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Dynamic allocation optimization in A/B-Tests
using classification-based preprocessing

Emmanuelle Claeys, Pierre Gançarski, Myriam Maumy-Bertrand and Hubert Wassner

Abstract—An A/B-Test evaluates the impact of a new technology by running it in a real production environment and testing its
performance on a set of items. Recently, promising new methods are optimising A/B-Tests with dynamic allocation. They allow
quicker determination of which variation (A or B) is best, saving money for the user. However, dynamic allocation by traditional
methods requires certain assumptions, which are not always valid in reality. This is often due to the fact that the populations being
tested are not homogeneous. This article reports on a new reinforcement learning methodology which has been deployed by the
commercial A/B-Test platform AB Tasty. We provide a new method that not only builds homogeneous groups of users, but also
allows the best variation for these groups to be found in a short period of time. This article provides numerical results on AB Tasty’s
data, in addition to public datasets, to demonstrate an improvement over traditional methods.

Index Terms—A/B-Test, Bandit strategies, UCB strategies, Conditional inference tree, Non linear bandit, Regret minimisation.
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1 Introduction
In a lot of economic, industrial, and even social fields it can
be interesting to evaluate the relevance of modifications to an
existing entity according to one or more objectives by directly
and concretely comparing the different variations resulting
from the modifications. For instance, an e-marketing team
can look for the best modification to apply to a given web
page to increase sales. A medical laboratory may want to find
the best drug composition modification to save more patients.
A company may want to define the best modification to an
industrial process to increase product quality. Such a task
requires a mechanism to evaluate each variation in order to
make the optimal choice according to a defined objective in
the given context. A/B-Test based approaches have been
proposed to respond to this problem [1] and have recently
generated renewed interest, particularly from their use in
e-marketing. An A/B-Test consists of affecting the items
(patients, visitors, goods to be produced . . . ) to the different
variations in order to evaluate the relative performance of
each. During this exploration phase, it is assumed that the
result, called reward, of each affectation can be observed and
used by the A/B-Test algorithm to evaluate each variation’s
performance. At the end of this exploration phase the user can
better decide which variation will replace the current entity to
be used in the future (i.e., in production phase) according to
their relative performance.

An important characteristic of such methods is that the
decision to assign an item to a variation is irrevocable. For
instance, for the entire duration of the test, a visitor will
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always see the same web page on each of their visits, regardless
of the number of visits. Thus, it is impossible to know what
the visitor would have done if they had been assigned to
another variation. Consequently, the population that has been
affected to a variation is distinct from those affected to any
other. Finally, it is assumed that items are unaware of their
participation in a test and thus the existence of different
variations.

A classical approach to the exploration phase is referred to
as the frequential approach and consists of assigning items
to the different variations according to explicit predefined
ratios (static allocation) for a predefined period of time. If
the ratios are balanced for each variation, the duration is
unfortunately difficult to define a priori. Experiments have
shown that a user tends to overestimate the duration, causing
an inferior variation to have a large detrimental effect on the
result for a long period of time. In this case, the obtained
cumulative reward will be much lower than that which would
have been produced by the allocation of each item to the
optimal variation. This difference, called regret, increases
with negative impact. Reducing the exploration phase may
reduce regret, but may also lead to a lack of data needed to
calculate performance. Therefore, in addition to determining
the best option, the challenge of A/B-Test methods is to
also minimize regret. Nevertheless, it is important to note
that regret cannot be calculated during the observation phase
as the optimal variation is obviously unknown a priori: the
objective of the test is, by definition, to determine it. Finally,
in most cases (e.g. time is money, people continue to die, etc.)
the sooner the algorithm finds the solution (i.e. the sooner
exploration can then be stopped), the better.

To address this problem, new A/B-Test methods per-
form dynamic allocation of items based on bandit algorithms.
Bandit dynamic allocation consists of adapting the allocation
of visitors according to the obtained rewards and thus grad-
ually tipping the visitors towards the optimal variation. This
dynamic allocation is usually achieved using the probabilistic
comparison criteria of each variation’s empirical reward dis-
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tribution. The idea is to maintain and update each variation’s
gain estimate and to allocate items according to them. It is
therefore a matter of favoring the most promising variation
while continuing to refine the remaining gain estimates by
continuing to allocate items to potentially sub-optimal varia-
tions.

Experiments and theoretical studies have shown that dy-
namic allocation [2] provides better results in terms of cumula-
tive regret, as well as being faster at determining the best vari-
ation. In this context, a lot of methods implementing dynamic
allocation based on bandit algorithms have been proposed [3],
[4], [5] and have proved their ability to find optimal variations
in the general case. Nevertheless, experiments also show that
these methods often fail when the reward obtained by an item
depends on both the variation and the item itself [6]. For
instance, in web marketing, visitors naturally tend to click
and buy differently according to their own financial resources
or their geographical localization. In medical treatment, the
efficiency of a drug often depends on the age and/or gender of
the patient. To address this problem, bandit algorithms have
been extended to form contextual bandits, which take into
account each visitor’s context, i.e. their characteristics (age,
origin, sex, etc.) when allocating them in order to perform
more relevant allocations. Methods such as KernelUCB
[7] and LinUCB [8] (see Section 3.2.1) have demonstrated
not only the benefits of such an approach, but also their
limitations, including in particular:

• large latency (corresponding to the time required by
the algorithm to allocate an item to a variation),

• the need for a large number of items before finding the
optimal variation,

• a lack of explainability of the affectations made by the
algorithm.

These limits strongly reduce their practical use.
Furthermore, it is obvious that in many cases items belong

to natural groups (e.g., social classes, levels of study, age
classes, . . . ) for which each variation’s reward distribution
can differ. For instance, for a given web page students may
behave differently to workers or retired people and, in fact,
can be differently impacted by a modification. Unfortunately,
these groups are often very difficult to determine because they
strongly depend on the application domain and on the test
itself.

In this paper we propose an original A/B-Test method
called Ctree-Ucb which, instead of using a contextual ban-
dit, is based on the use of several non-contextual bandits,
each dedicated to a particular group of items. Our proposal
consists of automatically creating homogeneous in a pre-
processing step using a conditional inference method. These
groups are created according to the objective of the test using
information (obtained rewards, item characteristics, temporal
information, etc.) derived from items subjected to an existing
variation in production phase before the test. Then, in the
exploration phase, a non-contextual bandit is dedicated to a
group and is used to find the optimal variation associated with
the group. To achieve this, each new item submitted to the
A/B-Test is classified into a group before being transmitted
to the associated bandit for its allocation to a variation.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the bandit model with an illustrative example.

Based on this example, Section 3 gives a comprehensive liter-
ature review of existing approaches and focuses on contextual
strategies able to take into account the characteristics of the
items. Section 4 details the proposed methods. Sections 5,
6 and 7 analyse and discuss the results obtained with this
method on real data provided by AB Tasty 1. Finally the
conclusions of the study are drawn in Section 8.

In sake of readability, the remainder of this article focuses
on A/B-Tests with only two variations but all our propo-
sitions are directly and easily extended to tests with more
variations.

