
CoANE: Modeling Context Co-Occurrence
for Attributed Network Embedding

I-Chung Hsieh and Cheng-Te Li ,Member, IEEE

Abstract—Attributed network embedding (ANE) is to learn low-dimensional vectors so that not only the network structure but also

node attributes can be preserved in the embedding space. Existing ANE models do not consider the specific combination between

graph structure and attributes. While each node has its structural characteristics, such as highly-interconnected neighbors along with

their certain patterns of attribute distribution, each node’s neighborhood should be not only depicted by multi-hop nodes, but consider

certain clusters or social circles. To model such information, in this paper, we propose a novel ANE model, Context Co-occurrence-

aware Attributed Network Embedding (CoANE). The basic idea of CoANE is to model the context attributes that each node’s involved

diverse patterns, and apply the convolutional mechanism to encode positional information by treating each attribute as a channel. The

learning of context co-occurrence can capture the latent social circles of each node. To better encode structural and semantic

knowledge of nodes, we devise a three-way objective function, consisting of positive graph likelihood, contextual negative sampling,

and attribute reconstruction. We conduct experiments on five real datasets in the tasks of link prediction, node label classification, and

node clustering. The results exhibit that CoANE can significantly outperform state-of-the-art ANE models.

Index Terms—Network embedding, attributed graphs, context co-occurrence, convolutional layers, graph representation learning

Ç

1 INTRODUCTION

NETWORKS are important data structures to represent the
relationships between entities. Modern techniques in

Web, storage, and computation allow us to process, retrieve,
and discover knowledge from a variety of network data. In
the real world, for example, social networks depict the rela-
tionships and interactions between people, and academic
citation networks encode how papers are referred to each
other. In addition to the graph structure, there are usually
attributes associated with nodes in the networks. In social
networks, such as Facebook and Instagram, users can main-
tain their profiles. In academic citation networks, such as
Google Scholar, researchers possess affiliation, expertise,
and profiles. Jointly modeling the network structure and
node attributes can benefit applications, such as recom-
mender systems [6] and fake news detection [18].

Network embedding (NE) is an essential technique in vari-
ous network mining and prediction tasks [2]. The basic idea is
to learn low dimensional feature representation vectors of
nodes so that the graph neighborhood of each node can be
encoded in the feature space. The performance of typical tasks,
such as link prediction, node label classification, and commu-
nity detection, can get improved based on NE. Several typical
NEmodels were proposed, such as DeepWalk [24], LINE [26],
and node2vec [7]. The general idea is to generate contexts of
nodes and apply the skip-gram model [20] to learn and pro-
duce the embedding vectors. However, typical models focus

on utilizing network structure, but attributes associated with
nodes are neglected.

The recent focus shifts to attributed network embedding
(ANE), whose goal is to preserve not only the network struc-
ture but also node attributes when learning embeddings.
GAT2VEC [25] transforms node-attribute relations into a
bipartite graph and merges the embeddings of structure and
attributes based on random walk and skip-gram model.
LANE [9] incorporates all features by adding node labels and
preserves their correlation. NEEC [10] concentrates on attrib-
uted network learning with expert cognition that requires
queries and answers from the experts to improve embedding.
The non-linear mapping with random walk process is also
developed for ANE in UPP-SNE [34]. SANE [31] further
imposes an attention mechanism to discriminate the correla-
tion between nodes. The state-of-the-art methods are DANE
[4] and ASNE [16]. DANE captures the high non-linearity and
preserves various proximities in both topological structure
and node attributes. ASNE preserves both structural proxim-
ity and attribute proximity so that the global structure and the
homophily effect in attributes can be captured.

Although several attributed network embedding models
were proposed, we find that they all focus on either learning
representation of network structure or attributes individu-
ally, or find a proper approach to combine the feature repre-
sentations of such two parts. In this way, the target node’s
diverse aspects between network structure and attributes
cannot be modeled. For example, in real-world networks
like a social network, a node links to a number of nodes,
and has multi-hop neighboring nodes consisting of several
egocentric communities (i.e., the so-called social circles),
such as family and school, in which nodes are tightly inter-
connected and surely have attributes similar to each other.
And those belonging to one or more distinct communities
can be differed from not only topological connections in

� The authors are with the Institute of Data Science, National Cheng Kung
University, Tainan 701, Taiwan. E-mail: {q00117888, reliefli}@gmail.com.

Manuscript received 16 October 2019; revised 24 March 2021; accepted 26 April
2021. Date of publication 14 May 2021; date of current version 7 December 2022.
(Corresponding author: Cheng-Te Li.)
Recommended for acceptance by E. Chen.
Digital Object Identifier no. 10.1109/TKDE.2021.3079498

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023 167

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7995-4787
https://orcid.org/0000-0001-7995-4787
https://orcid.org/0000-0001-7995-4787
https://orcid.org/0000-0001-7995-4787
https://orcid.org/0000-0001-7995-4787
mailto:q00117888@gmail.com
mailto:reliefli@gmail.com


their neighborhood, but also their attributes. Only when we
jointly model network structure and attributes together, we
will be able to better exploit their underlying correlation.
State-of-the-art methods GAE [13] and VGAE [13] can
simultaneously model network structure and attributes.
They scan the first- or second-order graph neighborhoods
recursively so that the further and wider order region in the
network can be indirectly reached and exploited. Then all
neighbors in the same order would be considered to have
the same importance for the target node. We think that
without better use of connections between neighbors in a
fine-grained manner, it is less possible to distinguish same-
hop neighbors from each other, which could belong to
different latent social circles. For instance, neighbors of a stu-
dent may have multiple social circles, such as “CS dept”,
“family”, and “labmates”, whose sizes are different from
one another. Friends from “CS dept” circle with dominated
attributes would dilute the information on “family” circle.
Besides, an effective embedding learning model needs to
better exploit wider and deeper interconnected neighbors of
multiple latent social circles.

This paper aims to capture specific contexts representing
the latent social circles of the target node and to leverage
context co-occurrence in both network structure and node attrib-
utes for better embedding learning even though some edges
are missing or unobserved. In other words, the co-occur-
rence of node contexts in both network structure and node
attributes provides information about which neighboring
nodes and their relative attributes are correlated in the con-
text. Comparing to existing studies [4], [16], [35], ASNE [16]
simply treats attributes as the model input to predict the
representation of a node. Though DANE [4] additionally
considers fusing preservation, and it results in higher opti-
mization costs and more complex architectures. ANRL [35]
leverages common neighbors derived from random walk
for topology preservation, but it does not model node attrib-
utes with the context co-occurrence structure. Therefore, we
think that the better modeling of the interplay between net-
work structure and node attributes can enhance the embed-
ding power.

