time of RC-Greedy. First, we remind that the running of the greedy algorithm on RR sets, for

approximately solving the influence maximization problem, follows from the running time of the maximum cover problem [27]. For
the analysis of RC-Greedy, we use a similar reasoning and exploit a connection to the weighted version of the maximum coverage
problem. However, we note that our problem does not correspond to the weighted maximum coverage problem since (i) we are
interested in the weights of RC-sets even in the case when they have been already covered by a pair (u, i),3 (ii) the weights of the
ground set elements (which correspond to RC-sets) dynamically change based on the pairs that already covered them. However, these
differences do not affect the running time analysis much. The constant time operation to check whether an RC-set is covered by a pair
(u, i) is replaced by the operation of finding the next smaller and next larger labels compared to l(i) from the labels of the items that
have previously covered this RC-set. Using binary search, this can be done in logarithmic time.

Since this operation is independent of the seed node u, the number of “covered” checks performed on each RC-set is upper-bounded
by the size of the RC-set, times a logarithmic factor as explained above. Hence, the total running time complexity of RC-Greedy is
O(
∑
R̃∈R̃|R̃| log(|R̃|)).

Let θ∗ be the minimum sample size such that Equation (7) holds for all assignments of size at most k. Notice that since the desired
estimation accuracy is a function of OPT, the value of θ∗ also depends on OPT, which is unknown and in fact NP-hard to compute.
To circumvent the problem we follow a similar approach to TIM [27] and IMM [26]: we estimate a lower bound on the value of the

3. We say that a pair (u, i) covers an RC-set R̃ if (u, i) ∈ R̃
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optimal solution, and use it for the determination of the sample size. We also generalize the statistical test employed by IMM [26] for
estimating a lower bound when working with random RC-sets. Note that the results from influence maximization do not carry over to
our case, therefore our extension of the technique is non-trivial.

5.3 Determining the sample size
Let R̃1, R̃2, . . . , R̃θ be the sequence of random RC-sets generated in the sampling phase of TDEM. For a given assignment A, let wj
denote its weight on the RC-set R̃j . Notice that the choices of v and g during the creation of R̃j are independent of R̃1, . . . , R̃j−1.
However, as we will see soon, the sampling phase of TDEM employs an adaptive procedure, in which the decision to generate R̃j
depends on the outcomes of R̃1, . . . , R̃j−1. This creates dependencies between the RC-sets in the sample R̃. Thus, we can only use
concentration inequalities that allow dependencies in the sample. We first introduce the notions that are crucial in our analysis.

Definition 4 (Martingale). A sequence X1, X2, . . . of random variables is a martingale if and only if E[|Xj |] < +∞ and E[Xj |
X1, . . . , Xj−1] = Xj−1 for any j.

We now establish the connections to martingales. Let w = E [F (A)] /n. By Lemma 6 we have E[wj ] = w, for all j ∈ [1, θ].
Noting that the choice of v and g during the creation of R̃j is independent of R̃1, . . . , R̃j−1, we have

E[wj | w1, . . . , wj−1] = E[wj ] = w.

Let Mj =
∑j
z=1(wz − w), so E[Mj ] = 0, and

E[Mj |M1, . . . ,Mj−1] = E[Mj−1 + wj − w |M1, . . . ,Mj−1]

= Mj−1 − w + E[wj |M1, . . . ,Mj−1]

= Mj−1 − w + E[wj ]

= Mj−1,

therefore, the sequence M1, . . . ,Mθ is a martingale.
The following lemma from Chung and Lu [33] shows a concentration result for martingales, analogous to Chernoff bounds for

independent random variables.

Lemma 7. [Theorem 6.1, [33]] Let X1, X2, . . . be a martingale, such that X1 ≤ a, Var[X1] ≤ b1, |Xz −Xz−1| ≤ a for z ∈ [2, j],
and

Var[Xz | X1, . . . , Xz−1] ≤ bj , for z ∈ [2, j],

where Var[·] denotes the variance. Then, for any γ > 0

Pr (Xj − E[Xj ] ≥ γ) ≤ exp

(
− γ2

2(
∑j
z=1 bz + aγ/3)

)

We now discuss how to use this concentration result for the martingale M1, . . . ,Mθ . Notice that since wj ∈ [0, 1] for all j ∈ [1, θ],
we have |M1| = |w1 − w| ≤ 1 and |Mj −Mj−1| ≤ 1 for any j ∈ [2, θ]. We also have Var[M1] = Var[w1], and for any j ∈ [2, θ]

Var[Mj |M1, . . . ,Mj−1]

= Var[Mj−1 + wj − w |M1, . . . ,Mj−1]

= Var[wj |M1, . . . ,Mj−1]

= Var[wj ].