2 Bandit problem
2.1 The multi-armed bandit model
The first definition of the multi-armed bandit model was
introduced by Lai and Robbins [9], by an analogy with casino
slot machines. For a player, it is a matter of choosing from
a machine with several arms the one presenting, for him, the
best expectation of gain. To do that, each time the player
plays an arm and reaped (or not) the gain, he/she updates
the gain estimates of the arm. The player’s goal is to find
the best arm, called the optimal arm, while limiting the
number of tries. As introduced in Section 1, bandit-based
approaches are frequently chosen to concretely implement
dynamic allocation: at each iteration t, corresponding to the
arrival of an item ct, the bandit algorithm chooses an arm a
in the set of possible arms A according to its own strategy
π. Then, the reward Xct,a=At obtained by the affection of the
item to the chosen arm a is observed. The main characteristic
of strategy π is that the allocation of the items depends on the
reward expectation of the variations.

2.2 The bandit paradigm as reinforcement learning
In the general case, an A/B-Test (and more specifically
the bandit algorithm) can be seen as an agent with partial
knowledge of the world (the different variations, the items
having been subjected to these variations, and the rewards
obtained so far). Knowledge of this world is very sparse at
the beginning of the test but is reinforced by observing the
rewards of each variation in accordance with the context of
each item. When the agent has identified the best variation
according to the characteristics of the visitors, the user can:

• put one of the variations (A or B) into production,
• compose another variation to be tested.

Note that in our case, there is one bandit for each group. So,
in fact there are several agents.

Initially, the bandit does not know anything about the
distribution of the rewards of each arm. It has to explore to
find it by affecting items to the different arms to learn these
distributions with the risk of accumulating less reward. But,
at the same time, it has to exploit by affecting the arm which
it estimates to be the most rewarding with the risk of not
discovering the optimal arm. This well-known exploration-
exploitation dilemma has been extensively studied through
the multi-armed bandit problem in [10].

The first mention of the bandit problem appears in [1].
This paper presents a reinforcement learning problem where

1. https://www.abtasty.com

https://www.abtasty.com
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an autonomous agent must learn the actions to be taken
from experience in order to optimize a quantitative reward
over time (per the definition of reinforcement learning). The
agent evolves in an environment and makes decisions based
on its current state. In return, the environment provides a
reward, which can be positive or negative. The agent seeks an
optimal decision-making behaviour (called strategy or policy,
which is a function associating the action to be performed
with the current state) through iterative experiences in the
sense that it maximizes the sum of rewards over time. As
the definition of reinforcement learning: “agents ought to take
actions in an environment in order to maximize some notion
of cumulative reward” [11]. The focus is on finding a balance
between exploration (of uncharted territory) and exploitation
(of current knowledge).

2.3 Cumulative regret
Before presenting the different strategies integrated into ban-
dit algorithms, we introduce here the main criterion used to
evaluate them.

Let A be the set of possible arms (with |A| ∈ N+) and a∗
the optimal arm. The cumulative regret is defined as the sum,
over all the items, of the difference between the rewards that
would have been obtained with a∗ and those actually obtained
with the chosen arm. Let XAt,t be the reward obtained with
arm At selected at iteration t (corresponding to the t-th item).
The cumulative regret after n iterations is defined by:

Rn =
n∑

t=1

max
a∈A

[Xa,t]−
n∑

t=1

XAt,t, (1)

and rt is the simple regret from the t-th iteration defined by:

rt = max
a∈A

[Xa,t]−XAt,t. (2)

As the arm a∗ is unknown a priori, the cumulative regret
can only be calculated after the end of the test. Moreover,
each decision to assign an item to a variation is irrevocable.
Thus, this calculation can only be done if for each item that
has not been affected to a∗, the reward potentially obtained
with an affection to a∗ can be known (or at minimum be
correctly estimated). The reader can find more information
about theoretical upper bound of the cumulative regret in the
appendix.

3 State of the art
Three characteristics can discriminate the different strategies:

• All the strategies π are based on the strong hypoth-
esis that the distribution of all arm rewards follow
the same law (Bernoulli distribution with Thompson
sampling [1], [12], Gaussian with Ucb [13]) or other-
wise makes no assumptions.

• Two mechanisms to affect items can be defined. The
first qualifies as non-informative as it uses no infor-
mation about items (only rewards are used to make
a choice), while the second qualifies as contextual as
it considers item characteristics when affecting to a
variation.

• Different mathematical models can be used in the
choice mechanisms such that the best arm (based

on previous observations) is chosen according to pre-
defined probabilities (such as the Epsilon-Greedy
algorithm [14], [15]) or using adaptive probabilities (for
example Softmax exploration [16]).

3.1 Non informative strategy
A non informative strategy assumes that the best arm is the
same for all (or at least, for the majority of) items and so arm
is allocated independently of the characteristics of the item.

3.1.1 Ucb strategy
The Ucb method is a non informative method based on an
optimistic Bayesian strategy (with probabilistic upper bounds
of the real average). The principle of its strategy π is to use
an overestimation of the empirical average µ̂a,t for each arm
a, the total number of items, and their allocation to different
arms to assign a new item to an arm. Concretely, an arm is
chosen if it is promising (because its estimated average is high)
or/and seldom explored (see Algo. 1 where Ta(t) is the number
of times arm a has been chosen2 ).

Algorithm 1 Ucb algorithm
Require: α > 0
Require: Assign at least one iteration to each arm a
1: loop
2: ct ← a new iteration

3: At = argmax
a∈A

{µ̂a,t + α

√
2 ∗ log(t)
Ta(t) }

4: Assign arm At to ct

5: XAt,ct ← the arm At reward
6: Update µ̂At and TAt (t)
Output: A sequence of arm choices (At) and rewards XAt,ct

In fact, the µ̂At estimators may not be relevant at the
beginning of the test, due to the small number of items
considered [17]. To get around this difficulty, [13] proposes to
calculate an overestimation of this average, called the upper
confidence bound. The authors justify their proposition by a
policy known as “optimistic in the face of uncertainty” and
demonstrate good results.

This upper bound is the sum of the reward’s empirical
average obtained so far in addition to an exploration bonus
(also known as the confidence interval). It depends on the
number of items assigned and observed. The more observa-
tions an arm makes, the more the arm’s bonus decreases. If
νa is Gaussian for all a, this bound will always be higher than
the real average. Thus, the authors define the upper bounds
of each arm by:

UpperUcb(a, t) = α

√
2 ∗ log(t)
Ta(t) , (3)

where α is a positive real parameter given by the user. In
the initial version of Ucb, α = 1 but in practice it has been
shown that the optimal choice of this value depends on the
arm distributions [18].

2. Note that α is different from the α risk commonly used in
statistics.
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The π algorithm consists of choosing the arm with the
highest upper bound. After each assignment, µ̂At is updated
and its bound is reduced, see Equation (3). As the confi-
dence interval depends on Ta(t) the higher Ta(t), the less
the overestimation: the overestimation of the chosen arm’s
average decreases towards its real average. The upper bounds
of the unchosen arms remain unchanged. The reader can find
a theoretical proof of convergence in the appendix.