To deal with these issues, in this paper, we develop a
novel ANE model, Context Co-occurrence-aware Attributed
Network Embedding (CoANE),1 to learn node embeddings in
attributed networks. Our CoANE is devised to make the
embeddings of nodes preserve three-fold information: (a)
the graph neighborhood of nodes from sampling contexts:
making nodes tightly interconnected have similar embed-
dings, (b) the context co-occurrences of nodes: driving the
embeddings to become closer if nodes whose direct and
indirect neighbors (i.e., contexts) share similar attributes,
and (c) the attributes of nodes: shaping the embeddings of
nodes to preserve their own attribute information. To real-
ize such ideas, CoANE is developed to have three novel
components. First, we generate the crucially structural con-
texts of nodes via random walk and treat them from the per-
spective of attributes. Second, by considering each attribute
as a channel, we adopt a 1-D convolutional layer with differ-
ent filters to model contexts with their corresponding

channels and summarize the features from the target’s con-
texts into the derived embedding. Third, for more effective
learning, we extend two contextual likelihood approaches
in the design of our objective function. One is the positive
graph likelihood whose goal is to make one- and high-order
structural context co-occurrences be better preserved in the
embeddings. The other is a contextually negative sampling,
which considers the co-occurrence frequency of the target
node and the negative samples to have a more effective neg-
ative sampling. Besides, we also perform the reconstruction
of attribute values based on the derived node embeddings
so that the semantics of nodes can be better preserved.

We summarize the contributions of this paper as follows.

� We propose a novel ANE model, CoANE, which is
able to better generate and model the representa-
tional contexts of the target node. The main idea of
CoANE is to capture the latent social circles of the
target node.

� Technically, a convolutional mechanism is applied to
distill positional information and latent social-circle
features from the attributed contexts, which cannot
be captured by existing solutions that use fixed-hop
neighborhood. Besides, the extended graph likeli-
hood, the contextually negative sampling method,
and the reconstruction of attributes are also pro-
posed for preserving higher-order structural rela-
tionships and nodes’ semantic knowledge.

� Experiments conducted on five real datasets in tasks
node classification, node clustering, and link predic-
tion show that CoANE can significantly and consis-
tently outperform state-of-the-art ANE methods.

This paper is organized as below. We discuss relevant
studies in Section 2, and present the technical details of
CoANE in Section 3. The experimental settings and results
are described in Section 4. Section 5 concludes this work.

2 RELATED WORK

We first introduce random walk-based methods that are
popularly adopted for network embedding to attributed
network embedding (ANE) in Section 2.1. Then, we discuss
well-known deep graph reconstruction approaches to ANE
in Section 2.2. We point out that in the literatures of network
embedding, the techniques of subgraph aggregation can
better incorporate network structure with node attributes in
Section 2.3. Last, in Section 2.4, we review the common opti-
mization designs for the ANE methods discussed from Sec-
tions 2.1, 2.2, and 2.3, and point out their insufficiencies.

2.1 RandomWalk-Based Approaches

To review the random walk-based methods for network
embedding, we first introduce DeepWalk [24], which gener-
ates fixed-length paths to have neighboring correlated nodes,
and then computes the embedding similarity between the cen-
ter node and a random-selected node inside/outside the win-
dow. Then, node2vec [7] devises the biased random walk to
balance the wide and deep neighbors. Both approaches can
transform the network structure to shortly and tightly inter-
connected sentence-like paths. Recent methods incorporate
deep learning with random-walk node sequences. NetRA [33]

1. The code of CoANE can be accessed via the following Github link:
https://github.com/ICHproject/CoANE/
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presents a generative adversarial training and produces node
embeddings by reconstructing random walk sequences and
discriminating positive and negative samples. However,
DeepWalk, node2vec, and NetRA are not designed for ANE.
Thus, STNE [17] utilizes seq2seq inmachine translation. It con-
siders the random walk sequence as a sentence and learns the
higher-order information. GraphRNA [11] conducts a random
walk on the bipartite network between nodes and attributes,
and then learns the features from the mixed context via
sequencemodeling for node classification. Besides, ANRL [35]
combines the skip-grammodel as an additional reconstruction
for node attributes’ autoencoder model with a jointly-learning
process. Although obtaining the promising performance, both
STNE and GraphRNA ignore the distribution of sequence
sampling and node context diversity. ANRL only applies the
distribution to the information preservation, and similar attrib-
utes in the context are not discussed. For this issue,wefind that
metapath2vec [3] can learn the node embeddings considering
various relational patterns of nodes and edges, but it requires
a heterogeneous network as the input graph. The strength of
metapath2vec is on modeling diverse types of relationships
between nodes, rather than incorporating node attributes.
Hence, the fine-grained and diverse semantics distributed
over contexts cannot be encoded into node embeddings.

2.2 Graph Reconstruction-Based Approaches

For deep learning applications, the autoencoder-based
methods get attention, in which the input is squeezed into
the embeddings and maintains the important features by
optimizing the error between the original input and the
decoder’s output. To extend to the ANE framework,
ASNE [16] learns the embeddings from different informa-
tion sources and feeds them into the multi-layer neural net-
work to distill high-level features. Then, DANE [4] adopts
both the multi-layer mapping and the complementary loss
to enforce two embeddings being as consistent as possible.
SCAN [19] further considers combining diverse knowledge,
including graph structure, node features, and node labels,
for ANE in a semi-supervised setting. Although autoen-
coder-based methods can produce promising better perfor-
mance, neither diverse contexts nor context importance is
encoded in the embedding learning. Besides, there is a
trade-off between performance and computation cost, espe-
cially for sparse features (e.g., the adjacency matrix), and
the multi-source information fusion. Recent studies argue
the incompatibility of the network embedding on euclidean
space for the structure of real-world networks. To this end,
DRNE [28] further incorporates the regular equivalence into
node embedding learning, which is proven to preserve
some typical node centrality measures.