Recall that fv(Igv (A)) is a function of the Multinoulli random variable Igv (A), hence, w(A∩ R̃v,g) = fv(I(A∩ R̃v,g)). Based on
the LOTUS theorem [32] again, we have

E[fv(I(A ∩ R̃v,g))2] =
∑

I∈2H
Prv,g(I(A ∩ R̃v,g) = I) (fv(I))2.

Hence, we can bound the variance as follows

Var[fv(I(A ∩ R̃v,g))] = E[fv(I(A ∩ R̃v,g))2]− w2

≤ E[fv(I(A ∩ R̃v,g))2]

=
∑

I∈2H
Prv,g(I(A ∩ R̃v,g) = I) (fv(I))2

≤
∑

I∈2H
Prv,g(I(A ∩ R̃v,g) = I) fv(I)

= w,
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where the last inequality follows from the fact that fv(·) is bounded by 1. Therefore, Var[wj ] ≤ w for all j ∈ [1, θ]. Then, by using
Lemma 7, for Mθ =

∑θ
j=1(wj − w), with E[Mθ] = 0, a = 1, bj = w, for j = 2, . . . , θ, and γ = δθw, we have the following

corollary.

Corollary 1. For any δ > 0,

Pr




θ∑

j=1

wj − θw ≥ δθw

 ≤ exp

(
− δ2

2δ
3 + 2

θw

)
.

Moreover, for the martingale−M1, . . . ,−Mθ , we similarly have a = 1 and bj = w for j = 1, . . . , θ. Note also that E[−Mθ] = 0.
Hence, for −Mθ =

∑θ
j=1(w − wj) and γ = δθw we can obtain:

Corollary 2. For any δ > 0,

Pr




θ∑

j=1

wj − θw ≤ −δθw

 ≤ exp

(
− δ2

2δ
3 + 2

θw

)
.

We will use these corollaries frequently. We are now ready to start our analysis. We first provide a lower bound on the sample size,
which depends on OPT.

Lemma 8. Let θ = |R̃| denote the size of the random RC-sets returned by the sampling phase of TDEM. Suppose that θ satisfies

θ ≥ 4n(ε+ 6)
ln
(nh
k

)
+ ` lnn+ ln 2

3ε2 OPT
. (8)

Then, for any assignment A of size at most k, the following holds with probability at least 1− n−`/
(nh
k

)

∣∣nWR̃(A)− E [F (A)]
∣∣ < ε

2
OPT. (9)

For better readability, we have included the proof of Lemmas 8, 9, and 10 in the Supplementary material.
As stated in Theorem 3 the greedy pair selection phase of TDEM requires as input a sample R̃ of random RC-sets such that

Equation (7) holds for all assignments of size at most k. As shown in Lemma 8, this requirement translates to the lower bound
|R̃| ≥ λ/OPT, where

λ = 4n(ε+ 6)
ln
(nh
k

)
+ ` lnn+ ln 2

3ε2
. (10)

Given that OPT is unknown and NP-hard to compute, our objective is to identify a lower bound on OPT, which is as tight as possible,
so as to reduce the computational cost of generating the sample R̃. To achieve this goal, we extend the technique introduced by IMM
and we perform a statistical test B(x), such that if OPT < x then B(x) = false with high probability. Given that OPT ∈ (0, n]
and using the value of the greedy solution as an indicator of the magnitude of OPT, we can identify a lower bound on OPT by running
the test B(x) on O(log2 n) values of x, i.e., x = n/2, n/4, . . . , 2.

We now give details of our sampling algorithm, which first adaptively estimates a lower bound on the value of OPT by employing
the statistical test, and then it keeps generating random RC-sets into R̃ until |R̃| ≥ λ/LB.