Figure 1 shows an example of the confidence bound evolu-
tion for five arms according to the number of submitted items.
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Figure 1: Confidence bound evolution according to number
of times an arm has been chosen by Ucb (red (black) points
correspond to real (estimated) averages).

3.1.2 Limit of Ucb strategy
The Ucb algorithm is very efficient when the real distribution
of rewards is Gaussian, an assumption that can be verified
retrospectively using static allocation. Unfortunately, experi-
ments have shown that this assumption is rarely valid. In fact,
the upper bound is not reliable. Consequently, Ucb requires
more items to find a∗ [19], [20]. Moreover, if the reward
presents extreme values, the convergence can be very long
nevertheless, it has been proved that the a∗ will eventually be
found. As such, despite these imperfections, since Ucb focuses
on the average reward that leads to a low complexity and
since it is generally well understood by the user of an A/B-
Test, overall it responds to the problems of interpretability
and limited computation time.

The remaining problem is that the identification of a∗ may
not be the only objective of the A/B-Test. Rather than
looking for the variation that maximises the gain on average,
the A/B-Test user can instead look for the best variation
according to different sub-populations (as quickly as possible).

Indeed, suppose that there exists two sub-groups of items
having different responses to the test. For instance, in the
medical field, an alternative treatment may be efficient for the

elderly and not for young people. In marketing, a page can be
optimal only for smartphone users. In this case, νa is very far
from a Gaussian distribution. Thus, recent approaches assume
that νa is a mixture of Gaussians especially in contextual-
based strategies. The idea of the contextual strategy (pre-
sented below) is that the reward XAt,ct depends on both the
arm assigned and an item’s characteristics (features).

3.2 Contextual strategy
Contextual approaches assume that there exists sub-groups of
items, each presenting a different reward distribution. Never-
theless, experiments show that it can be difficult to define such
groups. Asking the user to define them is often unproductive,
as they rarely have a clear vision of these different groups.
To overcome this problem, it is assumed that there are a
priori unknown links between, on one hand the context of
the items (i.e., the characteristic vectors describing the items
[21]) and the groups, and on the other hand, the groups and
the averages of the rewards obtained. To fit this link, two
approaches can be considered:

• In contextual bandit, this link is modelled by a unique
regression function: the groups and their associated
average rewards are directly set by the bandit during
the test (see Section 3.2.1).

• In two step-based approaches, the groups are set using
a pre-processing step of the A/B-Test (see Section
3.2.2).

3.2.1 Contextual bandits
In contextual bandits, rewards are assumed to be generated
from an unknown function depending on the item’s features
(characteristics) and the chosen arm. The objective is to fit
this function during the test. Concretely, assumptions are
made about the type of function, such as linearity. Methods
such as Lin-Ucb are based on this idea.

With linear regression based bandits, the arms’ param-
eters are often calculated by matrix inversion, which can
be very time consuming, depending upon the number of
item features d [22]. These approaches have shown their
theoretical and practical ability to reduce cumulative regrets
[23]. In particular the Lin-Ucb algorithm is one of the most
popular form of such methods due to its performance and
interpretability. Figure 2 shows the cumulative regret over t
calculated with simulated data and a linear reward function.
From this figure, one can see that the Lin-Ucb algorithm
outperforms Thompson Sampling, random, and Ucb.

Statistical techniques have been proposed for cases in
which the linearity assumption is not valid. In [24], the authors
propose a method based on the Generalized Linear Model
(GLM), called GLM-UCB. This method allows a wider class
of problems to be considered, in particular cases in which
the rewards are counts or binary variables using, respectively,
Poisson or logistic regression. Like Lin-Ucb, GLM-UCB re-
quires a matrix inversion and can be very costly in terms of
time.

Recently, a bandit algorithm based on tree regression has
been proposed, called the BanditForest algorithm [25]. This
algorithm uniformly assigns visitors to each arm until a tree
forest models the link function. This random forest is built
from the joint distribution of contexts and rewards. Thus,
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Figure 2: Cumulative regret of four linear regret-based ban-
dit algorithms on simulated data. The lower the cumulative
regret, the better the method.

all past observations (context and rewards) must be stored.
The uniform assignment leads to excessive selection of sub
optimal arms, causing the algorithm’s performance to suffer.
Moreover, the main limitation of the algorithm is that it
depends on four parameters, and therefore requires strong
domain expertise: two parameters directly influence the level
of exploration, one controls the depth of the trees, and one
determines the number of trees in the forest [26]. In [26],
[27], [28] the authors propose the tree bootstrap algorithm
based on a similar approach but parameterless,i.e. tree depth
is automatically determined. However, these algorithms only
consider binary rewards, which strongly limits their use.

The kernelised stochastic contextual bandit Kernel-Ucb
[7] uses reproducing kernel Hilbert space (RKHS) to provide a
non-linear model of the link reward function (like GLM-UCB)
but can be slow in arriving at a decision.

In addition to making assumptions (e.g., Gaussian distri-
bution, binary reward . . . ) in order to remain understand-
able and implementable, the literature identifies the following
drawbacks.

• In [29] the authors explain that some dynamic al-
location methods do not provide more benefit than
frequentist allocation when the assumptions (e.g., lin-
ear dependence between characteristics and reward,
independence between items, ...) are not valid.

• The choices made by the algorithm are not explicit
(black box). While understanding choices is not always
necessary in a recommendation system, it is important
for A/B-Tests as the user seeks to understand why
and for whom one variation is better than another.

• These methods often require large a dataset.
• The CPU and/or memory requirements can be signifi-

cant, particularly when the difference between versions
is small.

3.2.2 Two step-based approaches
In two step-based approaches, it is assumed that there exists
some natural groups, each having a Gaussian reward distribu-

tion and that these groups can be determined before the A/B-
Test itself. The idea is to build these groups a priori. When a
new item is submitted to the system, it is first automatically
classed into a group. Then, it is assigned to an arm considering
the group the item belongs to.

In [30], the authors propose the Single-K-UCB method
and show that if groups are well defined, the cumulative regret
converges asymptotically early in the process and the average
regret falls significantly. Indeed, intuitively, the cumulative
regret is in this case bounded by the sum of the cumulative
gaps between the best arm and sub-optimal arms for each
group (which is higher than the gap of a non informative
strategy). The authors assume that the reward distributions
are clustered and the clusters are determined by some latent
variables. They assume that there is a surjective function f
that links each item (with a context ct) to a group k, i.e.
f(ct) = k, such that the reward distribution of a group k
applied to an arm a, νa,f(c), is σ-Gaussian (where σ2 is the
variance). Unfortunately, they do not specify how to identify
f and how to obtain the groups. They only study the problem
in a context-free setting and provide a weak performance
guarantee when the reward distribution is unknown in the
clusters [31].

To address this problem, we propose a new method called
Ctree-Ucb, which is detailed in the next section.

