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Abstract—Local differential privacy (LDP) is an emerging technique for privacy-preserving data collection without a trusted collector.
Despite its strong privacy guarantee, LDP cannot be easily applied to real-world graph analysis tasks such as community detection and
centrality analysis due to its high implementation complexity and low data utility. In this paper, we address these two issues by
presenting LF-GDPR, the first LDP-enabled graph metric estimation framework for graph analysis. It collects two atomic graph
metrics—the adjacency bit vector and node degree—from each node locally. LF-GDPR simplifies the job of implementing LDP-related
steps (e.g., local perturbation, aggregation and calibration) for a graph metric estimation task by providing either a complete or a
parameterized algorithm for each step. To address low data utility of LDP, it optimally allocates privacy budget between the two atomic
metrics during data collection. To demonstrate the usage of LF-GDPR, we show use cases on two common graph analysis tasks,
namely, clustering coefficient estimation and community detection. The privacy and utility achieved by LF-GDPR are verified through

theoretical analysis and extensive experimental results.

Index Terms—Local differential privacy, graph metric, privacy-preserving graph analysis

1 INTRODUCTION

ITH the prevalence of big data and machine learning,
Wgraph analytics has received great attention and nur-
tured numerous applications in web, social network, transpor-
tation, and knowledge base. However, recent privacy
incidents, particularly the Facebook privacy scandal, pose
real-life threats to any centralized party who needs to safeguard
graph data of individuals while providing graph analysis ser-
vice to third parties. In that scandal, a third-party developer
Cambridge Analytica retrieves the personal profiles of 87 mil-
lion Facebook users through the Facebook Graph API for
third-party apps [1], [2]. The main cause is that this API allows
these apps to access the friends list of a user by a simple authori-
zation, through which these apps propagate like virus in the
social network. Unfortunately, most existing privacy models
on graph assume a centralized trusted party to release the
graph data that satisfies certain privacy metrics, for example,
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the k-neighborhood anonymity [3], k-degree anonymity [4], k-
automorphism [5], k-isomorphism [6], and differential pri-
vacy [7], [8]. However, in practice even Facebook cannot be
fully trusted or is in the centralized position to release graph
data on behalf of each user. For decentralized graphs in which
each user or party locally maintains a limited view of the
graph, there is even no such a central party. These graphs,
such as the World Wide Web, federated knowledge graphs,
peer-to-peer (e.g., vehicular and mobile ad-hoc) and block-
chain networks, and contact tracing graph for COVID-19, are
in a more compelling need to find alternative privacy models
without a trusted party [9].

A promising model is local differential privacy (LDP)
[10], where each individual user locally perturbs her share of
graph metrics (e.g., node degree and adjacency list, depend-
ing on the graph analysis task) before sending them to the
data collector for analysis. As such, the data collector does
not need to be trusted. A recent work LDPGen [11] has also
shown the potential of LDP for graph analytics. In that
work, LDP is used to collect node degree for synthetic graph
generation. However, such solution is usually task spe-
cific—for different tasks, such as centrality analysis and
community detection, dedicated LDP solutions must be
designed from scratch. To show how complicated it is, an
LDP solution usually takes four steps: (1) selecting graph
metrics to collect from users for the target metric (e.g., clus-
tering coefficient, modularity, or centrality) of this task, (2)
designing a local perturbation algorithm for users to report
these metrics under LDP, (3) designing a collector-side agg-
regation algorithm to estimate the target metric based on
the perturbed data, (4) designing an optional calibration
algorithm for the target metric if the estimation is biased.
Step (4) is important as locally perturbed data often causes
bias (i.e., deviation from the true mean) in the collector-side
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statistics. Obviously, working out such a solution requires in-
depth knowledge of LDP, which hinders the embrace of LDP
by more graph applications.

In this paper, we address this challenge by presenting
Local Framework for Graph with Differentially Private
Release (LF-GDPR), the first LDP-enabled graph metric esti-
mation framework for general graph analysis. It simplifies
the job of a graph application to design an LDP solution for a
graph metric estimation task by providing complete or
parameterized algorithms for steps (2)-(4) as above. As long
as the target graph metric can be derived from the two atomic
metrics, namely, the adjacency bit vector and node degree,
the parameterized algorithms in steps (2)-(4) can be com-
pleted with ease. Furthermore, LF-GDPR features an optimal
allocation of privacy budget between the two atomic metrics.
To illustrate the usage of LF-GDPR, we will also show use
cases on two common graph analysis tasks, namely, cluster-
ing coefficient estimation and community detection. To sum-
marize, our main contributions in this paper are as follows.

1)  This is the first LDP-enabled graph metric estimation
framework for a variety of graph analysis tasks.

2) We provide complete or parameterized algorithms
for local perturbation, collector-side aggregation,
and calibration.

3) We present an optimal solution to allocate the pri-
vacy budget between adjacency bit vector and node
degree.

4)  We show two use cases of LF-GDPR and compare
their performance with existing methods on real
datasets.

The rest of the paper is organized as follows. Section 2
introduces preliminaries on local differential privacy and its
application in graph analytics. Section 3 presents an over-
view of LE-GDPR. Section 4 describes the implementation
details of this framework. Sections 5 and 6 show the detailed
usage of LF-GDPR in two use cases. Section 7 presents the
experimental results, followed by Section 8 which reviews
related work. Section 9 draws a conclusion with future
work.

2 PRELIMINARIES

2.1 Local Differential Privacy

Differential privacy [12] (DP) is defined on a randomized
algorithm A of a sensitive database. A is said to satisfy e-dif-
ferential privacy, if for any two neighboring databases D
and D' that differ only in one tuple, and for any possible
output s of A, we have % < €°. In essence, DP guaran-
tees that after observing any output of 4, an adversary can-
not infer with high confidence whether the input database
is D or I), thus hiding the existence or non-existence of any
individual tuple.

Centralized DP requires the real database stored in a
trusted server where the randomized algorithm .4 can exe-
cute. However, this assumption does not hold in many real-
world applications. Local differential privacy [10], [13] is pro-
posed to assume each individual is responsible for her own
tuple in the database. In LDP, each user locally perturbs her
tuple using a randomized algorithm before sending it to the
untrusted data collector. Formally, a randomized algorithm
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A satisfies e-local differential privacy, if for any two input
tuples t and ¢’ and for any output t*, % < ef holds. In
essence, LDP guarantees that after observing any output
tuple ¢*, the untrusted data collector cannot infer with high
confidence whether the input tuple is ¢t or ¢'.

2.2 Local Differential Privacy on Graphs

In this paper, a graph G is defined as G = (V, E), where V =
{1,2,...,n} is the set of nodes, and F C V x V is the set of
edges. For the node i, d; denotes its degree and B; =
{b1, b2, ...,b,} denotes its adjacency bit vector, where b; = 1 if
and only if edge (i, j) € I, and otherwise b; = 0. The adja-
cency bit vectors of all nodes constitute the adjacency matrix
of graph G, or formally, M,,,, = {B1,Bo. ..., B,}.

As with existing LDP works, we concern attacks where
an adversary can infer with high confidence whether an
edge exists or not, which compromises a user’s relation ano-
nymity in a social network. As a graph has both nodes and
edges, LDP can be applied to either of them, which leads to
node local differential privacy [14] and edge local differential pri-
vacy [15]. Node LDP (resp. edge LDP) guarantees the output
of a randomized algorithm does not reveal whether any
individual node (resp. edge) exists in G.

Definition 2.1. (Node local differential privacy). A ran-
domized algorithm A satisfies e-node local differential privacy
(ak.a., enode LDP), if and only if for any two zzi]'acency bit

vectors B, B' and any output s € range(A), % <ef
holds.

Definition 2.2. (Edge local differential privacy). A ran-
domized algorithm A satisfies e-edge local differential privacy
(ak.a., e-edge LDP), if and only if for any two adjacency bit
vectors B and B' that differ only in one bit, and any output s €

range(A), % < € holds.

Both node and edge LDP satisfy sequential composition.

Theorem 2.3. (Sequential Composition) [11]. Given c ran-
domized algorithms A;(1 < i <¢), each satisfying e;-node
(resp. edge) LDP, the collection of these algorithms A;(1 < i <
c) satisfies (3 ¢;)-node (resp. edge) LDP.

