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Abstract—The KNN algorithm is one of themost popular data mining algorithms. It has beenwidely and successfully applied to data

analysis applications across a variety of research topics in computer science. This paper illustrates that, despite its success, there remain

many challenges in KNN classification, including K computation, nearest neighbor selection, nearest neighbor search and classification

rules. Having established these issues, recent approaches to their resolution are examined in more detail, thereby providing a potential

roadmap for ongoing KNN-related research, aswell as some new classification rules regarding how to tackle the issue of training sample

imbalance. To evaluate the proposed approaches, some experimentswere conducted with 15 UCI benchmark datasets.

Index Terms—Data mining, lazy learning, KNN classification, classification rule
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1 INTRODUCTION

NN (nearest neighbor) classification is an efficient solu-
tion to approximation, which was first proposed as a

nonparametric discrimination in statistics [1]. However, it
has long suffered from the key issue of overfitting [2], [3]. k
nearest neighbor (KNN) classification was also advocated
by Fix and Hodges [1] as a possible solution to this issue.
Here, K objects are found in a training dataset that are clos-
est to a test object/data. A label is then assigned according
to the predominance of the majority class in this neighbor-
hood. This is the standard prediction approach to KNN
classification, known as the majority rule.

KNN classification has the remarkable property that,
under very mild conditions, the error rate of a KNN algo-
rithm tends towards being Bayes optimal as the sample size
tends towards infinity [4]. For any data analysis application,
if establishing a model with some training dataset is proving
troublesome, it is likely that a KNN algorithm will provide
the best solution [5]. As a result, KNN algorithms have been
widely used in research and are considered to being one of
the top-10 data mining algorithms [6]. In this era of big data,
KNN approaches provide a particularly efficient way of
identifying useful patterns and developing case-based rea-
soning algorithms for artificial intelligence (AI) [7], [8].

As with other classification algorithms, KNN classifica-
tion is a two-phase procedure: model training and test data
prediction. In the training phase, KNN only involves find-
ing a suitable K for a given training dataset [9]. The most
common method for this is the cross-validation. In the pre-
diction phase, the first step is a search for K data points in
the training dataset that are most relevant to a query (test
data/sample). Without other information, the K most rele-
vant data points are taken to be the K nearest neighbors of

the test data within the training dataset. After this, a predic-
tion is made on the basis of the class of test data that most
frequently occurs amongst the K neighbors. This is referred
to as the majority rule (which is similar to the Bayesian
rule). From the above procedure of KNN classification, it
indicates that there are mainly four challenging issues,
K computation, nearest neighbour selection, nearest neigh-
bour search, and classification rule.

It can be very difficult to set a suitable K for a given train-
ing dataset. Training samples often have different distribu-
tions in the sample space, which can lead to there being no
obviously suitable K for the whole training sample space.
This has resulted in two research directions as follows. One
is to set different K values to different sample subspaces
[10], [11]. Another is to set different K values to different
test samples [12]. From Zhang et al., the efficiency is pretty
good when clustering the sample space to 3-5 subspaces
[11]. It is time-consuming to set different K values to differ-
ent test samples.

Nearest neighbor selection has been studied extensively. It
is really a procedure of determining a proximity measure.
Much of the related research has focused on constructing dis-
tance functions for measuring the proximity. Song, et al.
proposed two KNN methods for measures the informative-
ness of test data, Locally Informative-KNN (LI-KNN) and
Globally Informative-KNN (GI-KNN) [13]. Each of them is as
a query-based distance metric to measure the closeness
between objects. However, no distance function has yet been
identified that is suitable for all training samples regardless
of their distribution. In other words, there remains a need for
distance function for the selection of the K nearest neighbor
points that canwork effectively acrossmost training samples.
On the other hand, feature selection is useful to choosing the
K nearest neighbors [14]. This can be a lazy procedure
because it depends on datamining tasks.

Nearest neighbor search is particularly challenging and
remains unsolved because it is a complete sample space
search when looking for all the K nearest neighbors for each
test data. As a result, KNN classification is often referred
to as a lazy data mining method. There are some efforts
devoted to resolving the problem of how to undertake a
truly effective nearest neighbor search. From the lately
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related reports, most of them were focused on seeking K
approximate nearest neighbors. Li, et al. examined 16
approximate nearest neighbor search algorithms in different
domains [15]. And then, they proposed a nearest neighbor
search method that achieves both high query efficiency and
high recall empirically on majority of the datasets under
a wide range of settings.

The majority rule has been used widely and successfully
in real applications as a KNN classification principle. How-
ever, if a training dataset has unbalanced classes, the major-
ity rule is unable to work effectively. This is why there is
little research that has sought to extend the use of KNN
algorithms to cost/risk-sensitive learning.

The rest of this paper is organized as follows: Section 2
briefly introduces the problem of K computation. The meth-
ods for nearest neighbor selection are reviewed in Section 3.
Nearest neighbor search is the topic of Section 4. An over-
view of the issues surrounding classification rules is pro-
vided in Section 5. Section 6 evaluates the efficiency of some
new classification rules that have been developed to
improve KNN classification. Some conclusions are put for-
ward in Section 7.

2 K COMPUTATION

Setting a suitable K for a given training dataset is a key step
in KNN classification. There are two main ways in which
this can be accomplished. The first option is for the data
analyst employing KNN classification to assume that the
users will provide the K for their datasets. However, it is
clearly challenging for users to establish effective K values
in this way.

The second option is to use all of the samples in the given
training dataset, i.e., to attack the issue of K computation
with training samples. There are three main approaches to
dealing with K computation. We briefly outline them below.