2.3 Subgraph Aggregation-Based Approaches

To better incorporate structure and attribute, the technique of
subgraph aggregation is used in graph representation learn-
ing. The main idea is to utilize the neighboring subgraph to
represent each node, and to learn an aggregation function that
can fuse features of neighboring nodes with the target node.
To fulfill the subgraph aggregation technique, since the convo-
lutional mechanism has been a powerful detector of local fea-
tures, especially for relationship pattern recognition. Graph

Convolutional Network (GCN) [14] is proposed to adopt the
spectral graph convolution for semi-supervised node classifi-
cation. Its extended method Graph Attention Network
(GAT) [30] can further distinguish the importance of neigh-
bors. Nevertheless, we concentrate on node embedding learn-
ing in attributed networks without known labels. For the
unsupervised setting, Graph Auto-Encoder (GAE) [13] and
Variational Graph Auto-Encoder (VGAE) [13] revise the GCN
and learn ANE by adding the reconstructed objective of the
adjacency matrix, along with variational parameters for the
probability function. Furthermore, GraphSAGE [8] is devised
for learning both transductive and inductive node embeddings
in a graph. InGraphSAGE, node features, alongwith the graph
topology, are used to learn an embedding function that can be
applied to both existing and new-coming nodes in the graph.
GraphSage can be trained in either semi-supervised or unsu-
pervised manners. To enhance node embeddings’ quality and
robustness, ARGA/ARVGA [23] extends the GAE/VAGE by
the adversarial learning to generate more real negative sam-
ples formodel learning.

However, these unsupervised subgraph aggregation mod-
els cannot distinguish the contributions of different hops of
neighbors, and cannot capture the structural and attributed
patterns, such as social circles. Moreover, their objective func-
tions make embeddings fit the input adjacency matrix that
only considers first-order neighbors. The preservation of
higher-order information tends to bemissing.

2.4 Optimization Design

In optimizing node embedding learning, the general design
of loss function consists of two parts: (1) enhancing the simi-
larity of nodes that are close and correlated with each other,
and (2) using negative sampling to better separate irrelevant
nodes from one another. For the first part, encoding the
first-order relationship between nodes, such as GAE [13],
VGAE [13] and STNE [17], is the common-used way. How-
ever, it would result in being less capable of learning the
distributions of importance among different neighbors. Pre-
serving higher-order relationships between nodes by
DANE [4] can lead to better performance. Second, the nega-
tive sampling is to replace the high-cost computation of
softmax mapping for large-scale networks. However, pro-
ducing negative samples based on their appearance fre-
quency cannot well separate irrelevant nodes from each
other in the embedding space because nodes tend to have
similar negative samples. In this work, we pay more atten-
tion to the preservation of topological distribution of the
network by incorporating the weighted sampling probabil-
ity of context into negative sampling.

3 THE PROPOSED COANE MODEL

We first describe the notations. Given an attributed network
G ¼ ðV;E;XÞ, where V is the node set with n nodes
(jV j ¼ n), E is the adjacency matrix, in which Eij represents
the weight between vi 2 V and vj 2 V , and X 2 IRn�d is the
node-attribute matrix, where d is the number of attributes. In
the task of NE learning, we aim at generating a low dimen-
sional vector to represent each node in a network. As for ANE,
the goal is to preserve two properties from an attributed net-
work, structural proximity and semantic proximity. The former
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indicates that nodeswith similar structural neighborhood tend
to have similar embedding vectors. The latter aims at making
nodes sharing similar attributes possess similar embedding
vectors.We think such structural and semantic proximities are
correlated with one another in the form of social circles, and
should be simultaneously modeled in learning node embed-
dings. Here the social circles [15] refers to that there aremultiple
groups of friends that share similar attributes and have tight
connections to each other in a node’s ego network. The preser-
vation of structural and semantic proximity in CoANE is to
capture the latent social circles surrounded by each node in the
network. The framework of CoANE contains three parts
including generating structural contexts, modeling context co-
occurrence, and proximity preserving, as shown in Fig. 1. We first
find the contexts via random walk and combine them with
attributes for modeling their context co-occurrence features. In
the end, we compute the likelihood of preserving co-occur-
rence proximities in updating our model and deriving the
resulting embeddings. We elaborate details of our CoANE in
the following subsections.

3.1 Generating Structural Contexts

To capture the latent social circles, we start from generating
sequences of correlated nodes, i.e., structural contexts, via ran-
dom walk based on word2vec [21]. At each walking step, the
random walker starts at a given node vi 2 V and decides
which adjacent node to visit next by sampling with probabil-
ity pðviÞ ¼ EijP

j
Eij

. For each node as the starting one, we repeat

the sampling process until the length of walks is up to a pre-
defined value l. We can repeat this process r times for each
node, and then have rn sequences with length l. Then, we
compile each node’s context by scanning the sequences and
copying a specific fragment as a context. We set a fixed win-
dow (context) size c and align the midst of the window with
the starting node of sequences. A context contains the target
node’s previous and latter neighbors. Since the beginning
position of the scanning contains empty slots, i.e., the first half
of the window has no previous neighbors, we perform pad-
ding to fill in the empty slots like the image padding for
the convolutional neural network (CNN). Then, we move the

window towards the next positions in the sequence, and
adopt subsampling [21] to alleviate over-emphasizing the
nodes that high-frequently appear in the context.

The subsampling is to deal with the imbalance of occur-
rence frequency between rare and frequent nodes. To allevi-
ate the over-frequent occurrence for some nodes, those
nodes with higher frequency should be ruled out with
higher probabilities. That said, in subsampling, we increase
the possibility of being sampled for rare nodes, i.e., those
rarely appear in the generated node sequences so that the
quality of embeddings of rare nodes can be improved. The
subsampling probability is given by psubðvÞ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

t=fðvÞp
,

where t is a constant, and fðvÞ is the frequency of node v’s
appearance in the generated node sequences. The context of
the midst with the frequency fðvÞ higher than t would tend
to be discarded. In addition, we set psubðvÞ ¼ 1 if v is the
starting node for each sequence to ensure that each node
has at least one context neighbor.

The original skip-gram model [21] considers only the cen-
ter node and its neighbors in the sampled node sequence for
embedding learning. Since nodes outside the context window
are discarded, the original skip-gram needs to sample more
node sequences, which produces additional computational
cost. We think the entire context (i.e., the sampled node
sequence) can reflect the latent social circles that the center
node involves. Besides, the distribution of positional informa-
tion located from near-by to far-away neighbors with respect
to the center node can also be used to unfold the sizes of
different latent social circles. Hence, we fully exploit all of the
generated contexts, and accordingly model the context co-
occurrence to learn latent social circles of every node.

