
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Unified Collaborative Representation Learning
for Neural-Network based Recommender

Systems
Yuanbo Xu, En Wang†, Yongjian Yang, Yi Chang,

Abstract—With the boosting of neural networks, recommendation methods become significantly improved by their powerful ability of
prediction and inference. Existing neural-network based recommender systems (NN-RSs) usually first employ matrix embedding (ME)
as a pre-process to learn users’ and items’ representations (latent vectors), then input these representations to a specific modified
neural network framework to make accurate Top-k recommendations. Obviously, the performance of ME has a significant effect on RS
models. However, most NN-RSs focus on accuracy by building representations from the direct user-item interactions (e.g., user-item
rating matrix), while ignoring the underlying relatedness between users and items (e.g., users who rate the same ratings for the same
items should be embedded into similar representations), which is an ideological disadvantage. On the other hand, ME models directly
employ inner products as a default loss function metric that cannot project users and items into a proper latent space, which is a
methodological disadvantage. In this paper, we propose a supervised collaborative representation learning model - Magnetic Metric
Learning (MML) - to map users and items into a unified latent vector space, enhancing the representation learning for NN-RSs. Firstly,
MML utilizes dual triplets to model not only the observed relationships between users and items, but also the underlying relationships
between users as well as items to overcome the ideological disadvantage. Specifically, a modified metric-based dual loss function is
proposed in MML to gather similar entities and disperse the dissimilar ones. With MML, we can easily compare all the relationships
(user to user, item to item, user to item) according to the weighted metric, which overcomes the methodological disadvantage. We
conduct extensive experiments on four real-world datasets with large item space. The results demonstrate that MML can learn a proper
unified latent space for representations from the user-item matrix with high accuracy and effectiveness, and lead to a performance gain
over the state-of-the-art RS models by an average of 17%.

Index Terms—Latent vectors, Collaborative Representation Learning, Metric Learning, Recommender Systems.

F

1 INTRODUCTION

In recent years, popular online commercial websites such as
Netflix, Amazon, Yelp, and Taobao provide a wide spectrum
of recommendation services to help the customers filter their
preferences out of enormous product space [1]. However,
the performance of traditional recommendation models,
such as collaborative filtering (CF) [2], matrix factorization
(MF) [3] is highly restricted by the large scale of product
space. With the development of neural networks and com-
putation theory, the technology of recommender systems
has been taken to the next stage [4]. To tackle large scale
products for recommendations, most neural-network-based
recommender systems first extract latent vectors of users
and items from a user-item matrix. This extraction proce-
dure is called matrix embedding (ME) [5], which is a critical
factor in getting accurate recommendations, especially for
learning meaningful, measurable latent vectors. With these
latent vectors, some traditional recommendation models are
enhanced for real-world applications, such as CF to NCF [6],

• Y. Xu, †E. Wang (corresponding author) and Y. Yang are with the Depart-
ment of Computer Science and Technology, Jilin University, Changchun,
130012, China and Key Laboratory of Symbolic Computation and
Knowledge Engineering for the Ministry of Education, Jilin University,
Changchun, 130012, China. E-mail: yuanbox, wangen, yyj@jlu.edu.cn.

• Y. Chang is with the School of Artificial Intelligence, Jilin University,
Changchun, Jilin 130012, China. E-mail: yichang@jlu.edu.cn.

2 0 2
2 4 2
0 0 3

𝑖1 𝑖2 𝑖3

𝑝1
𝑝2

𝑝3

𝑞1
𝑞2
𝑞3

2 0 0

0 2 2

0 3 0

1 0 1

0 0 2

1 1 0

𝑢1
𝑢2
𝑢3

𝑟𝑢𝑖 = 𝑝𝑢 • 𝑞𝑖
ME with inner

product

Explicit feedbacks

latent vectors

P

Q

R

𝑢1
𝑢2
𝑢3

𝑖1
𝑖2
𝑖3

Fig. 1. An example to illustrate the disadvantages of traditional ME
models.

MF to NeuMF [7]. Some novel NN-based recommendation
models are also proposed, such as GERL [8], NeuO [9] and
HERec [10].

However, most researches assume that these latent vec-
tors learned by existing ME models are insufficient and
biased [4], without taking the interpretability into consid-
eration [4, 11]. In other words, traditional ME only utilizes
the relationships between users and items, while ignor-
ing that the collaborative relationships between users and
users, items and items, which is an ideological disadvan-
tage. Moreover, most existing works directly utilize inner
products to measure the relationships between users and
items. This simple metric may cause chaos when computing
similarities, which is a methodological disadvantage.

To make the above two disadvantages clear, we give a
recommendation scenario in Fig.1, where we employ basic

ar
X

iv
:2

20
5.

09
67

0v
1

 [
cs

.I
R

]
 1

9
M

ay
 2

02
2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

matrix factorization as ME model and user-based collabora-
tive filtering (UBCF [12]) as recommendation model. In this
example, U(u1, u2, u3) and I(i1, i2, i3) represent users and
items, respectively. R is a user-item rating matrix with rat-
ings rij . P and Q are built with 3-dimensional embedding
results (pi for user i, qj for user j), extracted from matrix
R with existing ME models, such as SVD or other matrix
factorization methods. To pick a proper item recommended
to u2, we employ a popular recommendation model (user-
based CF, UBCF) with users’ latent vectors. User-based CF
calculates the similarities among u1, u2, u3 to pick the Top-1
user neighbor for u2. Then it recommends items that this
Top-1 user has consumed to u2.

As a result in Fig.1, in ideology (note that UBCF model
uses inner products to calculate latent vectors while the
similarity between latent vectors is measured by Euclidean
distance [11]). Intuitively, UBCF should pick u3 as u2’s Top-1
neighbor because (p1, p2)E =

√
12 > (p3, p2)E =

√
5. But in

fact, when considering the underlying relationship (between
u1 and u2) hidden in matrix R, it is obvious that u1 should
be a better choice (u1 and u2 share the same preference of i1
and i3 according to their explicit feedbacks r11, r13, r21 and
r23). Hence, choosing u3 as u2’s neighbor is an inaccurate
decision caused by the ideological disadvantage, which is
partly mentioned in [13, 14].

In methodology, directly choosing inner products as the
metric may cause a dilemma, especially for CF models.
In general, CF models employ Euclidean distance between
latent vectors as the similarity to find the nearest neighbor
[4], where the latent vectors are learned by using inner prod-
ucts in traditional ME models [15]. To ensure the metric-
satisfying non-negativity in latent space, the latent vector
calculation should obey the triangle inequality (the sum
length of any two sides must be greater than or equal to
the remaining side, and the reason why embeddings should
obey this is detailed introduced in [6, 11]). However, the
relationships measured by inner products may violate the
triangle inequality. For example, as shown in Fig.1, if ME
models use inner products • to learn latent vectors for i1, u2
and u3 as q1, p2 and p3, then, p2•q1+p3•q1 < p2•p3, which
violates the triangle inequality. If we conduct calculations
in a latent space with a metric that violates the triangle
inequality, it may lead to uncertainty and inaccuracy of
computing, and finally, result in a biased recommendation.
Therefore, only applying inner products in ME models
is not a suitable choice when learning latent vectors for
recommendations. This methodological disadvantage dam-
ages the performance of recommendation models tremen-
dously. For recommender systems, it’s still a challenge to
learn a proper latent space, where all kinds of relationships
(users/items/user-item) can be measured by a unified style
of the metric.

To relieve the limitation of inner products, metric learn-
ing has been proved to be useful in the multimedia area
[13, 16, 17]. The core of metric learning is to learn a proper
metric for the measurement between latent vectors. How-
ever, metric learning is only designed to measure user-
item relationships in recommender systems [13, 14], which
cannot simultaneously tackle the ideological and method-
ological disadvantage (as shown in Fig.2). To this end, we
propose a supervised collaborative representation learning

Fig. 2. Comparison between traditional metric learning and our pro-
posed model MML. Traditional ML (upper part) only focuses on user-
item relationships (rectangle to triangle), while MML (bottom part) also
takes the underlying user-user (rectangle to rectangle), item-item (trian-
gle to triangle) relationships into consideration.

model for matrix embedding: Magnetic Metric Learning
(MML), which utilizes the dual triplets to represent the
different types of relationships (user-user, item-item, user-
item) with a uniform latent space in a uniform framework.
MML can learn not only the explicit relationships but also
the latent relationships, which overcomes the ideological
disadvantages. Meanwhile, the relationships between users
and items are directly measured by weighted metric dis-
tance, which overcomes the methodological disadvantage.

The contributions of this paper are summarized as fol-
lows:

• We first argue that existing matrix embedding
methods for neural-network-based recommendation
models are not sufficient and unbiased. Then we
explore the ideological and methodological disad-
vantages of traditional ME models and propose a
representation learning model for matrix embedding:
Magnetic Metric Learning, to overcome the above
disadvantages.

• For the ideological disadvantage, we utilize dual
triplets to model explicit and latent collaborative
relationships among users and items in a uniform
latent space. For the methodological disadvantage, a
modified metric-based dual loss function is proposed
to learn weighted metric and latent vectors at the
same time.

• The experimental results on four real-world datasets
demonstrate that MML can learn a proper unified
latent space from the user-item matrix, and improve
the accuracy of the state-of-the-art models.

The paper is organized as follows. We provide prelim-
inaries in Section 2. Then we elaborate on the proposed
method MML, including theory, regularization, and training
process in Section 3. We report the experimental results in
Section 4. Lastly, we review related work in Section 5 and
conclude this paper in Section 6.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

2 PRELIMINARIES

2.1 Basic definitions

In recommender systems, U denotes a set of m users
U = {u1, u2...um}, and I denotes a set of n items I =
{i1, i2...in}. A user-item rating matrix, whose entries are rui,
is built as R. For items with ratings, we set rui as the rating,
while for items without ratings, rui = 0. If rui = 0, we treat
(u, i) as a negative pair, otherwise a positive pair.

Definition 1: Matrix Embedding: Given a matrix
R ∈ Rm×n , the matrix embedding (ME) model is to depose
the matrix into two low-dimension k spaces, which are also
called latent vector spaces P ∈ Rm×k,Q ∈ Rn×k. Especially,
in recommender systems, R is the user-item rating matrix.
pi ∈ P is the latent vector for user i, while qj ∈ Q is for
item j. Note that in real-world scenarios, the scale of users
and items is huge, which means that m,n� k. Existing ME
models usually utilize some matrix factorization methods,
such as pureSVD [17] and NMF [17] to learn latent vectors.
However, these models directly employ inner products in
their loss function, which may lead to inaccurate and biased
embedding results. Our proposed model aims to solve this
problem, which is demonstrated in detail in Section 3.