Setting a Single K Value for the Whole Sample Space. Since its
inception almost all approaches to KNN classification
focused on setting only one suitable K for a given training
dataset. A natural way of going about this was to use cross-
validation to find a K for the training dataset. This method
has been successfully applied in real applications in statis-
tics and data mining [16]. One way of computing an optimal
K for a dataset is to use what is known as holdout cross-vali-
dation. First of all, a suitable K for each sample in a dataset
is searched for. Then, the K that delivers the highest classifi-
cation efficiency is chosen for the whole sample space.
Another technique is to use m-fold cross-validation. This
first partitions the training dataset into m mutually-disjoint
subsets. Then, cross-validation is used to generate a viable
K for each subset. Finally, the K that delivers the best classi-
fication efficiency is chosen for the whole sample space.

After KNN method was invented by Fix and Hodges [1],
a lot of research has been devoted to setting a single K for
the whole sample space. For example, Loftsgaarden and
Quesenberry referred the KNN method to a nonparametric
solution that was applied to estimate the multivariate den-
sity function [17]. Sebestyen took the KNN method as an
important tool of decision making and collected it to his
monograph “Decision-making Processes in Pattern Recog-
nition” [18]. Cover and Hart designed a KNN algorithm for

pattern classification [2]. Wettschereck and Dietterich exper-
imentally compared the nearest-neighbor and nearest-
hyperrectangle algorithms [3]. Hastie and Tibshirani pro-
posed a KNN method for classification and regression [19].
They designed a general model based on a local Linear
Discriminant Analysis, called the DANN algorithm. Singh,
et al. applied KNN method to image understanding [20].
They designed a nearest neighbor algorithm, aiming to find
the nearest average distance rather than nearest maximum
number of neighbors. Peng, et al. advocated to use other
classification rules to KNN classification. A locally adaptive
neighborhood morphing classification method was devel-
oped to minimize bias [21]. Chen and Shao applied the
KNN method to estimate the value of missing data [22]. A
jackknife variance estimation was designed for improving
the nearest-neighbor imputation. Domeniconi and Gunopu-
los presented an adaptive KNN algorithm for pattern classi-
fication [23]. The maximum margin boundary found by the
SVM is used to determine the most discriminant direction
over the neighborhood of test data. Tao, et al. proposed a
RKNN (reverse k nearest neighbor) method for retrieving
dynamic multidimensional datasets [24]. It utilizes a con-
ventional data-partitioning index on the dataset and does
not require any pre-computation. Zhu and Basir designed a
fuzzy KNN algorithm for remote sensing image classifica-
tion [25]. In the algorithm, each nearest neighbor provides
evidence on the belongingness of the input pattern to be
classified, and it is evaluated based on a measure of disap-
proval to achieve the adaptive capability during the classifi-
cation process. Zhang and Zhou applied KNN method to
multilabel classification [26]. They designed an ML-KNN
algorithm, or a multi-label lazy learning approach. Qin,
et al. applied the KNN method to cost-sensitive classifica-
tion [27]. The neighborhood in the minor class is set much
more cost. Liu, Wu and Zhang designed a KNN algorithm
for multilabel classification [28]. A nearest neighbor selec-
tion was designed for multilabel classification. The certainty
factor is further adopted to well address the problem of
unbalanced and uncertain data. Gallego, et al. developed a
clustering-based KNN classification. The K nearest neigh-
bors are taken as the initial points [29].

Gou et al. proposed a KNN algorithm based on local con-
straint representation [30]. Specifically, it first finds the K
nearest neighbors of the test data in each class of the training
data according to the euclidean metric. Then it constructs K
local mean vectors in each class according to the K nearest
neighbors in the previous step. Finally, it uses the local mean
vector to fit the test data and combines local constraints to get
the final representation-baseddistancemetric. It predicts class
labels of the test data through the representation-based dis-
tance metric. In addition, Gou et al. also proposed a KNN
algorithm based on local mean representation [31]. It is differ-
ent from the previous algorithmist. Although it is also the first
to construct a local mean vector in each class of training data.
However, in the following steps, when performing linear
representation of the test data, it performs two linear repre-
sentations to obtain the optimal relationship representation.
Finally, it predicts the class label of the test data through a
newmetric function based on the local mean.

Setting Different K Values for Different Samples. It is well
known that instances are nonuniformly distributed in a
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sample space. It therefore seems reasonable that different
test data should be given different K values. Thus, some
recent work has proposed the approach of setting an opti-
mal K for each test sample. For example, Guo et al. has pre-
sented an approach where a KNN model is constructed for
a sample that replaces the sample itself, to serve as the basis
of classification [32]. The value of K is automatically deter-
mined, can vary according to the sample and is optimal in
terms of classification accuracy. Li et al. have proposed an
improved KNN classification algorithm that uses different
numbers of nearest neighbors for different categories, rather
than having a fixed number across all categories [33]. More
samples (nearest neighbors) are used to decide whether test
data should be classified to a category, if there are more
samples for that category in the training dataset. Yu et al.
have put forward a method, called optimally pruned K-
nearest neighbors (OP-kNNs), that can compete with other
state-of-the-art methods while remaining fast [34]. Setting
an optimal K for each sample has also been proposed in the
context of graph sparse reconstruction (see [12]), called G-
optimal-K. When compared with the preceding three opti-
mal-K methods above in experiments, the G-optimal-K
approach produced the best results. We will therefore
briefly examine this approach in greater detail.

The idea of Zhang et al. was to revise conventional KNN
algorithms using a sparse reconstruction framework [12].
This can generate different K values for different test sam-
ples andmake the best use of prior knowledge in the training
dataset. The G-optimal-K approach was designed with three
regularization terms. A reconstruction process is adopted to
move between training and test samples that obtains a K
value for every test sample. In the reconstruction process, a
least square loss function is applied to achieve the minimal
reconstruction error. An L1-norm is then applied to generate
element-wise sparsity for selecting the different K values for
the different test samples. To improve the reconstruction
performance, an L2;1-norm is employed to generate row
sparsity, thus removing noisy samples. Finally, an Locality
Preserving Projection (LPP) regularization term is suggested
to preserve the local sample structure.

