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Abstract—We propose a novel probabilistic label enhancement algo-
rithm, called PLEA, to solve challenging label distribution learning (LDL)
for multi-label classification problems. We adopt the well-known maxi-
mum entropy model based label distribution learner. However, unlike the
existing LDL algorithms based on the maximum entropy model, we pro-
pose to use manifold learning to enhance the label distribution learner.
Specifically, the supervised information in the label manifold is utilized
in the feature manifold space construction to improve the accuracy of
feature extraction, while dramatically reducing the feature dimension.
Then the robust linear regression is employed to estimate the label
distributions associated with the extracted reduced-dimension features.
Using the enhanced reduced-dimension features and their associated
estimated label distributions in the maximum entropy model, the un-
known true label distributions can be estimated more accurately, while
imposing considerably lower computational complexity. We evaluate the
proposed PLEA method on a wide-range artificial and high-dimensional
real-world datasets. Experimental results obtained demonstrate that our
proposed PLEA method has advantages in LDL accuracy and runtime
performance, compared to the latest multi-label LDL approaches. The
results also show that our PLEA compares favourably with the state-of-
the-arts multi-label learning algorithms for classification tasks.

Index Terms—Multi-label classification, label distribution learning, man-
ifold learning, robust linear regression

1 INTRODUCTION

Multi-label learning (MLL) [1] is widely used for classifica-
tion, recognition and retrieval in many areas, such as text
[2], voice [3], image [4], and video [5], etc. The data in these
applications are often rich in semantics, and hence suitable
for modeling using MLL. A known challenging multi-label
image classification problem is facial age estimation [6],
[7], because aging is a gradually changing random process,
exhibiting non-stationary patterns. The work [8] focused on
the outlier labels and derived a robust multi-label active
learning algorithm based on the maximum correntropy cri-
terion (MCC), while the authors of [9] proposed a robust
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graph-based semisupervised learning method, where the
MCC was used to suppress labeling noise. In the past few
years, the deployment of intelligent transport system and,
in particular, the research and development of autonomous
driving, has become a focus of the scientific and engineering
community. One of the many challenges for this grand
and complex application is how to fully mine and utilize
information from a large number of features hidden in
huge amount of vehicular videos. A most common use
of vehicular video is to detect and identify an important
target in the video, such as target vehicles, traffic scene
text, pedestrians, etc. However, comprehensive exploration
and practical use of scenes, weather conditions, lane lines
and other driving information offer much more value. Since
traditional single-label classification is difficult to accurately
describe all the information contained in the driving video,
MLL has become the research focus in this application.
Traditional methods of MLL generally adopt the uniform
label distribution assumption, i.e., the importance of each
related label (positive label) to the example is considered
equal. However, for many real-world learning problems, the
multi labels for describing a sample do not have the same
importance to the sample. Rather some labels have primary
importance to the sample, while the others have secondary
importance. Label distribution learning (LDL) paradigm
[10] was proposed to address this issue. The fundamental
assumption of LDL is that each example is represented by a
label distribution covering the importance of all its labels.
In most of multi-label applications, the data are usually
labeled by multiple logical labels (uniform label distribu-
tion), and the true label distribution information is unknown
or not provided. Nevertheless, the supervised information
in these data essentially follows some kind of label distribu-
tion. Although this label distribution is not given explicitly,
it is often implicitly contained in the training samples. If it
can be recovered by a suitable method, the advantages of
mining more semantic information by LDL can be realized.
The process of promoting the original logical label into
a label distribution is known as label enhancement (LE)
[11]. More specifically, by discovering the information of
the labels” importance contained in the training samples,
logical labels can be transformed into label distributions,
and prediction accuracy can be improved. In other words,
LE utilizes the correlation between labels hidden in the data
to effectively strengthen the supervised information of the
examples, which enables LDL to achieve better prediction
results. Examples of LE based LDL include the methods of



using prior distributions of head pose and face age [12],
[13], the label propagation method commonly used in semi-
supervised learning [14], and the manifold learning [15].

Some LE methods assign an identical label distribution
to all the examples of the same class. For example, Geng et
al. [13] proposed an LE algorithm for face age estimation
based the prior distribution. From the training examples of
the same class, an average Gaussian distribution is learnt,
and this label distribution is assigned to every example of
the class. However, in practice, the examples of a class will
have some subtle differences and this should be reflected in
their related label distributions. Therefore, the existing state-
of-the-art LE algorithms construct the individual label dis-
tributions for the corresponding samples of the same class.
These include the algorithm adaptation with backpropaga-
tion (AA-BP) and with k-nearest neighbor (AA-kNN) [10],
the conditional probabilistic neural network (CPNN) [6], the
label distribution SVR (LDSVR) [16], the improved iterative
scaling-learning from labeled distribution (IIS-LLD) [6], [10],
and the algorithm using the quasi-Newton iterative method
called the BFGS [17] to improve the IIS-LLD (BFGS-LLD)
[6], [10]. More specifically, these LE algorithms all construct
individual label distributions to a sample based on all the
original feature vectors of the training samples.

Formally, the goal of LDL is to learn the conditional
probability of the label vector conditioned on the input sam-
ple. Using the Kullback-Leibler (KL) divergence as a mea-
sure of similarity between the two distributions, a reason-
able choice for this conditional probability model is the one
that achieves the largest conditional entropy while meeting
the usual probability constraints [6]. This model is known
as the maximum entropy model. The problem of estimating
the unknown label distributions is then turned into the
problems of estimating the label distributions’ parameter
vectors. Substituting the logical labels for the unknown label
distributions and using all the elements of an input sam-
ple as its features in the maximum entropy model enable
the estimation of the label distributions” parameter vectors
via iterative optimization procedures, such as the IIS-LLD
and BFGS-LLD [6], [10]. The difference between these two
algorithms is that the IIS-LLD is a gradient descent itera-
tive method while the BFGS-LLD adopts a quasi-Newton
iterative method. It can be seen that for the problems with
high-dimensional input data, the IIS-LLD and BFGS-LLD
methods impose higher computational complexity.

Against the above background, in this paper, we propose
a novel probabilistic LE algorithm, referred to as PLEA,
for multi-label LDL. Although we also adopt the maximum
entropy model, our PLEA algorithm is very different from
the IIS-LLD and BFGS-LLD. More specifically, our PLEA
consists of the following three components or steps.

1) Manifold space enhanced feature extraction: Based
on the local tangent space alignment (LTSA) mani-
fold learning principle [18], we extract accurate and
reduced-dimension features in the feature manifold
space construction.

2) Robust regression: For the extracted reduced-
dimension features, we perform the robust linear
regression on the manifold learning enhanced label
space to estimate their associated label distributions.
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3) Enhanced maximum entropy model based LDL: In
the enhanced maximum entropy model, we use the
enhanced reduced-dimension features obtained in
step 1), rather than the full-dimensional input data
as features, and we substitute the logical labels with
the estimated enriched label distributions acquired
in step 2). A gradient-descent iterative optimization
then estimates the unknown true label distributions.

It can be seen that unlike the IIS-LLD and BFGS-LLD
which rely only on the original logic label space information
and are based on all the original input data vectors, we mine
the rich information of the neighbour training samples in
the manifold space to better guide the LDL. To the best
knowledge of the authors, our PLEA is the first to apply
manifold space learning in LDL. The advantages of this
manifold space enhanced LDL are elaborated as follows.

o By utilizing the supervisory information of the orig-
inal label space to guide the feature manifold space
learning, the reduced-dimensional principal features
of the original samples can be extracted. The selected
features are important and can fully reflect the cate-
gory information of the original samples.

o Using the principal features extracted in the robust
linear regression to estimate the associated label dis-
tributions effectively exploits the feature manifold
space learning to guide the label manifold space
learning. The acquired label distribution estimates
contain richer supervisory information than their
corresponding logical labels.

e By using the reduced-dimensional principal features
and their associated label distribution estimates to
form the enhanced maximum entropy model, the
unknown label distributions can be estimated with
enhanced accuracy while potentially imposing lower
complexity on the entire LDL procedure.

Extensive experimental results show that our PLEA out-
performs a wide range of existing LE learning methods, in
terms of both estimation accuracy and run time. The rest of
this paper is organized as follows. In Section 2, we briefly
introduce the related work. The proposed PLEA method is
detailed in Section 3. Extensive experimental results are re-
ported in Section 4. Our conclusions are offered in Section 5.

2 RELATED WORK

A large amount of research in the literature have devoted
to solving image annotation and multi-label classification
problems. In this section, we briefly review the work most
relevant to our approach from the perspective of multi-label
classification and multi-label distribution.

2.1 Multi-label Classification

In recent years, the academic community has carried out
numerous research work on multi-label learning. Zhang
and Zhou [19] proposed a back propagation (BP) neural
network based method for multi-label learning to classify
gene functions and texts, called BP-MLL. Jiang et al. [20]
proposed a multi-label text classification method based on
fuzzy similarity measure and k-nearest neighbor (kNN).



Yu et al. [21] proposed a multi-label classification frame-
work based on neighborhood rough set. Liu and Chen [22]
advocated an emotion analysis method based on multi-
label learning. Ding et al. [23] proposed an algorithm for
evaluating the majority class cost and the minority class
value to deal with multi-label unbalanced data classification
problems. A multi-label learning approach was proposed
in [24] to learn each label’s label-specific function while
considering the relevant information in the label space and
the related information in the feature space. The multi-label
learning method has been widely applied in the fields of
text classification [25] and traffic scene text classification for
determining the target vehicle’s driving trajectory [26].

2.2 Multi-label Distribution

The existing research on multi-label distribution mainly
focuses on designing algorithms for LDL. According to [10],
there exist three strategies for designing LDL algorithms.
The first one is called the problem transformation (PT),
which generates a single-label data set based on the label
distribution and then uses a single-label learning (SLL)
algorithm to learn the converted data set. The algorithms
belonging to the first strategy include the PT-support vector
machine (PT-SVM) and PT-Bayes [10], which respectively
apply SVM and Bayes classifiers. The second one is called
the algorithm adaptation (AA), which adapts existing learn-
ing algorithms to process label assignments directly. Two
representative algorithms of the second strategy are the AA-
kNN and AA-BP [10]. For the AA-kNN, the average value of
the label distributions of k nearest neighbors is calculated as
the predicted label distribution, while for the AA-BP, the BP
algorithm is used to training a single layer neural network
with multiple outputs as the predicted label distribution.

The last type of algorithms exploits the characteristics of
LDL. The two representative algorithms of this strategy are
the IIS-LLD and BFGS-LLD [10], which apply the maximum
entropy model to learn the label distribution. In addition,
Geng and Hou [16] regard LDL as a regression problem and
proposed the LDSVR, which applies SVR to process label
assignment. Shen et al. [27] proposed a LDL forests, which
extends the random forest to learn the label distribution.
Gao et al. [28] provided a deep LDL model, called the deep
label distribution learning with label ambiguity.
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Two feature extraction algorithms were presented in [29],
[30]. As an effective means of nonlinear dimensionality
reduction, manifold learning finds low-dimensional smooth
manifold results from high-dimensional observation data.
Most manifold learning algorithms process data in batch.
That is, all the data must be collected before running the al-
gorithms. These batch-type manifold learning algorithm are
ineffective for large data-stream problems in which the data
arrives continuously. Many practical applications need to
process the real-time data stream, where data are collected
sequentially and continuously, such as news text analysis,
network data mining, video surveillance and seismic signal
detection, etc. These applications require incremental man-
ifold learning algorithms that continuously and efficiently

Incremental Feature Extraction
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update manifolds on newly arriving data, without perform-
ing repeated calculations on the entire data set.