Edge-LDP is a relaxation of node-LDP, which limits the
definition of neighbors from any two adjacency bit vectors
to those that differ only in one bit (i.e., one edge). Nonethe-
less, edge-LDP can still achieve strong indistinguishability
of each edge’s existence, which suffices for many graph
applications such as social networks while preserving high
utility [14]. As such, in this paper we assume edge-LDP as
with all existing graph LDP works.

3 LF-GDPR: FRAMEWORK OVERVIEW

In this section, we first introduce the rationale behind LF-
GDPR for privacy-preserving graph analytics and then
overview its workflow. Finally, we introduce two use cases
of LF-GDPR.

3.1 Design Principle

The core of privacy-preserving graph analytics often
involves estimating some target graph metric without access-
ing the original graph. Under the DP/LDP privacy model,
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there are two solution paradigms, namely, generating a syn- L —
. . . F
thetic graph to calculate this metric [11], [16], [17], [18], [19]
and designing a dedicated DP/LDP solution for such met- Graph Metric Estimation m

ric [7], [14], [20], [21], [22]. The former provides a general
solution but suffers from low estimation accuracy as the
neighborhood information in the original graph is missing from
the synthetic graph. The latter can achieve higher estimation
accuracy but cannot generalize such a dedicated solution to
other problems—it works poorly or even no longer works if
the target graph metric or graph type (e.g., undirected
graph, attributed graph, and DAG) is changed [8], [18].

LF-GDPR is our answer to both solution generality and
estimation accuracy under the LDP model. It collects from
each node i two atomic graph metrics that can derive a
wide range of common metrics. The first is the adjacency bit
vector B, where each element j is 1 only if j is a neighbor of
i. B of all nodes collectively constitutes the adjacency matrix
M of the graph. The second metric is node degree vector D =
{dy,ds,...,d,}, which is frequently used in graph analytics
to measure the density of connectivity [21]. Table 1 lists
some of the most popular graph analysis tasks in the litera-
ture [23], [24], [25] and their graph metrics, all of which can
be derived from B, M, and D.

Intuitively, for each node, d can be estimated from B.
However, given a large graph and limited privacy budget,
the estimation accuracy could be too noisy to be meaningful.
To illustrate this, let us assume each bit of the adjacency bit
vector B is perturbed independently by the classic Random-
ized Response (RR) [26] algorithm with privacy budget e. As
stated in [26], the variance of the estimated node degree d is

S

Even for a moderate social graph with extremely large privacy
budget, for example, d = 100, » = 1M, and ¢ = 8 (the largest ¢
used in [11]is 7), Var[d] ~ 435 > 4d, which means the vari-
ance of the estimated degree is over 4 times that of the degree
itself. As such, we choose to spend some privacy budget on an
independently perturbed degree. This further motivates us to
design an optimal privacy budget allocation between adja-
cency bit vector B and node degree d, to minimize the distance
between the target graph metric and the estimated one.

To summarize, in LF-GDPR each node sends two per-
turbed atomic metrics, namely, the adjacency bit vector B
(perturbed from B) and node degree d (perturbed from d),
to the data collector, who then aggregates them to estimate
the target graph metric.

1)

Fig. 1. An overview of LF-GDPR.

3.2 LF-GDPR Overview

LF-GDPR works as shown in Fig. 1. A data collector who
wishes to estimate a target graph metric F first reduces it
from the adjacency matrix M and node degree vector D of
all nodes by deriving a mapping function F' = Map(M, D)
(step @). Based on this reduction, LE-GDPR optimally allo-
cates the total privacy budget ¢ between M and D, denoted
by e and e, respectively (step @). Then each node locally
perturbs its adjacency bit vector B into B to satisfy ¢;-edge
LDP, and perturbs its node degree d into d to satisfy e;-edge
LDP (step @). According to the composability of LDP, each
node then satisfies e-edge LDP. Note that this step is chal-
lenging as both B and d are correlated among nodes. For B,
the jth bit of node i’s adjacency bit vector is the same as the
ith bit of node j's adjacency bit vector. For d, whether i and
J has an edge affects both degrees of ¢ and j. Sections 4.2
and 4.3 solve this issue and send out the perturbed B and d,
ie, B and d. The data collector receives them from all
nodes, aggregates them according to the mapping function
Map(-) to obtain the estimated target metric F, and further
calibrates it to suppress estimation bias and improve accu-
racy (step @). The resulted F is then used for graph analy51s
The detailed implementation of LF-GDPR for steps O
will be presented in Section 4. Note that the algorithms in
steps WD are parameterized, which can only be deter-
mined when the target graph metric F is specified.

Example 3.2. LF-GDPR against Facebook Privacy Scan-
dal. Facebook API essentially controls how a third-party
app accesses the data of each individual user. To limit the
access right of an average app (e.g., the one developed by
Cambridge Analytica) while still supporting graph ana-
lytics, Facebook API should have a new permission rule
that only allows such app to access the perturbed adja-
cency bit vector and degree of a user’s friends list under
€1 and e;-edge LDP, respectively. In the Cambridge Ana-
lytica case, the app is a personality test, so the app devel-
oper may choose structural similarity as the target graph
metric and use the estimated value for the personality
test. To estimate structural similarity, the app then imple-
ments steps of LE-GDPR. On the user side, each
user u has a privacy budget ¢, for her friends list.
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If €, > €1 + €, the user can grant access to this app for
perturbed adjacency bit vector and degree; otherwise, the
user simply ignores this access request.

3.3 Two Cases of Graph Analytics Using LF-GDPR

To illustrate LF-GDPR, we show two use cases throughout
this paper. In this subsection, we introduce their back-
ground and target graph metrics F. Their usage details,
including the reduction of F (step @), the optimal privacy
budget allocation (step @), and the aggregation and calibra-
tion (step @), are presented in Sections 5 and 6 respectively.

3.3.1 Clustering Coefficient Estimation

The clustering coefficient of a node measures the connectiv-
ity in its neighborhood, i.e., the subgraph of its neighbors. For-
mally, the clustering coefficient cc; of node i is defined as

2t
di(di — 1)’

CcC; =

where ¢; denotes the number of edges in the neighborhood
of node ¢, or equivalently, the number of triangles incident
to node 1. A clustering coefficient is in the range of [0,1], and
a high value indicates its neighbors tend to directly connect
to each other. It is an important measure of graph structure,
and is widely used in graph analytics. For example, the
graph model BTER [11], [27] needs clustering coefficient (as
well as node degree) to generate a synthetic graph. As it
depends on the neighborhood information and thus cannot
be calculated locally in each node, existing LDP techniques
for values, such as [28], [29], [30], cannot work. The detailed
solution by LF-GDPR will be shown in Section 5.

3.3.2 Modularity Estimation and Community Detection

Communities (i.e., densely connected subgraphs) are com-
monly used in graph analytics to understand the underlying
structure of a graph. The criterion of a good community is
similar to a graph partition—with many intra-community
edges and only a few inter-community edges. Many popular
community detection methods are based on modularity maxi-
mization [31], which iteratively improves modularity, a
widely-adopted metric to measure the quality of detected com-
munities. Formally, the modularity @ of a graph is defined as
the sum of individual modularities ¢. of all communities C

T T L,; K{: 2
Q_;qc_;[f_(ﬁ)} (2)

where r is the number of communities in the graph, L is the
total number of edges, L. is the total number of edges in
community C, and K, is the total degree of all nodes in C. Q
is in the range of [—1, 1], where a higher value is more desir-
able. As with clustering coefficient, neither individual nor
overall modularity can be estimated by dedicated LDP tech-
niques which do not send the adjacency bit vectors. Section 6
will elaborate on how to use LF-GDPR to estimate it.

4 LF-GDPR: IMPLEMENTATION

In this section, we present the implementation details of LF-
GDPR. We first discuss graph metric reduction (step @),
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followed by the perturbation protocols for adjacency bit vec-
tor and node degree, respectively (step @). Then we elabo-
rate on the aggregation and calibration algorithm (step @).
Finally, we present the optimal allocation of privacy budget
between adjacency bit vector and node degree (step @).

4.1 Graph Metric Reduction

The reduction outputs a polynomial mapping function
Map(-) from the target graph metric F' to the adjacency
matrix M ={B;,Bs,...,B,} and degree vector D =
{di,dy,....d,}, i.e., F = Map(M, D). Without loss of gener-
ality, we assume F'is a polynomial of M and D. That is, F'is
a sum of terms £}, each of which is a multiple of M and D of
some exponents. Since F' and F; are scalars, in each term £,
we need functions f and g to transform M and D with expo-
nents to scalars, respectively. Formally,

F:Z,F/ Z Jo, (M) - gy, (

where M*! is the kjth power of adjacency matrix M whose
cell (4, j) denotes the number of paths between node ¢ and j
of length k;, ¢, projects a matrix to a cell, a row, a column or
a sub-matrix, and fy (-) denotes an aggregation function f
(e.g., sum) after projection ¢,. Likewise, ¥, projects a vector
to a scalar or a sub-vector, and gy, (-) denotes an aggregation
function g after ;.