K Value Approximation. The G-optimal-K approach has
since been extended to approximation computation in an
algorithm, called Ktree (see [35]). This is illustrated in Fig. 1.
To get an optimal K for a test data, one must compute a K
value for each new data item, one by one, before predicting
the class of the test data. A major issue with K computation
is that it is both expensive and time-consuming if users
would like to set different K values to predict different data
classifications. Therefore, Zhang et al. advocated approxi-
mating the optimal K of the test data with its nearest
neighbor’s optimal K by using what is called a Ktree [35]. A
Ktree is built to rapidly search for the nearest neighbor and
K value for the data. The K computation proceeds as fol-
lows. In the training phase, the KNN method is Usedom to
build a Ktree for the training dataset, where each leaf node
is a training sample with an optimal K value. In the predic-
tion phase, the KNN method is used to search the Ktree to
obtain the nearest neighbor for the test data. The optimal K
of the nearest neighbor is assigned to the test data.

The K value approximation delivers three results as fol-
lows. One is that different K values can be set with training

samples. Another is that the approximation K values work
well compared with the real-time computed K. Last one is
that the approximation K values can be trained before given
a data mining task, whereas the real-time computed K is
obtained after given the data mining task which is a lazy
procedure.

3 NEAREST NEIGHBOR SELECTION

As having mentioned, nearest neighbor selection is really a
procedure of determining a proximity measure. Most of the
research relating to nearest neighbor selection involves
studying the distance function or similarity metrics for mea-
suring the proximity between KNN classification objects.
Numerous techniques have been developed for modifying
KNN classification in terms of distance measurement selec-
tion/construction and this has become a hot topic in KNN
algorithm research [19], [21], [36], [37]. Currently a variety
of distance measures are available, such as euclidean, Ham-
ming, Minkowsky, Mahalanobis, Camberra, Chebychev,
Quadratic, Correlation, Chi-square, and hyperrectangle
[38], Value Difference Metrics [39] and Minimal Risk Met-
rics [40], with an additional option being grey distance [41].

However, distance functions generally do not perform
consistently well, even under specified conditions [42]. This
makes the use of a KNN approach highly experience depen-
dent. Various attempts have been made to remedy this situ-
ation. Amongst these, Discriminant Adaptive Nearest
Neighbor (DANN) is notable for carrying out a local linear
discriminant analysis to deform the distance metric based
on the 50 nearest neighbors [19]. Local Flexible Metric based
on Support Vector Machine (LFM-SVM) also deforms the
metric by feature weighting. Here, the weights are inferred
by training an SVM on the entire dataset [23]. Klocal Hyper-
plane distance Nearest Neighbor (HkNN) uses a collection
of 15-70 nearest neighbors from each class to span a linear
subspace for that class. Classification is then based not on

Fig. 1. Decision tree with class leaves and K value leaves.
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the distance to prototypes but on the distance to linear sub-
spaces [37].

There are other kinds of distance defined by the data
properties. Examples here include: tangent distance using
the USPS zip code dataset [43], shape context-based distance
using the MNIST digit dataset [44], distances between histo-
grams of texts using the CUReT dataset [45] and geometric
blur-based distances using Caltech-101 [46]. These measures
can be extended by kernel techniques so as to estimate a
curved local neighborhood [47]. This makes the space
around the samples nearer or further from the test data,
depending on class-conditional probability distributions.
There are alsomany other efforts to measuring the proximity
between samples. For example, Blanzieri and Ricci presented
a minimum risk metric (MRM) for classification tasks that
exploits estimates of the posterior probabilities [40]. The
MRM is optimal, in the sense that it optimizes the finite mis-
classification risk, whereas the Short and Fukunaga Metric
minimize the difference between finite risk and asymptotic
risk. Domeniconi, et al. built a locally adaptive nearest-neigh-
bor classification method to try to minimize bias [36]. a chi-
squared distance analysis was employed to compute a flexi-
ble metric for producing neighborhoods that are highly
adaptive to query locations. Neighborhoods are elongated
along less relevant feature dimensions and constricted along
most influential ones. Peng, et al. advocated an adaptive
KNN classification method for minimizing bias [47]. A qua-
siconformal transformed kernels was applied to compute
neighborhoods over which the class probabilities tend to be
more homogeneous. Athitsos, et al. applied the KNNmethod
to information retrieval [48]. A method, BoostMap, was
designed for efficient nearest neighbor retrieval under com-
putationally expensive distance measures. Chen, et al. devel-
oped a KNN search by utilizing the distance lower bound to
avoid the calculation of the distance itself if the lower bound
is already larger than the global minimum distance [49].
They constructed a lower bound tree (LB-tree) by agglomera-
tively clustering all the sample points to be searched. Li, et al.
proposed a KNN algorithm with local probability centers of
each class [33]. It can reduce the number of negative contrib-
uting points which are the known samples falling on the
wrong side of the ideal decision boundary, in a training set
and by restricting their influence regions. Liu,Wu andZhang
presented a nearest neighbor selectionwas designed formul-
tilabel classification [28]. The target labels of test data are pre-
dicted with the help of those relevant and reliable data,
which explored by the concept of shelly nearest neighbor.
Song, et al. proposed two KNN methods for measures the
informativeness of test data [13]. That is, Locally Informa-
tive-KNN and Globally Informative-KNN were constructed
as a query-based distance metric to measure the closeness
between objects. Zhang, Cao and Wang developed a
weighted heterogeneous distance Metric [50]. With the
WHDM, the reduced random subspace-based Bagging
(RRSB) algorithm is proposed for construct ensemble classi-
fier, which can increase the diversity of component classifiers
without damaging the accuracy of the component classifiers.
Gou, et al. designed a generalizedmean distance-based KNN
classifier (GMDKNN) [51]. The multi-local mean vectors of a
test data in each class are calculated by adopting its class-
specific K nearest neighbors.