Definition 2: Metric Learning: Given two different
latent vectors p, q ∈ R1×k, the metric learning (ML) model
is to learn a proper weighted metric matrix W ∈ Rk×k

to measure the relationships between p and q [18]. The
different weights in W stand for the importance of each
element in latent vectors. Specifically, in recommender sys-
tems, the distance between pi and qj can be treated as
the measurement between user i and item j, as well as
the user i’s preference for item j. Existing metric learning
models usually focus on the explicit feedbacks and models’
optimizations in recommender systems, such as CML [13]
and IML [19]. However, these models usually ignore the
underlying relationships hidden in the user-item matrix R,
which is a restriction to the ML models’ performance.

Definition 3: Neural-Network-based Recommendation
models: A typical neural-network-based recommendation
model is a two-stage framework: the basic input is the user-
item rating matrix R, and some other side information,
including text, videos, and images. The first stage is named
representation learning. In this stage, the inputs are mapped
into latent vectors, including user latent vectors P , item
latent vectors Q, and side information latent vectors SI ,
which extracts the latent features hidden in the multi-modal
information. In the second stage for the recommendation,
the latent vectors are feed into a modified neural network,
which outputs the predicted ratings r̂ui. Finally, according to
the ranking of r̂ui, the model gives a Top-k recommendation
list. A general framework is shown in Fig.3. Some popular
recommendation models are based on this framework with
different embedding models and neural networks, including
Neural CF [6], NeuO [9]. However, most models use inner
products as default, where we argue it is not always stable.

Note that some existing models integrate and implement
joint learning framework. However, we argue there are
some disadvantages: 1) overfitting. If we co-train the two
stages, we have only one loss function on the recomme-
dation stage, which may lead to the potential overfitting
problem in representation learning stage [20]. 2) flexibility.

Side information

R

Texts Images Videos

M
u

lt
im

ed
ia

Em
b

ed
d

in
g

P

Q

SI

M
at

ri
x

Em
b

ed
d

in
g

Stage 1:Representation learning

M
o

d
if

ie
d

 N
eu

ra
l

N
et

w
o

rk
s

Ranking

Top-k
recommendation list

Stage 2:Recommendation

P

Q

SI

A Typical Two Stage NN-based Recommendation model

Fig. 3. A typical two-stage neural network based recommendation
model. Note that in this paper we focus on the matrix embedding part of
this framework.

The users’ and items’ latent representations learned by first
stage could be combined with different recommendation
model, or other models (such as user profiling, slanderous
user detection), which is flexible for different application
scenarios.

2.2 Matrix embedding with inner products

Given a user-item matrix R, matrix embedding models with
inner products usually minimize this loss function LIP to
learn latent vectors P and Q:

LIP =

P,Q∑
u∈U,i∈I

(rui − pu • qi)2 + pen(P,Q), (1)

where pen(P,Q) is a penalty term to avoid overfitting. Then
we can use these latent vectors to make recommendations:
1) for user-based collaborative filtering [21], we need to find
the nearest k-neighbor for target user t with the following
function:

Nk(min
u∈U
|pu, pt|Euc). (2)

Then some common items in these neighbors can be
recommeded to the target user. 2) for neural network based
models, we input the latent vectors and make recommeda-
tions as shown in Fig.3.

2.3 Matrix embedding with metric learning

Given a user-item matrix R, matrix embedding models with
metric learning usually minimize this loss function LML:

LML=

P,Q∑
u∈U,i,j∈I

(Lpull
rui 6=0

(pu, qi)−Lpush
ruj=0

(pu, qj))+pen(P,Q).

(3)
Note that there are two loss functions in traditional met-

ric learning: Lpull and Lpush. The core idea for metric learn-
ing is to gather the user-item pair with explicit feedbacks
and disperse the pair without them. So Lpull is employed to
calculate the weighted distance between user u and item i,
where rui 6= 0. By minimizing Lpull, LML tries to pull the
user and item together. Meanwhile, by minimizing −Lpush,
LML tries to push away the user and item where rui = 0.
Specifically, in the training process of metric learning, the
model can learn not only the latent vectors P ,Q, but also
the weighted metric matrix W . The important notations are
shown in Table 1.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 1
Notation List.

Notation Description
U user set with u in recommender systems
I item set with i in recommender systems
R rating matrix R ∈ Rm×n with rating rui
R,E notations for latent spaces
m,n number of users/items
rui u’s rating on item i

P k-dimension user latent vector set P ∈ Rm×k

Q k-dimension item latent vector set Q ∈ Rn×k

pu, qi k-dimension latent vectors for u and i
e uniformed latent vector (a user or an item)
W metric matrix W ∈ Rk×k with w
WU ,W I ,WUI W for users, items and user-item
|ea, eb|Euc Euclidean distance between ea, eb
|ea, eb|W metric distance between ea, eb with W
LEX

MML explicit relationship loss function
SU , SI user/item similar-pair buffer sets
mr learning margin for metric learning
LLA

MML latent relationship loss function
α, λ, θ, ω hyper parameters

3 MAGNETIC METRIC LEARNING (MML) MODEL

Magnetic Metric Learning model (MML) employs a unified
style of metric learned through embedding and recommen-
dation, and learns a unified latent space for users and items,
which overcomes the methodological disadvantage. Mean-
while, MML considers both explicit and latent relationships
and makes a direct embedding to overcome the ideological
disadvantage (shown in Fig.2).

Specifically, MML treats users and items as the same en-
tities in a unified latent space, where all the relationships be-
tween users and items can be represented by their distance
(in MML, it is measured by learned metric W). Moreover,
MML can learn users’ and items’ latent vectors in a uniform
framework with a uniform metric across all the procedures
(embedding and recommendation) and overcome the limi-
tation of inner products. MML does not need to distinguish
latent user space and latent item space. All the users and
items are embedded into the same dimension latent space.
In this way, we could more easily optimize MML’s loss
function and calculate its gradient compared with other
NN-based embedding models, such as autoencoder.

3.1 Learning Metric: Foundation of MML

We define a k-dimensional uniformed latent space E, where
ei ∈ E stands for an extracted latent vector for a user or an
item, i stands for an entity which can be either a user or an
item. First, we define the function F for calculating the re-
lationships between entities a, b as the following Euclidean
function:

FE(a, b) = ‖ea − eb‖2Euc . (4)

While in MML, we use a learned metric W ∈ Rk×k as a
substitute for Euclidean, as shown in Eq.(5):

F ∗(a, b) = ‖ea − eb‖2W∗ . (5)

Note that we consider learning different weighted matrix
W ∗ for measuring user-user (WU), item-item (W I) and
user-item (WUI) relationships, which is an improvement
over other metric learning models, such as CML [13], IML

[19] and CRML [22]. With these learned metrics, all the
relationships can be measure as follows:

‖ea − eb‖2W∗ =

√
(ea − eb)TW ∗(ea − eb). (6)

To ensure that the W ∗ we learned is a metric-satisfying
non-negative metric and obeys the triangle inequality, we
need to require W ∗ to be positive semi-definite. Note that
setting W ∗=I gives Euclidean distance. And if we set
W ∗ to be diagonal, it corresponds to learning a metric
in which different axes are given different weights upon
Euclidean distance. Generally, W ∗ parameterizes a family
of Mahalanobis distance over Rk×k [22, 23]. With different
restrictions to W ∗, we can tune our proposed model MML
for different application scenarios.

3.2 Explicit relationships formulation

MML is designed to gather similar entities and disperse
the dissimilar ones with learned metrics. In recommender
systems, we treat the feedback rui ∈ R as the indicator
of explicit relationships. If rui 6= 0, we define that there
is an explicit relationship between user u and item i. To
consider this for enhancing matrix embedding process, we
sample the dual triplets < a, b, c > and < c, d, a >, where
a, b ∈ U , c, d ∈ I , and rac 6= 0, rbc = 0, rad = 0. To ensure
the structural consistency, we can learn that a, c should be
embedded closer than b, c and a, d. Meanwhile, according
to a, b’s different preferences on c, it is obvious that they
should not be embedded closely. The same deduction is
applied on (b, c), (c, d) and (a, d). In this way, MML maxi-
mizes the effect of metric learning with a modified enhanced
metric-based dual loss function (EMDL):

L1
MML =∑

a,b∈U ;c∈I
ta,b,c|mr1+FUI(ea, ec)−F

U (ea, eb)−F
UI(eb, ec)|+,

(7)

L2
MML =∑

a∈U ;c,d∈I
ta,c,d|mr2+FUI(ea, ec)−F

I(ec, ed)−F
UI(ea, ed)|+,

(8)
where notation |J |+ satisfies that: |J |+ = max(J ; 0). t
is a ranking weight calculated as suggested in [13]. And
mr1,mr2 > 0 is the safety margin size. With this dual loss
function, (a, c) is embedding closer than (a, d), (b, c) with
metric WUI . (a, b) and (c, d) are embedded far with metric
WU and W I . Finally, we get the EMDL loss function of
MML for explicit relationships:

LEX
MML = λL1

MML + (1− λ)L2
MML, (9)

where λ is the balance weight between users and items. By
minimizing EMDL, we can not only pull the user-item pair
together with explicit relationships (rac 6= 0) and push away
the user-item pairs with no feedback (rbc, rad = 0), but also
push away the user-user pair (a, b) and item-item pair (c, d),
as shown in the lower part in Fig.2.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

3.3 Latent relationships formulation

Different from explicit relationships between users and
items which are indicated by rui ∈ R, latent relationships al-
ways occur between users and users, items and items, which
can not be directly observed. So many existing matrix em-
bedding models only consider explicit relationships while
ignoring the latent ones. However, the latent relationships
should be an important factor in matrix embedding because
they also reflect the users’ preferences and items’ features,
as the example we have given in Introduction. In order to
utilize the latent relationships, we first extract the user pairs
and item pairs according to the following rules:

• Users who rate the same items should be embedded
closer in latent vector space, and vice versa.

• Items rated by the same users should be embedded
closer in latent vector space, and vice versa.