Several incremental manifold learning algorithms ex-
ist in the literature. Incremental Isomap algorithm [31]
learns the input data stream incrementally. With the incre-
mental Laplacian eigen-mapping algorithm [32], the low-
dimensional representation of the dataset is calculated by
optimally storing the local neighborhood information, and
the sub-manifold analysis by the linear incremental method
is used to incrementally learn the new sample. The work
[33] proposed the incremental locally linear embedding
algorithm to evaluate the mappings of the new samples
and re-calculate the projections of the original samples.
The incremental LTSA (ILTSA) [34] and the incremental
principal component analysis [35] were also proposed.

The aforementioned incremental manifold learning algo-
rithm have certain limitations. For example, the new point
may change the local neighborhood and the local distribu-
tion of the manifold. Therefore, these algorithms may not
guarantee sufficient approximation accuracy. Furthermore,
their computational cost may be too high. To mitigate these
potential drawbacks, Tan et al. [36] proposed a self-adaptive
LTSA manifold learning algorithm (SLITSA) based on incre-
mental tangent space to incrementally construct subspaces.
The update of local information of sample points is obtained
from the feature vectors of existing points and new points.
Therefore, there is no need to calculate the entire covariance
matrix repeatedly when updating the local tangent space.

3 THE PROPOSED PLEA ALGORITHM

We now detail our proposed PLEA Algorithm. After pro-
viding a brief description of the LDL problem, we discuss
the maximum entropy model for the LE learning algorithms,
specifically, the IIS-LLD and BFGS-LLD [10]. By highlighting
the differences of our approach, it naturally leads to our
novel contributions to LE learning, namely, the manifold
space enhanced label learning model with robust regression.

3.1 Problem Description

Let € R? be an input instance, and y = [yl Y2 yC]T €
{—=1,41}¢ be its logical class label vector. The degree to
which the label yj , 1 < j < ¢, describes the example x is
defined by the conditional probability d% = P(y’|z). Here,
d%’j €0, 1],1<j<¢ and Z§=1dg’ = 1. For each example,
the descriptiveness of all the labels in the label set builds a
data form similar to a probability distribution. Therefore, it
is called a label distribution. This label distribution however
is unknown. The process of learning the label distribution

of a labeled example is called LDL. Formally, given the
training dataset {.’I;i, yi}?:y where x; = [J:Zl x? e xf]T and
Y = [yzl y? - yﬂ T, the goal of LDL is to learn the under-

1 2 c
lying unknown label distributions {dg}i,d%;, cedY }:.l:l.

The estimate of dayg7 can be expressed in the form of the
parameterized conditional probability model

J i . .
Az, =P(yllwswi;), 1<j<el<i<n (1)
T .
where w; j = [w} ; w7, ---w];]" €R is a parameter vector.

Thus, learning the label distributions is turned into the



problem of estimating w; ; for every {z;,vy!}, 1<i<n and
1 <j <. For many practical applications, the dimension ¢
can be very large, in thousands or even tens of thousands,
and the sample size n is typically very large, while the size
of label set ¢ is very small by comparison.

3.2 Maximum Entropy Model

Denote fi(z;,!) € R as the kth feature function that relies
on both instance x; and label yf , where 1 < k < ¢. Accord-
ing to the maximum entropy model [6], [10], P(y] |x;; w; ;)
takes the following exponential form

) 1 9 )
P(y!|ei; w; 5) = - &XP (Z wfﬁfk(%ﬂf)) ;@
v k=1
where the normalization factor

(& q )
Zi:Zexp<§ wf]fk(wl,yf)> ) 3)
j=1 k=1

In [6], [10], the features are further expressed as f;, (wi, yf ) =
vl gi(x;), where gy (x;) is the class-independent kth feature
function. Therefore, (2) can be rewritten as follows

1

P(y!lxsw; ;) = 7, &Xp (Z (wf; yf)Qk(%)) G

k=1

N

j
Recognizing 37, dy;, = 1 yields the target function for
all the parameter vectors w = {w; ;,1 <j <¢,1<i<n}:

n  c . )
T(w)=> > di, InP(y! |z w; ;)

i=1 =1
n ¢ J g .
=D da Y (wfy -yl gr (@)
im1j=1 k=1
n c q .
=Y In| D exp (Z (wh; - vl) g (wi)) O
i=1 j=1 =1

If all the true label distributions dgj and the feature func-
tions gy (wl) are available, the target function (5) can be
optimized using a strategy similar to the improved iterative
scaling (IIS) [37], which is a well-known algorithm that
maximizes the possibility of a maximum entropy model.
Specifically, the IIS finds the optimal parameters w by solv-
ing the nonlinear equation associated with the lower bound
of T(w+ Aw) —T'(w) based on an iterative procedure, such
as the Gauss-Newton method. This is of course impractical,

J
as dy, are unknown and they are yet to be estimated.
ud
Since g (ml) and in particular d,f‘iﬁ are unknown, a prac-
tical solution is to construct an ‘empirical” target function by
J
substituting the unknown true label distributions d%’l with
the known logical labels y! as well as by substituting g, (x;)
with 2. More specifically, the following ‘empirical’ target
function is adopted [6], [10]

To(w)=>> "yl > (wh; -yl)ak

i=1j=1 k=1
n c a .

— Zln exp (Z (wf] yf)xf) . (6)
i=1 j=1 k=1
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The IIS-LLD and BFGS-LLD [6], [10] are in fact the iterative
optimization algorithms that find the label distributions’
parameters w by solving the nonlinear equation associated
with the lower bound of T (w+Aw) —T,(w) using gradient
descent method and Gauss-Newton method, respectively.

Clearly, there exists a drawback associated with the
aforementioned approach for estimating the label distri-
butions. Since the dimension ¢ for many practical appli-
cations is large, say, thousands or tens of thousands, the
aforementioned IIS-LLD and BFGS-LLD impose high com-
putational cost. Also, these two algorithms do not really
calculate the features gj(x;) for x;. Rather, they simply use
the kth element of x; as the kth feature of x;, which is
somewhat heuristic. Additionally, the label y] contains far
less information than the associated label distribution. These
two ‘substitutions’ or approximations inherently limit the
accuracy of the empirical model (6).

The main contribution of this paper is to propose the
novel PLEA algorithm, the manifold space enhanced la-
bel learning with robust regression, which eliminates the
aforementioned drawbacks. More specifically, we extract the
subset of k; principal features gi(x;), 1 < k < kg, ks < ¢,
for each x;. In particular, based on the smoothness between
the label manifold space and feature manifold space, we
can perform unsupervised feature manifold space learning
to extract these principal features. It can be visualized

T .
that each extracted feature vector [gl (x;) - gk, (asz)] is
associated with a set of the unknown label distributions
d‘Z , 1 < j < c. Learning these label distributions, i.e., the
label manifold space learning, is in turn helped by the
previous feature manifold space learning. Specifically, we
can employ the robust linear regression to estimate the label
distributions df for ~‘t_he extracted features, and we denote the
estimate of d] by d/. Consequently, we have the enhanced
reduced-dimensional features gy (x;), 1 < k < ks, and the
associated label distribution estimates d'g , 1 <753 < ¢ to
form an enhanced empirical maximum entropy model. This
allow us to estimate the true label distributions, namely,
the parameters w, with enhanced accuracy and potentially
significantly lower computational complexity, based on the
gradient-descent iterative optimization.

3.3 Manifold Space Learning Based Feature Extraction

According to the fundamental hypothesis of manifold space
[18], each data point can be optimally reconstructed using
a linear combination of its neighbors. Ideally, we would
like to exploit the label information in the label manifold
space for guiding the unsupervised feature extraction in the
feature manifold space to improve the accuracy of feature
extraction. Strictly speaking, therefore, the way of selecting
the best kg neighbors of x; is according to the closeness of
these neighbors to x; in the label manifold space, i.e., ac-
cording to the Hamming distance of these neighbors’ labels
to the labels of x;. There seems no off-shelf kit available to
do this. Fortunately, according to the smoothness property
of manifold space [18], the closeness in the label space is
transferred to the closeness in the feature space. Therefore,
we can find the k, neighbors of x; by their closeness in the
feature space directly.



Specifically, our aim is to find k, neighbor points ;,,
s Tig for every point x;. The optimal ‘average’ ks can be
determined by minimizing the following cost function

n k
=3[ Som,
i=1 j=1
According to the statistical validity [35], [36], the coefficient
« should be the mean value, i.e., « = % The optimal k4 can
readily be obtained as

Q(k) :

@)

min
e<k<min{n,q}

ks =arg Q(k), (8)
using an exhaustive search or other optimization algo-
rithms. Clearly, z; is included in its set of k5 neighbors. Note
that from practical consideration, we want the dimension of
feature vector g(;) of (11) to be no smaller than c.

Thus, for each x; € RY, we have its k neighbors, which

can be collected together in the matrix X; = [:c“ SRECT S ] S
R¥Fs, Clearly, X; has the full rank k. Next define
1 A
Ui =Qf Xi(I, — — 15,13 ) € RF"F, )

ks
where I is the k-dimensional identity matrix, and 1j is
the k-dimensional vector whose elements are all 1, while
Q; € R7%*= contains the k, left singular vectors of X; Iy, — k.
1 1. 1T ) corresponding to its ks positive singular values.
Further define
1

Gi=(I, - ?1,;5153)(@ —-Uluy), (10)
where UiT is the Moore-Penrose generalized inverse of U;.
According to [18], the optimal feature vector of x;

g(@i) = [gi(@) - gn. ()]

is given by the k, eigenvectors corresponding to the first ks
smallest eigenvalues of G'; GT, where ks <k, and k; < q. To
be more specific, if ks < g, we snnply set k, =ks. Otherwise,
we choose a sufficiently small k; that satisfies ks <q.

€ RFs, (11)

3.4 Estimating Features’ Label distributions

For each extracted feature vector g(x;), it can be visualized
that there exists a set of the c virtual labels. The ks points
from which g(z;) is extracted are the closest points to
x;. Since the closeness in the feature manifold space is
transferred to the closeness in the label manifold space, the
lab_el sets of these ks points are the closest to the label set
{yl _1 of x;. Similarly, it can be visualized that there exists
a set of the label distributions {d? }¢ S-1s
supervisory information than the logical label set {yz}

for g(ax;). That is, {d’ }5- carry more semantic 1nf0rmat1on

which contains more

to describe g(x;) more comprehensively than {y’ }5-1 [38].
Therefore, there is a need to perform an LDL for g(x;).

To facilitate this LDL, we propose to model {d]}$_, by
the linear regression model
d =g"(x:)0;;+eij, 1<j<c1<i<nm, (12)
namely, we estimate d’ by
d] =g" (2:),, (13)
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where 0; ; € R is the parameter vector of the label distri-
bution estimate dJ After estimating all the d ie., all the
0;; forl <j<cand1l <1i <n, weneed to perform the
normalization

. &
& = Zlcﬁ,lgign. (14)
=1

Then d” is the estimate of d”.

To reliably estimate the parameters 6 = {6, ;1 <
1< ¢l << n}, we adopt the robust linear regression
technique. Specifically, the following robust regression cost
function is adopted

ZZH ”H%ZLl r), (15)
i=1j=1
in which r; = |le;|| and e; = [e;;1 - - em]T with
eij =yl —g (x:)0;;, 1<j<c (16)
while the L, loss is specified by
Li(r) = { RN (17)

The constraints g (x;)0; ; > 0, Vi, j, should be imposed.
The standard SVR technique is readily applied to determine
0; ;. More specifically, the iterative reweighed least squares
(IRWLS) [39] can readily be used to solve this multi-output
robust regression problem.