More recently, a new measure named neighborhood
counting has been proposed that can define the similarity
between two data points by using the number of neighbor-
hoods [42]. To measure the similarity between two data
points, all neighborhoods of covering both the two data
points are counted and the number of such neighborhoods
as a measure of similarity. As the features of high-dimen-
sional data are often correlated the above kinds of measures
can easily become meaningless. Some approaches have
been designed to deal with this issue, e.g., by applying vari-
able aggregation to define the measure [36], [52], [53]. Aside
from the above kinds of measures, another strategy that can
be applied is to consider the geometrical placement of the
neighbors rather than their actual distances [54]. This
approach is effective in some cases, but is in conflict with
human intuition when the data is manifold. L�opez et al. pro-
posed a nearest neighbor classification for high-dimensional
data [55]. Specifically, it first sorts all the features through
the FR strategy. Then it selects the first r features with larger
weights. Finally, a new distance function is constructed to
predict the class label based on the selected features and the
test data. Feng et al. proposed a new distance measurement
function to solve the problem of class imbalance [56]. It first
reconstructs the data with a projection matrix, and then cal-
culates the KL divergence between different classes. Finally,
it gets a distance metric matrix by solving the proposed
objective function. In order to solve the problem of outliers,
Mehta et al. proposed a KNN classification through har-
monic mean distance [57]. It looks for K nearest centroid
neighbors of the test data in each class. In addition, it also
calculates a local centroid mean vector in each class, and
uses the nearest harmonic mean distance between the test
data and the local centroid mean to predict the class label of
the test data. Syaliman et al. proposed a KNN algorithm
based on local mean and distance weight [58]. It not only
finds the local mean vector in each class, but also applies
weights based on the distance. The class weights farther
from the test data are smaller, on the contrary, the class
weights closer to the test data are larger. Jiao et al. proposed
a paired distance metric for KNN [59]. It avoids the tradi-
tional method using only one distance metric for global
data. It also sets weights on features and has resolved the
uncertainty in the output of the classifier. Nguyen et al. pro-
posed a large-margin distance metric learning approach
[60]. It can maximize the margin of each training example. It
also solves the optimization problem that the proposed for-
mula is non-convex. Weinberger et al. proposed a distance
measurement function for KNN [61]. It can make K nearest
neighbors always belong to the same class and maximize
the distance between different classes. Goldberger et al. pro-
posed a new mahalanobis distance measure, it can learn the
low-dimensional linear embedding of a data [62]. In this
way, it can reduce the computational complexity of the
algorithm and speed up the KNN classification. Mensink
et al. proposed two distance-based classifiers (i.e., KNN and
nearest class mean (NCM) ) [63]. In addition, it also introdu-
ces a new distance measurement function to improve their
performance. In the experiment, it is verified that the NCM
algorithm has better performance. V. Daviset al. used infor-
mation theory to learn a mahalanobis distance function [64].
It minimizes the KL divergence between two Gaussian

4666 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 10, OCTOBER 2022



distributions by constraining the distance function. Finally, it
learns a mahalanobis matrix A by optimizing the objective
function. Nguyen et al. proposed a new metric learning
method throughmaximization of the Jeffrey divergence [65].
Specifically, it first generates two multivariate Gaussian dis-
tributions from local pairwise constraints. Then it maximizes
the Jeffrey divergence of these two distributions to get a
linear transformation. Finally, it turns the problem into
an unconstrained optimization problem and solves it.
Globerson et al. proposed a newmetric learning for classifica-
tion tasks [66]. It canmake the points of the same class be close
to each other and the points of different classes are far away. It
optimizes the equivalent convex dual form of the proposed
function to solve the metric matrix. FISHER et al. discussed
the application of multiple measures to the same principles in
classification problems [67]. Wang et al. proposed a feature
extraction algorithm [68]. Its core idea is to draw the data of
same class in its neighbors, and push data of different classes
away from it as much as possible. It avoids the problem of
small sample size in traditional Linear Discriminant Analysis
(LDA). In addition, it has also been extended to nonlinear
feature extraction through a kernel function.

Lately a very different approach to nearest neighbor
selection has been adopted, called the shell-KNN algorithm,
as mentioned in Section 2 [16], [69]. It first selects the K near-
est neighbors using distance functions. Then, the shell near-
est neighbors are chosen from the K nearest neighbors. This
has therefore been described as quadratic-selection.

Generally, there is an expectation that all the selected
nearest neighbors for a test data will be ideally distributed
around the test data, as illustrated in Fig. 2.

Fig. 2 shows an ideal nearest neighbor distribution for
test data A. However, the collection of training samples for
real applications is effectively random and the training sam-
ples often have different distributions. Consequently, the
nearest neighbors of a test data will not have an ideal distri-
bution. Other potential cases are shown in Figs. 3, 4, and 5.

According to experiments conducted by Zhang [16], [69],
it is much more efficient to take nearest neighbors closely
distributed around test data A. It takes quadratic-selection

to identify the nearest neighbors within the shell surround-
ing test data A. First of all, one searches for the K nearest
neighbors of test data A in the training dataset. Each fea-
ture/attribute is then treated as an axis and the left and
right nearest neighbors are selected from the K nearest
neighbors for test data A. Finally, the nearest neighbors
within the shell of test data A are selected from the left and
right nearest neighbors on all axes.

Quadratic-selection can only identify those nearest
neighbors that are distributed around test data A. It is there-
fore worth taking note of the following cases.

Point 1 Some nearest neighbors amongst the K nearest
neighbors will be selected many times;

Point 2 The number of selected shell-nearest neighbors of an
item of test data, S, is less or equal to K, i.e., S � K;

Point 3 Different test data will produce different S values.
In the case of point 1 above, the number of times a near-

est neighbor is selected can be used to compute the weight
of the nearest neighbor. This is a new way of setting weights
for samples. We will discuss how to make use of this case in
detail in Section 5.

In relation to point 2, the set of selected shell nearest
neighbors of an item of test data is a subset of the K nearest
neighbors. Note that, when the nearest neighbors of the test
data are further away, as shown in Fig. 5, the quadratic-
selection approach may fail to locate them.