The sampling algorithm, pseudocode provided in Algorithm 4, first sets R̃ = ∅ and initializes LB to a naı̈ve lower bound — which
we will explain soon. Then, it enters a for-loop with at most log2 n iterations. In the i-th iteration, the algorithm computes x = n/2i

and derives

θi =
( 2ε
3 + 2)

(
ln
(nh
k

)
+ ` lnn+ ln log2 n

)

ε2
n

x
.

Then the Algorithm inserts more random RC-sets into R̃ until |R̃| ≥ θi and invokes RC-Greedy (Algorithm 3). If R̃ satisfies the
following stopping condition

nWR̃(Ã) ≥ (1 + ε)x, (11)

the algorithm sets the lower bound LB =
nWR̃(Ã)

1+ε and terminates the for-loop. If this is the case, then algorithm generates more
random RC-sets into R̃ until |R̃| ≥ λ

LB and returns R̃. Otherwise, the algorithm proceeds with the (i + 1)-th iteration. If after
O(log2 n) iterations the algorithm cannot set LB, then it uses the naı̈ve lower bound and generates random RC-sets into R̃ until
|R̃| ≥ λ/LB0. The naı̈ve bound LB0 corresponds to the value of the minimum possible solution on the input instance for any positive
integer k, hence, we set LB0 = 1− 1

4 max
(v,i)∈E

gv({i}).4

The following theorem gives the correctness of Algorithm 4.

Theorem 4. With probability at least 1− n−`, Algorithm 4 returns a sample R̃ such that |R̃| ≥ λ/OPT.

4. Notice that this is analogous to IMM’s naive lower bound for the influence maximization problem that is equal to 1.
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Algorithm 4: Sampling(G̃, k, ε, `)

1 R̃← ∅ ;
2 LB← LB0 ;
3 for i = 1, . . . , log2 n− 1 do
4 x← n/2i ;

5 θi =
( 2ε

3 +2) (ln (nhk )+` lnn+ln log2 n)
ε2

n
x ;

6 while |R̃| ≤ θi do
7 R̃ ← R̃ ∪GenerateRC-Set;
8 Ãi ← RC-Greedy(R̃, k, l) ;
9 if nWR̃(Ãi) ≥ (1 + ε)x, then

10 LB← nWR̃(Ã)

1+ε ;
11 break;
12 θ ← λ/LB;
13 while |R̃| ≤ θ do
14 R̃ ← R̃ ∪GenerateRC-Set ;
15 return R̃

To prove Theorem 4, we first establish the following two lemmas, whose proof can be found in the Supplementary material.

Lemma 9. Assume that we invoke algorithm RC-Greedy on a sample R̃ of θ random RC-sets such that

θ ≥
( 2ε
3 + 2)

(
ln
(nh
k

)
+ ` lnn+ ln log2 n

)

ε2
n

x
.

Let Ã be the solution returned by the RC-Greedy. If nWR̃(Ã) ≥ (1 + ε)x, then OPT ≥ x with probability at least 1− n−`

log2 2n .

Lemma 10. Assume x, ε, R̃, and Ã are defined as in Lemma 9. If OPT ≥ x then nWR̃(Ã) ≤ (1 + ε) OPT with probability at least
1− n−`

log2 n
.

We are now ready prove Theorem 4.

Proof of Theorem 4. Let i∗ = dlog2
n

OPTe. We will first show that the probability the stopping condition holds while OPT < x
is at most (i∗ − 1)/(n` log2 n). Recall that the value of x is determined by n/2i at each iteration i. Therefore, for any i < i∗,
we have x = n/2i < OPT. Hence, by Lemma 9 and the union bound over i∗ − 1 iterations, the probability that OPT < x and
nWR̃(Ã)/(1 + ε) ≥ x is at most (i∗ − 1)/(n` log2 n). Moreover, it follows from Lemma 10 that the probability that OPT ≥ x and
nWR̃(Ã) > (1 + ε) OPT is at most 1/(n` log2 n). Hence, when the stopping condition holds, by union bound, the probability that
OPT ≥ x and nWR̃(Ã) ≤ (1 + ε) OPT is at least

1−
(

i∗ − 1

n` log2 n
+

1

n` log2 n

)
≥ 1− n−`.

Then by Lemma 10 and the union bound, it follows that with probability at least 1− n−`, we have

OPT ≥ nWR̃(Ã)

1 + ε
≥ x.