With the rules above, we first build two similar-pair
buffer sets: SU and SI , which contain user pairs and item
pairs, respectively. We treat user pair in SU as the same
category, so do the item pair in SI . A user-user or item-item
pair (a, b) is assigned to similar-pair buffer sets according to
the following restriction:

{
(a, b) ∈ S(∗), if |list(a)∩list(b)|

|list(a)∪list(b)| > θ;

(a, b) /∈ S(∗), else,
(10)

where list(a) means the list of items that user a has rated,
or the users who have rated item a, and S(∗) is either SU

or SI . θ is a control threshold to decide the partition of
same preference that the users or the items share. So the
loss function of latent relationships is as follows:

LLA
MML =

∑
a,f∈S(∗)

∑
a,g/∈S(∗)

ta,f,g|mr3 + F (ea, ef)− F (ea, eg)|+.

(11)
In Eq.(11), f is the similar entity of a, while g is not. F

could be either FU or F I in one formulation. mr3 is the
safety margin size. With this formulation, the user pair or
item pair (a, f) in S are embedded closer than (a, g) not in
S. The matrix embedding is more enhanced by considering
the latent relationships for both users and items.

3.4 Magnetic Metric Learning Formulation

Finally, we combine explicit relationship loss LEX
MML and

latent relationship loss LLA
MML linearly with a combination

weight α:

LMML = αLEX
MML + (1− α)LLA

MML. (12)

Note that in LEX
MML and LLA

MML, all the +F functions are
the realizations of Lpull in Eq.(2), which means pulling
the similar entities together in learned metric space. While
the -F functions mean Lpush, which pushes the dissimilar
entities away.

3.5 Regularization and Optimization

We add two regularizations to make MML efficient and
feasible.

To avoid overfitting and biased parameters, we bound all
the embedding results e(∗) (users’ and items’ latent vectors)
in a unit sphere: ||e(∗)||2 < 1, to ensure the robustness of
our model.

Moreover, we utilize a covariance regularization pro-
posed by [24] to restrict the embedding results. First, we
calculate a k × k matrix E for an O size of k-dimension
vector e:

Eij =
1

O

∑
o

(eoi − ηi)(eoj − ηj), (13)

where o denotes the index in O, i, j is an index pair in a
range of k. ηi = 1

O

∑
o
eoi . Then we define penalty loss LP :

LP =
1

O
(‖E‖f − ‖diag(E)‖22);

Subject to ||e(∗)||2 < 1,
(14)

where ‖E‖f is F-norm of E, diag(E) is a diagonal matrix.
Moreover, to optimize the model, we first define

the user-user weighted metric matrix WU and item-item
weighted metric matrix W I to be symmetric because the
relationships among users or items are undirected. With
this restriction, we can save up the running time when
calculating gradients.

To add personality into our model, we employ adaptive
margins in MML (Fig.4). Specially, there are three differ-
ent margins in our model: mr1, mr2 and mr3. Inspired
by [14], we prefer to use adaptive margin to reduce the
variations, which utilizes mru, mri and mrl to replace the
origin margin mr1, mr2 and mr3, respectively for different
categories of relationships. Note that the less items the users
have rated, the larger margin should be applied to avoid
overfitting. Thus, the adaptive margins could be achieved
by minimizing the following loss function LR:

LR = −(1
m

∑
u

mru +
1

n

∑
u

mri +
1

m+ n

∑
u

mrl);

Subject to mru ∈ (0, 1],mri ∈ (0, 1],mrl ∈ (0, 1],

(15)

where m,n are the size of U , I .

Fig. 4. Effect of applying adaptive margins in MML.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

3.6 Training process
In summary, our complete loss function of MML is shown
as follows:

Minimize
e(∗)

(LMML + ωPLP + ωRLR);

Subject to ||e(∗)||2 < 1,

mru ∈ (0, 1],

mri ∈ (0, 1],

mrl ∈ (0, 1],

(16)

where ωP, ωR are the hyperparameters for controlling LP
and LR.

We minimize this constrained objective function above
with Mini-Batch Stochastic Gradient Descent (SGD) and
control the learning rating using AdaGrad. We keep the
negative pair that maximizes the distance with the target
user-item pair (maxF (e

(∗)
tar , e

(∗)
ne)) when we sample negative

pairs. Our training process is shown as Algorithm 1.

Algorithm 1 MML Training process
Input: User set U ; item set I ; user-item rating matrix R;

margins mru, mri, and mrl; hyperparameters α, λ, θ,
andω

Output: User / Item latent vector set EU / EI , metric
matrix WU ,W I ,WUI .

1: Select a batch B with N positive user-item pairs.
2: for all B ∈ U, I do
3: for all user-item positive pair (a, c) do
4: Sample 2 negative user-item (a, d), (b, c) pairs to

build two triplets.
5: Calculate LEX

MML with Eq.(9).
6: For a, sample 1 similar user f and 1 dissimilar user

g with Eq.(10). Also sample a similar item and a
dissimilar item for c.

7: Calculate LLA
MML with Eq.(11).

8: Calculate LMMA across batch B.
9: while not converge do

10: Calculate gradients.
11: Update pu and qi with AdaGrad on Eq.(16).
12: Update WU , W I and WUI with AdaGrad on

Eq.(16).
13: Update mru, mri and mrl with AdaGrad on

Eq.(16).
14: return User / Item latent vector set EU / EI ; metric

matrix WU ,W I ,WUI .

3.7 Comparison with Collaborative Metric Learning
We compare our proposed model with a representative
model, Collaborative Metric Learning (CML) [13] in detail.
MML borrows the idea of metric learning, which is simi-
lar to CML. However, our model has essential differences
compared with CML (shown in Fig.5):

First, CML utilizes only the user-item pair to build the
objective function, which focuses on the explicit relation-
ships in the user-item matrix. As shown in Fig.5, CML
pulls the items i1,i2 to the user u and pushes away item
i3. However, note that there are latent relationships hidden
in the user-item matrix. So the items in the same similar-
pair set (i2, i3) should be embedded closer, while i1, i2

should be embedded with a longer distance. MML considers
this situation, using Push and Pull for both explicit and
latent relationships, to achieve more accurate and unbiased
embedding results.

Second, as shown in the right part of Fig.5, MML can
learn a direct and visible embedding result because of
the latent relationship formulation LLA

MML. In LLA
MML, MML

considers the relationships between same categories (users
or items). So MML is able to gather the entities of the same
category closer than CML, which is also a great improve-
ment on explainability.

Moreover, CML directly employs Euclidean distance to
measure the relationships between different users and items,
ignoring the importance variety of different vectors. While
MML is able to learn a more accurate metric W for users,
items, and user-item respectively, which fine-grained mea-
sures the relationships. CML utilizes the fixed margin for
all entities, while MML considers the different criteria for
different users and items, and employs the adaptive margins
to add personality to our model.

Finally, the objective function of MML with a uniform
format (LEX

MML, L
LA
MML) does not distinguish users and items

like CML, which is more feasible and effective. MML em-
ploys two regularizations to relieve overfitting situations,
especially when the dataset is sparse and unbalanced.

Fig. 5. Comparison between CML and MML. The red dashed line shows
the effect of Pull and Push. The purple dashed line shows the effect of
consideration of latent relationships.

4 EVALUATION

In this section, we first describe the experimental settings,
including datasets, baselines, parameter setting, and im-
plementation details. Subsequently, we conduct extensive
experiments to answer the following research questions:

RQ1: How is the effectiveness of MML? Can it pro-
vide a competitive performance compared with baselines
on the matrix embedding task at a proper running time?
RQ2: How do the hyperparameters affect the performance
of MML?Which are the optimal values? RQ3: How does
the proposed model benefit the neural-network-based rec-
ommendation models with Top-K recommendation? RQ4:
How do the learned metric benefit the matrix embedding
and recommendations? What is the effectiveness of regular-
ization to avoid overfitting? RQ5: What is the embedding
performance of MML on million-scale dataset? What is the
comparison between MML and other SOTA ME models?

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

4.1 Experimental Settings
4.1.1 Datasets
We conduct experiments on datasets from Amazon.com1

(we use Amazon as the abbreviation of the Sports and
Outdoors dataset in Amazon in this paper) and Yelp for
RecSys2. Moreover, we collect two datasets from Taobao3

and Jingdong4 as supplementary to validate our method
[9, 25]. All the datasets contain ratings ranging from 1 to
5. We divide the datasets: 60% as the training set, 20%
as the test set and 20% as the validation set with 5-cross-
validation, and treat ratings less than 3 as negative samples
for recommendations [9, 18]. Table 2 summarizes the details
of datasets.

TABLE 2
The Datasets’ Characteristics.

Dataset Amazon Yelp Taobao Jingdong
#user 30,759 45,980 10,121 8,031
#item 16,515 11,537 9,892 3,025
#rating 285,644 229,900 49,053 25,152
#item labels 36 24 17 12
Sparsity 0.051% 0.043% 0.049% 0.12%

4.1.2 Baselines
To evaluate our proposed model on matrix embedding task,
we compare MML with five representative metric learning
models, including:

WRMF [26, 27] This implicit MF model utilizes an addi-
tional case weight to model unobserved interactions. WRMF
can also be treated as a basic matrix factorization embedding
model on the user-item matrix with inner products. CML
[13] This representative CF model borrows the idea of metric
learning to learn a latent space for users and items. More-
over, it is claimed that CML can outperform most state-of-
the-art CF models with the metric-based loss function. IML
[19] This efficient model applies metric learning to unbal-
anced data for clustering. IML’s contribution is that it splits
data into subsets and accelerates the process. CRML [22]
This is a metric learning model for collaborative recommen-
dations with co-occurrence embedding regularization. It
considers the optimization problem as a multi-task learning
problem which includes optimizing a primary task of metric
learning and two auxiliary tasks of representation learning.
SML [14] This is a metric learning model that symmetrically
introduces a positive item-centric metric which maintains
closer distance from positive items to users and pushes the
negative items away from the positive items at the same
time with an adaptive margin. We show the relationship
measurement and loss function comparison with baselines
in Table 3.