For point 3, it delivers a fact that different test data can be
set different K values. In the shell-KNN algorithm, all near-
est neighbors are expected to distribute around the test
data. Some points therefore need to be discarded from the
selected K nearest neighbors. In other words, the number of
shell-nearest neighbors should be less or equal to K for each
item of test data.

4 NEAREST NEIGHBOR SEARCH

It is often suggested in the literature that KNN classification
is a lazy form of learning. It does not need to train any model
to fit the given training samples, beyond setting the K values.
Thismeans that, for each item of test data, KNN classification

Fig. 2. Ideal nearest neighbors of test data A.

Fig. 3. Nearest neighbors to the left or right of test data A.

Fig. 4. Nearest neighbors below or above test data A.

Fig. 5. Some nearest neighbors further away from test data A.
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has to search the whole training sample space to obtain the K
nearest neighbors. This is a time-consuming procedure that
weakens the range of possible applications for KNN algo-
rithms. Therefore, Samet designed an algorithm for finding
K nearest neighbors of a test data [70]. It adopted a pruning
techniquewith themaxnearestdist as distance upper bound.

For supporting the increasing functionalities of smart-
phones, it is important to fast locate one of the nearest objec-
tives for a customer. Therefore, there are recently some
reports on searching K approximate nearest neighbors. For
example, Jegou, Douze and Schmid proposed a product
quantization for nearest neighbor search [71]. The idea is to
decompose the space into a Cartesian product of low-dimen-
sional subspaces and to quantize each subspace separately.
And then, many improved models have been developed for
spatiotemporal data. Li andHu applied the product quantiza-
tion to develop an approximate nearest neighbor search algo-
rithm for high order data [15]. They incorporated the high
order structures of data into the process of designing a more
effective subspace decomposition way. Pan, et al. designed a
Product quantization with dual codebooks for approximate
nearest neighbor search [72]. It uses dual codebooks simulta-
neously to reduce the quantization error in each subspace.
Also, a grouping strategy was presented to group the data-
base vectors by their encoding modes, and thus the extra
memory cost caused by dual codebooks can be reduced. Chiu,
et al. presented a ranking model with learning neighborhood
relationships embedded in the index space [73]. In thismodel,
the nearest neighbor probabilities are estimated by employing
neural networks to characterize the neighborhood relation-
ships, i.e., the density function of nearest neighbors with
respect to the query. Lu, et al. advocated an approximate near-
est neighbor search via virtual hypersphere partitioning [74].
The idea is to impose a virtual hypersphere, centered at the
query, in the original feature space and only examine points
inside the hypersphere. Munoz, et al. developed a large scale
approximate nearest neighbor search for high dimensional
data [75]. They used a nearest neighbor graph created over
large collections. This graph is created based on the fusion of
multiple hierarchical clustering results, where a minimum-
spanning-tree structure is used to connect all elements in a
cluster. Malheiros and Walter constructed a data-partitioning
error-controlled strategy for approximate nearest neighbor
searching [76]. By changing the size of the candidate neigh-
borhood, the precision and performance are balanced when
searching for neighbors. Tellez, et al. thought, for intrinsically
high-dimensional data, the only possible solution is to com-
promise and use approximate or probabilistic approaches
[77]. And then, they proposed a singleton indexes for nearest
neighbor search. Ozan, et al. designed a vector quantization
method for approximate nearest neighbor search which ena-
bles faster and more accurate retrieval on publicly available
datasets [78]. The vector quantization is defined as a multiple
affine subspace learning problem and the quantization cent-
roids are explored on multiple affine subspaces. Dasgupta
and Sinha theoretically studied three Randomized Partition
Trees for Nearest Neighbor Search [79]. And then, they com-
bined classical k-d tree partitioning with randomization and
overlapping cells.

To compare these approximate nearest neighbor search
algorithms, Li, et al. examined 16 representative algorithms

selected from different domains [80]. And then, they pro-
posed a nearest neighbor search method that achieves both
high query efficiency and high recall empirically on major-
ity of the datasets under a wide range of settings.

In view of the fact that KNN classification is an approxi-
mate solution, effort has recently been undertaken to
overcome the lazy aspects of KNN classification with an
improved approach to approximation that can achieve
good prediction efficiency and accuracy when compared
to standard KNN classification algorithms. This is known
as K*Tree [35]. K*Tree is not a classifier. It is just a particu-
lar kind of tree that has a range of useful information in its
leaf nodes, to facilitate obtaining the K nearest neighbors
for test data quickly. An example of a K*Tree is provided
in Fig. 6.

K*Tree is an extension of the Ktree illustrated in Fig. 1b,
with samples added to each leaf node. These samples
include the K nearest neighbors of the data in a leaf node
and the K nearest neighbors of the nearest neighbor of the
data in the leaf node. In other words, in a K*Tree, each of
the samples in its leaf nodes can be expressed as ðk; e1; < e11;
e12; . . . ; e1k > ; e2; < e21; e22; . . . ; e2k > ; . . . ; ei; < ei1; ei2; . . . ;
eik > ; . . . ; en < en1; en2; . . . ; enk > Þ, where, k is an integer
value, < e1; e2; . . . ; ei; . . . ; en > is a vector of the training
samples that have the same k value, and < ei1; ei2; . . . ; eik >
is a vector of the k nearest samples of ei. However, there are
many samples with the same K value, so, information has to
be added to the leaf nodes of a K*Tree sample by sample.

K*Tree can be used in the following way. For an item
of test data T, the K*Tree can first be searched to obtain
the nearest sample, ei, of T in a leaf node. The K value
in this leaf node can then be taken as the K value of T.
Finally, the K nearest samples of T can be searched for
just amongst the samples attached to the nearest sample
ei, as follows:

ei; < ei1; e12; . . . ; eik >

< e1i1; e
2
i2; . . . ; e

ki1
i1 >

< e1i2; e
2
i2; . . . ; e

ki2
i2 >

..