As such, the metric reduction step is to determine k;,
fo,(-), and gy, (-) for each term F; in Eq. (3).

D), 3)

4.2 Adjacency Bit Vector Perturbation

An intuitive approach, known as Randomized Neighbor List
(RNL) [11], perturbs each bit of the vector independently by
the classic Randomized Response [26]. Formally, given an
adjacency bit vector B = {by, by, . ..,b,}, and privacy budget
€1, the perturbed vector B = {b1,bs,...,b,} is obtained as

follows:
efl
bi _ bz W.p. 1+ftl ) (4)

Note that here basic RR rather than OUE [32] is adopted.
This is because adjacency bit vector is a binary vector, and
according to [33], RR can achieve better accuracy than OUE.

Note that in Eq. (4), the probability of preserving an edge
(bit “1’) or non-edge (bit ‘0), i.e, p =1, is not propor-
tional to the amount of edge information disclosed to the
collector. In fact, the success rate of the collector inferring an
observed edge is a true edge is , where y is the
edge density in a graph. Althougﬁ the edge den51ty y is not
considered in the definition of edge LDP, but it contributes
to the posterior probability for the collector to infer the truth
from an observed edge or non-edge. As such, a high edge
density y also plays an important role in raising the success
rate. But it is normally very small in social networks, and
furthermore, such statics are generally not precisely owned
by the collector.

RNL is proved to satisfy €;-edge LDP for each user. How-
ever, for undirected graphs, RNL can only achieve 2¢;-edge LDP
for the collector, because the data collector witnesses the
same edge perturbed twice and independently. Let M=
{Bl, Bs,...,B,} denote the perturbed adjacency matrix.
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Fig. 2. lllustration of RABV protocol.

The edge between nodes i and j appears in both M;; and
M;; Ji» each perturbed with privacy budget ¢;. Then according
to the theorem of composability, RNL becomes a 2¢;-edge
LDP algorithm for an undirected graph, which is less pri-
vate. A formal proof is as follows.

For the original adjacency matrix M of an undirected
graph, M;; = Mj; always holds for any two nodes 7 and j.
By observing two perturbed bits M;; and M;; in the per-
turbed adjacency matrix M, the posterior probability that
there exists an edge between nodes ¢ and j can be denoted
by Pr[M;; = M;; =1 ]]b ij, Mj;]. Further, we have

_ PrMy; = Mj; =1 |M;; = Mj; = 1]

Pr[M, =M;; =0 ]MU = M;; = 1}

Pr[M;; =1 |M;; = 1] - Pr[M Vj; = 1]
T Pr(M,,; =0 | M = 1] -Pr[]V —0 yM — 1]

el _efl
_ L4efl 14el o 2¢
i1 ¢
Ttef  Tteat

which proves that RNL only provides 2¢,-edge LDP.

Furthermore, RNL requires each user to perturb and send
all n bits in the adjacency bit vector to data collector, which
incurs a high computation and communication cost.

To address the problems of RNL, we propose a more pri-
vate and efficient protocol Randomized Adjacency Bit Vector
(RABV) to perturb edges in undirected graphs. As shown
in Fig. 2b, the adjacency matrix is composed of n rows, each
corresponding to the adjacency bit vector of a node. For the
first 1 < ¢ < || nodes, RABV uses RR as in Eq. (4) to per-
turb and transmit ¢ = 4] bits (i.e., bits in grey)—from the
(i + Dth bit to the (i + 1 + t mod n)th bit; for the rest nodes,
RABV uses RR to perturb and transmit ¢ = |“;!] bits in the
same way. In essence, RABV perturbs one and only one bit for
each pair of symmetric bits in the adjacency matrix. The
data collector can then obtain the whole matrix by copying
bits in grey to their symmetric positions.

Following the same proof of RNL, RABV is guaranteed
to satisfy ¢;-edge LDP for the collector. Further, since each
node only perturbs and transmits about half of the bits in an
adjacency bit vector, RABYV significantly reduces computa-
tion and communication cost of RNL.

4.3 Node Degree Perturbation

Releasing the degree of a node while satisfying edge e-LDP
is essentially a centralized DP problem because all edges
incident to this node, or equivalently, all bits in its adjacency
bit vector, form a database and the degree is a count
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function. In the literature, Laplace Mechanism [12] is the pre-
dominant technique to perturb numerical function values
such as counts. As such, LE-GDPR adopts it to perturb the
degree d; of each node i. According to the definition of edge
LDP, two adjacency bit vectors B and B’ are two neighbor-
ing databases if they differ in only one bit. As such, the sen-
sitivity of degree (i.e., count function) is 1, and therefore
adding Laplace noise Lap(< -) to the node degree can satisfy
¢,-LDP. That is, d; = d; + Lap( )

Similar to perturbing ad]acency bit vector, however, in
the above naive approach the data collector witnesses two
node degrees d; and d; perturbed independently, but they
share the same edge between ¢ and j. As such, whether this
edge exists or not contributes to both d; and d;. In the most
extreme case where there are only two nodes and one edge
in the graph, d; =1 and d; = 1, both of which indicate the
existence of this edge. If it is removed, both d; and dy will
decrease by 1, causing the sensitivity of node degree pertur-
bation to be 2. As DP or LDP does not refrain an adversary
from possessing any background knowledge, in the worst
case the collector already knows all edges except for this
one. As such, witnessing the two node degrees d; and d; is
degenerated to witnessing the edge between 4 and j twice
and independently.

Unfortunately, the remedy that works for perturbing
adjacency bit vector cannot be adopted here, as direct bit
copy is not feasible for degree. As such, we take an alterna-
tive approach to increase the Laplace noise. The following
theorem proves that if we add Laplace noise Lap(%) to every
node degree, €2-LDP can be satisfied for the collector.

Theorem 4.1. A perturbation algorithm A satisﬁes e2-LDP for
the collector if it adds Laplace noise Lap( ) to every node
degree d;, i.e., d; = A(d;) = d; + Lap(> )

Proof By adding Laplace noise Lap( 2) to any node degree
d, i.e., d; = d; + Lap(Z), the perturbation algorithm A sat-
isfies %—LDP for node i. For the collector, whether there is
an edge between any two nodes i and j can be derived
from both perturbed degrees d; and d;. Then according to
the composability property of Theorem 2.3, the perturba-
tion algorithm A satisfies e;-LDP for the collector. m|

The perturbed degree d is a coarse estimation of the true
degree. Now that we have both dand d. ABv, the degree esti-
mated from the perturbed adjacency bit vector B,' we can
use Maximum Likelihood Estimation (MLE) [34] to obtain a
refined estimation d*. The rationale of this refinement is
illustrated in Fig. 3. Before refinement (Fig. 3a), as each
bit of B follows Bernoulli distribution, according to De
Moivre-Laplace Central Limit Theorem, the probability

density function of d4py can be approximated by a Gauss-
_le—d)? .
e 27 , where the variance

fan distribution fi(z) = =

n

ol=n- [ﬁ @ 1Y’} is derived in Eq. (1).? On the other
hand, as d is obtained by adding Laplace noise to d, the

1. A naive and biased estimation is JABV = Z}":] b~] In I”ixavmple 4.4,

= b;
we show a cahbrated and unbiased estimation d gy = 2;)—111] + %,
where p = £

2. Here we replace d with d in Eq. (1) for simplicity.
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Probability density function Probability density function

® From perturbed degree
O From perturbed ABV

— True degree follows
Laplace/Gaussian
distribution

>

dAb’ v d

(a) Before refinement

(b) After refinement

Fig. 3. Refining d to d* by MLE.

probability den51tyJunct10n of d follows a Laplace distribu-

tion fo(z) =2e” =

shifts both distrlbutlons to share the same mean, i.e., the
true degree, as they are both drawn from it. To estimate this
mean d* by MLE, we derive the joint likelihood of observing
both d and d 4pv, and maximize it. Since they are both inde-
pendently perturbed, the joint likelihood is the multiplica-
tion of individual probabilities. Formally,

d = arg max fl(gABV) . fg(g)
d*
€ _ ("ZﬁBV - )2 4502 \’!}:’di lea
= argmax————e 2
g;* o -4\ 2m
~ argmin((EABV —d) +o%d— E*\62>.
d*

By solving the above equation, we have

~ ~ 2 . ~ o~ 2 .
& = median (dABV 2 5 @ ddug +2 5 62). )

4.4 Aggregation and Calibration
Upon recelvmg the perturbed adjacency matrix M and
degree vector D the data collector can estimate the target

graph metric F by aggregation according to Eq. (3) with a
calibration function R(-)

F Zl (f¢1

The calibration function aims to suppress the aggregation
bias of M propagated by f¢1 On the other hand, no calibra-

) - gu (D). (©)

tion is needed for gy, (D) as Dis already an unbiased estima-
tion of D, thanks to the Laplace Mechanism.