4 Ctree-Ucb: a contextual approach to A/B
Testing
4.1 Ctree-Ucb process
Our contribution aims to address the constraints and needs
experienced by users in real-world applications. Thus, we first
focus on a method that can be applied in a “real time”: for
instance, in e-marketing, the delay induced by the test (i.e.,
the dynamic allocation) must be lower than the usual display
time of a webpage. Secondly, we consider that the items
submitted to the system can be very heterogeneous but can
be clustered according to a given criterion. Finally, we want
that the results of the exploration phase are understandable
by the user, and possibly reusable. In this context, we propose
an approach that consists of defining groups based on item
features (i.e., characteristics), each of these groups having as
homogeneous population as possible. The main idea is that in
such a group, the items have similar behavior relative to the
proposed version and thus a group’s reward distribution can
be modelled by a Gaussian distribution. Each of these groups
can therefore be supported by a non-contextual bandit. The
general procedure is that each time a new item is presented to
the system, it is automatically assigned to a group according
its own features and then, through the associated bandit, a
variation is assigned to it. As the complexity of this type of
bandit is low, this ensure a satisfactory response time.

In summary, the proposed method Ctree-Ucb consists of
two main steps:

• an offline process for creating groups based on the
available data collected from the original variation,

• multiple A/B-Tests online.

The global scheme of our framework is given by Fig. 3.
We illustrate the general idea by an example: let us sup-

pose that the test concerns the improvement of an existing
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web page (A). Before starting the test, behaviours of visitors
who have seen page (A) are observed. We assume that the
user has collected each visitor’s characteristics (e.g. browser
language, number of visits to the site before arriving on this
page, etc.) and if a transaction was made after seeing the
page. Based on these pre-collected data, our method builds
a segmentation model able to classify a visitor into a group
using the collected characteristics.

Next, the user constructs variation B (by modification of
the original page) and start the test. In this A/B-Test, a
bandit is associated to each group and aims to determine
which variation maximises the gains to the visitors classified
into its group. Then each visitor arriving on the page is
submitted to the test: (1) the visitor is classified into a group
by applying the model on its characteristics, (2) the bandit
associated to the group dynamically affects the visitor to a
variation, (3) the bandit updates its statistics about the arms.

4.2 Step 1: Offline building of groups and associated
classifier
To construct the groups, we suppose that there is information
describing the performance of the original version (i.e., the
version in production before the test). As such, a database
(referred to here in as DBinit: L) contains an item’s context
and reward (conversion, number of clicks, etc.) produced on
the original version.

Thus, if the test to be carried out concerns the same type
of reward and is on a variation of the original version (referred
here as the arm A), using this information to build groups
can only be beneficial. A model can therefore be learned using
training and validation sets extracted from DBinit, and used
to predict the group of a new item according to its context.

Many supervised methods exist to produce such a model.
For instance, decision tree-based algorithms such as C4.5 [32]
or C.A.R.T. [33] have shown their effectiveness in finding
such homogeneous groups according a numeric/binary re-
wards using an entropy measurement (C4.5) or the Gini index
(C.A.R.T.). Unfortunately, they present two fundamental
issues: overfitting and selection bias towards continuous fea-
tures [34]. Conditional inference tree based approaches have
shown their robustness in comparison to these previous algo-
rithms [35], and have a high level of stability and robustness
[36], [37].

In the first step of our method, performed offline, a condi-
tional inference tree algorithm (for instance, the one described
in [38], [39], [40]) called CTREE (Algo. 2) is applied to
a training dataset (herein referred to as Ln) of n items to
identify homogeneous groups. It consists of initially creating
one group containing all the items. This group is associated to
the root node of the tree. Then, an recursive divisive process
is applied from this node. An independence hypothesis H0 be-
tween each j ∈ {1, . . . , d} feature and the reward distribution
is evaluated for all the items of the associated group, then:

• If the hypothesis can be rejected, the group is split into
two subgroups using the feature that has the highest
correlation with the reward, j∗, according to the value
of this feature that maximises the difference between
each group’s distribution. The algorithm is recursively
applied to the two new nodes associated to the two
subgroups.

• If the hypothesis H0 cannot be rejected at the pre-
determined risk level ε, for any feature, the recursion
stops.

To verify the correlation hypothesis, statistical tests exist
in the literature (for example we can cite the Bravais-Pearson
test, Spearman test, Chi-squared test,. . . [38], [39]). At the
initialisation of the Ctree-Ucb scheme, such correlation
tests must be defined according to the feature types (continu-
ous, binary, categorical, . . . ) and reward type (continuous or
binary) [41].

The conditional inference tree does not require a pruning
process, which avoids overfitting. Moreover, the selection of
the value upon which to split is based on the univariate p-
values, thus avoiding a variable selection bias towards char-
acteristics with many possible split values. If a statistically
significant observation could have risen by “chance”, because
of the size of the parameter space to be searched, Bonferroni
correction can be applied [42]. However, tests integrating cat-
egorical features can require very long computation time when
Bonferroni correction is applied [43] nevertheless, Bonferroni
correction by the Monte-Carlo method [44] can be used to
reduce this time. Such a correction includes a random part,
which varies the tree structure.

At the end of Step 1, groups are described by a reward
average and defined by one or more features. Using this
information, a predictive function f is defined which links each
new item to a group. This function predicts a group k defined
by an expected reward according to A. Thus, this function f
can also be considered as a non-linear regression function.

Algorithm 2 CTREE algorithm
Require: • ε ∈]0, 1[

• A dataset of features Y and response X.
• An influence function h depending on the scale of

X.
• An appropriate function gj , which depends on the

scale of the feature Yj

1: Calculate the the test statistics sj0 for the observed data
2: Permute the observation in the node
3: Calculate s for all permutations
4: Calculate the p-values (number of test statistics s, where
|s| > |s0|)

5: Correct p-values for multiple testing
6: if H0 not rejected (p-value > ε for all Yj) then return
7: else
8: Select feature Y ∗j with the strongest association

(smallest p-value)
9: Search for the best split of Y ∗j (maximize test statistic
s) and partition data

10: Apply CTREE to both of the new partitions
Output: A hierarchical partitioning

This regression is based on the method described in [40]
using the test statistic T which is derived from [38]. The
appendix gives more details about this method. This function
is used during step 2 of the A/B-Test. As step 1 is performed
offline, it does not increase the computational time of Ctree-
Ucb. Figure 4 shows an example of an obtained regression
tree.
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4.3 Step 2: Online A/B-Test
The online step corresponds to the A/B-Test. It consists of
classifying each visitor into a group. The dynamic allocation
is then performed by the bandit associated to the group.

As the bandits are independent, each of them can stop the
exploration phase at any time and switch to the exploitation
mode. The test can then end either when all the bandits
are in exploitation mode, after a given number of items, or
a predefined duration. Algorithm 3 defines the Ctree-Ucb
method.

The reader can find more details of the theoretical guar-
antees of Ctree-Ucb in the appendix. The computational
complexity of using CTREE to predict an average reward
depends on the depth of the tree, and the depth of the tree is
proportional to the (base 2) logarithm of the number of leaves
[39]. The logarithm of a number grows slowly as that number
gets larger, therefore even trees with a very large number of
leaves will not be very deep. That makes CTREE very fast in
terms of use and computation.