We combine MML with nine different recommendation
models to make a top-k recommendation, including two
basic recommendation models, and four neural-network-
based recommendation models :

UBCF and IBCF [12] compute the similarity (Cosine
or Euclidean) between users (UBCF) or items (IBCF), and

1. https://jmcauley.ucsd.edu/data/amazon
2. https://www.kaggle.com/c/yelp-recsys-2013
3. https://www.taobao.com
4. https://re.jd.com/

find the target’s k-nearest neighbors to make Top-K recom-
mendations. NCF [6] is a state-of-the-art neural-network-
based recommendation model which directly combines the
latent vectors as the input of the model. As his work
claims, NCF can cover some state-of-the-art CF models.
2IPS [20] is a typical two-stage off-policy policy gradient
method. The proposed method explicitly takes into account
the ranking model when training the candidate generation
model, which helps improve the performance of the whole
system. NAIS [28] is an attention network, which is capable
of distinguishing which historical items in a user profile are
more important for a prediction. KTUP [29] jointly learns
the model of recommendation and knowledge graph com-
pletion. It accounts for various preferences in translating
a user to an item, and then jointly trains it with a KG
completion model by combining several transfer schemes.
HERec [10] is a heterogeneous network embedding based
approach for heterogeneous information network (HIN)
based recommendation. To embed HINs, it designs a meta-
path based random walk strategy to generate meaningful
node sequences for network embedding. NGCF [30] ex-
ploits the user-item graph structure by propagating embed-
dings on it. This leads to the expressive modeling of high-
order connectivity in user-item graph, effectively injecting
the collaborative signal into the embedding process in an
explicit manner. GraphRec [31] provides a principled ap-
proach to jointly capture interactions and opinions in the
user-item graph, which coherently models two graphs and
heterogeneous strengths.

Some RS baselines are two-stage recommendation mod-
els which contain the matrix embedding parts. In this paper,
we use ME baselines (WRMF/IML/CRML/SML/MML) to
substitute these matrix embedding parts in RS models for
testing.

4.1.3 Parameter Setting and Implementation Details
The implementation of the comparison methods are from
the public codes that the authors provided in their papers
or open source project. For MML, we set default margins
mru = mri = mrl = 0.02. All latent vectors in dimension
k = 32, with random initialization (uniform distributions
mean: 0.2, viariance: 0.04). The batch size B is 512. We tune
the learning rate 0.01, 0.02, 0.05. Without special explana-
tions, we set balance weight λ = 0.5, similarity threshold
θ = 0.3, ω = 0.03 and α = 0.7. All these parameters are
determined through cross-validation.

4.2 Matrix Embedding Validation (RQ1)
In this section, we need to validate whether the models can
gather the same items and disperse the different ones. Along
with this line, we employ spherical k-means on embedding
results, with K = 10 and 20 clusters. We use Normalized
Mutual Information (NMI) as the protocols:

NMI(L,C) =
Cor(L,C)

[H(L) + H(C)]/2
, (17)

where L is the set of labels of items and C is the set of
clusters. Cor(L,C) denotes the sum of mutual information
between any label l in any cluster c. H(L) and H(C) de-
note the entropy for labels and clusters respectively. This

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 3
Relationship measurement and loss function comparison with baselines. λ is the hyperparameter, (u, i) means a positive pair rui 6= 0, (u, i−)

means a negative pair rui = 0, bui is a learned sharing parameter.

Models Relationship measurement Loss Function
WRMF F (u, i) = puqTi

∑
u,i

(rui − puqTi)
2
+ λ(

∑
u
‖pu‖2) + λ(

∑
i
‖qi‖2)

CML F (u, i) = ‖pu − qi‖2Euc
∑

u,i,i−

∣∣F (u, i)− F (u, i−) +m
∣∣
+

IML F (u, i) = ‖pu − qi‖2Euc
∑

u,i,i−

∣∣F (u, i)− F (u, i−) +m
∣∣
+

CRML F (u, i) = ‖pu − qi‖2Euc
∑

u,i,i−
L(pu, qi) + L(pu, bui) + L(qi, bui)

SML F (u, i) = ‖pu − qi‖2Euc
∑

u,i,i−

(∣∣F (u, i)− F (u, i−) +mu

∣∣
+

+
∣∣F (u, i)− F (i, i−) +mi

∣∣
+

)
+ λLAM

MML F (u, i) = ‖pu − qi‖2W LMML + ωPLP + ωRLR (Eq.(16))

metric evaluates the purity of clustering results from an
information-theoretic perspective.

TABLE 4
Normalized Mutual Information with 10 clusters.

Model Amazon Yelp Taobao Jingdong
WRMF 0.3214 0.3013 0.4215 0.4317
CML 0.5310 0.5010 0.5870 0.5711
IML 0.5613 0.5522 0.5830 0.6001
CRML 0.5673 0.5444 0.6030 0.6111
SML 0.5723 0.5602 0.5933 0.6092
MML 0.5831∗ 0.5621∗ 0.6321∗ 0.6134∗

TABLE 5
Normalized Mutual Information with 20 clusters.

Model Amazon Yelp Taobao Jingdong
WRMF 0.2943 0.3001 0.3255 0.3321
CML 0.4732 0.4638 0.5533 0.5612
IML 0.4831 0.4765 0.5545 0.5532
CRML 0.5023 0.5122 0.5732 0.6001
SML 0.5313 0.5232 0.5644 0.6011
MML 0.5433∗ 0.5564∗ 0.6003∗ 0.6112∗

From the NMI evaluation results in Table 4 and Table 5,
we can see that MML outperforms all the baselines for all
clustering valueK in all four datasets. This result shows two
advantages of MML: First, five models with metric learn-
ing are much better than traditional model WRMF, which
means that metric-based models are more proper for matrix
embedding than inner products. Second, MML tackles both
explicit and latent relationships and learns a weighed metric
matrix, which leads to a more stable performance than
CML, IML, CRML, and SML. Note that in Jingdong with
20 clusters, CRML, SML, and MML’s performance are very
close. But in Amazon and Yelp, MML outperforms both
the state-of-the-art baselines. This indicates the advantage
of MML in tackling sparse data.

Besides, we exploit the effect of latent vector space
dimension k (4, 8, 16, 32, and 64) on NMI (Fig.6). We notice
that almost all ME models’ performance is better with high-
dimension latent vector space, and MML achieves the best
results. High-dimensional data space has a strong repre-
sentative ability to catch more hidden knowledge of users
and items, which can enhance the performance of matrix
embedding. Hence, the performance increases fast from 4 to

Fig. 6. Dimension effect on NMI with 10 clusters.

16. However, note that the increase becomes slower from 16
to 64, which shows the bottleneck of the dimension profit.
Note that WRMF achieves the worst performance among
baselines, which indicates that in the high dimension latent
space, using metric learning is better than inner products in
the matrix embedding task.

TABLE 6
Running time for training process (time unit).

Time/Epoch Amazon Yelp Taobao Jingdong
CML 103∗ 124∗ 68∗ 74∗
IML 349 402 156 147
CRML 112 133 79 89
SML 113 150 88 93
MML 110 130 75 83
Ours vs Best +7 +6 +7 +9

At last, we also compare the computing time among five
metric learning models (Table 6). CML takes the shortest
time each epoch and IML takes the longest. CML’s loss func-
tion is simple to calculate, so it achieves the best running
time. While IML utilizes an iteration metric learning, which
means in one epoch, IML learns metric repeatedly on dif-
ferent subsets. Note that two state-of-the-art models, CRML
and SML use more time than our proposed model MML.
SML combines two different styles of the loss function with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

two regularizations and three sub loss functions, which adds
computation complexity. CRML and MML utilize the same
formulation of loss function for explicit and latent relation-
ship embedding, which is easy to compute derivation and
speeds up the model’s optimization.

4.3 Exploring Effect of Hyperparameters (RQ2)
In this section, we explore the effect of hyperparameters
in MML. MML introduces four additional hyperparameters
α, λ, θ, and ω. α ∈ (0, 1) controls the learning of explicit
and latent relationships. λ ∈ (0, 1) controls the learning
of EMDL. θ ∈ (0, 1) restricts the similar-pair set building
in latent relationships formulation. ω controls the regular-
izations, which we discuss in the following sections (RQ4).
Here we show how the three hyperparameters impact the
performance and also shed light on how to set them. We
only show the results on Amazon and Taobao due to the
limitation of space. We use Hitting Ratio (HR) on Top-10
and Top-50 to explore the hyperparameters. We vary one
parameter while fixing others as experimental settings.

As shown in Fig.7, the optimal value of α is around
0.7 for both two datasets. And we also observe that the
performance improves before α reaches 0.7, then it decreases
sharply. Thus the too large value of α will ruin the learning
process of metric learning. So we set α to 0.7.

As shown in Fig.8, the optimal value of λ is around 0.5
for both two datasets. When λ=0.5. it treats the users and
items as the same category, which satisfies the assumption
of our model (to map users and items into a unified latent
space). So we set λ to 0.5.

As shown in Fig.9, the optimal value of θ is around
0.3 for both two datasets. Note that When θ is too small,
MML behaves minor improvements, which shows there
are redundant pairs in similar-pair sets, which hurts the
performance. Moreover, if θ is too large, the performance
drops dramatically. So we set θ to 0.3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Amazon

0.05

0.10

0.15

0.20

0.25

0.30

0.35

HR

Top-10
Top-50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Taobao

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

HR

Top-10
Top-50

Fig. 7. Performance of MML with respect to different values of α.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Amazon

0.332

0.334

0.336

0.338

0.340

0.342

0.344

HR

Top-10
Top-50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Taobao

0.362

0.364

0.366

0.368

0.370

0.372

0.374

0.376

HR

Top-10
Top-50

Fig. 8. Performance of MML with respect to different values of λ.
4.4 Recommendation Validation (RQ3)
In this section, we validate the quality of embedding on
recommendations. We treat six ME models as matrix em-
bedding models, combining with nine popular recommen-
dation models to make a Top-k recommendation. Hitting

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Amazon

0.05

0.10

0.15

0.20

0.25

0.30

HR

Top-10
Top-50

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Taobao

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

HR

Top-10
Top-50

Fig. 9. Performance of MML with respect to different values of θ.

Ratio (HR) and Recall are employed to evaluate the recom-
mendations. All the results, including our proposed model
and baselines, achieve the best performance while keeping
all hyperparameters at their optimal settings. The results on
four datasets are shown in Table 7. Note that KTUP, HERec,
and GraphRec are knowledge-graph based recommenda-
tion models, and the Amazon data does not provide the
KGs.