3.5 Summary of Proposed PLEA

By using the extracted features gy, (wl) with 1 < k < k,
and 1 < 7 < n as well as the associated label distribution
estimates d] with 1 < j <cand 1 < i < n in the maximum
entropy model (5), we arrive at the enhanced empirical
target function

S E Y (Wl

oyl gn(®s)
i=1j=1 k=1

—Zln Zexp (Z

k=1

k. -y{)gk«ci)) . (18)

The gradient-descent iterative optimization, IIS [37], can
then be applied to find the label distributions” parameters
w = {w” ER"’S 1 <j <ol <i<n}bysolving
the nonlinear ecLuatlon associated with the lower bound of

Te(w + Aw) — Te(w), yielding the estimates P(yl |35 w; ;)

for all the unknown true label distributions d%i.

The proposed PLEA is summarized in Algorithm 1. Since
ks < q, d{ contains more label information than yf for
gk (x;), and gk(a:z) 1 < k < ks, better represent the features
of x; than x , 1 <k < ¢, our PLEA is capable of producing
more accurate estimates of label distributions than the IIS-
LLD. The computational complexity of the PLEA consists of
three parts as summarized below.

Step 1. Feature extraction: The complexity of feature decom-
position on G;GY is on the order of k2, denoted as O(k?).
Therefore, the complexity of Step 1. is O(n x k2).



Algorithm 1: Probabilistic Label Enhancement Algo-
rithm
Require: Multi-label training sample set
{i e Rey, = [y -y] " € 40,1}
Ensure: Estimates of label distributions
Ay, = P(yl e wi ), 1<j<e¢1<i<n.

1: Step 1. Extract features:

2: Use manifold learning based feature extraction of
Subsection 3.3 to extract ks (ks < q) features g(x;)
= [g1(@) -~ g, ()] of @; for1 <i <.

3: Step 2. Estimate label distributions for features:

4: Use IRWLS for solving robust linear regression of
Subsection 3.4 to estimate label distributions, d ,

1 <j <¢ 1< <n,of extracted principal features.

5. Step 3. Enhanced maximum entropy based LDL:

6: With gi(z;), 1 <k <ksand 1 <i <n,and d/,

1 <j<cand1 <7 < n, form enhanced maximum
entropy model (18).
7: Use IIS gradient-descent iterative algorithm to find

— [l k1T ks \J; 4
parameters w; j = [w; ; - -- wzz] ERPs, Vi, j.

i ks » .
8: return CE’; — % exp <Z (wﬁj yi)gk(ml)) , Vi, 7.

Step 2. Robust linear regression: Let the number of iterations
for the IRWLS be upper bounded by I;;wis. The complexity
per iteration of the IRWLS follows the complexity of SVR,
which is O(n?). Therefore, the complexity of Step 2. is
O(Iirwls X TLS)-
Step 3. Enhanced maximum entropy learner: Let the num-
ber of iterations for the IIS be upper bounded by I5.. The
complexity per iteration of the IIS algorithm is O(cxksxn?).
Therefore, the complexity of Step 3.1is O(I, x ¢ x ks x n?).
Although the feature selection and in particular the
robust regression add additional computational complexity,
the complexity of the gradient-descent optimization pro-
cedure for estimating label distributions based on the en-
hanced maximum entropy model (18) is significantly lower
than that based on the original maximum entropy model (6).
Note that the complexity of the original maximum entropy
learner is O (I3, x ¢ x g xn?) [6], where I3, denotes the upper
bound number of iterations by the IIS to solve (6). Therefore,
it is likely that the overall computational complexity of the
PLEA is lower than that of the IIS-LLD. This will be further
investigated based on the experimental results.
Incidentally, after the manifold space learning based
feature extraction, we may construct the following empirical
target function

n c ks
Low) =33 w1 3 (i

i yi)gk(xl)
i=1j=1 k=1

n c ks
—Zln Zexp (Z w; ; yz gk il?z)) . (19)
i=1 j=1

The corresponding LDL algorithm is referred to as the
PLEA™. Clearly, the PLEA™ has the potential to offer even
lower computational complexity than the PLEA, as it does
not need to perform the robust linear regression for esti-
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matmg the features’ label distributions. However, because
y! contains less label information than d] the PLEA outper-
forms the PLEA™, in terms of estimation accuracy. This will
be further demonstrated in the experimental study.

4 EXPERIMENTAL EVALUATION
4.1 Experiment Setups

As the primary objective is to evaluate the estimation ac-
curacy of the proposed PLEA, namely, how close its label
distribution estimates to the ground-true label distributions,
we first select 15 multi-label datasets with the known
ground-true label distributions from Mulan website [41]
for performance evaluation. In this set of experiments, we
choose two state-of-the-art MLL algorithms, the ML-KNN
[40] and the BP-MLL [19], as well as six well-established
LDL algorithms, the AA-BP [10], the BFGS-LLD [10], the
CPNN [6], the AA-KNN [10], the IIS-LLD [10] and the
LDSVR [16], as the benchmarks for comparison with our
algorithm. In addition, we also compare the proposed PLEA
with the PLEA™ suggested in Subsection 3.5. As the ground-
true label distributions of these datasets are provided, we
can evaluate the estimation accuracy by comparing the esti-
mated label distributions with their corresponding ground-
true label distributions for these MLL and LDL algorithms.
It is also important to compare the runtime performance
of these algorithms, particularly for the datasets with large
feature dimensions ¢. With the exception of Human Gene,
the feature dimensions ¢ of the datasets [41] are all larger
than their label dimensions. However, except for Movie
dataset which has a ¢ close to 2000, most of the 15 datasets
do not have large feature dimensions ¢. To investigate the
potential runtime saving of our PLEA over the IIS-LLD, in
the second set of experiments, we choose five real-world
vehicle video datasets from BRVD [42], which have large
feature dimensions ¢. As these 5 datasets are real-world
multi-label datasets, their ground-true label distributions
are unknown and we cannot use them to evaluate the label
distribution estimation accuracy. But we can use them to
compare the runtime performance of various algorithms.
Additionally, it is crucial to evaluate the multi-label
classification capability of the proposed PLEA using various

TABLE 1
15 Multi-label datasets with known ground-true label distributions [41]
used in experimental evaluation

Dataset Examples (n)  Features (¢)  Labels (c)
Yeast-alpha 2465 24 18
Yeast-cdc 2465 24 15
Yeast-cold 2465 24 4
Yeast-diau 2465 24 7
Yeast-dtt 2465 24 4
Yeast-elu 2465 24 14
Yeast-heat 2465 24 6
Yeast-spo 2465 24 6
Yeast-spo5 2465 24 3
Yeast-spoem 2465 24 2
Human Gene 30542 36 68
Natural Scene 2000 294 9
Movie 7755 1869 5
SJAFFE 213 243 6
SBU_3DFE 2500 243 6




MLL metrics. For this purpose, in the third set of experi-
ments, we select another 10 real-world multi-label datasets
from Mulan website [41], which do not have ground-true
label distributions, for performance evaluation. The three
MLL algorithms, BP-MLL [19], MLNB [43] and ML-kNN
[40], as well as the seven LDL algorithms, AA-BP [10],
LDSVR [16], CPNN [6], AA-kNN [10], IIS-LLD [10], PLEA,
and PLEA™, are used in the performance evaluation.

All the experiments are carried out on Matlab 2019b,
running on a PC with i5-6200 2.30 GHz processor of 4 cores
and 8GB of RAM.

4.2 Evaluation Using Mulan Datasets with Ground-True
Label Distributions

Table 1 summarizes the basic attributes of the 15 datasets
from [41]. Because the ground-true label distributions for
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these multi-label datasets are provided, they are particu-
larly suitable for evaluating the estimation accuracy of an
algorithm by comparing the estimated label distributions
with their corresponding ground-true label distributions.
Specifically, we can evaluate the performance based on
a metric that measures the average distance or similarity
between the estimated label distributions and the ground-
true label distributions. We use the following six metrics [10]
to evaluate the estimation accuracy performance:

Chebyshev distance (Cheb) |

Clark distance (Clark) |

Canberra metric(Canber) |

Kullback-Leibler divergence (KL-div) |

cosine coefficient (Cosine) T

intersection similarity [44] (Intersec) 1

The first four metrics are distance metrics and the last

TABLE 2
Experimental results of 10 algorithms on 15 datasets of [41] with ground-true label distributions measured by Chebyshev distance |
Algorithms ~ ML-KNN BP-MLL AA-BP BFGS-LLD CPNN AA-KNN [IS-LLD LDSVR PLEA~ PLEA
Yeast-alpha 0.0393 (8) 0.1061 (10)  0.0185(4)  0.0257 (5.5)  0.0257 (5.5) 0.0487 (9) 0.0182 (3) 0.0260 (7) 0.0165 (2) 0.0150 (1)
Yeast-cdc 0.0297 (9) 0.1073 (10)  0.0152 (6) 0.0147 (5) 0.0170 (8) 0.0142 (4) 0.0156 (7) 0.0100 (3)  0.0081 (1.5)  0.0081 (1.5)
Yeast-cold  0.1678 (10) 0.1259 (9) 0.0409 (2) 0.0442 (5) 0.0542 (8) 0.0485 (7) 0.0427 (4) 0.0457 (6) 0.0423 (3) 0.0180 (1)
Yeast-diau 0.0644 (9) 0.1155 (10)  0.0245 (4)  0.0313 (6.5)  0.0313 (6.5) 0.0282 (5) 0.0203 (3) 0.0357 (8) 0.0196 (2) 0.0194 (1)
Yeast-dtt  0.1749 (10) 0.1257 (9) 0.0310 (8) 0.0176 (4) 0.0209 (6) 0.0204 (5) 0.0143 (3) 0.0216 (7) 0.0136 (2) 0.0088 (1)
Yeast-elu 0.0261 (9) 0.1079 (10) ~ 0.0118 (6)  0.0099 (4.5) 0.0093 (1) 0.0138 (7) 0.0099 (4.5)  0.0188 (8) 0.0096 (2) 0.0098 (3)
Yeast-heat  0.0876 (9) 0.1179 (10)  0.0411 (7) 0.0308 (3) 0.0375 (6) 0.0310 (4) 0.0304 (2) 0.0414 (8) 0.0318 (5) 0.0299 (1)
Yeast-spo 0.1025 (9) 0.1193 (10)  0.0380 (6) 0.0342 (4) 0.0357 (5) 0.0485 (8) 0.0339 (25)  0.0389 (7)  0.0339 (2.5) 0.0338 (1)
Yeast-spo5  0.2731 (10) 0.1364 (9) 0.0664 (4) 0.1012 (7) 0.0969 (6) 0.0744 (5) 0.0591 (3) 0.1156 (8) 0.0567 (2) 0.0506 (1)
Yeast-spoem  0.4216 (10) 0.1513 (9) 0.0099 (2) 0.0597 (8) 0.0099 (2) 0.0272 (6) 0.0431 (7) 0.0125 (5) 0.0093 (4) 0.0099 (2)
Human Gene 0.0823 (9) 0.1028 (10)  0.0284 (6) 0.0323 (7) 0.0125 (2) 0.0140 (4) 0.0187 (5) 0.0130 (3) 0.0431 (8) 0.0088 (1)
Natural Scene 0.1493 (7) 0.1240 (3) 0.1526 (8) 0.1388 (5) 0.1355 (4) 0.2473 (10) 0.1892 (9) 0.0132 (1) 0.1445 (6) 0.1106 (2)
Movie  0.2591 (10) 0.1350 (9) 0.0876 (5) 0.0742 (2) 0.0629 (1) 0.0975 (8) 0.0767 (4) 0.0930 (6) 0.0932 (7) 0.0750 (3)
SJAFFE  0.1334 (10) 0.1224 (9) 0.0907 (8) 0.0661 (5) 0.0828 (7) 0.0694 (6) 0.0658 (4) 0.0613 (3) 0.0493 (2) 0.0412 (1)
SBU_3DFE  0.1551 (10) 0.1246 (8) 0.0984 (5) 0.0830 (3) 0.1170 (7) 0.1008 (6) 0.1295 (9) 0.0871 (4) 0.0730 (2) 0.0684 (1)
Average rank 9.27 (10) 9.00 (9) 5.40 (6) 497 (4) 5.00 (5) 6.27 (8) 4.67 (3) 5.60 (7) 3.40 (2) 1.43 (1)
TABLE 3
Experimental results of 10 algorithms on 15 datasets of [41] with ground-true label distributions measured by Clark distance |
Algorithms ML-KNN BP-MLL AA-BP BFGS-LLD CPNN AA-KNN IIS-LLD LDSVR PLEA~ PLEA
Yeast-alpha 1.0306 (10) 0.4742 (8) 0.3292 (7) 0.3067 (4) 0.3109 (5) 0.4898 (9) 0.3004 (3) 0.3111 (6) 0.2897 (2) 0.2597 (1)
Yeast-cdc 0.6098 (10) 0.4427 (9) 0.2031 (7) 0.2001 (6) 0.2660 (8) 0.1397 (2) 0.1899 (5) 0.1404 (3) 0.1410 (4) 0.1174 (1)
Yeast-cold 0.9252 (10) 0.3335 (9) 0.1248 (3) 0.1383 (6) 0.1422 (8) 0.1390 (7) 0.1253 (4) 0.1324 (5) 0.1210 (2) 0.0453 (1)
Yeast-diau 0.5910 (10) 0.3529 (9) 0.1680 (6) 0.1481 (5) 0.1974 (8) 0.1323 (3) 0.1278 (2) 0.1461 (4) 0.1872 (7) 0.1114 (1)
Yeast-dtt  0.9298 (10) 0.3334 (9) 0.0755 (8) 0.0507 (5) 0.0627 (7) 0.0491 (4) 0.0398 (3) 0.0542 (6) 0.0384 (2) 0.0244 (1)
Yeast-elu 0.4626 (10) 0.4318 (9) 0.1541 (6) 0.1251 (1.5) 0.1313 (4) 0.1592 (7) 0.1251 (1.5) 0.1931 (8) 0.1423 (5) 0.1245 (3)
Yeast-heat 0.7207 (10) 0.3430 (9) 0.2009 (8) 0.1438 (1) 0.1730 (4) 0.1761 (5) 0.1514 (3) 0.1851 (6) 0.1997 (7) 0.1501 (2)
Yeast-spo 0.9345 (10) 0.3488 (9) 0.1738 (7) 0.1619 (3) 0.1712 (4) 0.1736 (6) 0.1793 (8) 0.1561 (2) 0.1730 (5) 0.1503 (1)
Yeast-spo5 0.9345 (10) 0.3541 (9) 0.1323 (4) 0.1943 (7) 0.1908 (6) 0.1504 (5) 0.1177 (3) 0.2057 (8) 0.1128 (2) 0.1105 (1)
Yeast-spoem 0.8528 (10) 0.4249 (9) 0.0140 (3) 0.0846 (8) 0.0140 (3) 0.0386 (6) 0.0632 (7) 0.0176 (5) 0.0132 (1) 0.0140 (3)
Human Gene 5.9841 (9) 8.4928 (10) 3.0756 (7) 3.4892 (8) 0.9650 (2) 1.3913 (6) 1.0162 (3) 1.0485 (4) 1.3765 (5) 0.9147 (1)
Natural Scene 2.1597 (8) 3.9153 (10) 2.1240 (5) 2.1327 (6) 2.1043 (4) 1.8009 (2) 2.2530 (9) 1.7982 (1) 2.1448 (7) 2.0568 (3)
Movie 0.8265 (10) 0.3618 (3) 0.4607 (8) 0.3387 (1) 0.3931 (6) 0.4724 (9) 0.3861 (5) 0.4079 (7) 0.3674 (4) 0.3499 (2)
SJAFFE 0.7202 (10) 0.3449 (9) 0.3215 (8) 0.2729 (7) 0.2511 (6) 0.2174 (3) 0.2474 (5) 0.2375 (4) 0.2138 (2) 0.1620 (1)
SBU_3DFE 0.7075 (10) 0.3455 (8) 0.3368 (7) 0.3112 (5) 0.2943 (4) 0.3363 (6) 0.3509 (9) 0.2807 (3) 0.2481 (2) 0.2401 (1)
Average rank 9.8 (10) 8.6 (9) 6.27 (8) 49 (5) 5.27 (6) 5.33 (7) 4.7 (3) 4.8 (4) 3.8(2) 1.53 (1)
TABLE 4
Experimental results of 10 algorithms on 15 datasets of [41] with ground-true label distributions measured by Canberra distance |
Algorithms ML-KNN BP-MLL AA-BP BFGS-LLD CPNN AA-KNN IS-LLD LDSVR PLEA~ PLEA
Yeast-alpha  4.3526 (10) 2.0118 (9) 1.0239 (5) 1.0452 (6) 1.0234 (4)  1.4548 (8) 1.0085 (3) 1.0573 (7) 1.0008 2)  0.8726 (1)
Yeast-cde ~ 2.3191 (10) 1.7145 (9) 0.6542 (6) 0.6556 (7) 0.8938 (8)  0.3801 (2) 0.5645 (5) 04443 (3) 04692 (4)  0.3610 (1)
Yeast-cold ~ 1.8284 (10) 0.6708 (9) 0.2273 (7) 0.2108 (3) 0.2198 (4)  0.2228 (5) 0.2256 (6) 0.2387(8)  0.2081(2)  0.0723 (1)
Yeast-diau  1.5087 (10) 0.9371 (9) 0.3899 (7) 0.3005 (6) 04733 (8)  0.2991 (5) 0.2980 (4) 02742 (3)  0.2567 (2)  0.2429 (1)
Yeast-dtt  1.8497 (10) 0.6684 (9) 0.1267 (8) 0.0797 (4) 0.1203 (7)  0.0829 (5) 0.0677 (3) 0.0889 (6)  0.0658 (2)  0.0453 (1)
Yeast-elu  1.6892 (10) 1.6156 (9) 0.4645 (5) 0.3226 (2.5) 04069 (4) 04904 (6) 03226 (2.5) 05928 (7) 07096 (8)  0.3189 (1)
Yeast-heat  1.6901 (10) 0.8422 (9) 0.4816 (8) 0.2935 (1) 0.3357 (3)  0.3732 (5) 0.3376 (4) 03965 (7)  0.3848 (6)  0.3349 (2)
Yeast-spo  1.3873 (10) 0.8612 (9) 0.3938 (8) 0.3318 (3) 0.3650 (6)  0.3127 (2) 0.3838 (7) 02942 (1) 0.3391(5)  0.3379 (4)
Yeast-spo5  1.4992 (10) 0.6519 (9) 0.1941 (3) 0.3121 (7) 0.2825 (6)  0.2270 (5) 0.1823 (2) 0.3409 (8)  0.1961 (4)  0.1590 (1)
Yeast-spoem  1.0883 (10) 0.1265 (9) 0.0198 (3) 0.1195 (8) 0.0198 (3)  0.0545 (6) 0.0883 (7) 0.0249 (5)  0.0186 (1)  0.0198 (3)
Human Gene ~ 49.1943 (9)  70.0317 (10)  20.7807 (7) 23.3088 (8) 6.4936 (5)  9.6774 (6) 6.3145 (3) 64525 (4)  6.1646 (2) 57178 (1)
Natural Scene 5.8285 (9) 5.1420 (4) 5.3662 (7) 5.2818 (5) 53364 (6)  4.6644 (2) 5.8775 (10) 45593 (1)  5.6182(8)  4.9419 (3)
Movie 15102 (10) 0.7807 (7) 0.8623 (9) 0.7367 (6) 0.7194 (3)  0.8318 (8) 0.7290 (5) 0.6882 (1)  0.7215(4)  0.6933 (2)
SJAFFE  1.5609 (10) 0.8499 (9) 0.6150 (8) 0.5797 (7) 04754 (3) 03949 (2) 0.5041 (5) 05339 (6)  0.4825(4)  0.3720 (1)
SBU_3DFE  1.1140 (10) 0.8794 (9) 0.7412 (8) 0.6210 (6) 0.6169 (5)  0.5703 (3) 0.7260 (7) 0.5790 (4)  0.5509 (2)  0.4815(1)
Average rank 9.87 (10) 8.60 (9) 6.60 (8) 5.30 (7) 5.00 (6) 4.67 (3) 4.90 (5) 4.73 (4) 3.73 (2) 1.60 (1)