Algorithm 3 Ctree-Ucb algorithm
Require: α > 0, DBinit, ε ∈ [0, 1]
1: Generate a conditional inference tree using DBinit and f

with an accepted error ε using CTREE.
2: loop
3: ct ← a new item with a vector Yt of features
4: Assign ct to group k by f(ct) = k
5: if Ta,k(t) = 0 then
6: At,k = a
7: else

8: At,k = argmaxa∈A {µ̂a,k,t + α

√
2∗log(

∑
a∈A

Ta,k(t))
Ta,k(t) }

9: Assign arm At,y to ct

10: Xct,At,k ← the arm At,k reward
11: Update µ̂At,k and TAt,k(t)
Output: A sequence of arm choices and rewards for each
group k

4.4 Example on simulated data
Observations made on the data collected via A/B-
Testsindicate that some of the functions linking the rewards

and the feature can be modelled by a piece-wise continuous
function. For example, the link between the price of a product
and the quantity purchased. If the site offers one item for
every 3 items purchased, linear modelling between the feature
(quantity of item) and the reward no longer holds. In the
medical field, if a treatment is effective for young children
and elderly people, but not for adults, linear modelling also
does not work. However, by using a pairwise function, such
cases can be represented. In such a function, the link is linear
only over an interval of values taken by the feature. When
the link function between a feature and a reward is linear or
piece-wise continuous, the above-mentioned traditional ban-
dit methods have an increasing cumulative regret. To validate
our method, we first propose to simulate data from a pairwise
function (2000 features x and 2000 rewards) and compare the
results between Ctree-Ucb, Lin-Ucb, Ucb and random.
We report an example of a simulation to test the performance
of Ctree-Ucb under real assumptions. For each variation (A
or B), 10000 rewards are generated by the following function,
related to a feature X:

θA = (2,−1, 1.5, 0),
θB = (1.5,−0.5, 1.25, 0),

X =


XA = θA[1], XB = θB [1], if 1 ≤ x1 < 2
XA = θA[2], XB = θB [2], if 3 ≤ x1 < 4
XA = θA[3], XB = θB [3], if x1 ≥ 4
XA = θA[4], XB = θB [4], if x1 < 1.

4.4.1 Offline step
We use 30% of the data DBinit for training (so the past
rewards of A are the only ones observed), and the remain-
ing 70% are used for the test. The regression tree correctly
identifies groups in which the link between the feature and
reward is identical (each final leaf is a group, represented by
an estimated average, see Figure 4).

4.4.2 A/B-Test (Dynamic allocation)
During the A/B-Test itself, a dynamic allocation is made to
each group. Figure 5 shows the cumulative regret over time
of different algorithms. Figure 6a to 6e show the cumulative
regret of Ctree-Ucb specific to each group.
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Figure 4: Groups identification on simulated data: 5 groups
are identified Node 3, Node 4, Node 6, Node 8, and Node 9.

The following section presents the same comparison but
on real datasets.
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(c) Node 6
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Figure 6: Cumulative regret of Ctree-Ucb for each group.

5 Materials and experimental setting
To evaluate the performance of Ctree-Ucb, we compare it
to existing A/B methods: a global-based bandit (Ucb), the

Lin-Ucb and Kernel-Ucb bandits, as well as a random-
based algorithm that chooses variations alternatively. The
main criteria for this evaluation are the cumulative and
average regret. The experiments are carried out over three
data sets: the first a public data set, the others are from AB
Tasty and correspond to e-merchant A/B-Tests. All exper-
iments are carried out using the R programming language
on a Intel® Core™ i5-8250U CPU with 8 threads running
at 1.60 GHz with 7.5 GB of RAM on 64-bit Ubuntu 17.10.
All materials (including data, the conditional tree regression
framework CTREE [41] and Ctree-Ucb) are available from:
https://github.com/manuclaeys/bandit4abtest.

5.1 Data
5.1.1 Small MovieLens dataset
This dataset comes from the IMDB public database3. It
contains movies described by 14 binary characteristics (Ad-
venture, Action, Comedy, Drama, Thriller, Romance, Sci-Fi
. . . ) and their associated ratings (from 0 to 500) given by
film reviewers. To simulate an A/B-Test using this data, we
define:

• Movies as items: There are 9125 movies in the original
database

• Film reviewers as the variations: Denoted by A, B,
. . .E corresponding to 5 reviewers.

• Ratings as the rewards: The reward associated to a
movie ct is the rating Rr(ct) given by reviewer r
associated to the variation. In case the film has not
been rated by this reviewer (which may appear with
recent films), the missing value is evaluated by the
average of all other reviews. Therefore, X.,t = Rr(t)
if Rr(t) exists in the dataset.

The objective is to obtain the best cumulative film evaluation.

5.1.2 AB Tasty dataset
These A/B-Tests are comparisons of a variation of a web-
page with its original state (referred here as P1 and P2,
respectively).

These tests were performed in 2018 on AB Tasty’s servers
for several e-merchant clients. They consisted of using a static
allocation with an equal distribution of visitors between the
two pages P1 and P2.

For each test, visitors who navigate on the tested web page
(i.e., a potential customer) are identified by an ID: the first
time they visit the web page, a new visitor description (see
Table 1) and its associated ID are generated.

This description may vary depending on the data available
to the user. Then a variation (A or B) is allocated to it. A
cookie memorises the description, the ID, and the allocated
version.

Each time they return to the tested page, the same vari-
ation is shown so we assume that no statistical association
between visitors exist. We present the results of two A/B-
Tests performed on two different websites.

All visitor actions during their visits are stored. At the
end of the test (i.e., after T visitors) the reward is computed.

3. These datasets change over time, the last update was made
in October 2016 but the former version used in our experiments is
available from: https://github.com/manuclaeys/bandit4abtest

https://github.com/manuclaeys/bandit4abtest
https://github.com/manuclaeys/bandit4abtest
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Table 1: Item features of the A/B-Test dataset.

Type Features (number of possible values or domains)
Integer Visits (N)

Categorial Navigator’s language (27), Navigator type (6), Device (3), Operating System (7)

According to the user’s objective, the reward corresponds to a
visitor’s purchase value during all of their visits regardless of
the visit(s) the purchase(s) happened in after the affectation.
It is defined by cumulative sum if the visitor t has purchased
on the web page.

Notations used throughout the paper: For N varia-
tions V0, V1, . . . , VN , Si is the set of items to which variation
Vi has been allocated, Ti = |Si| and T = T0 + T1 + · · · + TN

where |.| denotes the cardinality of a set.

5.2 Comparison methods
The performance of Ctree-Ucb is compared to the following
four algorithms.

• Two algorithms with a non informative strategy, which
do not take into account the item’s context:

– random which is parameter free.
– The Ucb strategy described in Section 3.1.1.

• Two algorithms with a contextual strategy (see Section
3.2.1):

– The Lin-Ucb algorithm using a linear reliabil-
ity assumption.

– The Kernel-Ucb algorithm without a lin-
ear reliability assumption, this policy estimates
each variation’s reward, in addition to a kernel
regression of characteristics.

Each algorithm will provide a sequence of choices. These
sequences are compared to a model that always chose the best
variation (see Section 2.1), trained with all the data in the
test set, so the cumulative and average regret at the end of
the A/B-Test (iteration T ) is evaluated.

Note that Lin-Ucb and Kernel-Ucb require the trans-
formation of categorical characteristics into binary values.