To derive R(-), we regard R as the mapping between
fo, (M) and fy, (Mh) In other words, R estimates f, (M")
after observing f;, (Mk’ ). Formally,

R fo (M) — fo (M),

The following shows a concrete example for aggregation
and calibration when estimating the number of edges in a
graph. The result of this example will be used in Section 6 to
estimate L. in Eq. (2) of modularity definition.

Example 4.4. For a graph with n nodes, there are N =
$n(n — 1) bits in its upper/lower triangular matrix, each

indicating whether an edge exists or not. Let s denote the

3. In the sequel, D denotes the refined degree D’ to simplify the
notation.
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number of edges in the original graph, i.e., the number of
“1”s in these N bits. These N bits are then perturbed
according to RABV protocol by randomized response [26]
with flipping probability p. To estimate s, the data collec-
tor takes the following two steps.

(1) Aggregation. It aggregates the number of “1”s in the
perturbed N bits and uses it as an initial estimation 3.

(2) Calibration. Since the mapping between s and s can
be captured by s = sp + LN — .s)(l — p), the collector then
calibrates 5§ by R(s) = T + L= ST L N, which is derived by
solving the mapping function.

We can further show R(s) is an unbiased estimation of s,
because E[R(3)] = 55 [sp+ (V= 9L —p) + p — DN] =5

If both R( fy, (M’“ )) and gy, (D) are unbiased estimation of
fo (M™M) and gy, (D) respectively, the following theorem
guarantees /' is an unbiased estimation of the target metric F.

Theorem 4.2. If R( f¢,(Hkl)) and gy, (D D) are unbiased estima-

tion of fg(M™) and gy, (D) respectively, the estimated graph
metric F is unbiased.

Proof. According to the assumption of unbiased estimation,
we have

E|R(fo(M))| = fo (M)
E [gw,(b)} = gy (D).

Since the adjacency bit vector and the degree of each
node are perturbed independently, we have

B[F| =3 B[R (fs(M") - 9y,(D)]

=Y B[R (qu, M) | -E[g,,(D)]
= Zl fo(M™) - gy, (D)
Therefore, F is unbiased. O

4.5 Optimal Privacy Budget Allocation
The final problem in LF-GDPR is to allocate the privacy
budget (step @ in Fig. 1). Formally, it divides € into ¢; = ae
and e; = (1 — a)e, where o € (0, 1), for adjacency bit vector
and node degree perturbation, respectively.

Our objective is to find the optimal « that minimizes the
distance between the graph metric ' and our estimation F'
Without loss of generality, we adopt the L, distance [35]
and set the loss function for optimization as the expectation
of this distance, i.e., @ = argmin, o 1) E[| ' — F|,].

Assuming F'is unbiased, we have

E[|F — F|}] = E[F? — 2FF + F]

E[F?] — 2E[F] - E[F] + E[F ]

E[F] — F?.

~2
Since F? is constant, we only need to minimize E[F"] with
respect to o

BIF) =B (SR(f01) - 00(D) |- @
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In the next two sections, we will demonstrate how to
derive the terms in Eq. (7) with respect to «. Then we can
apply numerical methods, e.g., Newton’s method [36], to
find o that minimizes Eq. (7). Further, the following theorem
shows the accuracy guarantee of LF-GDPR.

Theorem 4.3. For a graph metric F and our estimation F, with
at least 1 — B probability, we have

|F = F| = O(\E[F] - log(1/B)).

Proof. For a graph metric F, and its estimated one F, the
variance of F' — F'is

Var[F — F| = Var(F] = B[F?] - (B[F))’

— E[F] - F? <E[F).

By Benstein’s inequality,

~ 2
Pr[|F —F| >\ <2-exp| — )\~
2Var[F — F]+ 2\

/\2
<2eexp|——F———
2E[F]+2)
By the union bound, there exists A=
O(\/E[F"] - log(1/B)) such that |[F — F| < X holds with at
least 1 — 8 probability. ]

~2
As will be shown in the next two sections, E[F" ] can be
further expressed by ¢, n or d for a specific graph metric.

4.6 Summary

Algorithm 1 summarizes the overall protocol of LF-GDPR.
It takes three inputs—the target graph metric F, the pri-
vacy budget ¢, and the true adjacency bit vector B; of each
node 4, and returns an estimation of graph metric F under
e-LDP. In Line 1, the data collector reduces F' to adjacency
matrix and node degree. Based on the reduction, in Line 2
the privacy budget ¢ is divided into ae and (1 — )¢ by the
optimal privacy budget allocation algorithm (see Sec-
tion 4.5 for details), and then « is sent to each node
(Line 3). On each node i, RABV perturbs its adjacency bit
vector (Lines 5-6, see Section 4.2 for details). For each bit
to perturb, it adopts RR with privacy budget oe. Then
node i further perturbs its degree d; by adding a Laplace
noise with privacy budget (1 — )¢ (Line 7). Finally, the
perturbed adjacency bit vector and node degree are sent
to the data collector (Line 8). After the collector receives
the perturbed adjacency matrix M and degree vector D, it
first completes the whole adjacency matrix by copying
bits to their symmetric ones in M (Line 9), and then
refines each node degree d; to d: (Line 10, see Section 4.3
for details). Finally, it applies aggregation and calibration
to estimate the graph metric F' (Line 11).

Security of Correlation. It is known that the privacy pro-
vided by differential privacy decrease significantly under
correlations [37], [38]. However, correlation between adja-
cency bit vectors and node degrees does not compromise
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LDP in LF-GDPR. First, there is pairwise correlation
between the adjacency bit vectors of any two users, but the
proposed RABV protocol is able to well address it by avoid-
ing “double dose” of the same edge information. Second,
there is correlation between the node degrees of two users
who share an edge. But Theorem 4.1 proves that by setting
sensitivity to 2 and adding Lap(2) noise, this correlation
does not compromise e-LDP. Thlrd there is correlation
between the adjacency bit vector and node degree of the
same user. But since we divide the privacy budget between
them, according to sequential composition, e-LDP is still
achieved even if they have the strongest correlation (i.e., an
equivalent or causal value).

Algorithm 1. Overall Protocol of LF-GDPR Framework
Input:

Target graph metric
Privacy budget e
True adjacency bit vector {By, ..., B,}
Output: An estimation of the graph metric ' under e-LDP
Procedure:
// Collector side
1: Reduce graph metric F' to adjacency matrix M = { By, ...,
B, } and degree vector D derived from M
2: Calculate « for privacy budget allocation based on F' and e
3: Send « to each node
// User side

4: foreachnodei € {1,2,...,n} do
5 t—i<|y? g 5]
6: foreach b; € B;, wherei+1 < j < (i + 1+ ¢) modn do
~ b,‘ W.p. L;
Perturb b; = ’ e

7: Calculate the degree d; from B; and then perturb it as
d; = d; + Lap(2/((1 = @)e))

8: Send E and c?l to the data collector
9: end for
// Collector side B
10: Copy symmetric bits in M= { Bl, ...,B,}
11: Refine d; to d} of each node i according to Eq. (5)
12: Apply aggregation and calibration to estlmate the graph
metric I based on M and D= {d ndi}
13: return F

5 CLUSTERING COEFFICIENT ESTIMATION WITH
LF-GDPR

In this section, we show how to use LF-GDPR to estimate
the clustering coefficients of all nodes in a graph. Based on
the implementation framework in Section 4, we present the
details of steps O@®. Finally, Algorithm 2 summarizes the
whole process.