.

< e1ik; e
2
ik; . . . ; e

kik
ik >:

(1)

Fig. 6. A K*Tree.
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This means that KNN classification using the K*Tree
approach does not need to search the whole training sample
space, significantly enhancing its performance.

Clearly, K*Tree is only an approximation of finding the K
nearest neighbors of an item of test data. There are some
particular things to note about it:

P1 The test data’s nearest neighbor will definitely be
included in the set of K nearest neighbors for the test
data. Other K-1 nearest neighbors will be close enough
to the test data.

P2 The prediction efficiency of KNN classification using
K*Tree is almost the same as that of KNN classifica-
tion using Ktree.

P3 KNN classification with K*Tree is much more robust
than KNN classification with Ktree and standard
KNN classification.

From the above, it can be seen that K*Tree classification
approaches are very different from traditional KNN classifi-
cation methods. KNN classification with K*Tree is not a lazy
learning approach because the K*Tree has to be trained before
predicting the test data. Its advantage is that there is no need
to search the whole sample space. However, there are still
twomain limitations inK*Tree classification as follows.

1) K*Tree classification provides only an approximate
solution to a query. It is not clear how to estimate the
confidence of the answer?

2) It is not clear which tree is the best structure to
store the K and the nearest neighbors for the K*Tree
classification?

5 CLASSIFICATION RULES

Once the K nearest neighbors of an item of test data have
been selected from training samples, the class label of the
test data needs to be predicted, using a classification rule/
principle. In general, the most popularly-used rules for
KNN classification are the majority rule and its various
forms of weighting. Recently, two classification rules have
been proposed against datasets with imbalanced classes.
Apart from recalling these classification rules, some sugges-
tions are advocated to improve the classification rules of
shell nearest neighbor classification in this section.

5.1 The Majority Classification Rule

This is a simple yet efficient approach to classification that
predicts the class of the test data according to the class of
the majority of the K nearest neighbors.

For a training dataset, D, with n features and a decision
attribute, letD ¼ Xi;Yið Þf g;Xi ¼ðXi1;Xi2; . . . ;XinÞ,Dom Yð Þ¼
fc1; c2; . . . ; cmg be the domain of the decision attribute, Y .
One can obtain K nearest neighbors of a query (test data), T ¼
X;Yð Þ, from the training dataset. KNNðT Þ is the set of these
K nearest neighbors. The majority rule for KNN classification
is as follows:

Y ¼ argmax
c2DomðY Þ

X

Xi2KNNðT Þ
IðYi ¼ cÞ; (2)

where Ið�Þ is an indicator function.

5.2 The Weighting Classification Rule

In the majority rule, the K nearest neighbors are implicitly
assumed to have equal weight for any decision, regardless
of their distance from the test data. This rule therefore
adheres to the notion that it is conceptually preferable to
give different weights to the K nearest neighbors according
to their distance from the test data, with closer neighbors
having greater weight. The distance weighting-based classi-
fication rule is as follows:

Y ¼ argmax
c2DomðY Þ

X

Xi2KNNðT Þ
IðYi ¼ cÞ 1

dðXi;XÞ ; (3)

where dðXi;XÞ is the distance between ðXi; YiÞ and the test
data T. dMAX ¼ MAXXi2KNNðT ÞfdðXi;XÞg. The Eq. (2) can
be changed to Eq. (3) as follows:

Y ¼ argmax
c2DomðY Þ

X

Xi2KNNðT Þ
IðYi ¼ cÞ 1� dðXi;XÞ

dMAX

� �
: (4)

A general weighting classification rule is as follows:

Y ¼ argmax
c2DomðY Þ

X

Xi2KNNðT Þ
wi � IðYi ¼ cÞ: (5)

A kernel function classification rule is as follows:

Y ¼
X

Xi2KNNðT Þ
YiKðXi;XÞ: (6)

where KðXi;XÞ is a kernel function. Eq. (5) is constructed
for a numerical value. If the decision attribute is of a certain
character type, Yi can be replaced with the indictor function.

5.3 CF (Certainty Factor) Classification Rule

There are numerous variations upon the above classification
rules. However, neither of these classification rules work
well for the imbalanced datasets typical of real applications,
such as tumor diagnosis in medical tests or investments in
the stock market. Generally, this is a challenge when the
data mining tasks are sensitive to cost or risk.

To deal with this issue, [81], [82] has proposed ways of
increasing the competitiveness of minor classes when
undertaking imbalanced data classification, known as Cer-
tainty Factor KNN (CF-KNN) classification. These are sum-
marized below.

The CF measure is incorporated into the KNN classifica-
tion as follows. For a test sample T ¼ ðX;Y Þ, assume pðY ¼
cijDÞ is the ratio of ci in the training dataset, D, and pðY ¼
cijKNNðT ÞÞ is the ratio of ci in the set of K nearest neigh-
bors, KNNðT Þ. If pðY ¼ cijKNNðT ÞÞ � pðY ¼ cijDÞ, the CF
is computed as follows:

CF ðY ¼ ci;KNNðT ÞÞ

¼ pðY ¼ cijKNNðT ÞÞ � pðY ¼ cijDÞ
1� pðY ¼ cijDÞ :

(7)

It meansCF ðY ¼ ci;KNNðT ÞÞ > 0. If pðY ¼ cijKNNðT ÞÞ <

pðY ¼ cijDÞ, the CF is computed as follows:
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CF ðY ¼ ci;KNNðT ÞÞ

¼ pðY ¼ cijKNNðT ÞÞ � pðY ¼ cijDÞ
pðY ¼ cijDÞ :

(8)

It means CF ðY ¼ ci;KNNðT ÞÞ < 0.
The CF strategy for KNN classification can be defined as

follows:

Y ¼ argmax
1�i�m

CF ðY ¼ ci;KNNðT ÞÞ: (9)

According to the description of CF, CF ðY ¼ ci;KNNðT ÞÞ
will have a value in the range [�1, 1]. If CF ðY ¼
ci;KNNðT ÞÞ > 0, it will increase that the class of the query
should be predicted to be Y ¼ ci. If CF ðY ¼ ci;KNNðT ÞÞ <
0, however, it will decrease that the class of the query
should be predicted to be Y ¼ ci. If CF ðY ¼ ci;KNNðT ÞÞ ¼
0, it will be the same as it is for the training set D that the
class of the query should be predicted to be. In other words,
the class of T is undetermined for binary classification
applications.