In all datasets, our proposed model MML outperforms
all the ME baselines with three recommendation models,
which is a noticeable improvement. In detail, WRMF per-
forms the worst, especially when it combines with NCF,
2IPS, KTUP, and HERec. Note that WRMF is the only
method that utilizes the inner products as the measurement
for relationships. This result proves the effect of metric
learning. When we compare UBCF and IBCF with different
metric based models, it is interesting that CML’s perfor-
mance drops significantly, even worse than WRMF. The
reason is that CML treats users as the center of embedding,
which affects the items’ embedding. Although IML also
utilizes the idea of CML, the computation iteration of IML
can make compensation to some extent. However, in our
proposed model, we treat items and users as the same cate-
gory to ensure accuracy. For NCF, because our models take
more knowledge (the latent relationships) into consideration
than CML and IML, it also improves an average of 20% over
baselines.

Compared with two state-of-the-art models, CRML and
SML, we notice that the improvement is more obvious on
Amazon and Yelp than on Taobao and Jindong. Taking
deep insight, MML utilizes different relationships, including
explicit and latent ones. With these relationships, MML can
relieve the data-sparse issue. While SML only considers
user-item, item-time relationships. For CRML, it combines
two style loss functions, which we argue it damage the em-
bedding performance to some extent. For cooperating with
GNN based models (GraphRec), MML could reach the best
recommendation performance. At last, the most important
factor is that MML learns a weighted metric matrix W , and
uses W to calculate the distance in recommender systems,
which is a significant improvement.

Moreover, we explore the perfromance enhancement for
neural-network based recommendation models (basic MLP
[32], NCF, 2IPS, KTUP, and HERec) using MML as a prepro-
cessing for Top-10 and Top-50 recommendation. We conduct
experiments on Yelp and Taobao. The results are shown in
Fig.10:

Note that with MML as a preprocessing for neural-
network-based recommendation models, HR performance

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 7
Improvement of recommendation models with different matrix embedding models. ∗ marks the best performance among baselines.

RS
model

ME
model

Amazon Yelp Taobao Jingdong
HR@50 Recall@50 HR@50 Recall@50 HR@50 Recall@50 HR@50 Recall@50

UBCF

WRMF 0.1372 0.2112 0.1544 0.2002 0.3721 0.3235 0.3313 0.3143
CML 0.2112 0.2411 0.2339 0.2348 0.3826 0.4057 0.4118 0.4756∗
IML 0.2211 0.2333 0.2213 0.2453 0.4052 0.4361 0.4312 0.4123

CRML 0.2312 0.2520 0.2439 0.2548 0.4336 0.4557 0.4780∗ 0.4661
SML 0.2328∗ 0.2621∗ 0.2533∗ 0.2653∗ 0.4432∗ 0.4732∗ 0.4610 0.4711

MML 0.2618 0.2811 0.2794 0.2860 0.4653 0.4979 0.5167 0.4790
Ours vs Best +12.4% +7.2% +10.3% +7.8% +4.9% +5.2% +7.9% +1.6%

IBCF

WRMF 0.1433 0.2011 0.1411 0.2100 0.3543 0.3421 0.3442 0.3301
CML 0.1634 0.1623 0.1777 0.2012 0.2972 0.3022 0.3310 0.3294
IML 0.2011 0.2111 0.2214 0.2433 0.3911 0.3203 0.3882 0.4023

CRML 0.1934 0.1831 0.1823 0.2213 0.3672 0.3723 0.3890 0.3684
SML 0.2281∗ 0.2621∗ 0.2710∗ 0.2533∗ 0.4102∗ 0.4302∗ 0.4082∗ 0.4323∗

MML 0.3133 0.3374 0.3332 0.3411 0.4833 0.5379 0.5100 0.4990
Ours vs Best +37.8% +28.7% +22.9% +34.6% +17.8% +25.0% +24.9% +15.4%

NCF

WRMF 0.2041 0.2210 0.1331 0.1994 0.3217 0.3433 0.3614 0.3710
CML 0.2213 0.2561 0.2613 0.2600 0.4231 0.4313 0.4714 0.4705
IML 0.2528 0.2722 0.2810∗ 0.2518 0.4303 0.4862 0.4660 0.4913

CRML 0.2543 0.2771∗ 0.2653 0.2693∗ 0.4557∗ 0.4673 0.4884∗ 0.4745
SML 0.2548∗ 0.2762 0.2810∗ 0.2688 0.4553 0.4879∗ 0.4767 0.4933∗

MML 0.3318 0.3641 0.3700 0.3660 0.5053 0.5379 0.5288 0.5034
Ours vs Best +30.2% +31.3% +31.6% +35.9% +10.8% +10.2% +8.2% +2.1%

2IPS

WRMF 0.1137 0.1040 0.1041 0.1144 0.3091 0.2910 0.2906 0.2959
CML 0.2220 0.3053 0.2958 0.2988 0.4151 0.4115 0.4251 0.4184
IML 0.2234 0.3245 0.3110 0.2764 0.4312 0.4319 0.4555 0.4616

CRML 0.2411 0.3400∗ 0.3253 0.3021 0.4617∗ 0.4714 0.4800 0.4645
SML 0.2448∗ 0.3312 0.3311∗ 0.3452∗ 0.4613 0.4867∗ 0.4867∗ 0.4713∗

MML 0.2918 0.3440 0.3706 0.3650 0.4813 0.5117 0.5012 0.5023
Ours vs Best +16.1% +1.1% +10.6% +5.4% +4.0% +4.7% +2.8% +6.1%

NAIS

WRMF 0.1184 0. 1194 0.1172 0.1193 0.2412 0.3329 0.3001 0.3200
CML 0.2313 0.2910 0.3111 0.3200 0.4417 0.4564 0.4428 0.4511
IML 0.2601 0.2813 0.3221 0.3226 0.4754 0.4719 0.4816 0.4776

CRML 0.2799 0.2997∗ 0.3399 0.3411 0.4888 0.4814 0.4904 0.4883
SML 0.2900∗ 0.2911 0.3466∗ 0.3551∗ 0.5012∗ 0.5003∗ 0.5019∗ 0.4933∗

MML 0.3111 0.3532 0.3611 0.3588 0.5378 0.5400 0.5510 0.5410
Ours vs Best +7.2% +17.8% +5.6% +1.0% +7.3% +7.9% +9.7% +9.6%

NGCF

WRMF 0.1201 0.1209 0.1222 0.3102 0.3000 0.3222 0.3015 0.3132
CML 0.2440 0.2411 0.2946 0.2945 0.4003 0.4013 0.4112 0.4113
IML 0.2531 0.2664 0.2677 0.3011 0.5001 0.5023 0.4954 0.4333

CRML 0.2679 0.2649 0.3216 0.3364 0.5013 0.4964 0.4755 0.5014
SML 0.2974∗ 0.2874∗ 0.3454∗ 0.3461∗ 0.5105∗ 0.5009∗ 0.4969∗ 0.5110∗

MML 0.3221 0.3600 0.3646 0.3654 0.5394 0.5475 0.5564 0.5433
Ours vs Best +8.3% +25.2% +5.5% +5.5% +5.6% +9.3% +11.9% +6.3%

KTUP

WRMF - - 0.1002 0.1083 0.2842 0.3178 0.2936 0.3132
CML - - 0.2583 0.2584 0.4635 0.4753 0.4500 0.4347
IML - - 0.2677 0.2711 0.4853 0.4879∗ 0.4700 0.4613

CRML - - 0.2813 0.2693 0.4777 0.4773 0.4801∗ 0.4645∗
SML - - 0.2817∗ 0.2788∗ 0.4892∗ 0.4879∗ 0.4767 0.4633

MML - - 0.3411 0.3510 0.5211 0.5321 0.5388 0.4910
Ours vs Best - - +17.4% +20.6% +6.1% +10.2% +10.9% +5.3%

HERec

WRMF - - 0.1044 0.1027 0.2950 0.2915 0.2945 0.2888
CML - - 0.2568 0.2526 0.4571 0.4364 0.4204 0.4429
IML - - 0.2671 0.2505 0.4509 0.4284 0.4174 0.4468

CRML - - 0.2700 0.2713∗ 0.4717∗ 0.4773∗ 0.4814∗ 0.4712
SML - - 0.2813∗ 0.2698 0.4652 0.4679 0.4712 0.4813∗

MML - - 0.3542 0.3711 0.5333 0.5279 0.5408 0.5112
Ours vs Best - - +20.5% +26.8% +11.5% +9.5% +10.9% +5.8%

GraphRec

WRMF - - 0.1112 0.1113 0.1942 0.2188 0.2711 0.3009
CML - - 0.2333 0.2534 0.4112 0.4342 0.4432 0.4232
IML - - 0.2577 0.2600 0.4723 0.4631 0.4564 0.4513

CRML - - 0.3013 0.3023∗ 0.4917 0.5000 0.5101 0.5003
SML - - 0.3117∗ 0.3000 0.5011∗ 0.5001∗ 0.5123∗ 0.5188∗

MML - - 0.3655 0.3659 0.5400 0.5521 0.5601 0.5531
Ours vs Best - - +17.2% +21.9% +7.7% +10.3% +9.1% +6.6%

is enhanced over all baselines on both datasets. Specifically,
MLP is the basic neural-network-based model that directly
inputs latent vectors to predict ratings. The performance
gain over MLP indicates the accuracy of latent vectors MML
has learned. And for some of the state-of-the-art NN based
models, MML can improve the HR performance by average
15% on Yelp, 17% on Taobao.

4.5 Exploring the Effect of MML’s Component (RQ4)

In this section, we explore the effect of learned metric in our
proposed model. We separate MML with each component,
and rebuild the following models:

1) EUC-MML: Use FE(a, b) = ‖ea − eb‖2Euc to replace F
in MML (compare Euclidean with Learned metric).

2) W-MML: Use one W to replace WU , W I and WUI

in MML (compare fixed metric matrix with multi-metric
matrix).

3) M-MML: Use one fix margin mr to replace mru, mri

and mrl (compare fixed margin with adaptive margin).
4) NP-MML: Use LMML without restriction LP (ωP =0).
5) NR-MML: Use LMML without restriction LR (ωR=0).
We conduct experiments on four datasets with NMI with

10 clusters and HR@50. The effect of different component in
MML is shown in Table 8.

We notice that MML achieves the best performance (NMI
and HR) over all four datasets. Specifically, EUC-MML
performs worst than other models, which indicates that in
our proposed model, Euclidean is not the proper metric for
matrix embedding tasks and recommendations. The simple

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 8
Effect of each component in MML (including learned metric, adaptive margin and regularizations) on NMI and HR performance.