5.1 Implementation Details

Graph Metric Reduction (step @ in LF-GDPR). Recall that the
clustering coefficient of node ¢, c¢; = % where ¢; is the
number of triangles incident to . To count ¢;, we set k; =3
so that M* denotes the number of 3-hop walks for all pairs
of nodes. We then set projection ¢; to M3, the ith diagonal

i’

element of M® that denotes the number of 3-hop walks
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Fig. 4. Estimate number of triangles incident to node A.

starting and ending at node i.* Note that M} counts the tri-
angles incident to node i twice (e.g., triangles ijk and ikj),
so M3 = 2t;, which is exactly the numerator in the above cc;
definition. As such, the aggregation function f(-) can be
simply set to an identity function. Formally,

foi(MP) = f(M}) =

To obtain the denominator in the above c¢; definition, we set
the projection y; to d;, the ith element of degree vector D.
And the aggregation function g(-) is set according to the
denominator in the definition of clustering coefficient

M} = 2t;.

1

D) =yg(di)) =——.

99.(D) = gld) = 0

To sum up, the clustering coefficient of any node i,
denoted by F;, can be reduced to M and D as

F, = [y (M?) - gy, (D). ®)

Aggregation and Calibration (step @ in LF-GDPR). The
data collector receives the perturbed adjacency matrix M
and degree vector D. According to Egs. (6) and (8), the esti-
mated clustering coefficient of any node i is

Fy =R (f5,(M%)) - 94,(D), ()

where the calibration function R(-) estimates f, (M?), the
number of triangles incident to node i based on the per-
turbed number f, (M M?). In what follows, we derive R(-).

According to Section 4.4, to derive R(-) we need to esti-
mate f;, (M), or equivalently ¢4 = f;,(M?*)/2, the number
of triangles incident to node A in the original graph.
Figs. 4a, 4b, and 4c enumerate all three cases of such trian-
gles based on whether the other two nodes of this triangle
are A’s neighbors in the original graph. Let d denote its
degree and p = ;< the perturbation probability. In each
case, the edges that constitute such triangles are highlighted
by red color. In particular, the red solid lines denote the
original edges, and each is retained in the perturbed graph
with a probability of p. The red dashed lines denote the new
edges after perturbation, and each appears with a probabil-
ity of 1 — p.

1)  Fig. 4a: both nodes are neighbors of A. There are two
sub-cases based on whether there exists an edge
between these two nodes in the original graph. For
triangles such as ABC, there is an edge between B
and C in the original graph. Such triangles will be
retained in the perturbed graph with probability p.

4. The full notion of ¢, should be ¢, ;. Since there is only one term in
the definition of clustering coefficient, we omit the notation 1. The same

applies to ;.
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For triangles such as ADE, there is no edge between
D and FE in the original graph. Such triangles will be
retained in the perturbed graph with probability
p*(1 — p). Summing up both sub-cases, the number
of such triangles in the perturbed graph is
tar=ta-p’+ (Gd(d—1)—ta) - p*(1 - p).

2)  Fig. 4b: only one node is a neighbor of A, for example
triangles ACG and AEF'. Since d nodes are adjacent
to A and n — d — 1 nodes are not adjacent, there are
d(n — d — 1) possible triangles. In such a triangle, the
two edges incident to A will be retained in the per-
turbed graph with probabilities p(1 — p). The proba-
bility of having the third edge (e.g., CG or EF) in the
perturbed graph can be approximated by the overall
edge density after perturbation ie, y=yp+ (1 -

¥)(1 —p), where y = Z
in the original gralah. s such the number of trian-
gles in this caseistys =d(n —d —1) - p(1 — p)y.

3) Fig. 4c: neither node is a neighbor of A, for example
triangles AGH and AFH. In such a triangle, the two
edges incident to A will be retained in the perturbed
graph with probabilities (1 — p)*. The probability of
having the third edge (e.g.,, GH or FH) in the per-
turbed graph can also be approximated by y. Since
there are ("75') =4(n—d—1)(n—d—2) possible
triangles, the number of trlangles in this caseists3 =
Yn—d—1)n—d—2)-(1-p) 7.

By summing up t4,1, t42, and 1143, we obtain tA Since the
calibration function R( ) maps 4 to tA, ie., R(tA) =t4, We

can solve t4 from £, and derive R(-) as

R(02) = 5 1)(A——c« —1)p*(1-p)
—d(n—d-1p(l-p)y
~3tn—d=1)(n-d-2)1-p7).

(10)

Privacy Budget Allocation (step @in LF-GDPR). According
to Section 4.5, to solve « we derive and minimize E[F?2] with
respect to « in Eq. (7). Theorem 5.1 below shows the closed-
form solution of a.

Theorem 5.1. The optimal « for clustering coefficient estimation
can be approximated by

e 10d% — 10d
argmin_© 2 |, 8(10d : 0d+?;) | an
wc(0,1) €3¢ (exe—1) d?>(d—1)"(1 — )¢

where d is a representative degree (e.g., the mean, median, or
most frequent degree) of all nodes in the original graph.

Proof. According to Eq. (7), we have

1) = 5| (X2, R (1) - 00,(D))’|
= (s + Var [R(£,01)]) - B[ (D)].

5. We replace d with (7, because the former is unknown to data col-
lector and the latter is an unbiased estimation of the former.
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For each node i, by setting

1
3\ _ oy —
fo,(M°) =2t; and gy, (D)= =1
we approximate E[F;?] by
E[F7] = 4(t] + Var[R(1:)]) - E %} (12)
di (d; —1)?
where
~ Var(t;]
Var|R(t;)| = ———
B %(n - 1)(n - Q)VO/I“ [Mit] Mt] tth/Zj} (13)
p'(2p - 1)*
(n=di—1)’(n—di -2  e*+2
2(n—1)(n —2) e (eae — 1)2 )

Since t? < O(n?) ~ Var[R(t;)] for most cases, we omit the

term of ;. As for E[——=
E[d;], we have di (d;-1)

2], by Taylor expansion at

8(10d2 — 10d; + 3)

E .
dHdi—1)"(1—a)’e

1 ] 1
a’@d -2 -1y
(14)

By substituting Eqs. (13) and (14) into Eq. (12), we
have

o An—d; —1)°(n—d; —2)°

0= 2(n—1)(n — 2)d?(d; — 1)
8(10d? — 10d; + 3)

d2(d; —1)*(1 - a)%?)'

)

| 1+
eBac(eae — 1)2 (

To minimize E[ff], we omit the first item which is
independent of «. To unify « for all nodes, we replace d;
with d, a representative degree (e.g., the mean, median,
or most frequent degree) of all nodes in the original
graph. Therefore, we can derive « as

% + 9 1+
63‘1((6“( _ 1)2

As for the representative degree d, it can be estimated by
a portion of privacy budget. The data collector can ask each
node to consume some of its privacy budgets for a prelimi-
nary round of node degree perturbation and send back D to
estimate d.

arg min

a€e(0,1)

8(10d2 — 10d; + 3)
P(d—1)721—-a)e2)

a

5.2 Overall Algorithm

Algorithm 2 summarizes how the data collector estimates
the clustering coefficients of all nodes, based on the per-
turbed ad]acency matrix M and degree vector d. Tt first com-
putes 7, the edge density in the perturbed graph from d
(Line 1). Then for each node the collector calculates the
number of triangles incident to it (Line 3) and then further
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calibrates this number based on Eq. (10) (Line 4). Finally, its

clustering coefficient is estimated based on Eq. (9) (Line 5).
Accuracy Guarantee. According to Theorem 5.1, with at

least 1 — g probability, the error of clustering coefficient esti-

mation is bounded by O(ivlog(l/ﬂ)).

Algorithm 2. Collector-Side
Estimation

Clustering Coefficient

Input: Perturbed adjacency matrix M= {B17 o En}
Perturbed degree vector D= {dl7 .. dn}

Percentage o for privacy budget allocation

Output: Estimated clustering coefficient cc = {cci, ..., cc, }
Procedure: P 7

1: Calculate the edge density in perturbed graph y = "(;’;11)’

2: foreachnodei € {1,2,...,n} do

3: Calculate the number of triangles t; incident to node i

4:  Calibrate #; to get an unbiased one t; according to Eq. (10),

where p = 5 ﬁ;s .
5: Estimate node i’s clustering coefficient cc; = < 2L
6: end for didi=1)

7: return cc = {ccy, ..., cc,}

6 ComMuNITY DETECTION WITH LF-GDPR

In this section, we show how to use LF-GDPR to estimate
the modularity of any community in the graph, with only a
single round of B and D collection. Based on the implemen-
tation framework in Section 4, we present the details of
steps W@, Finally, Algorithms 3 summarizes the process
of modularity estimation, which serves for further commu-
nity detection.