5.4 Lift Classification Rule

The above CF-KNN classification can be modified by using
the lift measure, also known as Lift-KNN classification as
follows:

LiftðY ¼ ci;KNNðT ÞÞ ¼ pðC ¼ cijKNNðT ÞÞ
pðC ¼ cijDÞ : (10)

Clearly, LiftðY ¼ ci;KNNðT ÞÞ > 0. If the lift of a class
is less than or equal to 1, the probability of the class is not
increased for the K nearest neighbors. However, if LiftðY ¼
ci;KNNðT ÞÞ > 1, the probability of the class is increased
for the K nearest neighbors. In that case, the Lift-KNN strat-
egy for KNN classification can be defined as follows:

Y ¼ argmax
1�i�m

LiftðY ¼ ci;KNNðT ÞÞ: (11)

If LiftðY ¼ ci;KNNðT ÞÞ ¼ 1, the class of T is undeter-
mined for binary classification applications.

5.5 Shell KNN Classification Rule

Recalling Fig. 2 in Section 3, shell nearest neighbors are well
distributed around the test data A. In real applications, the
shell nearest neighbors may not be ideal, due to the fact that
training examples are randomly collected. This case is illus-
trated in Fig. 7 as follows.

With the quadratic-selection rule, sample B is selected
many more times than samples C, D, E and F, although all

five nearest neighbors are very close to test data A. This is a
very interesting case when using KNN classification in data
mining applications. In this paper, we formally discuss this
case as follows.

Using the quadratic-selection rule, we can obtain 2n sam-
ples, left(X1), right(X1), ... , left(Xn), right(Xn) from the set
KNNðT Þ, where left(Xi), right(Xi) are the left and right
nearest neighbors of the test data, T, with respect to the fea-
ture Xi, respectively. The majority rule of KNN classifica-
tion can be extended as follows:

Y ¼ argmax
c2DomðY Þ

X

Xi2KNNðT Þ

ðIðleftðXiÞ ¼ cÞ þ IðrightðXiÞ ¼ cÞÞ:
(12)

From Eq. (12), if a nearest neighbor is selected many
times, it will be the winner. This is another way of address-
ing imbalanced classes with Case 1 (mentioned in Section 3).
For Fig. 7, let the label of B be c1, the label of C be c2, and the
label of D, E and F be c3, and n =10. From Eq. (2), the label of
T is assigned to c3. From Eq. (12), the label of T is voted to
c1. If we let the label of B be c1, the label of C, D, E and F be
c2. From Eq. (2), the label of T is predicted to be c2. In the
case of Eq. (12), the label of T is not determined, due to the
fact that c1 and c2 receive the same votes. To attack this
issue when mining imbalanced data, we can modify
Eq. (13) as follows:

Y ¼ argmax
c2DomðY Þ

fcountðXi; YiÞlIðYi ¼ cÞg; (13)

where the countðXi; YiÞ is the number of selected nearest
neighbors ðXi; YiÞ, and “l” is greater than 1.

6 EXPERIMENTS

A large number of new ideas have been presented in this
paper. For the sake of simplicity, just a few representatives
of the new classification rules in Section 5 will be evaluated
in this section. The classification accuracy of the new classi-
fication rules was compared with the majority classification
rule (referred to here as the standard KNN classification
rule) across 15 datasets, as shown in Table 1, below.

Fig. 7. The shell nearest neighbors are not ideally distributed around test
data A.

TABLE 1
Information About the Downloaded Datasets

Datasets Number of
samples

Number of samples
after deleted some

Dimensions Classes

OCCUDS 1,994 1,194 101 10
Chess 3,196 1,860 36 2
CNAE 1,080 696 856 9
German 1,000 762 20 2
Ionosphere 351 250 34 2
Isolet 1,560 936 617 2
Letter 20,000 11,984 16 26
Segment 2,130 1,518 19 7
USPS 9,298 5,758 256 10
Vehicle 846 512 18 4
Waveform 2,746 1,267 21 3
Yeast 1,484 945 1,470 10
Arcene 200 110 10,000 2
Carcinom 174 99 9,182 11
CLLSUB 111 61 11,340 3
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6.1 Experimental Setting

The 15 datasets above were downloaded from the UCI
machine learning library. They include 5 binary datasets and
10 multi-class datasets. The 15 datasets needed to be slightly

modified to meet the requirements of the evaluation. So,
80 percent of the samples belonging to a certain class in the
binary datasetswere deleted, with all of the remaining samples
forming the new datasets. In the multi-class datasets, if the

Fig. 8. Classification accuracy for the original datasets using different K values.
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number of classifications was odd, we removed 80 percent of
the samples belonging to the odd-numbered classes (i.e., 1, 3,
5...). If the number of classifications was even, we removed 80
percent of the samples belonging to the even class (i.e., 2, 4, 6...).

A set of experiments was conducted on the above datasets
using the classification rules mentioned in Section 5. The pri-
mary goal was to compare their performance with that of the
standard classification rule, but a further objective was to test

Fig. 9. Classification accuracy for the unbalanced datasets with different K values.
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their effect on the classification imbalances in the data. Each
dataset was first divided into a test set and a training set using
10-fold cross-validation. Then, all the classification rules were
examined using the original dataset (no sample deletion, i.e.,
unclassified and unbalanced data). This was to ensure
the experiment was using different K values. After this, all the
classification rules were tested using different K values on the
unbalanced datasets. Finally, K = 5was selected to perform 10
experiments on the unbalanced datasets, to examine the aver-
age and variance of the classification accuracy.