An illustration architecture of our random walk mecha-
nism is shown in the left dotted blocks of Fig. 1. In the ran-
dom walks block and contexts block, we demonstrate the
generated contexts for node 5, which are sampled from the
random walk node sequences. We can find the nodes adja-
cent to the node 5 must be the 1-hop, 2-hop, and higher-
order neighbors. In the following, we denote the collection
of contexts with the same central node v as a set contextðvÞ.
Because the generated context comes from the sampling
process, the size of each node v’s context set contextðvÞ

Fig. 1. The overview of CoANE. In this illustration, we generate r random walks with length l ¼ 7, as indicated by bold directed edges, for n ¼ 12
nodes. The contexts of the midst node 5 are extracted from random walks with size c ¼ 5. The attribute-context matrix R5� is fed into 1-D convolu-
tional layer and then 1-D pooling layer. The low-dimensional embedding is the output. For structural and semantic preserving, we update the model
parameters by an extended graph likelihood, the proposed contextually negative sampling, and the attribute preservation.
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tends to be different. This indicates that a node with more
diverse neighbors is surrounded by richer social circles.
Such a setting depicts that a neighbor that frequently occurs
in the context can possess similar traits (sharing common
neighbors or similar attributes) as the midst node. Hence,
we need to learn the specific patterns from the context to
distinguish features between nodes.

Note that although the undirected networks do not have
positional information, the distance between nodes in the
network can indicate the relationship strength between
nodes. The higher-order relationship (i.e., long-distance)
can help find the latent features. It could also introduce
noise if the random walk goes in the wrong way. Therefore,
we adopt the convolutional mechanism, in which the filters
with context-like length are used, to learn which parts in the
high-order relationships contribute more in depicting the
context of nodes. The positional information is captured by
weights learned from convolution filters that are applied to
generated contexts. Different nodes can have various distri-
butions of useful positional information. The positional
information can help better represent nodes because high-
order relationships in nodes’ context can be distinguished
by convolutional weights.

Modeling context co-occurrence can capture positional
information. We create the co-occurrence matrix D to repre-
sent the co-occurrences of nodes by counting the node
occurring the contexts of the node vi (i.e., Dij ¼ the counts
of vj in all contextðviÞ ). Since one-hop context neighbors of
a node can best represent that node, to enhance the preser-
vation of local structure, we also define 1-hop co-occurrence
D1, where D1

ij ¼ Dij if Eij > 0. These two co-occurrence
matrices help us preserve the graph information in the opti-
mization step.

3.2 Modeling Context Co-Occurrence

We learn the pattern from each node’s context and combine
the context features. We adopt the convolutional mecha-
nism, along with multiple filters, to extract the similar atti-
tudes and positional information of nodes in a context, and
then pool all context features to generate node embeddings.
Similar to the CNN model for the feature extraction of the
image: a cat image can be assembled by several small matri-
ces depicting a long tail, a furry body, and round pupils.
We can imagine such the context set of the target node is a
picture consisting of specific features from their nodes’
attributes and topological neighbors. Since the diversity of
contexts for the target needs to be encoded, we need a
multi-view model to recognize and extract a variety of pat-
terns of “pixels” in different contexts.

The idea of modeling context co-occurrence is to capture
the latent social circles surrounded by each node in the net-
work. The social circles mean that in a social network, the
neighborhood (e.g., friends and friends of friends) of a user
tends to contain multiple neighboring subsets, in which
nodes in each subset are tightly connected with one another
and share similar attributes. Each neighboring subset is con-
sidered as a social circle. For example, in reality, each social
circle (i.e., neighboring subset) can be “basketball club”,
“family”, and “labmates.” The convolutional mechanism
that learns the combination between graph structure and

context attributes can model the latent social circles through
a variety of convolutional filters. Since the attributes of
nodes further away from the midst in the context are less
correlated with the target node, we learn different weights
by wider convolutional filters to adjust the contribution of
different positional information in the context.

The mathematical details of modeling these contexts are
depicted as follows. First, we represent each context for the
same central node in the form of the matrix. For every node in
the context, we put and align their attributes of these context
nodes together according to their order in the context. An
attribute-context matrix Rvi 2 IRc�d for the ith context with
midst node v can be derived. We use all the attribute-context
matrices involved by the same midst v to distill its features,
where each matrix can be viewed as the source of a feature.
Specifically, the attribute-context matrices corresponding to
the samemidst v can be concatenated vertically as a large attri-
bute-context matrix Rv 2 IRc0�d, where c0 ¼ c � jcontextðvÞj. Its
attributes in the second dimension of the matrix are indepen-
dent. Hence, we can view each attribute as a channel, like the
RGB color values of an image, to depict the specific pattern
between network structure and attributes. Hence, the matrix
can be squeezed along the second dimension as a sequence
with d channels with its features. The summarized matrix
from these contexts has become a fixed form, which is exactly
compatible with the input form of the convolutional neural
network in euclidean space. Since a sequence of attribute-con-
text matrices is corresponding to contexts per midst node,
then we can directly adapt the 1-dimension convolutional neural
network (1-D CNN) to learn the similar attributes of nodes at
different positions for each context. Note that we do not con-
sider the overlapping of the receptive region because each
context individually represents the target node. We let the fil-
ter of CNN scan the region in the length of context instead of
the overlapping scan. In other words, the setting of our 1-D
CNNmodel includes: the number of input channels (attribute
dimension) d, the number of output channel (embedding
dimension) d0, and the volume (receptive field size) ¼ c (con-
text size) with stride¼ c so that each movement of the filter is
equal to the length of context as an unit. That is, the model fil-
ters the attribute-context matrix fxv�c0 ; . . . ; xv; . . . ; xvc0 g for the
context fv�c0 ; . . . ; v; . . . ; vc0 g, where xv is the corresponding
attribute vector of node v and c0 ¼ ðc� 1Þ=2, and they are con-
volutionally summed by d0 filters to be a feature vector z 2
IRd0 . After having scanned all of the sequences, we can derive
a number of feature vectors for each node. The results of fea-
ture vectors are fed into a pooling layer, where we choose to
average the different number of diverse vectors (i.e., 1-D aver-
age pooling) from the samemidst as the final embedding vec-
tor. Such a process can be illustrated as Fig. 1 (Modeling
Context Co-Occurrence) and Fig. 2 (bottom). Finally, we for-
mulate the process of the 1-D convolutional layer as well as
the average pooling layer for node v, which can be respec-
tively represented as below. The convolutional part is given
by: r�vij ¼

P
Rvi �Qj, for i ¼ 1; 2; . . . ; jcontextðvÞj and j ¼

1; 2; . . . ; d0, where r�vij 2 IR is the ith context’s convolutional
value from the jth filter,Rvi 2 IRc�d is the ith attribute-context
matrix with midst node v, � is Hadamard product, and Qj 2
IRc�d is the parameter matrix of the jth filter. The pooling part
is given by: zv ¼ upoolR

�
v, where zv is the embedding vector of

node v, upool 2 IR1�jcontextðvÞj is 1-D average pooling operator,
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and R�
v 2 IRjcontextðvÞj�d0 is the collection of convolution results

from r�vij, i.e.,R
�
v ¼ fr�vijg.