5.3 Experimental protocol
5.3.1 The A/B-Test parameters
All the algorithms (except random) are derived from the
standard Ucb algorithm, which requires setting the confi-
dence interval parameter α (see Section 3.1.1). To evaluate
the impact of this parameter on the results, we have carried
out experiments with different values of α (from 0.25 to 2.5,
as generally found in the literature).

To limit the CPU time consumed by the Kernel-Ucb
algorithm, we have limited the numbers of items used in the
kernel regression to 100.

5.3.2 A/B-Test simulation
The principle of simulation is to apply each algorithm on data
sets and to compare their obtained cumulative regrets. We
compare the results with a non-linear regression (CTREE)
model that learns from all the data. Thus when assigning
an item to a variation, regret is evaluated as the difference
between the maximum prediction (between all possible varia-
tions) and the prediction of the chosen one. This assessment

can be seen as a difference between conditional averages and
is based on the theoretical definition presented in Section 2.

For the Ctree-Ucb method, the offline step (see Section
5.3.3) performed first and consists of learning a conditional
regression tree. Then each item is evaluated by this tree in
order to determinate which group it belongs to. Finally, the
item is submitted to the classical Ucb algorithm associated to
this group.

Since a tree is built using data from the original variation,
the choice of variation A affects the rest of the process. As
such, we have considered each variation as a potential original
variation for each data set. So, for the MovieLens dataset,
five configurations have been tested, each corresponding to a
different choice of movie rating as the original variation. In
the same way, each page has been tested as the original web
page (A).

5.3.3 Ctree-Ucb offline step
The offline step of Ctree-Ucb consists of defining the item
groups used in the contextual A/B-Test and is crucial as
it has a large impact on the A/B-Test process. To produce
these groups, we used the R conditional tree regression frame-
work CTREE [41] with ten-fold cross validation and different
maximum error risk. The displayed tree represents the groups
graphically by an expected average and optionally (depending
on the user’s choice) the distribution’s boxplot.

To assess this impact, we have carried out experiments
with different configurations of the ratio between the number
of items used to learn the regression tree and those used to
simulate the A/B-Test.

Additional notations: L = |L|, where L is the set used
to learn the conditional regression tree. TA/B = |SA/B |, where
SA/B is the set used to simulate the A/B-Test. ε is the error
risk parameter to CTREE.

To respect the assumption that prior to the A/B-Testthe
user only knows the rewards obtained by the original variation
(referred here as VA), the regression tree can only build from
the set of items SA to which variation VA has been allocated,
therefore L ⊂ SA. Two configuration have been tested:
• Conf30,70: L = 30% of V0, SA/B =

∑
i{70% of Si},

• Conf100,100: L = V0, SA/B =
∑

i Si.

5.3.4 Experimental configurations
Table 2 summarises the parameters and their different poten-
tial values.
Data set Algorithms Parameters
MovieLens dataset Ucb, Lin-Ucb, Kernel-Ucb α ∈{0, 0.25, 0.5, 1, 1.5, 2, 2.5}

Ctree-Ucb
VA ∈ {Vi}

AB Tasty dataset 1 Config. ∈ {Conf30,70, Conf100,100}
AB Tasty dataset 2 ε ∈ {0.01, 0.05, 0.1}

α ∈ {0, 0.25, 0.5, 1, 1.5, 2, 2.5}

Table 2: Algorithm parameters.

There are 441 combinations: 3×3×7 combinations for the
3 UCB-based algorithms and (2×2×2×3×7)+(5×2×3×7)
for the Ctree-Ucb method. For the sake of clarity, we report
only 88 combinations in our experiments.

For each experiment, a table is presented that summarises
the cumulative and average regret of each algorithm. The
average regret allows us to evaluate the evolution of the
cumulative regret compared to the set of tested items (S).
The best performances (cumulative regret / average)
appear in bold in each table.
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Ctree-Ucb

Lin-Ucb Kernel-Ucb Ucb randomVA : R1 VA : R2 VA : R3 VA : R4 VA : R5
Configuration ε = 0.05 ε = 0.05 ε = 0.05 ε = 0.05 ε = 0.05

Config.30,70
RT

E[RT ]
19155

3
21628
3.39

28458
4.47

27894
4.37

19976
3.13

22378
3.50

21239
3.32

20650
3.23

22808
3.57

Config.100,100
RT

E[RT ]
27875
3.05

34152
3.74

35679
3.91

35908
3.94

37679
4.13

68101
7.46

40848
4.48

31146
4.41

45643
5

Table 3: Influence of segmentation parameters on cumulative
regret, RT , and average regret E[RT ] with the MovieLens
dataset (α = 1).

6 Experiments
6.1 MovieLens dataset
6.1.1 Offline step
In Figure 7, each leaf of the tree associates an average to
an identified group. The leaves of the tree represent the
groups identified by CTREE that will then be used in the
classification model in the dynamic allocation step.

From the rewards given by reviewer1 before the test, 9
leaves were generated, which corresponds to 9 groups of items
with statistically different distributions of rewards. Node#15
is the most represented with 1133 items. The group that
maximises rewards for variation A is group Node#11. We also
note, for example, that reviewer 1 generally gives a higher
rating if the film is in the "Film noir" category (Node#11).
The lowest average reward is given to "Comedy" (Node#8) or
"Action" (Node#7) movies.
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Figure 7: Conditional inference tree on MovieLens dataset
(Config.30,70, VA : Reviewer 1, ε = 0.05).

6.1.2 A/B-Test (Dynamic allocation)
In the MovieLens dataset, many films have not been seen by
some reviewers and therefore, replacing missing scores (films
that have not been seen by a reviewer) results in identical
scores between several reviewers. There are therefore films for
which the simple regret will be equal to zero regardless of
the reviewer chosen. The difference between the averages ∆a,
∀a 6= a∗, being very small, finding the reviewer who max-
imises rewards (in accordance with a context) is difficult (see
Section 3.1.2). Such a situation can reduce the performance
of the tested bandit algorithms and be comparable to a static
allocation strategy (performed by the random algorithm).
The parameter ε has little impact on the results in terms of
regret and its impact on the results will be covered in the next
experiments.For readability of Table 3, only the classic value
of the accepted error risk are reported, i.e. ε = 0.05.

Ctree-Ucb has the lowest cumulative regret (in bold
in the Table 3). The Lin-Ucb algorithm has weak perfor-
mance, one explanation could be that the linearity assump-
tion required by this algorithm is not valid. Kernel-Ucb

has a cumulative regret comparable to a static allocation
(random). More data is probably needed to complete its
regression. Ctree-Ucb gives better results with reviewer
1 (in bold) with Config.30,70 or Config.100,100. Learning on
reviewer 3 (on Config.30.70) or 5 (Config.100.100) decreases its
performance. We assume that this implies an over- or under-
learning depending on the configuration.

To get good results with Ctree-Ucb, whatever the VA

parameter, the offline step must be performed on a population
representative of the one to be tested.