It should be noted that, for the binary dataset, we not
only obtained the classification accuracy (ACC), but also the
sensitivity (SEN) and specificity (SPE) for the unbalanced
dataset.

6.2 KNN Classification of the Original Datasets

The first set of experiments were conducted using the down-
loaded datasets without any changes. The results are shown
in Fig. 8, which presents the classification accuracy of the
classification rules for the 15 original datasets with different
K values. It can be seen that the accuracy of these classifica-
tion rules does not differ greatly for most of the datasets,
especially in relation to the OCCUDS, CNAE, Isolet, Letter,
Segments, Vehicle and Waveform datasets. The ShellKnn
classification rule performs the worst on the Yeast dataset,
but the best on the German, Ionosphere and USPS datasets.
Overall, the ShellKnn classification rule performs pretty

well. For other classification rules, there was little difference
in their performance on the original datasets, though the
weighted classification rules performed particularly poorly
on some datasets, such as Chess and Yeast.

6.3 Unbalanced Datasets With Binary Classes

The second set of experiments was conducted with the
modified datasets where there were unbalanced binary clas-
ses. The results are presented in Fig. 9.

Fig. 9 shows the classification accuracy for all of the clas-
sification rules for a class-unbalanced dataset, with Chess,
German, Ionosphere and Isolet being the binary datasets.
For the German, Ionosphere and Isolet datasets, the perfor-
mance of the Majority classification rules and Weighted
classification rules was not very good because these two
classification rules do not consider the importance of small
sample classes when dealing with class imbalances.
The CF, Lift and ShellKNN classification rules slightly
increased the competitiveness of the small classes in the
unbalanced classifications. Thus, in most cases, their perfor-
mancewasmuch better than theMajority andWeighted clas-
sification rules.

Table 2 shows the ACC, SEN, and SPE results for the
binary dataset. Here, it can be seen that the ShellKnn
classification rule performed the best for the binary-class
datasets, with the Majority classification rule being the
worst.

TABLE 2
Binary Results on Imbalanced Data

Datasets Chess German Ionosphere Isolet Arcene

ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE

Majority 0.690 0.261 0.772 0.662 0.684 0.297 0.836 0.904 0.040 0.681 0.731 0.305 0.750 0.905 0.132

Weighting 0.729 0.174 0.853 0.897 0.972 0.027 0.875 0.971 0.012 0.745 0.858 0.179 0.741 0.881 0.181

CF 0.720 0.174 0.840 0.916 0.995 0.003 0.891 0.989 0.040 0.771 0.899 0.130 0.671 0.767 0.290

Lift 0.727 0.144 0.842 0.918 0.993 0.003 0.900 0.987 0.012 0.778 0.905 0.141 0.671 0.767 0.290

ShellKNN 0.821 0 1 0.921 1 0 0.900 1 0 0.833 1 0 0.800 1 0

TABLE 3
Average Classification Accuracy for Multiple Classifications in the Unbalanced Datasets

Datasets CCUDS CNAE Letter Segment USPS Vehicle Waveform Yeast Carcinom CLLSUB

Majority 13.02 13.65 4.71 19.43 15.32 31.05 49.86 48.99 20.61 74.92
Weighting 14.41 14.51 5.38 20.03 16.71 36.33 58.39 42.12 26.57 73.61
CF 15.13 18.68 5.70 20.01 17.16 38.65 54.46 48.99 19.90 56.07
Lift 15.69 18.53 5.82 21.61 16.92 39.45 60.93 49.00 17.58 54.92
ShellKNN 16.75 17.26 6.54 21.74 26.80 42.77 70.86 25.82 10.07 80.33

TABLE 4
Standard Deviation of the Classification Accuracy

Datasets CCUDS CNAE Letter Segment USPS Vehicle Waveform Yeast Carcinom CLLSUB

Majority 0.01 0.12 0.01 0.01 0.15 0.01 0.01 0 0.03 0.02
Weighting 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.03
CF 0.01 0.16 0.01 0.01 0.01 0.02 0.01 0 0.03 0.07
Lift 0.01 0.16 0.01 0.01 0.01 0.01 0.01 0 0.02 0.07
ShellKNN 0 0.04 0.01 0 0 0 0 0 0.01 0.01
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6.4 Unbalanced Multi-Class Datasets

The third set of experiments were conducted using the
modified datasets with multi-class imbalances. The results
for the average classification accuracy and variance across
the 10 experiments are presented in Tables 3 and 4.

With regard to the variance, all of the classification rules
were stable, the variance was small and the results were
robust. For the average classification accuracy, the ShellKNN.
Lift, and CF classification rules improved the average classifi-
cation accuracy by 2.74, 0.89, and 0.32 percent, respectively, in
relation to the Majority classification rule. In particular, t on
For the USPS and Waveform datasets, the ShellKNN classifi-
cation rule improved the classification accuracy by 11.48 and
21 percent, respectively.

Across the various unbalanced datasets, the ShellKnn
classification rule generally performed well in comparison
to the other classification rules.

7 CONCLUSION

This paper has systemically reviewed the latest research
regarding KNN classification that is addressed to its four most
challenging issues. This paper has focused on introducing the
main results recently established within our research group.
These can be distinguished from other extant approaches by
their interest in delivering new research directions for KNN
classification.

Although the approaches presented here are both effi-
cient and promising, there are still some open issues that
require further research:

1) How to set different K values for different kinds of
test data so that the results delivered by the KNN
classification algorithm will offer the best possible
performance whilst remaining robust.

2) How to establish the best tree structures for building
KTree and K*Tree when a decision tree is not the best
data structure for saving or rapidly searching for the K
values and the nearest neighbors of a leaf node.

3) How to make KNN classification efficient when min-
ing big data.
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