Discussion. The proposed method can be further discussed
in comparisons of related studies. First, in Fig. 2, we present an
outline of CNN (top) and how CoANE utilizes the convolu-
tional mechanism (bottom). Though euclidean’s input of CNN
is not generally compatible with network data, we can use
attribute-context matrices in a similar configuration as images
so that CNN can be applied. CNN can recognize a cat picture
via some filters to score andmine its tail and pupils. Similarly,
CoANE can distinguish neighboring nodes via learning latent
social circles, like “baseball team” and “colleague”, using the
various filters that learn higher weights on the correlated
attributes like “favorite sport” and “job.”

Second, compared to the state-of-the-arts GAE [13] and
VGAE [13] that only uses fixed neighborhood in embedding
learning, CoANE more emphasizes the learning in the spe-
cific patterns of similar attributes and positional informa-
tion in the context. Hence, CoANE tends to incorporate
more precise information from network structure and
attributes, which is more capable of detecting various situa-
tions like one or multiple latent social circles (e.g., some
friends likes baseball while another set of neighbors are col-
leagues who like jazz music).

3.3 Information Preservation and Objective
Function

While the network structure and node attributes have been
encoded by the proposed attribute-context convolutional
mechanism, now we present how to design the learning
objective so that the derived embedding vectors can have
structural and semantic preserving in the view of the con-
text. The design of objective function can be divided into
three parts: Positive Graph Likelihood, Contextually Nega-
tive Sampling, and Attribute Preservation. The first part is
to preserve co-occurrence matrices D and D1 while the sec-
ond is to make nodes tightly interconnected and overlapped
with one another in terms of attributes that have similar

embedding vectors. The third is to preserve node semantics
by reconstructing the original attributes.

3.3.1 Positive Graph Likelihood

We take advantage of the idea of autoencoder that reconstructs
features between input and output to impose the network
structure into the embedding vectors.We extend the graph like-
lihood [1] to reconstruct a new co-occurrence matrix D0 by
embedding vectors based on matrix factorization, and the aim
is to minimize a reconstruction loss between D0 and D (and
D1). Let the embedding matrix be Z, and Z ¼ ½LjR�, where
L;R 2 IRn�d0

2 are the left embedding and right embedding. The
graph likelihood can be defined as follows:

Y

vi;vj2V
sðLT

i RjÞDijsð1� LT
i RjÞIðEij¼0Þ; (1)

where sðxÞ ¼ ð1þ expð�xÞÞ�1, I is the indicator function, Li

is the ith row of L and Rj is the jth row of R. The idea is to
use embedding vectors to generate the co-occurrence
matrix. An embedding learning can preserve more about
the network if it can lead to high graph likelihood in the
reconstruction of co-occurrence matrixD.

However, the original graph likelihoodneeds to enumerate
pairs of nodes (leading to high computation cost) and is not
able to precisely emphasize on real edges of the network. We
leverage only the positively relational term and avoid sparser
and higher cost negative term, and also strengthen the graph
likelihood of one-hop nodes by addingD1.

The adjusted graph likelihood Lpos can be rewritten in the
form of negative log-likelihood as below:

Lpos ¼ �
X

vi2V

X

vj2V;i 6¼j

~DijlogðsðLT
i RjÞÞ; (2)

where ~D ¼ DN þD1, andDN is the normalizedD.
Note that the first-order (one-hop) neighbors should be

more emphasized in learning node embeddings. This idea
comes from random walk with restart (RWR) [27], i.e., per-
sonalized PageRank [22]. Although one-hop neighbors
already have higher arriving probability values, the restart-
ing probability in RWR is used to give one-hop neighbors
much higher arriving probability values. The underlying
intuition is that one-hop neighbors can directly represent
the target node. Hence, we need to pay more attention to
them by adding D1 to strengthen the graph likelihood. In
addition, to further emphasize the contribution of one-hop
neighbors in graph likelihood, we choose to use DN þD1,
rather than the normalization of DþD1. Adding D1 to the
normalized D will give one-hop neighbors higher impor-
tance in learning node embeddings.

Furthermore, we think that the extremely small values in
~Dij could be noise when the graph is sparse.Wewant to lower
down the effect of noisy structural information, and aim at pre-
serving the most significant positive neighbors for each node.
We consider the top-kp co-occurrence neighbors scored by ~Dij.
Specifically, for each node vi, we compute LT

i RjÞ for only j 2
top-kpð ~Dijjj ¼ 1; . . . ; nÞ. We determine the number of signifi-
cant positive neighbors kp by kp ¼ max

i¼1;...;n
ðjcontextðviÞjÞ, where

the jcontextðviÞj is the number of the sampled context nodes
for vi. We can treat kp as a kind of latent neighborhood size.

Fig. 2. The differences of convolution between CNN and CoANE. After
converting the attributed network into a set of attribute-context matrices,
each matrix can be viewed as a segment of photo with certain features
that we perform convolution through multiple filters.
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With the preservation of top-kp significant neighbors, our loss
function is able to not only pay more attention to preserve
strong connections, but also better alleviate the impact of noisy
neighborhood, which especially appears in sparse graphs that
result in more less-frequent neighbors sampled by random
walks.

3.3.2 Contextually Negative Sampling

In learning node embeddings, the basic idea is to make corre-
lated nodes close in the embedding space. To better separate
correlated and irrelevant nodes considering network struc-
ture and node attributes, we develop an efficient and effective
contextually negative sampling extended from negative sam-
plingmethods inword2vec [21] andAllVec [32]. Inword2vec,
the method is to select a small number of dissimilar samples
and compute the loss using their logistic similarity by inner
product. AllVec [32] considers all nodes out of the neighbor-
hoods of the target word as the negative samples, and com-
pute loss by square of inner product similarity. In addition to
combiningword2vec andAllVec, we further consider the con-
textual frequency of the target node and the negative samples
so that the importance of negative samples can bemodeled.