Therefore, the algorithm sets LB ≥ OPT with probability at least 1− n−` and returns a sample R̃ such that

|R̃| ≥ λ

LB
≥ λ

OPT

with probability at least 1− n−`.

6 EXPERIMENTS

In this section, we evaluate our proposed algorithm on a range of real-world datasets.
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TABLE 1
Statistics of the datasets.

Dataset n m d(G) ` `2 piuv
avg avg min avg max

DBLP:BSch 167 634 3.80 −0.60 0.50 0.034 0.116 0.249
DBLP:CPap 144 800 5.56 −0.26 0.28 0.034 0.117 0.247
DBLP:PYu 342 1964 5.74 −0.52 0.42 0.034 0.118 0.249
TPair:X 140 1372 9.80 −0.03 0.34 0.034 0.112 0.249
TPair:Y 338 8436 24.96 −0.07 0.43 0.034 0.107 0.249
TPair:Z 577 24427 42.33 0.12 0.36 0.034 0.113 0.250
Tweet:S5 2719 7714 2.84 0.24 0.52 0.034 0.114 0.249
Tweet:S2 4379 27765 6.34 0.26 0.52 0.034 0.113 0.249
Tweet:M5 5183 50165 9.68 0.26 0.51 0.034 0.113 0.250
Twitt:Follow 5454 835725 153.23 0.27 0.52 0.034 0.116 0.250
G:Brexit 22745 48830 2.15 0.65 0.72 0.010 0.014 0.110
G:IPhone 36742 49248 1.34 0.87 0.90 0.010 0.053 1.000
G:US-elect 23816 844700 35.47 0.46 0.75 0.010 0.013 0.043
G:Abortion 279505 670501 2.40 0.02 0.80 0.010 0.011 0.110
G:Fracking 374403 1366909 3.65 0.55 0.61 0.010 0.011 0.110
G:ObamaC 334617 1511670 4.52 0.12 0.61 0.010 0.012 0.110
Twitt:XL 481523 52378856 108.78 0.07 0.39 4.2e-5 0.028 1.000

6.1 Datasets
In our experiments, we use five collections of networks, one based on data from the DBLP bibliographic database, and the other four
datasets collected from Twitter.

The first collection consists of the one-hop egonets of three well-known researchers: B. Schneiderman (DBLP:BSch), P. Yu
(DBLP:PYu) and C. Papadimitriou (DBLP:CPap). Node leanings are derived from publication-venue information using the method
proposed by Galbrun et al. [34].

Twitt:Follow is the Twitter follower network obtained by Lahoti et al. [35] and Twitt:XL is a larger variant of this
same network. For node leanings we use rescaled ideology scores from Barberá et al. [36]. From the same harvest of tweets as
Twitt:Follow, we construct two additional collections of networks. The first collection contains the networks TPair:X, TPair:Y,
and TPair:Z. Each of these networks is obtained by selecting a pair of users who have opposite leanings but share neighbors and
extracting the neighborhood. The second collection contains the networks Tweet:S5, Tweet:S2, and Tweet:M5. Instead of
follower-followee relationships, these networks capture actual exchanges of tweets between users, with increasing requirements on the
strength of the exchanges.

The last collection consists of the six networks from the study of Garimella et al. [16]: G:Abortion, G:Brexit, G:Fracking,
G:IPhone, G:ObamaC and G:US-elect, Each network represents a Twitter follower network focused around topics with two
opposing sides. We obtain node leanings from estimated probabilities of users to retweet content from either of the opposing sides.

Note that solving our problem for h items on a network with m edges requires maintaining in memory a multigraph of h×m edges,
which is analogous to the requirement for solving the standard influence maximization problem on a graph with h×m edges. Hence,
our largest configuration, Twitt:XL with 25 items, effectively yields a graph with 52.5 M× 25 ≈ 1.3 B edges and is comparable to
IMM’s largest dataset of 1.5 B edges [26].

For the largest configuration Twitt:XL, following IMM [26], we use the Weighted-Cascade model [2] that assigns piu,v =
1/|N in(v)| for each item and edge to retain comparability. For the rest of the datasets, the propagation probabilities of items along
the edges of the network depend on the leaning of the item being propagated and the leanings of the emitting and receiving users.
Intuitively, the further away from the leaning of the users, the less likely an item is to be propagated.