Figure 8 shows the cumulative regret of each algorithm
for a given configuration. The lowest regret during the test is
that of Ctree-Ucb (in green). The strategy Ucb (in brown)
comes in second position in terms of performance. The highest
cumulative regret is that of random (in black). However,
these results indicate a linear regret for all algorithms.

Figure 9 shows how α affects cumulative regret. In this
experiment, with the exception of Kernel-Ucb, the value of
α has little influence on the cumulative regret of the studied
algorithms. Whatever the value α, Ctree-Ucb produces the
best results and guarantees their stability. Unlike other algo-
rithms, Kernel-Ucb works differently depending on α. Its
cumulative regret seems highly dependent on this parameter.
Choosing a sub-optimal value for α can therefore make it less
effective than random (Fig. 9).
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Figure 8: Cumulative regret for the MovieLens dataset (VA :
R1, Conf30,70, ε = 0.05,α = 0.25).

6.2 AB tasty database 1

6.2.1 Offline step

The user has a clothing sales website and its objective is
to increase the value of a purchase. On Fig. 10, each leaf
is associated to an expected reward (a purchase value). On
Config.30,70 2543 visitors are dedicated to Step 1 (learning
step) and 5934 visitors are tested (Step 2). On Config.100,100
steps 1 and 2 have 8477 visitors. There are 10 groups identified
by the first step. The number of past visits before seeing the
tested page has the strongest correlation with the purchase
values. However, purchase value can increase or decrease
according to the visitor’s user agent or language.
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Figure 9: Cumulative regret according to α for the MovieLens
dataset.

6.2.2 A/B-Test (Dynamic allocation)
On Config.30,70, all results provided by Ctree-Ucb (in bold)
are the best. Table 4 gives the cumulative regret according to
the different parameters (ε and VA) for the AB Tasty dataset
1. With all configurations the ε parameter doesn’t modify
the tree structure. However, the challenge in step 1 is to
avoid overfitting (to many groups, as in Config.100,100, V_A :
P_1 in Table 4) or underfitting (to fewer groups, as in
Config.30,70, V_A : P_2 in Table 4). In fact, too few groups
leads to a performance similar to that of a non-contextual
strategy. On the other hand, too many groups slow down the
exploration period, but Ctree-Ucb’s results remain more
effective than those of Ucb, Kernel-Ucb, and random.

In this test, variation A was the best of all, therefore
all bandit algorithms have a logarithmic cumulative regret
(see Fig. 11). It also appears that the exploration period
could be stopped earlier (after 2000 visitors) with our method
when compared to a frequentist approach (random) and
consequently save the user money.
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Figure 10: Tree from AB Tasty dataset 1 (Config.30,70, V_A :
P_1, ε = 0.05).

6.3 AB Tasty database 2
6.3.1 Offline step
The user owns a media website, and wants to optimise pur-
chase values. Eight-hundred visitors are assigned to step 1

Ctree-Ucb
VA : P1 VA : P2 Lin-Ucb Kernel-Ucb Ucb random

Configuration ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.01 ε = 0.05 ε = 0.1

Conf30,70
RT

E[RT ]
100

1.68 ∗ 10−2
100

1.68 ∗ 10−2
100

1.68 ∗ 10−2
355

5.59 ∗ 10−2
355

5.59 ∗ 10−2
355

5.59 ∗ 10−2
364

6.11 ∗ 10−2
592
9.97 ∗ 10−2

408
6.87 ∗ 10−2

6610
1.11

Conf100,100
RT

E[RT ]
152

1.79 ∗ 10−2
152

1.79 ∗ 10−2
152

1.79 ∗ 10−2
67

0.79 ∗ 10−2
67

0.79 ∗ 10−2
67

0.79 ∗ 10−2
24

0.28 ∗ 10−2
448
5.28 ∗ 10−2

241
2.840.79 ∗ 10−2

8148
0.96

Table 4: Influence of segmentation’s parameters on the cumu-
lative and average regret with AB Tasty dataset 1 (α = 1).
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Figure 11: Cumulative regret according to α with AB Tasty
dataset 1 (Conf30,70 VA = P1, ε = 0.05).
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Figure 12: Cumulative regret according to α with AB Tasty
dataset 1 ( VA : P1, Conf30,70, ε = 0.05).

(learning step) and 1865 visitors are tested (step 2). As in
the previous experiment, each leaf of Fig. 13 is associated to
an expected reward (a purchase value). There are 7 groups
discovered in the first step. We note that the characteristics
present in the previous experiment (user agent, visits) also
have an influence on groups in this experiment. In addition
to these, the browser (called name) becomes relevant in this
experiment. Our hypothesis is that since the sale concerns
online videos, the user’s browser is likely to influence the
visual rendering.

6.3.2 A/B-Test (Dynamic allocation)
Table 5 gives the cumulative regret according to the different
parameters (ε and VA). On VA : P1, Conf30,70 the tree
structure is only slightly modified (occurrence or avoidance
of a maximum of one/two groups). On Conf100,100 with all
configurations the ε parameter does not modify the tree
structure, see Figure 15. However, according to VA = P1
Ctree-Ucb gives the best results whatever the configuration.
Nevertheless, on VA = P2, the best results are given by Lin-
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Figure 13: Tree from the AB Tasty dataset 2
(Config.100,100, VA : P1, ε = 0.05).

Ucb. Figure 14 presents the cumulative regret according to α
and shows the robust performance of Ctree-Ucb.
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Figure 14: Cumulative regret according to α with AB Tasty
dataset 2 ( VA : P1, Conf30,70, ε = 0.05).
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Figure 15: Cumulative regret with A/B Tasty dataset 2
(Conf100,100 VA = P1,ε = 0.05,α = 1).

Group analysis:

Ctree-Ucb
VA : P1 VA : P2 Lin-Ucb Kernel-Ucb Ucb random

Configuration ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.01 ε = 0.05 ε = 0.1

Conf30,70
RT

E[RT ]
1251
0.67

1263
0.67

1265
0.67

3110
1.67

3110
1.67

3110
1.67

3092
1.67

4469
2.40

4284
2.30

4279
2.30

Conf100,100
RT

E[RT ]
1994
0.75

1994
0.75

1994
0.75

3843
1.44

3843
1.44

3843
1.44

2457
0.92

7007
2.63

6114
2.30

6862
2.57

Table 5: Influence of segmentation parameters on the cumula-
tive and average regret with AB tasty dataset 2 (α = 1).

The cumulative regret of Ctree-Ucb (see Fig. 15) is the
sum of the cumulative regret of each group, we propose a
more detailed analysis of Ctree-Ucb’s results by observing
the cumulative regret of the 7 subgroups. The parameters of
Ctree-Ucb are: Conf100,100 VA = P1, ε = 0.05, α = 1.

Note that the group names in Fig. 16 refer to the id of the
leaf in the tree and not the n-th group.

• Figures 16b, 16c, and 16e show the cumulative regret
of Group #5, Group #7, and Group #11. In these fig-
ures, the cumulative regret converges asymptotically.
For example in Group #7, the first half of the visitors
tested produced 100% of the total cumulative regret.
For the last visitors their regret is always equal to
zero. This result shows that for these groups, Ctree-
Ucb ends the exploitation in an optimal way. This
also suggests that these groups are homogeneous (see
Section 3.1.2).