6.1 Implementation Details

Graph Metric Reduction (step O in LF-GDPR). Recall in
K2

Eq. (2), the modularity of a community C is ¢. =7 — 5,

where L. is the number of edges in C, K. is the total degree

of all nodes in C, and L is the total number of edges in the

whole graph. As such, we can write the graph metric F; =

¢c in the form of Eq. (3) as

=qc = f¢1, (M) - glﬁu(D) - g\/fz.(,-(D)' (15)
There are two terms in the above equation. In the first term,
¢1.. projects graph G to Community C, i.e., a sub-matrix M,
of nodes in C only, and f4, (M) = §| M., half of the summa-
tion of all elements in M.. As such, f,, (M) = L. Similarly,
gy, (D) =1 = =11 D” The second term does not involve M, so
we set fy, ( ) = —1. To project graph G to community C,

we set ¥y ! to a sub2vect0r D, of nodes in C only, and then
D.
g‘/’Q.p(‘D) = 4L2 - HHDHHZ .

Aggregation and Calibration (step @in LF-GDPR). Accord-
ing to Egs. (6) and (15), the data collector estimates the mod-

ularity F based on the perturbed adjacency matrix M and
degree vector D as follows.

F=R(f3,.(M)) - gy, (D) = gy, (D).

Note that only the first term needs calibration R(-) as the

second term does not involve M. To derive R(:), we
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estimate fs, (M) from f¢1‘c(ﬂ) based on the RABV algo-
rithm and the fact that f4, (M) =1|M.| = L.. Example 4.4
shows the derivation of this estimation. By solving f,, (M)
in terms of fs, (M), we can derive R(-) as

N M
R(fm(M)) = f;;;(l)JF;ntT(nc -

where n. = |C| denotes the number of nodes in C.
Privacy Budget Allocation (step @ in LF-GDPR). Similar to
clustering coefficient estimation, we derive and minimize
E[F?] with respect to « in Eq. (7). Theorem 6.1 below shows
the closed-form solution of .

(16)

-1
nrZ=,
2p—1

Theorem 6.1. The optimal « for modularity estimation can be

approximated by
1 7( 2L 1>2
16 (5 — 2 \n(n-1) 2/ )

Proof. According to Egs. (7) and (2), we have

|:(Zl (fll)z Ml ) 'ng(ﬁ))2:|
_ ( 12,00+ Var [R (£, (3D)) ) - E[2, (B)]
+E[g3,(D)] +E[R(fs, (M) |E gy, (D)gy, (D))

(1—a)?€2L? + 6n>
a)? Lt

arg min
ae(0,1) (1 —

2
For each community C, note that E[L]="5L and by
setting

1
f¢l((M) = LC and gWL((D) — Z’
K?
foo.(M)=—-1 and gy, (D)= T

we can approximate E[F?] by

B{F?) = ((Tff)lvﬁw[n(fmm]) &[¢, (D]

=71 2n’L ~ -
+E {QQWQ,(;(D)} Z B {g‘/ﬁ r‘(‘D) “ 9y, (D)} )
17)
where
Var R fs,,(80))]
1 . 1 9L 1\? (18)
A 16(p—3° <n(n— 1) _5) '
By Taylor expansion at E[d;], we have
El¢’ (D)] = ! 6’ 19
9y, .( )l—ﬁ‘l'm 19)
2 V] 2 1 32
Elh,, (D) = e (774 " n2(1 — a)’e2L?
5 (20)
n 264 n 480n )
(1—a)'eLt (1 —a)’eLs
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~ ~ 1 14
E D)- D))=n —4+—"7F—
lgllfu( ) gl/flc( )] nc<n2L+ (1 —a)2€2L3

N 24n? )
(1—a)ells )

By substituting Eqs. (18), (19), (20), and (21) into
Eq. (17), we have

(21)

ne(

— —a)2eL? n?
B72] ~ el = V(L= @)'e L +6 )(16( 1

2(1 — )’eL4 e —1y?

14-e%€ 2
_(L_ly e e
nn—1) 2 nt

e = o e(ne—1 2_pd
To minimize E[F?], we omit items % and "o
that are independent of «, and derive « as

(16(1123 2 (n(zfl) —%)2)

a

Similar to obtaining d for clustering coefficient estimation

in Section 5, the total number of edges L in graph can be

obtained by using a portion of privacy budget for a prelimi-

nary round of node degree perturbation to collect D and
estimate L.

(1—a)*L? + 6n?
(1—a)’eL?

arg min
ac(0,1)

6.2 Overall Algorithm

Algorithm 3 summarizes how the data collector estimates
the modularity of a given community C, according to the
perturbed adjacency matrix M and the degree vector D.
First, it obtains L., the number of edges in C, by counting
and halving the number of “1”s in M., the sub-matrix of C
extracted from M (Lines 1-2). It then calibrates L. to an
unbiased estimation L. based on Eq. (16) (Line 3). Finally,
the estimated modularity is calculated according to Eq. (15)
(Line 6), which is based on L., L (obtained from Line 4) and
K. (obtained from Line 5).

Algorithm 3. Collector-Side Modularity Estimation

Input: A community C

Perturbed adjacency matrix M= {B17 .
Perturbed degree vector D= {dl7 .. d,,}
Percentage o for privacy budget allocation

¢ = EstMod(-), the estimated modularity of C

, B}

Output:
Procedure:
: Extract a sub-matrix M. from M
: Obtain L, . by counting and halving the number of “1”s in M,
3: Calibrate L, to get an unbiased one L. according to Eq. (16),
where p = g :;f .
4: Calculate the total number of edges in the whole graph

=320
i= l
5: Calculate the total degree of allnodein C: K. =

N =

CEC

6: Calculate the estimated modularity of C: ¢. = Q — K‘Q

412
7: return q.

Accuracy Guarantee. According to Theorem 6.1, with at
least 1 — B probability, the error of modularity estimation is
bounded by O(~ ]Og(l/ﬂ))

7L2
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Now that the modularity of any community can be esti-
mated by Algorithm 3, we can adopt existing community
detection methods that are based on modularity maximiza-
tion [31]. In essence, they attempt to find a graph partition
with the highest overall modularity of all communities. For
ease of reference, Algorithm 4 presents the detailed imple-
mentation of Louwvain method [31], a popular community
detection method under LF-GDPR, where Algorithm 3
serves as the routine for modularity estimation.

As shown in Algorithm 4, there are two iterative phases
in Louvain. In the first phase, the data collector assigns a dif-
ferent community to each node and calculates its modular-
ity by invoking EstMod(-), i.e., Algorithm 3 (Lines 1-2).
Then for each node i, the data collector calculates the gain
of modularity that would take place by moving i to the com-
munity of its neighbor j (Line 5). Here EstMod(-) is invoked
again to estimate the modularity of community {i, j}. Node
1 is then moved into the community in which this gain is
positive and maximum (Line 7), and then the modularity of
this community is also updated (Line 8). This process is
repeated for all nodes until no individual move can improve
the total modularity of the graph. The result of the first
phase is a new set of communities (Line 10). In the second
phase, a new graph is formed from this set of communities,
and the data collector repeats the process in the first phase
to detect the final set of communities (Line 11).