We consider an exponential function to model how the propagation probabilities drop as the leaning of the item lies further away
from that of the communicating nodes. More specifically, we use an exponential function with parameters β and γ:

Φβ,γ(u, v, i) = β exp(−γ max(|`(u)− `(i)|, |`(v)− `(i)|)/2) .

We set β = 0.25 for all collections except G for which we use the edge probabilities present in the network as values for β and
add a 0.01 offset to all resulting values, in order to obtain reasonable propagation probabilities. We experiment with probabilities
obtained with the exponential function, letting γ = 2. We compare the propagation probabilities resulting from this function to an
exponential function with γ = 4 as well as a linear function. A heatmap of the resulting propagation probabilities can be found in the
Supplementary material.

We use 25 items with leanings evenly spread over the interval [−1, 1] as our pool of items in all the setups. For the smaller datasets,
we will look for assignments of size k = 5 with an attention bound ku = 1, while for larger datasets we use k = 50 and ku = 5. We
set ε = 0.2 and ` = 1 in all the experiments following [26].

Table 1 shows the basic statistics of the datasets used in our experiments. For each dataset, we indicate the number of nodes (n),
the number of edges (m), the density of the graph (d(G) = m/n), the average node leaning (`), the squared node leaning (`2), as well
as the minimum, average and maximum propagation probabilities, over all edges and items in the network (piuv).
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Fig. 1. Histograms of node leanings (left) and leaning differences across the edges (right) of DBLP, TPair and G networks.

Figures 1–3 show histograms of node leanings and leaning differences across the edges of each network from the different
collections.
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Fig. 2. Histograms of node leanings (left) and leaning differences across the edges (right) of Tweet networks.

6.2 Comparison baselines
To better understand the quality of the returned assignments, we compare the solution of our algorithm to item–user assignments
obtained by simple yet intuitive baselines. Recall that the running time of TDEM is linear in the total number of generated RC-sets,
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Fig. 3. Histograms of node leanings (left) and leaning differences across the edges (right) of Twitt networks.

TABLE 2
Results summary: Diversity exposure scores.

F (A) Mem. RT
Dataset (k, ku) MYOPIC MAX-VAR MIN-VAR TDEM (mb) (s)

DBLP:BSch (5, 1) 0.034 0.014 0.042 0.050 457 2.16
DBLP:CPap (5, 1) 0.077 0.019 0.070 0.111 276 1.8
DBLP:PYu (5, 1) 0.098 0.018 0.129 0.167 285 2.68
TPair:X (5, 1) 0.089 0.026 0.071 0.129 279 1.97
TPair:Y (5, 1) 0.175 0.046 0.156 0.194 174 2.34
TPair:Z (5, 1) 0.449 0.327 0.351 0.433 1 658 42.92
Tweet:S5 (50, 5) 0.019 0.011 0.023 0.030 5 943 24.12
Tweet:S2 (50, 5) 0.087 0.021 0.152 0.177 656 9.41
Tweet:M5 (50, 5) 0.187 0.052 0.256 0.334 3 100 77.47
Twitt:Follow (50, 5) 0.202 0.199 0.093 0.323 373 44.07
G:Brexit (50, 5) 0.001 0.001 0.001 0.003 23 725 72.49
G:IPhone (50, 5) 0.025 0.007 0.016 0.045 1 803 15.49
G:US-elect (50, 5) 0.001 0.003 0.004 0.009 45 828 525.21
G:Abortion (50, 5) 0.001 0.000 0.000 0.001 154 588 1 275.25
G:Fracking (50, 5) 0.000 0.000 0.000 0.001 400 565 4 785.12
G:ObamaC (50, 5) 0.000 0.000 0.000 0.001 360 449 3 936.16
Twitt:XL (50, 5) 0.051 0.047 0.034 0.122 3 438 806.05

which is very efficient. In order to not give it an unfair advantage against the comparison baselines, we store the RC-sets computed
during the RC-set generation step of TDEM, and use them to also compute the baselines.5

The first baseline, MIN-VAR, selects at each iteration the highest-degree node v and greedily assigns this node the kv items that
minimize the variance among the items assigned to v so far. When kv items are assigned to v, MIN-VAR repeats the same steps for
the next highest-degree node, until a total of k assignments are obtained. The second baseline, MAX-VAR, operates almost identical
to MIN-VAR, with the only difference being the maximization of the variance instead of minimization. The third baseline, MYOPIC,
selects the (next) highest degree node v at each iteration, like the other two baselines, but assigns a set Av ∈ H of kv items, in a
greedy fashion, to maximize fv(Av). We also considered a simple baseline that uses fully random assignments. However it performed
very poorly, obtaining exposure scores several orders of magnitude smaller than TDEM, so we decided to leave it out.