We develop and expect our contextually negative sam-
pling can push the embeddings of dissimilar nodes in both
the network structure and node attributes to be away from
each other according to the contextual frequency. Our nega-
tively relational loss Lneg for target node vi is given by:

LnegðviÞ ¼
Xk

j¼1

Evj	PV �ðviÞ ðaðz
T
vi
zvjÞ2Þ; (3)

where k is number of negative samples, the contextual noise

distribution PV ðvÞ is defined by jcontextðvÞjP
v2V jcontextðvÞj for any node

set V , V �ðvÞ ¼ fv0 2 V jv0 62 contextðvÞg is the set of nodes

occurring out of the context of node v, and a is a controlling

constant deciding the strength of negative loss.
In detail, the negative loss Lneg consists of two parts: the

similarity between embedding vectors and the target-negative
co-occurrence probability for negative sampling. For the simi-
larity, we utilize the square inner product similarity that is the
same as existing NE methods and emphasizes the magnitude
of similarity. Second, we aim at selecting the most significant
negative samples because they needmore power to be pushed
away in the embedding space. We think the volume of a
node’s generated contexts is related to its main representation
in the graph as well as a domination in a cluster. Therefore,
we choose a node as an appropriate candidate for negative
samples if its contexts cover the larger region (i.e., more con-
texts) in the network and have a lower correlationwith the tar-
get node. That said, we sample nodes based on the contextual
probability derived by its co-occurrence frequency of the con-
texts. The first k nodes sampled from V �ðviÞ are the more
informative negative ones and considered as the negative
samples for the target node vi. To deal with the high sampling
cost when V � for each node has a diverse composition, we
devise pre-sampling and batch-sampling to obtain negative
nodes. For the pre-sampling, first, we offline sample the nodes
more than k, respecting to the contextual probability PV ðvÞ as
the negative sets. Then we select the first k samples out of the

contexts of target node vi as negative samples. For batch-sam-
pling, we consider nodes in the batch for negative sampling
during training. This can avoid too much probability compu-
tation and reduce the times of comparisons between nodes.
The pre-sampling can reduce the training cost due to selecting
negative targets before training. The batch-sampling only
needs to handle nodes in each batch.

3.3.3 Attribute Preservation

In addition to encoding structural information, we also aim
at preserving semantic information based on node features,
i.e., attribute values, in the process of embedding learning.
We utilize a multi-layer perceptron (MLP) decoder to recon-
struct node features from the derived node embeddings.
That said, we can obtain the reconstructed attributes X̂vi ¼
MLP ðzviÞ, where MLP is constructed by stacking two hid-
den layers with the ReLU non-linear activation function.
The preservation loss is given as follows:

Latt ¼ gMSEðX̂;XÞ; (4)

where MSE is mean square error, X̂ denote the recon-
structed attribute values, g is the hyperparameter that con-
trols the importance of the reconstruction effect.

3.3.4 Model Optimization

The final objective function Lobj of CoANE is given by
Eq. (5), which combines the positive graph likelihood
Eq. (2), the contextual negative sampling Eq. (3), and the
attribute preservation Eq. (4). In the equation, the positive
part ensures the preservation of structural and semantic
proximities while the negative part pushes dissimilar ones
away from each other and avoids overfitting

Lobj ¼ Lpos þ
X

vi2V
LnegðviÞ þ Latt: (5)

We use batch gradient descent to optimize the parameters
in Lobj for the parameters of filters in our model, which
nodes are randomly partitioned into several batches and
make their corresponding embeddings update each epoch.

The overall CoANE algorithm is outlined in Algorithm 1.
After the pre-processing phase, we can obtain each node’s
contexts contextðvÞ and two matrices D and D1. Then we
start the training phase and initialize both model parame-
ters and embedding vectors of all nodes using Xavier uni-
formly initialization [5]. At each training iteration, we apply
batch updating, which further consists of Embedding
Updating step and Loss Updating step, for nB nodes of VnB

sampled from V without replacement. That is, we randomly
split V into a set of batches VB with size nB by the function
RandomlySplitBatch, and perform updating procedures for
each batch VnB sampled from VB.

For the sampled nodes, we first update their embeddings
by following our convolutional process, and then the loss is
calculated for updating model parameters. We expect that fil-
ters of the model are updated by contexts and are kept
improved in generating embeddings. The whole updating
process repeats until the convergence of Lobj or the maximum
step is achieved. Last, we need to refresh all embeddings the
same as EmbeddingUpdating step.
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Algorithm 1. CoANE Algorithm

Input: G ¼ ðV;E;XÞ, repeat r, walk length l, scan probability
pðvÞ, context length c, maximum epoch Nmax, number of train-
ing nodes nB and number of negative samples k
Parameter: parameters of filtersQ
Output: node embedding Z
#Pre-processing phase
for all node v in V do
contextðvÞ = RandomWalkProcess(V , E), pðvÞ, c, r, l)

Construct D, D1 and negative samples Vneg and initialize Z
andQ
#Training phase
for n ¼ 1 toNmax do
VB ¼ RandomlySplitBatchðV , nB)
for VnB in VB do
fRvgVnB = AttributeConcat(fcontextðvÞgVnB ,X)

Update Z by fzvgVnB = CNN(Q, fRvgVnB , d
0)

Compute LposðZ;D;D1Þ # Section 3.3.1
Compute LnegðZ; Vneg; kÞ # Section 3.3.3
Compute LattðMLP ðZÞ;XÞ # Section 3.3.4
LobjðVnBÞ ¼ Lpos þ Lneg þ Latt

UpdateQ by GradientDescent(LobjðVnBÞ)
Renew zv for all nodes V
return Z

Complexity Analysis. The time complexity relies on three
parts: the convolutional mechanism with filters, the computa-
tion of co-occurrencematrices between contexts and attributes,
and the attribute reconstruction for its preservation. The time
complexity of the first part is Oðd � d0 � cÞ, where the context
size c is extremely smaller than the attribute dimension d (i.e.,
c 
 d). This part is less than the state-of-the-art ANE model
DANE (Oðd � d0 � l)) [4], where l is the number of parameters
in the hidden layer and usually larger than embedding dimen-
sion d0. Second, for the co-occurrence matrices, since matrices
are sparse, we use sparse data structure and operation. So, the
complexity isOðn � d0Þ, where n ¼ jV j is the number of nodes.
Such complexity is also less thanDANE that needsmulti-prox-
imity computation Oðn2Þ. We also leave the memory-efficient
extensions via our batch updating. Then the complexity
becomes OðnB � d0Þ (i.e., nB 
 n) for each sub-epoch. Third,
our attribute reconstruction is similar to DANE; however, the
actual computation of DANE requires encoding, decoding,
and multiple loss functions to capture structure and attribute
information. Our CoANE only utilizes an attribute decoder for
attribute preservation,which is a shallow structure, comparing
to the deeper architecture of DANE.