TABLE 5
Experimental results of 10 algorithms on 15 datasets of [41] with ground-true label distributions measured by Kullback-Leibler divergence |
Algorithms ML-KNN BP-MLL AA-BP BFGS-LLD CPNN AA-KNN 1IS-LLD LDSVR PLEA— PLEA
Yeast-alpha  0.4913 (10) 0.2870 (9) 0.0114 (45)  0.0114 (4.5) 0.0116 (6) 0.0317 (8) 0.0101 (3) 0.0117 (7) ~ 0.0091(2)  0.0075 (1)
Yeast-cdc  0.3083 (10) 0.2706 (9) 0.0055 (6.5)  0.0055 (6.5) 0.0092 (8) 0.0027 (3) 0.0049 (5) 0.0027 (3)  0.0027 (3)  0.0018 (1)
Yeast-cold ~ 1.0126 (10) 0.1385 (9) 0.0073 (3) 0.0095 (7.5)  0.0095 (7.5) 0.0092 (6) 0.0077 (4) 0.0082 (5)  0.0069 (2)  0.0010 (1)
Yeast-diau  0.4543 (10) 0.1944 (9) 0.0079 (6) 0.0063 (4) 0.0108 (8) 0.0053 (3) 0.0044 (2) 0.0065 (5)  0.0101(7)  0.0036 (1)
Yeast-dtt  1.0118 (10) 0.1386 (9) 0.0027 (8) 0.0012 (4.5) 0.0020 (7) 0.0012 (4.5) 0.0008 (3) 0.0014 (6)  0.0007 (2)  0.0002 (1)
Yeast-elu 0.2396 (9) 0.2638 (10) 0.0033 (6) 0.0023 (2.5) 0.0024 (4) 0.0037 (7) 0.0023 (25)  0.0055(8)  0.0028 (5)  0.0022 (1)
Yeast-heat  0.6071 (10) 0.1791 (9) 0.0138 (8) 0.0067 (1) 0.0099 (4) 0.0100 (5) 0.0075 (3) 0.0116 (6)  0.0128 (7)  0.0074 (2)
Yeast-spo  0.6110 (10) 0.1787 (9) 0.0103 (6) 0.0082 (2) 0.0098 (4) 0.0108 (8) 0.0107 (7) 0.0083 (3)  0.0099 (5)  0.0077 (1)
Yeast-spo5  1.3050 (10) 1.0929 (9) 0.0119 (4) 0.0246 (6) 0.0252 (7) 0.0147 (5) 0.0089 (3) 0.0301 (8)  0.0087(2)  0.0078 (1)
Yeast-spoem  1.7051 (10) 0.6928 (9) 0.0001 (2) 0.0072 (8) 0.0001 (2) 0.0015 (6) 0.0038 (7) 0.0003 (5)  0.0002 (4)  0.0001 (2)
Human Gene  1.7932 (10) 0.4191 (8) 0.3242 (7) 0.4361 (9) 0.0283 (2) 0.0594 (6) 0.0314 (3) 0.0330 (4)  0.0383(5)  0.0252 (1)
Natural Scene  0.7917 (10) 0.6062 (6) 0.4782 (5) 0.4162 (4) 0.1398 (2) 0.6874 (7) 0.7376 (9) 0.0109 (1) 0.6891(8)  0.3268 (3)
Movie  0.8739 (10) 0.1524 (9) 0.0578 (7) 0.0409 (2) 0.0375 (1) 0.0617 (8) 0.0450 (6) 0.0420 (4)  0.0449 (5)  0.0419 (3)
SJAFFE  0.6268 (10) 0.1771 (9) 0.0412 (8) 0.0270 (7) 0.0249 (6) 0.0191 (3) 0.0233 (5) 0.0204 (4)  0.0159 (2)  0.0095 (1)
SBU_3DFE  0.6314 (10) 0.1767 (9) 0.0433 (6) 0.0361 (4) 0.0395 (5) 0.0455 (7) 0.0565 (8) 0.0309 (3)  0.0228(2)  0.0217 (1)
Average rank 9.93 (10) 8.80 (9) 5.80 (8) 4.83 (5) 4.90 (6) 5.77 (7) 4.70 (3) 4.80 (4) 4.07 (2) 1.40 (1)
TABLE 6
Experimental results of 10 algorithms on 15 datasets of [41] with ground-true label distributions measured by cosine coefficient 1
Algorithms ~ ML-KNN BP-MLL AA-BP BFGS-LLD CPNN AA-KNN [IS-LLD LDSVR PLEA— PLEA
Yeast-alpha  0.9888 (5) 0.9788 (9) 0.9895 (4) 0.9882 (6) 0.9880 (7) 0.9686 (10)  0.9903 (3) 0.9879 (8) 0.9908 (2) 0.9928 (1)
Yeast-cdc 09971 (5) 0.9943 (9) 0.9945 (7.5) 09945 (7.5) 09912 (10)  0.9973 (3.5)  0.9952 (6)  0.9973 (3.5) 0.9974 (2) 0.9982 (1)
Yeast-cold  0.9883 (9) 0.9835 (10) 0.9931 (3) 0.9909 (7) 0.9908 (8) 0.9911 (6) 0.9924 (4) 0.9922 (5) 0.9934 (2) 0.9990 (1)
Yeast-diau  0.9884 (9) 0.9611 (10) 0.9925 (6) 0.9939 (4) 0.9897 (8) 0.9945 (3) 0.9958 (2) 0.9936 (5) 0.9900 (7) 0.9963 (1)
Yeast-dtt  0.9927 (10) 0.9934 (9) 0.9974 (8) 0.9989 (4.5) 0.9981 (7) 0.9989 (4.5)  0.9992 (3) 0.9987 (6) 0.9993 (2) 0.9997 (1)
Yeast-elu  0.9930 (10) 0.9931 (9) 0.9967 (6) 0.9977 (3) 0.9977 (3) 0.9963 (7) 0.9977 (3) 0.9946 (8) 0.9968 (5) 0.9978 (1)
Yeast-heat  0.9881 (7) 0.9813 (10) 0.9863 (9) 0.9937 (1) 0.9903 (45)  0.9903 (4.5)  0.9928 (3) 0.9884 (6) 0.9874 (8) 0.9930 (2)
Yeast-spo  0.9880 (10)  0.9886 (8.5) 0.9897 (6) 0.9923 (1) 0.9903 (4) 0.9886 (8.5)  0.9894 (7) 0.9917 (3) 0.9899 (5) 0.9920 (2)
Yeast-spo5 09076 (10) 0.9524 (9) 0.9880 (4) 0.9770 (6) 0.9746 (7) 0.9857 (5) 0.9915 (3) 0.9704 (8) 0.9920 (2) 0.9927 (1)
Yeast-spoem  0.9788 (10) 0.9803 (9) 0.9998 (2.5) 0.9929 (8) 0.9998 (2.5) 0.9985 (6) 0.9965 (7) 0.9997 (5) 0.9998 (2.5)  0.9998 (2.5)
Human Gene  0.7339 (10) 0.9015 (7) 0.7972 (8) 0.7647 (9) 0.9718 (3) 0.9420 (6) 0.9678 (4) 0.9673 (5) 0.9731 (2) 0.9751 (1)
Natural Scene  0.7389 (7) 0.7385 (8) 0.8128 (6) 0.8792 (4) 0.9953 (2) 0.8278 (5) 0.7244 (9) 1.0000 (1) 0.6799 (10) 0.8920 (3)
Movie  0.9210 (9) 0.8907 (10) 0.9620 (7) 0.9669 (6) 0.9771 (1) 0.9589 (8) 0.9731 (4) 0.9746 (3) 0.9678 (5) 0.9751 (2)
SJAFFE  0.9446 (9) 0.9327 (10) 0.9547 (8) 0.9723 (7) 0.9733 (6) 0.9784 (4) 0.9761 (5) 0.9792 (3) 0.9842 (2) 0.9901 (1)
SBU_3DFE  0.9295 (10) 0.9491 (8) 0.9566 (5) 0.9623 (4) 0.9555 (6) 0.9521 (7) 0.9382 (9) 0.9677 (3) 0.9762 (2) 0.9773 (1)
Average rank 8.67 (9) 9.03 (10) 6.00 (8) 5.20 (5) 5.27 (6) 5.87 (7) 4.80 (3) 4.83 (4) 3.90 (2) 1.43 (1)
TABLE 7
Experimental results of 10 algorithms on 15 datasets of [41] with ground-true label distributions measured by intersectional similarity
Algorithms ~ ML-KNN BP-MLL AA-BP BFGS-LLD CPNN AA-KNN 1IS-LLD LDSVR PLEA— PLEA
Yeast-alpha 09976 (1) 0.8000 (10)  0.9453 (3) 0.9408 (7) 0.9421 (6) 0.9173 (9) 0.9443 (5) 0.9402 (8) 0.9446 (4) 0.9519 (2)
Yeast-cde  0.9999 (1) 0.5000 (10)  0.9565 (7) 0.9559 (8) 0.9416 (9) 0.9746 (3) 0.9622 (6) 0.9702 (4) 0.9687 (5) 0.9758 (2)
Yeast-cold  0.3636 (10) 0.4000 (9) 0.9448 (6) 0.9486 (3) 0.9458 (4) 0.9452 (5) 0.9429 (7) 0.9415 (8) 0.9488 (2) 0.9820 (1)
Yeast-diau  0.6364 (10) 0.7000 (9) 0.9452 (6) 0.9570 (4) 0.9338 (8) 0.9559 (5) 0.9585 (3) 0.9596 (2) 0.9345 (7) 0.9648 (1)
Yeast-dtt  0.3636 (10) 0.4000 (9) 0.9690 (8) 0.9814 (4) 0.9700 (7) 0.9796 (5) 0.9830 (3) 0.9784 (6) 0.9835 (2) 0.9887 (1)
Yeast-elu  0.9965 (1) 0.4000 (10) 09672 (7)  0.9768 (3.5) 0.9713 (5) 0.9649 (8)  0.9768 (3.5) 0.9578 (9) 0.9694 (6) 0.9771 (2)
Yeast-heat  0.5455 (10) 0.6000 (9) 0.9191 (8) 0.9521 (1) 0.9441 (4) 0.9387 (5) 0.9447 (3) 0.9334 (7) 0.9339 (6) 0.9451 (2)
Yeast-spo  0.5455 (10) 0.6000 (9) 0.9338 (8) 0.9468 (3) 0.9394 (6) 0.9489 (2) 0.9359 (7) 0.9509 (1) 0.9428 (4.5)  0.9428 (4.5)
Yeast-spo5  0.2727 (10) 0.3000 (9) 0.9336 (4) 0.8988 (7) 0.9031 (6) 0.9256 (5) 0.9409 (3) 0.8844 (8) 0.9433 (2) 0.9494 (1)
Yeast-spoem  0.1818 (10) 0.2000 (9) 0.9901 (3) 0.9403 (8) 0.9901 (3) 0.9728 (6) 0.9569 (7) 0.9875 (5) 0.9907 (1) 0.9901 (3)
Human Gene  0.8380 (7) 0.6800 (9) 0.7043 (8)  0.6785(10)  0.9040 (3.5)  0.8567 (6) 0.9068 (2) 0.9040 (3.5) 0.8574 (5) 0.9156 (1)
Natural Scene  0.4553 (10) 0.9000 (2) 0.6573 (6) 0.7171 (5) 0.8645 (3) 0.6142 (7) 0.5522 (8) 0.9868 (1) 0.5227 (9) 0.7278 (4)
Movie  0.4545 (10) 0.5000 (9) 0.8566 (7) 0.8615 (6) 0.8891 (2) 0.8550 (8) 0.8764 (4) 0.8930 (1) 0.8758 (5) 0.8881 (3)
SJAFFE  0.5455 (10) 0.6000 (9) 0.8850 (8) 0.8989 (7) 0.9144 (4) 0.9251 (2) 0.9124 (5) 0.9081 (6) 0.9180 (3) 0.9355 (1)
SBU_3DFE  0.5455 (10) 0.6000 (9) 0.8718 (7) 0.8901 (5) 0.8830 (6) 0.8942 (4) 0.8631 (8) 0.8972 (3) 0.9040 (2) 0.9159 (1)
Average rank 8.00 (9) 8.73 (10) 6.40 (8) 5.43 (7) 5.10 (5) 5.33 (6) 4.97 (4) 4.83 (3) 423 (2) 1.97 (1)

two are similarity metrics. The notation ‘]” after a metric in-
dicates ‘the smaller the better’, while ‘1" after a metric means
‘the larger the better’. Additionally, the run times of all the
10 algorithms are also compared. Obviously, the runtime is
a metric that is the smaller the better, i.e., runtime |.
Quantitative experimental results of the 10 algorithms
applied to these 15 datasets of [41] are compared in Tables 2
to 7 for the six evaluation metrics measuring the distance be-
tween the ground-true label distributions and the estimated
label distributions, respectively. In each of these six tables,
each row presents the metric values attained by the 10
algorithms together with the rankings achieved in brackets
for the corresponding dataset. For example, in Table 2,
the entry for the PLEA is 0.0150(1) for the dataset Yeast-
alpha. This indicates that the PLEA achieves the Cheb metric

value of 0.0150, and it ranks No.1 among the 10 algorithms
for Yeast-alpha. We also calculate the corresponding algo-
rithms’ average ranking performance over the 15 datasets in
the last row of each table, where the numerical value before
the bracket is the average ranking value, i.e., the sum of the
ranks over the 15 datasets divided by 15, and the number
in the bracket is again the rank. To indicate the overall
performance, Table 8 summarizes the ranking performance
of the 10 algorithms average over the 15 datasets of [41] and
the 6 estimation accuracy measures.

The results show that our proposed PLEA consistently
performs the best among the 10 algorithms for all the six
metrics that measure the estimation accuracy. In particular,
observe that the estimated label distributions obtained by
the PLEA are more accurate than those by the PLEA™. The



TABLE 8
Estimation accuracy ranking performance of 10 algorithms averaged
over 15 datasets of [41] and 6 estimation accuracy measures

Algorithm Average rank
PLEA 1.56 (1)
PLEA™ 3.86 (2)
1IS-LLD 4.79 (3)
LDSVR 4.93 (4)
CPNN 5.09 (5)
BFGS-LLD 5.11 (6)
AA-KNN 5.54 (7)
AA-BP 6.08 (8)
BP-MLL 8.79 (9)
ML-KNN 9.26 (10)

reason is as explained in Subsection 3.5. Using the estimated
label distributions dg, rather than the binary labels yf, for
the extracted features, the PLEA is provided with more and
better information. From Tables 2 to 7, it can be seen that on
average the PLEA™ achieves the second best performance.
But for each estimation accuracy measure, there always have
one to two datasets on which the performance of PLEA™
are poor. For the dataset Natural Scene, for instance, the
PLEA™ attains the worst estimation accuracy as measure
by the cosine coefficient, while it achieves the second worst
estimation accuracy as measured by the intersectional sim-
ilarity. Also as expected, our proposed PLEA consistently
outperforms the IIS-LLD, in terms of estimation accuracy,
the latter ranked as the third best on average.