Models Datasets Performance Models Datasets Performance Models Datasets Performance

EUC-MML

Amazon NMI 0.3132

W-MML

Amazon NMI 0.4212

M-MML

Amazon NMI 0.4309
HR@50 0.2231 HR@50 0.2744 HR@50 0.2823

Yelp NMI 0.3923 Yelp NMI 0.4832 Yelp NMI 0.4992
HR@50 0.2702 HR@50 0.3212 HR@50 0.3212

Taobao NMI 0.4734 Taobao NMI 0.5621 Taobao NMI 0.5712
HR@50 0.3823 HR@50 0.4222 HR@50 0.4332

Jingdong NMI 0.5012 Jingdong NMI 0.5432 Jingdong NMI 0.5543
HR@50 0.4011 HR@50 0.4532 HR@50 0.4733

Models Datasets Performance Models Datasets Performance Models Datasets Performance

NP-MML

Amazon NMI 0.5637

NR-MML

Amazon NMI 0.5766

MML

Amazon NMI 0.5831
HR@50 0.3132 HR@50 0.3213 HR@50 0.3318

Yelp NMI 0.5600 Yelp NMI 0.5431 Yelp NMI 0.5621
HR@50 0.3611 HR@50 0.3550 HR@50 0.3700

Taobao NMI 0.5833 Taobao NMI 0.6131 Taobao NMI 0.6321
HR@50 0.4979 HR@50 0.5051 HR@50 0.5053

Jingdong NMI 0.6014 Jingdong NMI 0.5932 Jingdong NMI 0.6134
HR@50 0.5098 HR@50 0.5132 HR@50 0.5288

Fig. 10. Performance Gain with MML for Neural-Network based Recom-
mendation models.

Euclidean metric may be not suitable for measuring the
distance in high-dimension latent space. So metric learning
for matrix embedding is necessary for complex NN-based
recommendation models to tackle large scale sparse data.
According to the comparison between W-MML and MML, it
indicates that the metric between users, items, and user-item
should be learned respectively to achieve a better result. It
is obvious that the features of users and items are different,
so learning different W is reasonable. The same explanation
can be applied for the comparison between M-MML and
MML which indicates the advantage of adaptive margins.

For NP-MML and NR-MML, we can ensure the effect of
regularization. Although the performance of MML is better
than NP-MML and NR-MML with a small gap, both regu-
larization can enhance the model by avoiding overfitting.

To evaluate the effect for LP, LR to relieve the overfit-
ting situation, we run NP-MML, NR-MML and MML on
Amazon and Taobao to see the performance (NMI with 10
clusters and HR@50) changing with different epochs. The
performance changing with epochs is shown in Fig.11.

From the results, we can see that NR-MML achieves its
best NMI performance within 20 epochs, while NP-MML
and MML achieve their best within 30 epochs. Although
the best performance of these three models is in the same

Fig. 11. Overfitting analysis on NMI and HR.

level, we notice that NR-MML’s HR decreases rapidly after
20 epochs, which is a significant overfitting phenomenon.
LR is to restrict the margins. When the epochs add up, a
fixed margin can not measure the detailed distance between
high-dimension latent vectors, which leads to the overfitting
situation. While LP is to restrict the latent vectors. Without
LP, our proposed model suffers the biased and de-centered
embedding results. So NR-MML’s performance can not be
improved after 20 epochs by these biased latent vectors.

Compared with both models, MML can restrict the em-
bedding results and tune the margins over epochs, with two
regularizations LR and LP. Note that MML’s performance
is stable without sharp fluctuation, which also indicates
robustness and effectiveness. Comprehensively, with the
consideration of accuracy, efficiency, and overfitting, MML
achieves a more stable and feasible performance than all
these rebuilt models.

4.6 Million-scale Embedding Validation (RQ5)
We conduct WRMF, ConvMF [33] (a SOTA model which
combines GCN with MF for recommendations, widely em-
ployed as benchmarks), SML and our proposed MML on a
million-scale dataset (Amazon Beauty, with 6,403,006 users,
1,660,119 items, 14,771,988 ratings, with 2.3070 ratings per
user and 0.0001% sparsity) [34]. Note that this work focuses

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 9
Million-scale Performance (with Amazon Beauty dataset).

Model WRMF ConvMF SML MML
NMI-20 0.0832 0.2026∗ 0.1813 0.1983
Time 19,331(±43) 21,334(±178) 11,864(±57) 10,333(±62)∗

on the embedding procedure, we only utilize the models’
embedding results for validations. Specifically, we use NMI
with 20 clusters and running time unit as metrics, as shown
in Table 9:

Note that ConMF performs better on NMI than MML
(2.12%). The reason is that ConvMF enriches the dataset
by convolution operations with CNN framework. However,
limited by the scale of dataset, ConMF need more run-
ning time (almost 100%) than metric learning-based model
(SML and MML) for computing parameters. Considering
the trade-off between effectiveness and accuracy, MML
achieves a stable performance with acceptable running time
on million-scale datasets.

5 RELATED WORKS

5.1 Matrix Embedding (ME)

Matrix Embedding (ME) is usually employed as a pre-
procedure for recommender systems, which projects the
user-item matrix into latent spaces for users and items
[35, 36]. In general, recommender systems without neural
networks always use matrix factorization with inner prod-
ucts to get the users’ and items’ latent representations in a
learned latent vector space [4, 11]. There are some popular
matrix factorization based matrix embedding models, such
as WRMF [26] and SVD [17]. Matrix factorization with inner
products works well with some small datasets like Movie-
lens [37]. However, because of some limitations that we
introduced above, inner products weaken the performance
of recommender systems (collaborative filtering models,
user or item-based models) in many aspects.

Recently, as a powerful tool of deep learning, the neural
network has been widely applied in recommender systems
[5, 38]. The ability of neural networks enhances the recom-
mender system to the next level. As a preprocessing for rec-
ommender systems, traditional matrix embedding models
can be enhanced by neural networks. [7] develops the neural
network framework for MF, and proposes a neural-network
based MF model. However, because of weak interpretability
[39] and the strong fitting ability for neural networks, most
researchers focus on the neural networks’ framework rather
than the quality of the matrix embedding. Checking the
existing recommendation models [7, 17, 29, 39, 40], they
usually treat the embedding results as a default and limit the
explanation for matrix embedding in details, like LightGCN
[41]. While in this paper, we argue that as important rep-
resentative vectors for users and items, matrix embedding
models do affect the performance of recommendations and
should be more focused.

5.2 Metric Learning (ML)

Metric learning (ML) is a research spot for image recogni-
tion, clustering, and recommendation system [16, 42–46].

The key to metric learning is how to learn different metrics
(such as Euclidean distance or other distance metrics) to
represent the relationships between different entities instead
of inner products. Metric learning is usually applied in
the computer vision area, in which a deep transfer metric
learning method for cross-domain visual recognition was
proposed [47]. For recommender systems, CML [13] directly
uses metric learning to embed the relationships between
users and items, as shown in the upper part of Fig.2. And
IML [19] proposes a practical framework to accelerate the
embedding process.

Recently, some researchers combine metric learning with
other existing models to improve performance. Combined
with multi-task learning, CRML [22] is a metric learning
model proposed for collaborative recommendations with
co-occurrence embedding regularization. It considers the
optimization problem as a multi-task learning problem
which includes optimizing a primary task of metric learn-
ing and two auxiliary tasks of representation learning. To
combine different styles of loss functions, SML [14] sym-
metrically introduces a positive item centric metric which
maintains a closer distance from positive items to the user
and pushes the negative items away from the positive items
at the same time with an adaptive margin. Few researches
focus on how to utilize metric learning to embed matrix,
which is an open issue in the recommender system area.

5.3 Neural-network based recommendation models
(NN-RSs)

The combination of recommender systems and the neural
network is becoming a hot research trend [5, 8, 28, 43].
Researchers attempt to utilize the non-linear activation func-
tions in the neural network to measure the relationships be-
tween users and reviews. [6] utilizes a Multilayer perceptron
(MLP) to design a network NeuCF to tackle implicit feed-
back recommendation problems. NeuCF is a rating-based
model that can cover basic MF and CF and also achieve
state-of-the-art performance. [14] combines semi-supervised
and neural networks, bridges them, and reinforces mutually.

To tackle the sparse data in real-world scenarios, most
existing neural-network based models use two-stage frame-
work: first, it employs the matrix embedding or other mod-
els to embed the data into vectors. Then they input these
vectors to achieve recommendations [6, 10, 20, 29, 48, 49].
[20] proposes 2IPS, which is a two-stage off-policy policy
gradient method. The proposed method explicitly takes into
account the ranking model when training the candidate
generation model, which helps improve the performance
of the whole system. KTUP [29] jointly learns the model
of recommendation and knowledge graph completion by
combining several transfer schemes. It is an embedding-
based recommender model with matrix embeddings. HERec
[10] is a heterogeneous network embedding based ap-
proach for heterogeneous information network (HIN) based
recommendation. It is a path-based recommender model
with matrix embeddings. Also some GNN based mod-
els [28, 30, 31, 41, 50–52] are boosting recently, including
GraphRec [31], NGCN [30] and LRGCCF [51], which greatly
improve the recommender system.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

5.4 Relations among ME, ML and NN-based RSs
NN-based RSs is an important branch of recommender
systems, which utilizes the strong computing ability of
neural networks. According to the structure of NN, matrix
embedding should be employed to project the abundant
information in the user-item matrix into latent vectors. In
this paper, we argue that existing ME models are not suf-
ficient, and propose a representation learning model MML,
which utilizes the idea of metric learning to enhance the ME
performance, and benefit the NN-based RSs.

6 CONCLUSION

The quality of matrix embedding is an imperceptible but
important factor in achieving a good recommendation. In
this paper, we propose a matrix embedding model: Mag-
netic Metric Learning, which utilizes dual triplets to embed
users and items with a metric-based loss function. With this
model, we can achieve a unified embedding in a unified
latent vector space. Through the experimental results on
four datasets, our model is proved to be superior not only
when compared with state-of-the-art models on all evalu-
ation metrics, but also when trying to find a more stable
latent space with the consideration of accuracy, efficiency,
and overfitting. Our future work is to apply MML with
some context and side information about users and items,
to construct a more reasonable similar-pair set for latent
relationships.