6.3 Results
Table 2 shows the diversity exposure scores achieved by the three baselines and by our algorithm, TDEM. For easier comparison, we
report the average diversity exposure score of the individuals of the social network in each dataset. Recall that the smallest possible
value is 0 and the maximum possible value is 1. Additionally, we report TDEM’s memory consumption (in megabytes) and runtime
(in seconds). The main computational bottleneck comes from the RC-generation step, which is also used by the baselines. Therefore,
we do not report their memory consumption and runtime, since it differs only by a negligible amount to that of Greedy, as the rest
of the computations performed by the baselines are trivial. In summary, TDEM clearly outperforms the simple baselines in terms of
the diversity exposure scores obtained. TDEM is able to identify non-trivial assignments that yield optimized diversity exposure in the
network. That is, it finds a balance between exposure to diverse opinions yet selects items and nodes that do not have overly extreme
leanings so as not to hinder propagation.

Observe that the runtime does not grow in proportion to the size of the network. Instead, it depends on the ability of items to
propagate through the network, which depends, in turn, on the particular network structure, distribution of leanings, and propagation
probabilities. Indeed, according to Theorem 4, the more limited the propagation of items, the more samples are needed to ensure
adequate estimation of the spread. Thanks to the use of reverse exposure sets, we obtain a highly efficient algorithm, especially
considering that we are dealing with h different influence spread problems, one for each item.

7 CONCLUSIONS

In this paper we present the first work tackling the problem of maximizing the diversity of exposure in an item-aware information
propagation setting, taking a step towards breaking filter bubbles. Our problem formulation models many aspects of real-life social

5. Our implementation is publicly available: https://github.com/aslayci/TDEM extension
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networks, resulting in a realistic model and a challenging computational problem. Despite the inherent difficulty of the problem,
we are able to devise an algorithm that comes with an approximation guarantee, and is very scalable thanks to a novel extension
of reverse-reachable sets. Through experiments on real-world datasets, we show that our method performs well and scales to large
datasets.

Our work opens avenues for future work. One interesting problem is to improve the approximation guarantee of our algorithm
by investigating further properties of the matroid formulation. Second, it would be interesting to experiment with different diversity
functions, as well as to extend our approach for more complex propagation models such as, in particular, temporal variants of the
Independent-Cascade model, with propagation probabilities that change over time.
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nWR̃(Ã) ≥ (1 + ε)x =⇒ OPT ≥ x

is equivalent to

OPT < x =⇒ nWR̃(Ã) < (1 + ε)x.
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Fig. 1. Functions for computing the propagation probabilities.

To conclude, by the union bound, if OPT < x then we have
nWR̃(Ã) < (1 + ε)x with probability at least 1− n−`
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Proof. To prove this result we will show that when OPT ≥ x,
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4 ASSIGNMENT OF IC MODEL PROBABILITIES

Heat map of the propagation probabilities: In Fig. 1 we plot the
values of three functions used to compute the probabilities piuv for
the different combinations of leanings of the nodes and item, `(u),
`(v) and `(i).

More specifically, we considered a linear function with param-
eter β:

Φlin,β(u, v, i) = β · (1−max(|`(u)− `(i)|, |`(v)− `(i)|)/2) ,

and an exponential function with parameters β and γ:

Φexp,β,γ(u, v, i) = β·exp(−γ·max(|`(u)−`(i)|, |`(v)−`(i)|)/2) .

We set β = 0.25 and for the exponential functions γ = 2 and
γ = 4.

We observe that for the exponential function with γ = 2
we obtain the most reasonable values. The probability mass is
spread more widely than for γ = 4, which decays the probability
too much, for diverging leanings. On the other hand, the linear
function results in overall higher transmission probabilities. We
feel that the exponential function for γ = 2 best explains the filter
bubble effect observed in social networks, while still allowing
sufficient propagation of the items across the network.