The runtime performance of the 10 algorithms on the
15 datasets of [41] are compared in Table 9. For these 15
datasets, the BP-MLL is the clear winner, in terms of runtime
performance. But it has the second worst estimation accu-
racy. Of particular interest is to compare the computational
complexity of the PLEA, PLEA™ and IIS-LLD, as they all
are based on similar maximum entropy principle. Observe
that the proposed PLEA consistently imposes lower overall
complexity than the IIS-LLD with the except of Yeast-spo5
and Yeast-spoem datasets. As discussed in the previous
section, compared with the IIS-LLD, our PLEA introduces
additional complexity in feature extraction and robust re-
gression, while reducing the computational complexity in
the iterative maximum entropy based optimization. For
these 15 datasets at least, it seems that the complexity
reduction in iterative maximum entropy optimization out-
weighs the complexity increase in feature extraction and
robust regression. Consequently, the PLEA imposes lower
overall computational complexity than the IIS-LLD. This is
significant, as we already know that the PLEA consistently

TABLE 10
Friedman statistics F'r, in terms of each evaluation metric and the
critical value at a significance level of 0.05 (comparing algorithms: 10,
datasets: 15)

Evaluation metric Fr Critical value
Chebyshev distance 20.8749

Clark distance 20.2312

Canberra distance 21.7505 1.955
Kullback-Leibler divergence  23.2253 :

cosine coefficient 15.3180

intersectional similarity 9.0452

Runtime [s] 86.7684

outperforms the IIS-LLD, in terms of estimation accuracy.
Also as expected, the PLEA™ imposes lower overall com-
putational complexity than the PLEA, as the former does
not perform robust regression. The aforementioned obser-
vation also suggests that the robust regression in the PLEA
introduces sizable computational complexity.

4.2.1 Friedman test and critical difference diagram

Friedman test statistically compares relative performance
among multiple algorithms over multiple datasets [45]. We
use this test to validate the statistical significance of the
performance of various algorithms given in Tables 2 to 7 and
9. Table 10 shows the Friedman statistic /'r and the critical
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Fig. 1. CD diagrams given CD = 2.1613 of Nemenyi tests on the 10
algorithms and 15 datasets for Chebyshev distance evaluation metric
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Fig. 2. CD diagrams given CD = 2.1613 of Nemenyi tests on the 10
algorithms and 15 datasets for Clark distance evaluation metric

TABLE 9
Experimental results of 10 algorithms on 15 datasets of [41] with ground-true label distributions measured by runtime [s] |

Algorithms ML-KNN BP-MLL AA-BP BFGS-LLD CPNN AA-KNN IIS-LLD LDSVR PLEA™ PLEA
Yeast-alpha 69.0379947 (10) 0.3393088 (1) 25.3371071 (9) 20.6197742 (8) 18.2402994 (4) 1.0530555 (2) 19.9805153 (7) 1.1044699 (3) 18.5070840 (5) 18.5150298 (6)
Yeast-cdc 771.2362400 (10) 0.3479317 (1) 25.7166417 (9) 21.9220179 (8) 16.2724184 (4) 0.8835698 (2) 18.9835713 (7) 1.0490428 (3) 17.4905000 (5) 17.5303417 (6)
Yeast-cold 7415257997 (10)  0.3306586 (2) ~ 207717504 (8) ~ 21.5406990 (9  5.2897021 (4) 09374218 (3)  17.5567584(7) 03171071 (1) 167180290 (5)  17.2799748 (6)
Yeast-diau 8768656592 (10)  0.3303416 (1)  23.6153073 (8) 357156677 (9)  9.2031102 (4) 09130630 (2) 187652929 (7)  1.0042549 (3)  17.3959081 (5)  17.9098228 (6)
Yeast-dtt 97205132829 (10) 03333213 (1) 218426624 (9) 214975081 (8)  6.0808753 (4) 09139258 (3)  19.0879882(7)  0.8811964 (2) ~ 17.4582517(5)  17.8935213 (6)
Yeast-elu 457656728 (10)  0.3319725 (1) 255688326 (8)  26.4238290 (9) 14.8539697 (4) 0.9085137 (2) 19.8464912 (7) 1.0312526 (3) 17.2856214 (5) 17.3790918 (6)
Yeast-heat 1075.5594064 (10) 0.3243420 (1) 24.1267218 (8) 31.2775096 (9) 8.7873933 (4) 0.9475289 (2) 18.5278278 (7) 0.9593309 (3) 17.7321616 (5) 17.9099572 (6)
Yeast-spo  264.0368251 (10) 03215843 (1) 233895604 (8) 317739671 (9)  7.9834021 (4) 09443548 (3) 189763837 (7)  03705112(2)  17.6141895(5)  17.8956388 (6)
Yeast-spo5  55.6260337 (10)  0.3116829 (1)  21.9314612 (9)  20.1523984(8) 43023357 (4) 0.8911607 (2) ~ 18.0635962 (5) ~ 1.1629526 (3)  18.0930088 (6)  18.1495418 (7)
Yeast-spoem 600.2141110 (10) 0.3117286 (2) 21.8737154 (9) 17.9855542 (8) 3.5101353 (4) 1.0004449 (3) 17.1522648 (5) 0.1555636 (1) 17.5363122 (6) 17.6775431 (7)
Human Gene ~ 542.2362178 (8)  3.0386092 (1)  228.4788136 (7)  621.8826294 (9) 6277233122 (10)  45.1854937 (2)  187.1719491 (6)  120.2554692 (3)  154.3660852 (4)  176.1519635 (5)
Natural Scene 1397.6507917 (10) 0.2698749 (1) 33.4653595 (4) 521.4445668 (8) 582.3852263 (9) 1.5060697 (3) 187.0668309 (7) 0.3724432 (2) 141.5362390 (5) 157.9246864 (6)
Movie  654.7098608 (10) ~ 1.1130160 (1) ~ 200.3474911 (3) 3027946178 (9)  247.1238897 (7) ~ 256.6007756 (8) 2246541811 (6) ~ 24.3013388 (2)  215.8494958 (4) 2168764491 (5)
SJAFFE 3829251875 (10)  0.0442678 (3) 156127801 (7)  79.1725374(9) 24304717 (4) 00230612 (2)  21.9615007 (8)  0.0192349(1) 29851822 (5)  3.2241836 (6)
SBU_SDFE  256.1257912 (10) ~ 03322891 (1)  32.9426969 (8) ~ 118.8989318 (9) ~ 19.5153681(4) 17064824 (3) 259361933 (7)  0.4548313(2)  22.6366748 (5)  23.9204424 (6)

Average rank 9.87 (10) 1.27 (1) 7.60 (8) 8.60 (9) 493 (4) 2.80 (3) 6.67 (7) 227 (2) 5.00 (5) 6.00 (6)
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Fig. 3. CD diagrams given CD = 2.1613 of Nemenyi tests on the 10
algorithms and 15 datasets for Canberra distance evaluation metric
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Fig. 4. CD diagrams given CD = 2.1613 of Nemenyi tests on the 10
algorithms and 15 datasets for Kullback-Leibler divergence metric
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Fig. 5. CD diagrams given CD = 2.1613 of Nemenyi tests on the 10
algorithms and 15 datasets for cosine coefficient evaluation metric

value on each evaluation metric at a significance level of
0.05, among the 10 comparing algorithms and 15 datasets.

As confirmed in Table 10, the F' values on all the eval-
uation metrics are greater than the critical value. Therefore,
Bonferroni-Dunn test [45] can be adopted as a post hoc test
to show the algorithms’ relative performances. Specifically,
based on Table 10, we use Nemenyi test [45] to check
the average ordering comparison between two algorithms.
Figs. 1 to 7 represent these results with a critical difference
(CD) graph for each evaluation metric, respectively. When
the significance level is 0.05, the number of comparison
algorithms is 10, and the number of datasets is 15, the CD
value is CD = 2.1613 for Nemenyi test. In the CD diagram,
the average ordering of each algorithm is marked on the
same coordinate axis. If the difference between the average
order of the two algorithms is less than the CD value, then
there exists no significant difference between the two algo-
rithms and they are connected by a line segment in the CD
graph. Algorithms not connected with the PLEA in the CD
diagrams are considered to have significant performance
difference from the control algorithm, given the CD value
of 2.1613 at a significance level of 0.05.

From the CD diagrams of Nemenyi tests for the six
estimation accuracy metrics depicted in Figs. 1 to 6, it can
be seen that only the PLEA™ has line segments connected
with the PLEA in the tests for Chebyshev distance metric
and Canberra distance metric. Thus our conclusion that the
PLEA consistently achieves the best estimation accuracy is
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Fig. 6. CD diagrams given CD = 2.1613 of Nemenyi tests on the 10
algorithms and 15 datasets for intersectional similarity evaluation metric
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Fig. 7. CD diagrams given CD = 2.1613 of Nemenyi tests on the 10
algorithms and 15 datasets for run time (s) evaluation metric

statistically very significant.

4.3 Runtime Evaluation Using BRVD Datasets

We further choose five real-world vehicle video datasets
[42] to evaluate the runtime performance or computational
complexity of an LDL algorithm. As these are real-world
datasets, the underlying ground-true label distributions are
unknown. Hence we cannot use them to compare the es-
timation accuracy performance of various algorithms. But
these datasets have much large sample size n and feature
dimension g. Thus, they are ideal for comparing the runtime
performance of various algorithms. Appendix provides the
details of how we construct the five multi-label training
datasets from the raw real-world vehicle video datasets of
[42]. The basic attributes of the constructed five multi-label
training datasets are summarized in Table 10.

Table 11 compares the runtime performance of the 10
algorithms for these 5 datasets. Again we are particularly
interested in the computational complexity of the PLEA,
PLEA™ and IIS-LLD. Observe from Table 11 that the pro-
posed PLEA consistently imposes lower overall computa-
tional complexity than the IIS-LLD. Specifically, the PLEA
ranks the fourth, while the IIS-LLD ranks the sixth, in
terms of average runtime performance. This provides clear
empirical evidence that for our PLEA, the complexity reduc-
tion in iterative maximum entropy optimization outweighs
the complexity increase in feature extraction and robust
regression, particularly for the cases of large sample size n
and large feature dimension ¢. Observe also that the PLEA™

TABLE 10
Five real-world vehicle video datasets with unknown ground-true label
distributions [42] used in experimental evaluation

Dataset Examples (n) Features (q) Labels (c)
BRVD1 27600 2054 9
BRVD2 28000 6254 9
BRVD3 27600 6059 9
BRVD4 28000 4072 9
BRVD5 47600 2021 9