ACKNOWLEDGMENT
This work is supported by the National Natural Science Foundations of China un-
der Grant No. 61772230, No.61976102, No.U19A2065, and No. 61972450, Natural
Science Foundation of China for Young Scholars No. 61702215 and No. 62002132,
China Postdoctoral Science Foundation No. 2020M681040 and Changchun Sci-
ence, and Technology Development Project No.18DY005, and National Defense
Science and Technology Key Laboratory Fund Project No. 61421010418 and
Science Foundation of Jilin Province No. 20190201022JC and China National
Postdoctoral Program for Innovative Talents No. BX20180140.

REFERENCES
[1] G. K. Patro, A. Biswas, N. Ganguly, K. P. Gummadi, and A. Chakraborty,

“Fairrec: Two-sided fairness for personalized recommendations in two-
sided platforms,” in WWW ’20: The Web Conference 2020, Taipei,
Taiwan, April 20-24, 2020, Y. Huang, I. King, T. Liu, and M. van
Steen, Eds. ACM / IW3C2, 2020, pp. 1194–1204. [Online]. Available:
https://doi.org/10.1145/3366423.3380196

[2] W. Fan, Y. Ma, D. Yin, J. Wang, J. Tang, and Q. Li, “Deep social collaborative
filtering,” in Proceedings of the 13th ACM Conference on Recommender Systems,
RecSys 2019, Copenhagen, Denmark, September 16-20, 2019, T. Bogers, A. Said,
P. Brusilovsky, and D. Tikk, Eds. ACM, 2019, pp. 305–313. [Online].
Available: https://doi.org/10.1145/3298689.3347011

[3] E. Bugliarello, S. Jain, and V. Rakesh, “Matrix completion in the unit
hypercube via structured matrix factorization,” in Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, S. Kraus, Ed. ijcai.org, 2019, pp.
2038–2044. [Online]. Available: https://doi.org/10.24963/ijcai.2019/282

[4] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: introduction
and challenges,” in Recommender systems handbook. Springer, 2015, pp. 1–34.

[5] S. Zhang, L. Yao, and A. Sun, “Deep learning based recommender system:
A survey and new perspectives,” arXiv preprint arXiv:1707.07435, 2017.

[6] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative
filtering,” in Proceedings of the 26th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee, 2017, pp.
173–182.

[7] J. Fan and J. Wang, “A collective neurodynamic optimization approach
to nonnegative matrix factorization,” IEEE Trans. Neural Networks
Learn. Syst., vol. 28, no. 10, pp. 2344–2356, 2017. [Online]. Available:
https://doi.org/10.1109/TNNLS.2016.2582381

[8] S. Ge, C. Wu, F. Wu, T. Qi, and Y. Huang, “Graph enhanced representation
learning for news recommendation,” in WWW ’20: The Web Conference 2020,
Taipei, Taiwan, April 20-24, 2020, Y. Huang, I. King, T. Liu, and M. van
Steen, Eds. ACM / IW3C2, 2020, pp. 2863–2869. [Online]. Available:
https://doi.org/10.1145/3366423.3380050

[9] Y. Xu, Y. Yang, J. Han, E. Wang, F. Zhuang, J. Yang, and H. Xiong, “Neuo:
Exploiting the sentimental bias between ratings and reviews with neural
networks,” Neural Networks, vol. 111, pp. 77–88, 2019. [Online]. Available:
https://doi.org/10.1016/j.neunet.2018.12.011

[10] C. Shi, B. Hu, W. X. Zhao, and P. S. Yu, “Heterogeneous information
network embedding for recommendation,” IEEE Trans. Knowl. Data
Eng., vol. 31, no. 2, pp. 357–370, 2019. [Online]. Available: https:
//doi.org/10.1109/TKDE.2018.2833443

[11] C. He, D. Parra, and K. Verbert, “Interactive recommender systems: A survey
of the state of the art and future research challenges and opportunities,”
Expert Systems with Applications, vol. 56, pp. 9–27, 2016.

[12] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. Ieee, 2008, pp. 263–272.

[13] C.-K. Hsieh, L. Yang, Y. Cui, T.-Y. Lin, S. Belongie, and D. Estrin, “Collab-
orative metric learning,” in Proceedings of the 26th International Conference
on World Wide Web. International World Wide Web Conferences Steering
Committee, 2017, pp. 193–201.

[14] M. Li, S. Zhang, F. Zhu, W. Qian, L. Zang, J. Han, and S. Hu,
“Symmetric metric learning with adaptive margin for recommendation,”
in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020. AAAI Press, 2020, pp. 4634–4641. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/5894

[15] A. Acharya, R. Goel, A. Metallinou, and I. S. Dhillon, “Online embedding
compression for text classification using low rank matrix factorization,”
in The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019. AAAI Press, 2019, pp. 6196–6203. [Online]. Available:
https://doi.org/10.1609/aaai.v33i01.33016196

[16] D. Wang and X. Tan, “Robust distance metric learning via bayesian infer-
ence,” IEEE Transactions on Image Processing, vol. 27, no. 3, pp. 1542–1553,
2018.

[17] A. N. Nikolakopoulos, V. Kalantzis, E. Gallopoulos, and J. D.
Garofalakis, “Eigenrec: generalizing puresvd for effective and efficient top-n
recommendations,” Knowl. Inf. Syst., vol. 58, no. 1, pp. 59–81, 2019. [Online].
Available: https://doi.org/10.1007/s10115-018-1197-7

[18] M. Li, S. Zhang, F. Zhu, W. Qian, L. Zang, J. Han, and S. Hu,
“Symmetric metric learning with adaptive margin for recommendation,”
in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020. AAAI Press, 2020, pp. 4634–4641. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/5894

[19] N. Wang, X. Zhao, Y. Jiang, and Y. Gao, “Iterative metric learning
for imbalance data classification,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18. International
Joint Conferences on Artificial Intelligence Organization, 7 2018, pp.
2805–2811. [Online]. Available: https://doi.org/10.24963/ijcai.2018/389

[20] J. Ma, Z. Zhao, X. Yi, J. Yang, M. Chen, J. Tang, L. Hong, and E. H. Chi,
“Off-policy learning in two-stage recommender systems,” in WWW ’20: The
Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Y. Huang, I. King,
T. Liu, and M. van Steen, Eds. ACM / IW3C2, 2020, pp. 463–473. [Online].
Available: https://doi.org/10.1145/3366423.3380130

[21] Y. Koren and R. Bell, “Advances in collaborative filtering,” in Recommender
systems handbook. Springer, 2015, pp. 77–118.

[22] H. Wu, Q. Zhou, R. Nie, and J. Cao, “Effective metric learning
with co-occurrence embedding for collaborative recommendations,”
Neural Networks, vol. 124, pp. 308–318, 2020. [Online]. Available:
https://doi.org/10.1016/j.neunet.2020.01.021

[23] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, “Distance metric learning
with application to clustering with side-information,” in Advances in neural
information processing systems, 2003, pp. 521–528.

[24] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Batra, “Reduc-
ing overfitting in deep networks by decorrelating representations,” arXiv
preprint arXiv:1511.06068, 2015.

[25] Y. Xu, Y. Yang, E. Wang, J. Han, F. Zhuang, Z. Yu, and H. Xiong,
“Neural serendipity recommendation: Exploring the balance between
accuracy and novelty with sparse explicit feedback,” ACM Trans. Knowl.
Discov. Data, vol. 14, no. 4, pp. 50:1–50:25, 2020. [Online]. Available:
https://doi.org/10.1145/3396607

[26] Q. Gu, J. Zhou, and C. Ding, “Collaborative filtering: Weighted nonnegative
matrix factorization incorporating user and item graphs,” in Proceedings of
the 2010 SIAM international conference on data mining. SIAM, 2010, pp. 199–
210.

[27] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix
factorization with distributed stochastic gradient descent,” in Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2011, pp. 69–77.

[28] X. He, Z. He, J. Song, Z. Liu, Y. Jiang, and T. Chua, “NAIS: neural
attentive item similarity model for recommendation,” IEEE Trans. Knowl.
Data Eng., vol. 30, no. 12, pp. 2354–2366, 2018. [Online]. Available:

https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/3298689.3347011
https://doi.org/10.24963/ijcai.2019/282
https://doi.org/10.1109/TNNLS.2016.2582381
https://doi.org/10.1145/3366423.3380050
https://doi.org/10.1016/j.neunet.2018.12.011
https://doi.org/10.1109/TKDE.2018.2833443
https://doi.org/10.1109/TKDE.2018.2833443
https://aaai.org/ojs/index.php/AAAI/article/view/5894
https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.1007/s10115-018-1197-7
https://aaai.org/ojs/index.php/AAAI/article/view/5894
https://doi.org/10.24963/ijcai.2018/389
https://doi.org/10.1145/3366423.3380130
https://doi.org/10.1016/j.neunet.2020.01.021
https://doi.org/10.1145/3396607

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

https://doi.org/10.1109/TKDE.2018.2831682
[29] Y. Cao, X. Wang, X. He, Z. Hu, and T. Chua, “Unifying knowledge graph

learning and recommendation: Towards a better understanding of user
preferences,” in The World Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13-17, 2019, L. Liu, R. W. White, A. Mantrach, F. Silvestri,
J. J. McAuley, R. Baeza-Yates, and L. Zia, Eds. ACM, 2019, pp. 151–161.
[Online]. Available: https://doi.org/10.1145/3308558.3313705

[30] X. Wang, X. He, M. Wang, F. Feng, and T. Chua, “Neural graph collaborative
filtering,” in Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2019, Paris, France,
July 21-25, 2019, B. Piwowarski, M. Chevalier, É. Gaussier, Y. Maarek,
J. Nie, and F. Scholer, Eds. ACM, 2019, pp. 165–174. [Online]. Available:
https://doi.org/10.1145/3331184.3331267

[31] W. Fan, Y. Ma, Q. Li, Y. He, Y. E. Zhao, J. Tang, and D. Yin,
“Graph neural networks for social recommendation,” in The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019, L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley,
R. Baeza-Yates, and L. Zia, Eds. ACM, 2019, pp. 417–426. [Online].
Available: https://doi.org/10.1145/3308558.3313488

[32] L. Yang, E. Bagdasaryan, and H. Wen, “Modularizing deep neural
network-inspired recommendation algorithms,” in Proceedings of the 12th
ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC,
Canada, October 2-7, 2018, S. Pera, M. D. Ekstrand, X. Amatriain,
and J. O’Donovan, Eds. ACM, 2018, pp. 533–534. [Online]. Available:
https://doi.org/10.1145/3240323.3241618

[33] D. H. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional
matrix factorization for document context-aware recommendation,” in
Proceedings of the 10th ACM Conference on Recommender Systems, Boston,
MA, USA, September 15-19, 2016, S. Sen, W. Geyer, J. Freyne,
and P. Castells, Eds. ACM, 2016, pp. 233–240. [Online]. Available:
https://doi.org/10.1145/2959100.2959165

[34] J. Han, L. Zheng, Y. Xu, B. Zhang, F. Zhuang, P. S. Yu, and
W. Zuo, “Adaptive deep modeling of users and items using side
information for recommendation,” IEEE Trans. Neural Networks Learn.
Syst., vol. 31, no. 3, pp. 737–748, 2020. [Online]. Available: https:
//doi.org/10.1109/TNNLS.2019.2909432

[35] M. Nilashi, O. Ibrahim, and K. Bagherifard, “A recommender system based
on collaborative filtering using ontology and dimensionality reduction tech-
niques,” Expert Systems with Applications, vol. 92, pp. 507–520, 2018.