4 EXPERIMENTS

4.1 Experiment Settings

Datasets. We employ five publicly available attributed net-
work datasets, including Cora, Citeseer, WebKB, Pubmed,2

and Flickr [9] , for the experiments. The statistics of such five
datasets are presented in Table 1. Each node is associatedwith
a list of attributes and one class label. The class label is consid-
ered as the ground truth in the task of node label classification
and node clustering. Note that since WebKB contains four

small networks, we run the experiments separately, and
report the average score.

Competing Methods. We consider well-known NE/ANE
methods for performance comparison. The first two are com-
monly-usedplainNEmethods that consider no attributes: ran-
dom-walk-based approaches node2vec [7] (with parameters
p ¼ q ¼ 1) and LINE [26] that preserves second-order graph
proximity. The next three are state-of-the-art subgraph-aggre-
gation-based ANE methods, including GAE/VGAE [13] with
2 layers (256-128) and GraphSAGE [8] with the mean aggrega-
tion. The following two are state-of-the-art graph-reconstruc-
tion-based ANE methods, including DANE [4] 3 with 2 layers
(128-64), and ASNE [16]. For the context-modeling-based
approach, we consider STNE [17], in which the layer sizes of
encoder and decoder are all 64.4 Our CoANE is also a context-
based approach like STNE. Last, CoANE is further compared
with two recent state-of-the-art approaches ANRL [35] and
ARGA/ARVGA [23] with layers (256-128) and discriminator
(128-512) that follow the settings mentioned in the original
paper. For node2vec, DANE, and ANRL, we set the parame-
ters for the random walk: the window size ¼ 10, the walk
length ¼ 80, and the number of walks r ¼ 10. To have a fair
comparison in generating low-dimensional node embeddings,
the dimension of node embedding vector is set d0 ¼ 128 for all
methods. For CoANE, we set the number of walks r ¼ 1, the
walk length ¼ 80, the scan parameter t ¼ 10�5, and the num-
ber of negative samples k ¼ 20. Besides, we consider a 2-layer
multi-layer perceptron MLP with ReLU non-linear mapping
for attribute preservation, and we choose Adam optimizer
with learning rate¼ 0:001 [12].

On the tuning of CoANE hyperparameters, the negative
loss controller a in Eq. (3), the context window size c, and the
attribute preservation controller g in Eq. (4) are tuned by the
validation set with ranges: a 2 ½1e-5, 1e-1�, c 2 ½3; 5; 7; 9; 11�
and g 2 ½1e3, 1e7�, respectively. Besides, we apply pre-sam-
pling to obtain negative samples in Eqs. (2) and (3) for the
denser graphs (i.e., WebKB and Flickr), and apply batch-sam-
pling in Eqs. (2) and (3) for the sparser graphs (i.e., Cora, Cite-
seer, and Pubmed).

TABLE 1
Summary of the Adopted Datasets

Dataset #nodes #Attributes #edges density #labels

Cora 2708 1433 5278 0.0014 7

Citeseer 3312 3703 4660 0.0008 6

Pubmed 19717 500 44327 0.0002 3

WebKB-Cornell 195 1703 286 0.0151 5
WebKB-Texas 187 1703 298 0.0171 5
WebKB-Washington 230 1703 417 0.0158 5
WebKB-Wisconsin 265 1703 479 0.0137 5

Flickr 7575 12047 239738 0.0084 9

2. Datasets for Cora, Citeseer, WebKB, and Pubmed available via
https://linqs.soe.ucsc.edu/data

3. To have fair comparison, we exclude the pre-training part in
DANE source code because the pre-training part is never mentioned in
the paper and all of the competing methods (including our CoANE) do
not consider pre-training. That said, we faithfully utilize the end-to-end
training of DANE as one of our competing methods.

4. All settings of encoder and decoder and the generation of contexts
follow the original STNE paper.
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4.2 Main Results

Node Label Classification. For node classification, we randomly
select training and testing samples by varying the percentage
of the training set in 5, 20, and 50 percent, and employ one-ver-
sus-rest logistic regression classifier with L2 regularization (by
following the common-used settings [7]). We utilize Macro-F1
andMicro-F1 as the evaluationmetrics, in which higher scores
indicate better performance. The results are exhibited in
Tables 2 and 3. It can be clearly observed that CoANE consis-
tently leads to the best performance among 11 competing
methods across five datasets and two metrics. The improve-
ment of CoANE also keeps stable with various training per-
centages. Such results prove the usefulness of modeling
context co-occurrence (i.e., latent social circles), which is not
considered in baselines. Typical models node2vec, ASNE,
LINE, and STNE cannot produce higher scores as they cannot
well depict mutually-correlated nodes by distinguishing the
contribution of links. The autoencoder inDANE is hard to cap-
ture the correlation between node attributes and graph struc-
ture, so it cannot keep competing scores. Besides, GAE, VGAE,
GraphSAGE, and ANRL consider neighborhood aggregation
that preserves the local connectivity surrounded each node.
Therefore, their scores are higher than other methods, and are
closer to our CoANE. However, the discriminator adopted by
ARGA and ARVGA built upon GAE/VGAE-based models
can improve the performance, but make scores a bit unstable.
These outstanding performances of CoANE also demonstrates
the effectiveness of its three-way objective.

Node Clustering. We also conduct experiments to examine
whether the embeddings generated by CoANE can produce
effective node clustering. We employ K-means algorithm,
alongwith the embedding vectors of nodes, to perform cluster-
ing. The number K of clusters is given by the number of
ground-truth labels. The normalized mutual information
(NMI) is used as the evaluation metric. Higher NMI scores
imply better performance. Nodes with the same labels are
treated as clusters. The results are summarized in Table 4
(right). Additional results on four networks inWebKB data are
presented in Table 5.We can apparently find that the proposed
CoANE significantly outperforms state-of-the-art methods
across five datasets and four networks for WebKB dataset. We

can find that the competing methods have lower and unstable
scores in all datasets. It implies thatmodeling attribute-context
matrices of specific contexts can better depict the representa-
tional features for the target node, which cannot be well cap-
tured by node2vec, GAE, VGAE, GraphSAGE, and ANRL.
Besides, LINE and ASNE that model lower-order neighbors
are hard to distill deeper relationships among nodes. STNE
only preserves local features and is hard to encode high-order
neighborhoods that can be organized as latent social circles.
Moreover, although ARGA and ARVGA further train the dis-
criminators to enhance the preservation of graph topology,
their models cannot well capture the meaningful neighbor-
hood that is composed by both graph structure and node
features.