TABLE 11

Experimental results of 10 algorithms on 5 real-world BRVD datasets of [42] measured by runtime performance [s] |
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Algorithms BRVD1 BRVD2 BRVD3 BRVD4 BRVD5 Average rank
ML-KNN 5633220582313 (10) 5649118669804 (10) 5656834598136 (10) 5685747899016 (10) 5731564113797 (10) 10 (10)
BP-MLL 472.2666600 (2) 476.8152100 (2) 466.6050700 (2) 541.4809200 (2) 1001.0416600 (5) 2.6 (2)
AA-BP 664.5604633 (4) 703.7420168 (3) 651.6207993 (3) 678.1440767 (3) 1185.3920020 (6) 3.8 (3)
BFGS-LLD 837.7749656 (7) 12834.6984572 (9) 11609.6843328 (9) 7856.9294133 (9) 1202.6173270 (7) 8.2 (9)
CPNN 854.6336230 (8) 884.0863271 (8) 696.1494858 (5) 746.3470792 (4) 1440.7072256 (8) 6.6 (7)
AA-KNN 905.3774852 (9) 874.5853572 (6) 874.9044343 (8) 983.7558637 (8) 1962.0394104 (9) 8.0 (8)
IIS-LLD 786.6401250 (6) 837.7878476 (5) 790.0793641 (7) 821.1904930 (6) 844.0866898 (3) 5.4 (6)
LDSVR 663.6055487 (3) 874.8968117 (7) 678.7562589 (4) 903.2649110 (7) 983.6192456 (4) 5.0 (5)
PLEA— 403.6007055 (1) 472.4924280 (1) 460.2345572 (1) 493.5997872 (1) 512.4732885 (1) 1.0 (1)
PLEA 756.6830498 (5) 805.4063519 (4) 770.5967830 (6) 801.1521475 (5) 839.1051827 (2) 44 4)
TABLE 12
Characteristics of 10 real-world datasets from [41] with unknown ground-true label distributions used in experimental evaluation with MLL metrics
Dataset S T dim(S) L(S) LCard(S) LDen(S) DL(S) F(S)
Emotions 415 178 72 6 1.869 0.311 27 numeric
Medical 645 333 1449 45 1.245 0.028 94 nominal
Cal500 250 252 68 174 26.044 0.150 502 numeric
Birds 320 325 260 19 1.014 0.053 133 numeric
Enron 1123 579 1001 53 3.378 0.064 753 nominal
Yeast 1200 1217 103 14 4.237 0.303 198 numeric
Image 1000 1000 294 5 1.236 0.247 20 numeric
Scene 1211 1196 294 6 1.074 0.179 15 numeric
Corel5k 2500 2500 499 374 3.522 0.009 3175 nominal
Bibtex 3700 3695 1836 159 2.402 0.015 2856 nominal

consistently imposes the lowest overall computational com-
plexity, and it ranks the first, in terms of runtime perfor-
mance. Noting that the PLEA™ imposes significantly lower
overall computational complexity than the PLEA, we can
see that the robust regression in the PLEA indeed introduces
considerable computational complexity, particularly when
the sample size n and feature dimension ¢ are very large.
This suggests that it is worth investigating alternative low-
complexity regression technique for the PLEA to estimate
the extracted features’ label distributions.

4.4 Evaluation Using Mulan Datasets without Ground-
True Label Distributions

Table 12 summarizes the features of the 10 real-world
datasets from [41], with unknown ground-true label distri-
butions. These datasets cover a wide range of multi-label
attributes. In Table 12, S: the number of examples, 7" the
number of testing samples, dim(S): the feature dimensions,
L(S): the number of class labels, LC'ard(S): the label cardi-
nality, LDen(S): the label density, DL(S): the distinct label
sets, and F'(S): the feature type. We choose five widely used
MLL metrics, and they are: Hamming loss |, ranking loss |,
one error |, coverage |, and average precision 1.

In this set of multi-label classification experiments, half
the examples in each dataset are selected randomly as a
training set, and the remaining half are used to form a test
set. We used 10-fold cross-validation on each dataset, and
we record each algorithm’s average performance on the five
MLL evaluation metrics in Tables 13 to 17, respectively. The
overall ranking performance on multi-label classification,
averaged over the ten datasets and the five MLL metrics,
are listed in Table 18. It can be seen that our proposed PLEA
still holds the top rank position on average with the two
state-of-the-art MLL algorithms, ML-kNN and MLNB, at the
second and third ranking positions. Observe that PLEA™
ranks the fourth on average and the existing stat-of-the-art
LDL algorithm, IIS-LLD, only ranks the eighth on average,
on this set of multi-label classification experiments.

4.4.1 Friedman test and critical difference diagram

Table 19 lists the Friedman statistics Fr and the critical
value on the five multi-label classification metrics at a sig-
nificance level of 0.05, among 10 algorithms and 10 datasets.
Based on Table 19, we use Nemenyi test [45] to check the
average ordering comparison between two comparing algo-
rithms. Figs. 8 to 12 represent the results with a CD graph
for each of the five MLL metrics, respectively. The results

TABLE 13
Performance comparison of 10 algorithms on 10 real-world datasets of [41] without ground-true label distributions using Hamming loss |

Algorithms BP-MLL MLNB ML-KNN AA-BP LDSVR CPNN AA-KNN 1IS-LLD PLEA PLEA—
Yeast 0.4500 (6) 0.2061 (3) 0.1980 (2) 1.0000 (9.5) 0.3037 (5) 0.6964 (8) 0.2297 (4) 1.0000 (9.5) 0.1945 (1) 0.6963 (7)
Emotions 0.2987 (4) 0.2414 (2) 0.2584 (3) 1.0000 (9.5) 0.2996 (5) 0.7097 (8) 0.3006 (6) 1.0000 (9.5) 0.2406 (1) 0.6507 (7)
Medical ~ 0.0290 (4)  0.0362 (5)  0.0178 (2)  1.0000 (10) 0.9721 (7) 0.9732 (8) 0.0184 (3) 0.9959 (9) 0.0115 (1) 0.9070 (6)
Cal500  0.1472 (2)  0.2062 (6)  0.1416 (1)  1.0000 (9.5) 0.1488 (3) 0.8522 (8) 0.1814 (5) 1.00009.5)  0.1596 (4) 0.7025 (7)
Birds  0.0683 (4)  0.0704 (5)  0.0546 (2)  1.0000 (9.5) 0.0517 (1) 0.9491 (8) 0.0748 (6)  1.0000 (9.5)  0.0645 (3) 0.4921 (7)
Image 03056 (5) 0.2108(3)  0.1888(2)  1.0000 (9.5)  0.7516 (6.5) 0.7522 (8) 02158 (4)  1.0000 (9.5)  0.1654 (1)  0.7516 (6.5)
Scene 0.2904 (6) 0.1225 (4) 0.0962 (2) 1.0000 (9.5) 0.1810 (5) 0.8194 (8) 0.1134 (3) 1.0000 (9.5) 0.0847 (1) 0.7446 (7)
Enron 0.0682 (4) 0.1162 (6) 0.0623 (2) 1.0000 (10) 0.0677 (3) 0.9339 (8) 0.0705 (5) 0.9919 (9) 0.0546 (1) 0.8892 (7)
Corel5k 0.0094 (2) 0.0138 (5) 0.0093 (1) 1.0000 (9.5) 0.9907 (7.5) 0.9907 (7.5) 0.0114 (4) 1.0000 (9.5) 0.0098 (3) 0.9877 (6)
Bibtex  0.0160 (4)  0.0846 (6)  0.0135(2)  1.0000 (9.5) 0.0149 (3) 0.9853 (8) 0.0165 (5)  1.0000 (9.5)  0.0126 (1) 0.8492 (7)

Average rank 4.1 (3) 4.5 (4.5) 1.9 (2) 9.6 (10) 4.6 (6) 7.95 (8) 4.5 (4.5) 9.4 (9) 1.7 (1) 6.75 (7)
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TABLE 14
Performance comparison of 10 algorithms on 10 real-world datasets of [41] without ground-true label distributions using ranking loss |

Algorithms BP-MLL MLNB ML-kNN AA-BP LDSVR CPNN AA-KNN IIS-LLD PLEA PLEA~

Yeast 04450 (5) 02323 (2)  0.1716(1)  0.5915(9) 04974 (7) 09708 (10) 05054 (8) 04809 (6)  0.2904 (3)  0.4011 (4)
Emotions 04803 (7)  0.2285(2)  0.2827(3)  0.9453(10) 05899 (8)  0.8511 (9) 04283 (6) 03877 (5)  0.2166(1)  0.3670 (4)
Medical 02445 (5)  0.0623(2)  0.0555(1)  0.8245(9) 05000 (7)  0.8982(10) 05039 (8)  0.3082(6)  0.1093 (3)  0.1157 (4)
Cal500 01996 (3)  0.1882(2)  0.1880(1)  05126(8)  0.5005(7)  0.8621 (10) 07750 (9) 04937 (6) 04749 (4)  0.4903 (5)
Birds 03964 (6)  02115(1)  0.3035(3)  0.6485(9)  04374(8)  03132(2)  0.7335(10) 04157 (7) 03865 (5)  0.3519 (4)
Image 07956 (9)  02231(3)  0.2008(2)  0.7320(8)  05000(7)  0.8892(10) 03139 (4) 03819 (6)  0.1456 (1)  0.3206 (5)
Scene 05992 (6)  0.1070 (4) 01059 (3)  0.7328(9)  0.6556 (7)  0.8609 (10)  0.1838 (5)  0.6753 (8)  0.0575(1)  0.0592 (2)
Enron 03738 (4) 01776 (2)  0.1201(1)  0.6236(8)  04741(6) 09621 (10)  0.8563 (9)  05165(7)  0.3229(3) 04146 (5)
Corelsk 02695 (2)  04145(3) 02672 (1)  05134(9) 05000 (8) 04990 (7) 09444 (10) 04954 (6) 04439 (4)  0.4696 (5)
Bibtex 04764 (6) 02037 (4)  0.2427(5)  05243(8) 05012 (7)  0.6954(9)  0.7416 (10)  0.0000 (1)  0.0897 (2)  0.0960 (3)

Average rank 5.3 (5) 25(2) 2.1 (1) 8.7 (9.5) 7.2 (7) 8.7 (9.5) 7.9 (8) 5.8 (6) 2.7 (3) 41 (4)

TABLE 15
Performance comparison of 10 algorithms on 10 real-world datasets of [41] without ground-true label distributions using one error |

Algorithms BP-MLL MLNB ML-kNN AA-BP LDSVR CPNN AA-KNN IIS-LLD PLEA PLEA™

Yeast 07034 (8)  0.2475(4) 02454 (3) 07857 (95)  04286(5)  0.0714 (1) 04999 (6) 07857 (9.5)  0.1429 (2)  0.6429 (7)
Emotions 07022 (10) 04100 (4) 04213 (5)  0.0000 (1)  0.6667 (85) 0.3333(2.5) 0.4899 (6) 03333 (2.5) 05000 (7)  0.6667 (8.5)
Medical 04024 (4) 04324 (6) 02583 (2)  1.0000 (10) 05000 (8) 04290 (5)  0.1579 (1) 05789 (9) 03421 (3) 04737 (7)

Cal500 01071 (2.5) 0.1111(4) 01071 (25) 08678 (9)  0.8563(8)  0.3333(5) 05862 (6) 0.8046 (7)  0.0776 (1)  0.8793 (10)

Birds 07989 (6) 05287 (4) 07126 (5)  0.8421(8) 04990 (3)  0.8421(8) 04737 (2) 09474 (10) 04474 (1)  0.8421 (8)
Image  0.6710(9) 04030 (4) 03630 (3)  1.0000 (10) 05000 (6) 05470 (7)  0.4990(5)  0.2000(2)  0.0000 (1)  0.6000 (8)
Scene  0.8269 (8) 03002 (4)  0.2575(3)  1.0000 (9.5)  0.4999 (6)  0.3333(5)  0.5000 (7) 1.0000 (9.5)  0.0000 (15)  0.0000 (1.5)
Enron 02642 (1) 05009 (4) 04076 (2) 09804 (10)  09615(9) 05050 (5) 04808 (3) 09423 (8)  0.6923(6)  0.8846 (7)
Corelsk 09716 (7)  0.8868 (5) 07856 (4)  0.9865(10)  0.4890 (3) 04400 (1)  0.4419(2) 09797 (9) 09302 (6)  0.9767 (8)
Bibtex 04547 (3) 05681 (4)  0.6363 (5) 09937 (10) 09497 (8) 09874 (9)  0.7688 (6)  0.8428(7) 03459 (1)  0.3899 (2)