Algorithm 4. Community Detection Under LF-GDPR
With Louvain Method

Input:

Perturbed adjacency matrix M = (B, e B.}

Perturbed degree vector D= {di,...,dn}

Privacy budget for adjacency bit vector perturbation €,
Output: A set of detected communities C = {C;,Cs,...}
Procedure:

1: Initialize n communities {C;|1 < i < n}, each consisting of

only one node o

2: Estimate the modularity of each C;: ¢; = EstMod(C;, M, D, €;)

3: foreachnodei € {1,2,...,n} do

4. for each node j so that M;; = 1 do

5 Calculate gain of modularity:

AQU = ESt]\de({Z U Cj}, M, l~)7 61) —q; — qj

6: end for
7 Move i to the community of j, where j = arg max{Ag;;|
Aqij > 0}

8: Update the modularity of C;: ¢; = EstMod(C;, H, D, €1)
9: end for
10: Repeat Lines 3-7 until no individual move can improve the
total modularity, and obtain a new set of communities C*
11: Build a graph from C*, and repeat Lines 3-8 to obtain C
12: return C

7 EXPERIMENTAL EVALUATION

In this section, we compare the performance of LF-GDPR
with two alternative methods, i.e., RABV-only and LDPGen
[11] in both use cases, namely, clustering coefficient estima-
tion and modularity estimation for community detection. In
LF-GDPR, the optimal « for clustering coefficient estimation
and modularity estimation is derived Theorems 5.1 and 6.1,
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respectively. Since the derivation is independent of the
ground-truth data, we use this optimal « unless stated oth-
erwise. RABV-only is a baseline solution where each node
spends all its privacy budget in the RABV protocol and then
derives her node degree from the perturbed adjacency bit
vector. As for LDPGen, since it needs the clustering coeffi-
cient to generate a synthetic graph, we choose the most
favorable one for it, i.e., the ground truth value. To have a
fair comparison with RABV-only and LDPGen, for LF-
GDPR, we use 10 percent of the privacy budget to estimate
the domain knowledge in both use cases, i.e., the represen-
tative degree in Theorem 5.1 and the total number of graph
edges in Theorem 6.1. All experiments run in Java on a
desktop computer with Intel Core i7-8700K CPU, 64G RAM
running Windows 10. The code of LF-GDPR and datasets
are available in GitHub at https://github.com/Vicky-cs/
LF-GDPR.

Performance Measures. For the first use case, we measure
the Mean Square Error (MSE) of the clustering coefficients of
all nodes, i.e., %Zf’zl(cc,; - c~c,;)2. For the second use case, to
evaluate the modularity estimation, we measure the Relative
Error (RE) between the ground-truth modularity ¢ and esti-
mated modularity ¢ of one_community or all communities
in a graph partition, i.e., \q;qq\ To evaluate the final commu-
nity detection results, we adopt the same classic metrics for
cluster validation as used in [11], namely Adjusted Random
Index (ARI) [39] and Adjusted Mutual Information (AMI) [40].
They measure the similarity of two clusterings, and a larger
ARI or AMI value indicates more similarity between them.

Datasets. We use four public datasets [41]. The first two
are used in [11], and the rest two are added to evaluate on
denser and larger graphs.

(1)  Facebook—an undirected social network of 4,039
nodes and 88,234 edges, from a survey of partici-
pants in Facebook app.

(2) Enron—an undirected email communication net-
work of 36,692 nodes and 183,831 edges.

(3) AstroPh—an undirected collaboration network of
18,772 authors and 198,110 edges indicating collabo-
rations between authors in arXiv, who submitted
papers to Astro Physical category.

(4)  Gplus—an undirected social network of 107,614 Goo-
gle+ users and 12,238,285 edges indicating shares of
social circles.®

7.1 Clustering Coefficient Estimation

Fig. 5 shows the clustering coefficient estimation accuracy of
LF-GDPR and two alternative methods over all datasets,
with privacy budget e varying from 1 to 8. In all cases, LF-
GDPR is the most accurate. Furthermore, it always signifi-
cantly outperforms RABV-only, which justifies our rationale
in Section 3.1 that node degree derived from perturbed adja-
cency bit vector is too noisy. As e increases, the accuracy of
LF-GDPR and RABV-only improves significantly while
LDPGen does not. This is because LDPGen is only affected
by the Laplace noise added to node degree, which is already

6. The original Gplus dataset is a directed graph, and we convert it to
an undirected graph to align with the other three datasets.
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4916 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 10, OCTOBER 2022
0.5 0.5 0.6
04F=""V=--v._ (7] S MM S L A e o3 """"""“'*n,\\‘
~ T T T e Beveeeen B .. N Sao
BCE] S S ._”\"‘_"‘ _____ i 03 —-‘—o——.__.\‘\\ o2 e,
a (R ... 2] 2 R
=02l A 2ol 2 :
'\
0.1k~ ¥ -RABV-only 0.1}~ -RABV-only - ¥ -RABV-only| Ol - -RABV-only
" | —e—LF-GDPR " | —e—LF-GDPR 0.1 F —e— LF-GDPR —e—LF-GDPR
---®-- LDPGen ---®-- LDPGen -+ LDPGen ---®-- LDPGen
01 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Privacy Budget Privacy Budget Privacy Budget Privacy Budget
(a) Facebook (b) Enron (c) AstroPh (d) Gplus

Fig. 5. Mean square error of clustering coefficient estimation.

very small when ¢ > 2. In other words, LDPGen cannot
fully exploit a large privacy budget.

To evaluate the impact of privacy budget allocation on
the estimation accuracy, we compare LF-GDPR with opti-
mal allocation (derived from Eq. (11)) against LF-GDPR
with four constant «, namely, 0.3, 0.5, 0.7 and 0.9 in Fig. 6.
Due to the space limitation, we only show the results of
Facebook. The optimal allocation achieves the lowest MSE in
most cases. As for the constant «, we observe that a large e
always favors a large o, which indicates that the privacy
budget needed by node degree perturbation is relatively
stable, and therefore surplus budget should be mostly allo-
cated to the adjacency bit vector. However, when privacy
budget is small (e.g., ¢ < 2), large « (e.g., « = 0.9) leads to
high MSE. The same observation is also made in modularity
estimation, which is therefore omitted in the interest of
space.

7.2 Modularity Estimation and Community
Detection

In this experiment, we evaluate the modularity estimation
and Louvain-based community detection of LF-GDPR
against RABV-only, LDPGen, and the ground truth. To allow
fair comparison, we use the same algorithms for the latter
three except that the modularity is estimated from the per-
turbed adjacency matrix only (for RABV-only), or directly
calculated from the synthetic graph (for LDPGen), or
directly calculated from the original graph (for ground
truth). Fig. 7 plots the RE of modularity by these three meth-
ods against ground truth in all datasets. LF-GDPR always
outperforms the other two and its RE approaches 0 as €
increases, especially in Facebook and Gplus which have a
higher mean degree than the other two datasets. RABV-only
has the second lowest RE when ¢ is large, especially in Face-
book, which means when the privacy budget is sufficient,
adjacency bit vector alone can also estimate modularity

| 5
1 2 3 4 6 7
Privacy Budget

Fig. 6. Mean square error of clustering coefficient estimation, varying «.

fairly well. However, when e is small, RABV-only has the
highest RE among the three, which justifies our rationale in
Section 3.1 that the estimated degree from a perturbed adja-
cency matrix could be too noisy to be meaningful. LDPGen,
on the other hand, still has very high RE even when e is
large, which also justifies our rationale in Section 3.1 that
the neighborhood information is lost in a synthetic graph.

To compare the detected communities against ground
truth, we plot ARI and AMI between the estimated and
ground-truth graph partitions of each method” in Fig. 8.
Due to space limitation, we only show the results of Facebook
and Enron. LF-GDPR achieves higher ARI and AMI than
LDPGen when ¢ > 1, which means the detected communi-
ties by LF-GDPR are closer to the ground truth communities
detected in the original graph. Particularly, in Facebook both
ARI and AMI of LF-GDPR approach 1 for large € (e.g.,
€ > 7), which means that the detected communities are
almost identical to the ground truth communities. We can
also verify this observation from a visualization tool Gephi
in Fig. 9, which illustrates three sets of communities
detected from the original graph and from LF-GDPR (e = §,
e = 1) respectively. The sizes of top-3 communities in each
set are also marked.

On the other hand, as with the RE results, LDPGen has
steady ARI/AMI curves because it does not have the neigh-
borhood information of the original graph. As such, it
becomes significantly inferior to LF-GDPR when there is a
large privacy budget to spend. Dataset-wise, both LF-GDPR
and LDPGen perform better in Facebook than in Enron. This
is because Enron is more sparse and therefore has more
communities—1275 versus 16 in Facebook.

In addition, we evaluate the accuracy of modularity esti-
mation with respect to the size of a community. For datasets
Facebook and Enron, we randomly select 500 small (5 percent
of the total nodes) communities and 500 large (20 percent of
the total nodes) communities. Then we apply both LF-
GDPR and RABV-only to estimate the modularity of each
community and measure its RE against the ground truth
modularity of that community. Due to space limitation,
Fig. 10 only shows the results of Facebook and Enron. LF-
GDPR significantly outperforms RABV-only in both small
and large communities, due to the excessive noise in the
node degree introduced by RABV-only. We also observe
that both methods work better for smaller communities and

7. For LDPGen*, we use the results directly from [11] because the cal-
culation of ARI and AMI between partitions from two (similar) graphs
requires an optimal node-to-cluster mapping, which is not specified
in [11].
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Fig. 7. Relative error of modularity of detected communities.

for the Facebook dataset (than the Enron dataset). We believe
this indicates that LF-GDPR is more superior for denser
graphs with more edges per node.