• Figures 16a, 16f, and 16g show each groups cumulative
regret, which is almost equal throughout the A/B-
Test. Only a few visitors belonging to this group were
impacted by the A/B-Test. These results show that
Ctree-Ucb separates unaffected visitors correctly,
see Section 5.1.2).

• Figure 16d shows a case in which the cumulative
regret grows almost linearly throughout the A/B-
Test. For this group, the variation chosen for explo-
ration requires more items or is not the best for all
visitors. There are different reasons that may explain
this: the gap between the variation’s average is very
small, learning from the original page did not correctly
identify all possible groups existing in the test dataset,
or the characteristics used are not sufficient to give a
reliable average for this group.

Time response:
In a lot of cases, applications require allocations to be

made within a very short time frame. For example, the choice
between two versions of a web page must be made in real time:
for each visitor, the algorithmmust choose the variation in less
than half a millisecond to avoid delays in displaying the page.

Step one of Ctree-Ucb is computed before the A/B-
Test itself (offline). Thus, time allocated to step one is not
considered. Only the computation time required for dynamic
allocation, i.e. step 2 (online), is considered (see Table 6). We
report in Tab. 7 the computation time required for Ctree-
Ucb and compare it to Lin-Ucb, Kernel-Ucb, and Ucb
on Config.100,100. We also include the longest calculation time
among all groups (max group). As the visitor groups are tested
separately, it is possible to reduce the total computation time.

After several experiments, the response time per visitor
for Ctree-Ucb is always less than one millisecond. Kernel-
Ucb, on the other hand, requires the longest computation
time. This is mainly due to the regression calculation of the
kernel. However, Lin-Ucb and Kernel-Ucb response time
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(f) Group #12
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(g) Group #13

Figure 16: Cumulative regret for 7 groups with AB tasty
Database 2 (Conf100,100 VA = P1, ε = 0.05, α = 1).

Dataset Nb of features Size Step 1 (s) Step 2 (s)
MovieLens 19 18250 0.297 0.347
AB Tasty 1 5 8477 0.117 0.523
AB Tasty 2 4 2265 0.36 0.504

Table 6: Dataset and computation time of Ctree-Ucb in
seconds.

increases with the number of features d. Ctree-Ucb has a
short execution time and respects the response time required.

Experiment on one million simulated data was carried
out. The behavior of Ctree-Ucb algorithm, especially on
the system response time was very similar to one with the
ABTatsy dataset4.

Ctree-Ucb Lin-Ucb Kernel-Ucb Ucb
Total time execution (second) 0.504 (max group : 0.226 ) 0.622 16.013 0.096
Time execution by visitor (millisecond) 0.18 (max group: 0.08) 0.23 6 0.03

Table 7: Total time calculation of each algorithm
(Config.100,100) on AB Tasty dataset 2.

7 Discussion
Our experiments indicate that Ctree-Ucb responds to dif-
ferent A/B-Test issues. Our results include continuous or
categorical characteristics, continuous reward, and a number

4. To limit the paper length, this experiment has not been reported
in the paper but can be easily reproduced using data and codes
available at: https://github.com/manuclaeys/bandit4abtest

of possible variations higher than two (A/B/C/. . . ). It shows
the performance of Ctree-Ucb for different types of tests.

For confidentiality reasons, only the datasets provided by
websites that agreed to publish their data were presented. To
improve performance if necessary, each group can be processed
independently on a server to accelerate computation time
(nevertheless it was not necessary given the good results in
calculation time for AB Tasty data sets). However, Ctree-
Ucb obtained good results on websites that could receive
more than 2000 visitors per second.

Ctree-Ucb has three parameters: Conf., VA, ε, and α.
From our experiments we can conclude the following.

• A partial dataset (Conf30,70) for step one is sufficient
to obtain results comparable to the total dataset
(Conf100,100).

• By considering different original variations VA, the
results of Ctree-Ucb may be different. However,
Ctree-Ucb remain good compared to results of Lin-
Ucb, Kernel-Ucb, and Ucb.

• The parameter ε (associated with the accepted risk in
the inference tree) has a low influence on the results,
therefore the default value of 0.05 can be used.

• an incorrect α value can lead to a degradation of Ucb
performance while Ctree-Ucb is less sensitive to the
alpha parameter.

Ctree-Ucb has the following advantages.

• The model can handle both numerical and categorical
values. Other techniques are often usable only with
specific variable types.

• The construction of groups by a conditional infer-
ence tree simplifies their interpretation. Using Boolean
logic, the user understands the characteristics that
have the most impact on a group’s distribution, un-
like black box models such as neural networks, whose
results are difficult to explain.

• Group construction, performed offline, results in a
response time comparable to a non-contextual method
and can be decreased with distributed computing (like
one group per server). Thus, when the user wants to
have a choice quickly, Ctree-Ucb can be used.

However, Ctree-Ucb requires:

• an original variation, set up before the test;
• stationary reward distributions, as Lin-Ucb,

Kernel-Ucb, and Ucb;
• the population of items used to provide the groups,

before starting the test, to be representative of the
population of items tested.

The quality of the result obtained from Ucb and Lin-Ucb
are very different according to the data type. These algorithms
can be equivalent to random when their assumptions (like
linearity, . . . ) are not verified, or when α’s value is not
optimal.

Kernel-Ucb is difficult to use in practice. As Cesa-
Bianch et al. note “when the number of kernel evaluations
is bounded, there are cases where no algorithm attains per-
formance better than a trivial sub-sampling strategy, where
most of the data is thrown away. Also, no algorithm can work

https://github.com/manuclaeys/bandit4abtest
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well when the regularisation parameter is sufficiently small or
the norm constraint is sufficiently large” [45].

On the other hand, with AB Tasty’s datasets, Ctree-Ucb
gets the best results. These datasets correspond to our main
objective, the other is presented to provide results on public
datasets.

8 Conclusion
In this paper, we present the new approach, Ctree-Ucb, for
A/B-Test based on bandit models. It focuses on practical
(real) applications. Experiments on synthetic and real data
show that Ctree-Ucb achieves a cumulative regret compa-
rable to the best performance of methods from the state of
art. We also show that Ctree-Ucb provides good results
whatever parameters are chosen and that a default setting
is enough to obtain reliable results. Furthermore, the com-
putation time required by Ctree-Ucb to make allocations
allows its integration in an industrial environment where fast
response times are crucial. Moreover, experiments have shown
that the conditional inference tree is a powerful method for
achieving group definition, leading to a decrease in cumula-
tive/average regret.

Ctree-Ucb’s high performance in identifying groups with
different original variations suggests a correlation between the
distribution of variations. In practice, in most A/B-Tests,
the changes provided by a variation are limited. We can
therefore create groups on variation A and assume that they
are similar on variation B.

Our experiments on both partial data (first 30%) and
complete data show that the groups are persistent over time.
Moreover, group identification can help guide the user in the
composition of the test itself. If the test was irrelevant for a
group another, more specific, test can be performed.

Our future work will focus on Ctree-Ucb’s ability to
consider temporal data, such as a visitor’s navigation time-
line prior to their arrival on a test page.
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