Averagerank  5.85 (6) 43(3) 3.45 (2) 8.7 (10) 6.45 (7) 4.85 (5) 44 (4) 7.35 (9) 2.95 (1) 6.7 (8)

TABLE 16
Performance comparison of 10 algorithms on 10 real-world datasets of [41] without ground-true label distributions using coverage |

Algorithms BP-MLL MLNB ML-kNN AA-BP LDSVR CPNN AA-KNN IIS-LLD PLEA PLEA™

Yeast  0.8990 (9)  0.6629 (2)  0.6385(1)  14925(10)  0.8982 (8) 08845 (5)  0.8794 (3) 0.8976 (7)  0.8816 (4)  0.8868 (6)
Emotions  0.3089 (9)  0.1960 (7) 02320 (8)  0.4125(10)  0.1568 (1) 01703 (6)  0.1661 (4)  0.1643 (3)  0.1570 (2)  0.1693 (5)
Medical 02955 (8)  0.1934 (5) 03564 (9) 05036 (10)  0.2087 (7) 02081 (6)  0.1374(3)  0.1562 (4)  0.0520 (1)  0.0538 (2)
Cal500 13386 (10)  0.1346 (1)  1.3045(9)  0.2332 (8) 0.2284 (4) 02316 (7)  02315(6) 02286 (5) 02281 (2)  0.2282 (3)
Birds  0.4415(10)  0.2695(3) 03606 (9)  0.2702 (4) 0.3014 (8) 02309 (1) 02899 (7) 02771 (5) 02828 (6)  0.2646 (2)
Image  2.1460 (10)  1.1700(9)  1.0760 (8)  0.9980 (7) 0.9608 (2) 09648 (4) 09644 (3) 09872 (6) 09512 (1)  0.9868 (5)
Scene  2.0761 (10)  0.6296 (1)  0.6405(2)  1.2093 (9) 1.0843 (7) 1.0773(6)  1.0505(5)  1.1597(8)  0.9330 (3)  0.9685 (4)
Enron 02369 (2)  0.2313(1)  1.6046 (10)  1.0148 (9) 0.4936 (6) 05028 (8)  0.4956 (7)  0.4891 (5)  0.4579 (3)  0.4792 (4)
Corelsk  0.1980 (4) 02062 (6)  0.1983(5)  1.6825(10) 15023 (7.5) 15023 (7.5) 1.5126(9) 01876 (3)  0.1806 (1)  0.1813 (2)
Bibtex 07356 (10) 03788 (8)  0.6146(9)  0.3562 (5) 0.3382 (4) 03598 (7)  0.3585(6) 02068 (1) 02457 (2)  0.2486 (3)

Average rank 8.2 (9.5) 43(3) 7.0 (8) 8.2 (9.5) 5.45 (6) 5.75 (7) 5.3 (5) 47 (4) 2.5 (1) 36 (2)

TABLE 17
Performance comparison of 10 algorithms on 10 real-world datasets of [41] without ground-true label distributions using average precision 1

Algorithms BP-MLL MLNB ML-kNN AA-BP LDSVR CPNN AA-KNN 1IS-LLD PLEA PLEA~

Yeast 04297 (5)  0.7481(2)  0.7566 (1)  0.2675(10)  0.3965 (6) 03064 (9) 04779 (4)  03125(8)  0.5085(3)  0.3876 (7)
Emotions 05161 (4) 07324 (1)  0.6897 (2) 03422 (9) 04900 (6) 03123 (10) 04926 (5) 04220 (8)  0.6217 (3)  0.4502 (7)
Medical ~ 0.2081(6)  0.6080 (2) 07898 (1)  0.0186 (10)  0.0480 (8) 0.0467 (9)  03692(5)  02035(7) 05783 (3)  0.5315 (4)
Cal500 04783 (2) 04372 (3) 04882 (1)  0.1655 (9) 01676 (8)  0.1598 (10)  0.1705(5)  0.1687 (6)  0.1815(4)  0.1686 (7)
Birds 02460 (3) 05423 (1)  03875(2)  0.0653 (10)  0.0759 (9) 01013 (8)  0.1131(7)  0.1151(6)  0.1255(5)  0.1382 (4)
Image  05111(5) 07386 (2) 07649 (1) 01650 (10)  0.2729 (8) 02645 (9) 05954 (4) 03663 (7) 07073 (3)  0.4176 (6)
Scene 04200 (7)  0.8191(4)  0.8378(2)  0.1247(10)  0.7859 (5) 02954 (8) 07649 (6)  0.1615(9)  0.8407 (1)  0.8353 (3)
Enron 02057 (3) 02135(2) 05509 (1)  0.0522(10)  0.0747 (9) 0.0828(7)  0.1201(6)  0.0812(8)  0.1890 (4)  0.1207 (5)
Corelsk 02012 (2)  02200(1) 01929 (3)  0.0140(9) 00141 (75) 00141 (75)  0.0252(5)  0.0137 (10)  0.0339 (4)  0.0193 (6)
Bibtex ~ 0.0659 (6)  0.3874 (1) 03057 (4)  0.0155 (9) 0.0226 (7) 0.0182(8)  0.1111(5)  NaN(10)  03871(2)  0.3768 (3)

Average rank 43 (4) 1.9 (2) 1.8 (1) 9.6 (10) 7.35 (7) 8.55 (9) 52(55) 7.9 (8) 3.2 (3) 5.2 (5.5)
TABLE 18 T hi h 1t
Multi-label classification ranking performance of 10 algorithms indicate t}}a.t our PLEA on average achieves t € b?s.t multi-
averaged over 10 datasets of [41] and 5 MLL measures label classification performance is statistically significant.
Algorithm Average rank TABLE 19
PLEA 2.61 (1) Friedman statistics F, in terms of each evaluation metric and the
ML-kNN 3.25(2) critical value at a significance level of 0.05 (comparing algorithms 10,
MLNB 3.5(3) datasets 10)
PLEA— 527 (4) Evaluation metric Fr Critical value
AA-KNN 5.46 (5)
BP-MLL 5.55 (6) Hamming loss 60.0981
LDSVR 6.21 (7) ranking loss 23.4512
IIS-LLD 7.03 (8) one error 5.1172 1.998
CPNN 7.16 (9) coverage 5.5945

AA-BP 8.96 (10) average precision  45.4132
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Fig. 8. CD diagrams given CD = 2.7053 of Nemenyi tests on the 10
algorithms for Hamming loss evaluation metric

10 9 8 7 6 S 4 3 2 1

[T T TR T R R DRI B N |
| ML-kNN
MLNB
AALKNN
IS-LLD L PLEA
AA-BP LDSVR
CPNN 1 BP-MLL
PLEA
(b) ranking loss

Fig. 9. CD diagrams given CD = 2.7053 of Nemenyi tests on the 10
algorithms for ranking loss evaluation metric
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(c) one error

Fig. 10. CD diagrams given CD = 2.7053 of Nemenyi tests on the 10
algorithms for one error evaluation metric
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Fig. 11. CD diagrams given CD = 2.7053 of Nemenyi tests on the 10
algorithms for coverage evaluation metric

4.5 Summary

Combined with the experimental results of the previous
three subsections, we can confidently draw the conclusion
that the proposed PLEA algorithm offers considerable ad-
vantages over the existing well-established LDL algorithms
as well as the state-of-the-art MLL algorithms, in terms
of both LDL accuracy and MLL performance. Specifically,
our PLEA consistently outperforms the existing LDL and
MLL algorithms in the multi-label distribution learning task,
and it is also capable of offering excellent performance
for the mulit-label classification learning task. Furthermore,
our PLEA algorithm consistently achieves better runtime
performance than the IIS-LLD, which is the existing state-
of-the-art LDL algorithm.
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Fig. 12. CD diagrams given CD = 2.7053 of Nemenyi tests on the 10
algorithms for average precision evaluation metric

5 CONCLUSIONS

In this paper, we have proposed a new probabilistic label
enhancement algorithm for the challenging multi-label label
distribution learning problem. Our novel contribution has
been twofold. More specifically, we have proposed a mani-
fold space learning based feature extraction and a robust lin-
ear regression to derive the reduced-dimensional principal
features and their corresponding estimated label distribu-
tions. This has enabled us to estimate the unknown true la-
bel distributions based on the enhanced maximum entropy
model with improved estimation accuracy and reduced
computational complexity. Extensive experimental results
have confirmed that compared with the latest existing multi-
label LDL algorithms, our proposed PLEA algorithm offers
clear advantages, in terms of both label distribution estima-
tion accuracy and computational complexity. Furthermore,
our PLEA is also capable of offering excellent performance
on the multi-label classification learning problem.

APPENDIX

We use five real-world multi-label vehicle video datasets
with unknown ground-true label distributions of [42], de-
noted as BRVD1 to BRVD5, for evaluating various LDL
algorithms. We now describe how the training dataset
{xiceRY,y;=[y; - yf]T e{-1, 1}6}?:1 is constructed for
each BRVD from the raw dataset of [42].

The BRVD datasets of [42] are collected for the purpose
of training autonomous driving system. Each raw BRVD
dataset contains a large number of short vehicular videos.
We basically ‘sample” videos to obtain training examples.
The video collected by the driving recorder is a color video,
which consists of three components, R (red), G (green) and
B (blue). Directly ‘sampling’ colored videos will lead to
examples with huge feature dimension, which requires huge
memory space to store the data and imposes unacceptably
high computation time for training the system. Since the
color information is not needed in training the system, we
first convert color video into a grayscale video using the
weighted average method [26]. Specifically, the grayscale
image f(xn,xy) is obtained from the R, G and B images,
R(xy, zy), G(zn, xy) and B(zy, zy), according to

flan, zy) =wgr - Rz, xy) + we - G(h, Ty)

+wp - B(xp, xy). (20)

Since the sensitivity of human eye to blue color is relatively
low and the sensitivity to green color is high, appropriate
weighting values are chosen to be wr = 0.3, wg = 0.59,
wg = 0.11. After this preprocessing, for each raw BRVD



dataset, we select a number of short videos and we divide
each short video into 400 segments. The number of short
videos selected multiplying by 400 yields the number of
examples n. Each video segment forms a raw example
TPV ERTT

For each example, we classify it by ¢ = 9 labels. These
include:

Three driving-scene labels:
Two driving-time labels:
Two labels for weather:
One label for pedestrian:
One label for lane line:

Highway, City, Country.
Day, Night.

Sunny, Rain and snow.
Present or not.

Present or not.

Fig. 13. An example of driving video picture, i.e., a raw example acgraw.

The raw feature dimension ¢"*" is far too large and will

impose unacceptably high computation time. We perform
feature reduction manually by selecting ¢ (< ¢"™V) im-
portant features from ;" to form the reduced-dimension
example x; € RY. More specifically, since the original
purpose of collecting these data is for training autonomous
driving system, we only retain those features of mgmw that
are relevant for adding autonomous driving, and remove
the features that do not add the driving system. A typical
example of this manual feature reduction is illustrated in
Fig. 13, where a typical raw example wgmw, ie., a typical
driving video picture is depicted. It is clear that the top sky
part of the picture is irrelevant to the driving system, and
hence can be removed. Similarly, the far left portion of the
picture can also be removed. In other words, the manual
feature reduction only keeps the important part of a picture,
that is, only retains the relevant subset features of a raw
example ¢

After performing the aforementioned preprocessing on
the raw datasets of [42], we construct the five multi-label
BRVD training datasets, whose numbers of labels ¢, num-
bers of examples n and feature dimensions ¢ are listed in
Table 10.
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