[36] S. Wang, J. Tang, Y. Wang, and H. Liu, “Exploring hierarchical
structures for recommender systems,” IEEE Trans. Knowl. Data Eng.,
vol. 30, no. 6, pp. 1022–1035, 2018. [Online]. Available: https:
//doi.org/10.1109/TKDE.2018.2789443

[37] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” Acm transactions on interactive intelligent systems (tiis), vol. 5, no. 4,
p. 19, 2016.

[38] Y. Xu, Y. Yang, J. Han, E. Wang, F. Zhuang, and H. Xiong, “Exploiting the
sentimental bias between ratings and reviews for enhancing recommenda-
tion,” in 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
2018, pp. 1356–1361.

[39] N. Senthilkumaran and R. Rajesh, “Image segmentation-a survey of soft
computing approaches,” in 2009 International Conference on Advances in
Recent Technologies in Communication and Computing. IEEE, 2009, pp. 844–
846.

[40] S. Kabbur, X. Ning, and G. Karypis, “FISM: factored item similarity
models for top-n recommender systems,” in The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 2013, I. S. Dhillon, Y. Koren,
R. Ghani, T. E. Senator, P. Bradley, R. Parekh, J. He, R. L. Grossman,
and R. Uthurusamy, Eds. ACM, 2013, pp. 659–667. [Online]. Available:
https://doi.org/10.1145/2487575.2487589

[41] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang,
“Lightgcn: Simplifying and powering graph convolution network for
recommendation,” in Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, SIGIR 2020,
Virtual Event, China, July 25-30, 2020, J. Huang, Y. Chang, X. Cheng,
J. Kamps, V. Murdock, J. Wen, and Y. Liu, Eds. ACM, 2020, pp. 639–648.
[Online]. Available: https://doi.org/10.1145/3397271.3401063

[42] H. J. Ye, D. C. Zhan, and Y. Jiang, “Fast generalization rates for distance
metric learning,” Machine Learning, pp. 1–29, 2018.

[43] J. Li, A. J. Ma, and P. C. Yuen, “Semi-supervised region metric learning for
person re-identification,” International Journal of Computer Vision, vol. 126,
no. 8, pp. 855–874, 2018.

[44] X. Sui, E. L. Xu, X. Qian, and T. Liu, “Convex clustering with metric
learning,” Pattern Recognition, vol. 81, 2018.

[45] W. Zuo, F. Wang, D. Zhang, L. Lin, Y. Huang, D. Meng, and L. Zhang,
“Distance metric learning via iterated support vector machines,” IEEE
Transactions on Image Processing, vol. PP, no. 99, pp. 1–1, 2017.

[46] S. Chen, C. Gong, J. Yang, Y. Tai, L. Hui, and J. Li, “Data-adaptive metric
learning with scale alignment,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 3347–3354.

[47] J. Hu, J. Lu, and Y. P. Tan, “Deep transfer metric learning,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 325–333.

[48] F. Yuan, X. He, H. Jiang, G. Guo, J. Xiong, Z. Xu, and Y. Xiong,
“Future data helps training: Modeling future contexts for session-
based recommendation,” in WWW ’20: The Web Conference 2020, Taipei,
Taiwan, April 20-24, 2020, Y. Huang, I. King, T. Liu, and M. van

Steen, Eds. ACM / IW3C2, 2020, pp. 303–313. [Online]. Available:
https://doi.org/10.1145/3366423.3380116

[49] C. Chen, M. Zhang, W. Ma, Y. Liu, and S. Ma, “Efficient non-sampling
factorization machines for optimal context-aware recommendation,” in
WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020,
Y. Huang, I. King, T. Liu, and M. van Steen, Eds. ACM / IW3C2, 2020, pp.
2400–2410. [Online]. Available: https://doi.org/10.1145/3366423.3380303

[50] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
recommendation with graph neural networks,” in The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 2019, pp.
346–353. [Online]. Available: https://doi.org/10.1609/aaai.v33i01.3301346

[51] L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang, “Revisiting
graph based collaborative filtering: A linear residual graph convolutional
network approach,” in The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. AAAI Press, 2020, pp. 27–34. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/5330

[52] J. Zhang, X. Shi, S. Zhao, and I. King, “STAR-GCN: stacked and
reconstructed graph convolutional networks for recommender systems,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
S. Kraus, Ed. ijcai.org, 2019, pp. 4264–4270. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/592

Yuanbo Xu received his B.E. degree in com-
puter science and technology from Jilin Uni-
versity, Changchun, in 2012, his M.E. degree
in computer science and technology from Jilin
University, Changchun, in 2015, and his Ph.D.
in computer science and technology from Jilin
University, Changchun, in 2019. He is currently
a Postdoc in the Department of Artificial Intel-
ligence at Jilin University, Changchun. His re-
search interests include applications of data min-
ing, recommender system, and mobile comput-

ing. He has published some research results on journals such as TMM,
TKDD, TNNLS and conference as ICDM, SECON.

En Wang received his B.E. degree in software
engineering from Jilin University, Changchun, in
2011, his M.E. degree in computer science and
technology from Jilin University, Changchun, in
2013, and his Ph.D. in computer science and
technology from Jilin University, Changchun, in
2016. He is currently an Associate Professor in
the Department of Computer Science and Tech-
nology at Jilin University, Changchun. He is also
a visiting scholar in the Department of Computer
and Information Sciences at Temple University

in Philadelphia. His current research focuses on the efficient utilization
of network resources, scheduling and drop strategy in terms of buffer-
management, energy-efficient communication between human-carried
devices, and mobile crowdsensing.

Yongjian Yang received his B.E. degree in au-
tomatization from Jilin University of Technology,
Changchun, Jilin, China, in 1983; and M.E. de-
gree in Computer Communication from Beijing
University of Post and Telecommunications, Bei-
jing, China, in 1991; and his Ph.D. in Software
and theory of Computer from Jilin University,
Changchun, Jilin, China, in 2005. He is currently
a professor and a PhD supervisor at Jilin Uni-
versity, Director of Key lab under the Ministry of
Information Industry, Standing Director of Com-

munication Academy, member of the Computer Science Academy of
Jilin Province. His research interests include: Theory and software tech-
nology of network intelligence management; Key technology research of
wireless mobile communication and services. He participated 3 projects
of NSFC, 863 and funded by National Education Ministry for Doctoral
Base Foundation. He has authored 12 projects of NSFC, key projects
of Ministry of Information Industry, Middle and Young Science and Tech-
nology Developing Funds, Jilin provincial programs, ShenZhen, ZhuHai,
and Changchun.

https://doi.org/10.1109/TKDE.2018.2831682
https://doi.org/10.1145/3308558.3313705
https://doi.org/10.1145/3331184.3331267
https://doi.org/10.1145/3308558.3313488
https://doi.org/10.1145/3240323.3241618
https://doi.org/10.1145/2959100.2959165
https://doi.org/10.1109/TNNLS.2019.2909432
https://doi.org/10.1109/TNNLS.2019.2909432
https://doi.org/10.1109/TKDE.2018.2789443
https://doi.org/10.1109/TKDE.2018.2789443
https://doi.org/10.1145/2487575.2487589
https://doi.org/10.1145/3397271.3401063
https://doi.org/10.1145/3366423.3380116
https://doi.org/10.1145/3366423.3380303
https://doi.org/10.1609/aaai.v33i01.3301346
https://aaai.org/ojs/index.php/AAAI/article/view/5330
https://doi.org/10.24963/ijcai.2019/592

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Yi Chang is dean of the School of Artificial Intel-
ligence, Jilin University. His research interests in-
clude information retrieval, data mining, machine
learning, natural language processing, and ar-
tificial intelligence. He is an associate editor of
IEEE TKDE, and he served as one of the confer-
ence General Chairs for ACM WSDM’2018 and
ACM SIGIR’2020. He is an IEEE Senior Member
and ACM Distinguished Scientist.

	1 Introduction
	2 Preliminaries
	2.1 Basic definitions
	2.2 Matrix embedding with inner products
	2.3 Matrix embedding with metric learning

	3 Magnetic Metric Learning (MML) model
	3.1 Learning Metric: Foundation of MML
	3.2 Explicit relationships formulation
	3.3 Latent relationships formulation
	3.4 Magnetic Metric Learning Formulation
	3.5 Regularization and Optimization
	3.6 Training process
	3.7 Comparison with Collaborative Metric Learning

	4 Evaluation
	4.1 Experimental Settings
	4.1.1 Datasets
	4.1.2 Baselines
	4.1.3 Parameter Setting and Implementation Details

	4.2 Matrix Embedding Validation (RQ1)
	4.3 Exploring Effect of Hyperparameters (RQ2)
	4.4 Recommendation Validation (RQ3)
	4.5 Exploring the Effect of MML's Component (RQ4)
	4.6 Million-scale Embedding Validation (RQ5)

	5 Related works
	5.1 Matrix Embedding (ME)
	5.2 Metric Learning (ML)
	5.3 Neural-network based recommendation models (NN-RSs)
	5.4 Relations among ME, ML and NN-based RSs

	6 Conclusion
	Biographies
	Yuanbo Xu
	En Wang
	Yongjian Yang
	Yi Chang