To evaluate the communication bandwidth cost, we
show the number of kilobytes (kB) between a node and the
data collector for all datasets in Table 2. We observe that all
three methods are proportional to the node size n, whereas
LDPGen is also logarithmic to the number of groups g, an
internal parameter of LDPGen. This coincides with the
asymptotic complexity—O(2n + [log g|n) of LDPGen versus
O(n) of LE-GDPR. As such, we expect LDPGen incurs even
higher communication cost as the graph becomes larger
due to an increasing g.

To evaluate the computation cost, we show the runtime
of both metric estimation at the collector side in Table 3,
with privacy budget € ranging from 1 to 8. Due to the space
limitation, we only show the results of Facebook. LF-GDPR
and RABV-only have comparable runtime and decrease sig-
nificantly with large e. For small ¢, the perturbed adjacency
bit matrix is very dense, so the computation of metrics
becomes time-consuming. On the other hand, LDPGen
always needs to generate a synthetic graph with almost the
same number of edges as the original one, so its runtime is
independent of ¢ and is outperformed by LF-GDPR and
RABV-only except for small e.
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7.3 LF-GDPR VS. Dedicated LDP Solutions
As mentioned in the introduction, dedicated LDP solutions
may provide a better utility than a general framework as
LF-GDPR. In this subsection, we conduct such a compara-
tive study on clustering coefficient estimation (CCE) and
modularity estimation for community detection (CD). The
main challenge is the design of local perturbation mecha-
nisms that can provide a global view which is needed for
these two graph metrics. To address this, we equip each
individual user with sufficient ground truth knowledge and
design two optimistic dedicated solutions, i.e., Dedicated-
CCE and Dedicated-CD. In Dedicated-CCE, we assume each
user knows the entire ground-truth adjacency matrix, based
on which her clustering coefficient is calculated and then
perturbed by adding Laplace noise. In Dedicated-CD, we
assume each user knows the ground-truth graph partition,
based on which her number of edges linked to her commu-
nity C is counted, perturbed by adding Laplace noise
together with her node degree, and sent to the collector to
calculate the modularity ¢. by Eq. (2). Note that these two
dedicated solutions provide the same e-edge LDP guarantee
as LF-GDPR. But since they optimistically assume to know
the ground truth, their estimation accuracy only serves as
the upper bound of dedicated solutions for CCE and CD.
Figs. 11a and 11b show the mean square error of cluster-
ing coefficient estimation of Dedicated-CCE and LF-GDPR
on Facebook and Enron datasets. In the interest of space, the
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Fig. 10. Impact of community size on modularity estimation.

TABLE 2
Communication Bandwidth Cost (in kilobytes)
Dataset LF-GDPR RABV-only LDPGen
Facebook 0.25 0.25 3.05
Enron 2.30 2.29 27.55
AstroPh 1.18 1.17 14.10
Gplus 6.73 6.73 80.73
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TABLE 3
Runtime in Data Collector Side for Facebook(in milliseconds)

Privacy| Clustering Coefficient Estimation Modularity Estimation
Budget[LF-GDPR [RABV-only [LDPGen [LF-GDPR [RABV-only [LDPGen|

1 12,686 11,715 910 120 331 842

2 2,273 1,825 929 76 82 866

3 469 453 942 52 55 882

4 225 276 892 35 36 845

5 105 143 959 32 33 906

6 100 146 957 29 30 903

7 85 102 949 28 28 883

8 79 96 926 28 28 880

results on other datasets are omitted. We observe that Dedi-
cated-CCE has very large MSE when the privacy budget is
small, and it gradually outperforms LF-GDPR when ¢ > 4
(on Facebook) or € > 3 (on Enron). But its MSE is at least 64
and 16 percent of the MSE of LF-GDPR on two datasets
when € = 8. Figs. 11c and 11d show the relative error of
modularity estimation of Dedicated-CD and LF-GDPR over
Facebook and Enron. Similar to CCE, there is no all-winner—
LF-GDPR performs better on Facebook when e > 3 whereas
Dedicated-CD gains higher accuracy (but its RE is at least
20 percent of the RE of LF-GDPR) in other cases. To summa-
rize, we conclude that LF-GDPR is able to obtain compara-
ble estimation accuracy as dedicated LDP solutions for
graph metric estimation.

8 RELATED WORK

There are three related fields: privacy-preserving graph
release, graph analytics with differential privacy, and local
differential privacy.

Privacy-Preserving Graph Release. This field studies how a
data owner publishes a privacy-preserving graph. Early works
focus on anonymization techniques under those privacy mod-
els derived from k-anonymity [42]. Zhou et al. proposed
k-neighborhood anonymity to defend against neighborhood
attacks [3], Liu et al. proposed k-degree anonymity against
degree attacks [4], Zou et al. and Cheng et al. proposed

1 1
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Fig. 11. Comparison with dedicated LDP solutions.
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k-automorphism [5] and k-isomorphism [6] respectively agai-
nst structural attacks, and Xue et al. proposed random edge
perturbation against walk-based structural identification [43].
As these approaches can be vulnerable to de-anonymization
techniques [44], more rigorous privacy notions are proposed,
such as L-opacity [45] and differential privacy [12]. The former
ensures an adversary cannot infer whether the distance
between two nodes is equal to or less than L. The latter uses a
generative graph model to fit the original graph, and then pro-
duces a synthetic graph for analytics. Common graph models
include dK-series [16], Stochastic Kronecker Graph (SKG)
model [46], Exponential Random Graph Model (ERGM) [17],
Attributed Graph Model (AGM) [18], Hierarchical Random
Graph (HRG) [19], and BTER [11] (which adopts LDP).

Graph Analytics With Differential Privacy. This field studies
how to estimate graph metric and statistics with differential
privacy. Most of the existing work focuses on centralized
differential privacy. Nissim et al. estimated the cost of the
minimum spanning tree and the number of triangles in a
graph [7]. This technique has been extended to subgraph
counting queries [20], [47] such as k-stars, k-triangles and k-
cliques, and frequent subgraph mining [8], [48]. Other
works estimate the distribution of node degree [14], [21]
and clustering coefficient [22]. In the local setting, Sun et al.
[47] propose to estimate subgraph counts in a decentralized
graph. In our previous work [49], we briefly introduce the
LF-GDPR framework that estimates generic graph metrics
with local differential privacy. This work has advanced our
previous work in almost all aspects. First, this work materi-
alizes all algorithms in the LF-GDPR framework. Second, it
proposes a refinement strategy for degree estimation and an
optimal privacy budget allocation. Third, this work shows
use cases on two common graph analysis tasks, namely,
clustering coefficient estimation and community detection.
Last but not the least, this work comprehensively evaluates
the proposed algorithms on four public datasets.

Local Differential Privacy (LDP). Due to its decentralized
nature and no need of a trusted party, LDP becomes increas-
ingly popular in privacy-preserving data collection [10], [50].
Existing works focus on estimating statistics such as fre-
quency [32], [51], [52], mean [28], [30], heavy hitter [35], fre-
quent itemset mining [53], k-way marginal release [54], [55],
key-value data collection [29], [56] and time-series data
collection [57]. Some works also focus on learning prob-
lems [30], [58], [59].

9 CONCLUSION

This paper presents a parameterized framework LF-GDPR
for privacy-preserving graph metric estimation and analyt-
ics with local differential privacy. The building block is a
user-side perturbation algorithm, and a collector-side aggre-
gation and calibration algorithm. LF-GDPR simplifies the
job of developing a practical LDP solution for a graph analy-
sis task by providing a complete solution for all LDP steps.
An optimal allocation of privacy budget between the two
atomic metrics is also designed. Through theoretical and
experimental analysis, we verify the privacy and data utility
achieved by this framework.

As for future work, we plan to extend LF-GDPR to more
specific graph types and graph analysis tasks, such as
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attributed graph and DAG, and influential node analysis, to
demonstrate its wide applicability. We will also investigate
some relaxation of DP, such as Gaussian Mechanism and
(¢, 8)-DP, to provide higher estimation accuracy and better
utility. Graph-specific tighter bounds for the composition of
DP [60] and the correlation of graph data will also be studied.
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