Link Prediction. For each dataset, we randomly choose 70,
10, and 20 percent edges as the training, validation, and test-
ing sets, respectively. While training the link prediction
model, we randomly sample the same number of non-existing
links as negative instances, and ensure the negative instances
are not replicated in both sets. Thenwe employ logistic regres-
sion as the classifier. We follow the settings of node2vec [7]:
using the Hadamard product of embedding vectors to gener-
ate the feature vector of each node pair. The area under the
ROC curve (AUC) is utilized as the evaluation metric. The
results are shown in Table 4 (left).We can find that the embed-
dings generated by CoANE outperform those generated by
most of the competing methods across five datasets. Such
promising results exhibit the effectiveness of modeling a
more precise attribute-context correlation by the proposed
context generator and convolutionalmechanism. That is, com-
peting methods via lower-order proximities (i.e., LINE and
ASNE) are obviously not able to distinguish loosely-con-
nected nodes. node2vec cannot incorporate node attributes
into embedding learning. Besides, STNE preserves the first-
order neighbors and requires more dimensions to encode
higher-order latent correlation between nodes, which results
in worse performance. Since GAE and VGAE have better
information aggregation between network structure and
node attributes, they produce higher scores than GraphSAGE
and DANE. The discriminator in ARGA/ARVGA and the
joint structure-attribute modeling in ANRL make them have

TABLE 2
Macro and Micro F1 Scores for Node Label Classification of Cora, Citeseer, and Pubmed Datasets

Dataset Cora Citeseer Pubmed

Training ratio 5% 20% 50% 5% 20% 50% 5% 20% 50% 5% 20% 50% 5% 20% 50% 5% 20% 50%

Method Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

node2vec 0.663 0.714 0.750 0.627 0.677 0.734 0.437 0.522 0.555 0.375 0.461 0.487 0.760 0.773 0.776 0.739 0.754 0.759
LINE 0.306 0.338 0.363 0.093 0.179 0.243 0.216 0.238 0.256 0.115 0.181 0.208 0.413 0.433 0.441 0.319 0.332 0.333
GAE 0.737 0.771 0.786 0.714 0.744 0.770 0.552 0.577 0.585 0.471 0.501 0.500 0.751 0.764 0.771 0.749 0.761 0.768
VGAE 0.669 0.782 0.817 0.649 0.762 0.807 0.506 0.645 0.684 0.441 0.585 0.620 0.819 0.826 0.829 0.812 0.820 0.824
GraphSAGE 0.622 0.652 0.657 0.520 0.565 0.592 0.608 0.642 0.653 0.526 0.567 0.575 0.645 0.651 0.654 0.620 0.625 0.630
DANE 0.309 0.366 0.451 0.086 0.189 0.316 0.208 0.281 0.414 0.057 0.155 0.294 0.697 0.759 0.786 0.701 0.760 0.787
ASNE 0.353 0.395 0.428 0.178 0.280 0.338 0.234 0.269 0.310 0.155 0.221 0.258 0.676 0.697 0.703 0.663 0.686 0.693
STNE 0.488 0.624 0.673 0.398 0.560 0.638 0.319 0.437 0.488 0.248 0.377 0.417 0.546 0.575 0.583 0.470 0.517 0.534
ARGA 0.477 0.784 0.808 0.407 0.761 0.797 0.312 0.639 0.675 0.250 0.583 0.605 0.407 0.673 0.680 0.306 0.678 0.685
ARVGA 0.529 0.808 0.821 0.474 0.783 0.812 0.341 0.721 0.736 0.280 0.647 0.660 0.400 0.762 0.781 0.221 0.754 0.775
ANRL 0.673 0.747 0.758 0.622 0.709 0.732 0.696 0.735 0.746 0.609 0.679 0.684 0.707 0.742 0.759 0.705 0.742 0.760

CoANE 0.767 0.818 0.840 0.737 0.787 0.824 0.723 0.744 0.759 0.628 0.680 0.696 0.825 0.842 0.851 0.816 0.836 0.847

We mark the rank-1 and rank-2 models in bold and underline, respectively, in the following tables.
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relatively better performance. Nevertheless, without the
learning of latent social circles, all competing methods cannot
achieve stable performance in all datasets. Our CoANE can
produce higherNMI scores inmost of the five datasets.

Summary. In summary, our CoANE can mostly outperform
eleven competing methods on three tasks across five datasets,
i.e., CoANE performs the best in 39 out of 40 cases.5 In the only
one case (1 out of 40 cases) that CoANE cannot work the best
(i.e., the link prediction task on Pubmed dataset), CoANE’s
performance is still quite close to the best competing methods.
We find that most competitive models have the neighborhood
aggregation mechanism (e.g., VGAE and ARVGA) because
generating embeddings by aggregating information from
neighbors can better fuse graph structure and node attributes.
The superiority of our CoANE comes from not only neighbor-
hood aggregation (by the convolutional mechanism), but the
finer-grained modeling of neighborhoods in terms of context
co-occurrences, i.e., the latent social circles. In other words, the
merit of CoANE mainly lies in the convolutional mechanism
that captures both intra-hop and inter-hop feature correlation,

and the comprehensive design of loss function to better pre-
serve structural and semantic knowledge in node embeddings.
In addition, CoANE leads to the best time efficiency while the
strong baselines VGAE andARGA requiremore training time.
Last, we have realized that CoANE cannot work the best for
predicting links in the graphwith extremely high sparsity (i.e.,
Pubmed whose density is 0.002). We think the reason is that
high sparsitymakes the latent social circles less evidential dur-
ing training.

4.3 Model Analysis

Embedding Visualization. To further present the embedding
results of the proposed CoANE, we visualize the node
representation using t-SNE [29]. The plots allow us to see
the global property of embeddings and understand whether
nodes with the same labels are close enough in the embed-
ding space. Note that due to the page limit, we only show
the results of three competing methods using Cora dataset.
The visualization is shown in Fig. 3, in which nodes are col-
ored according to their labels. It can be apparently found
that our CoANE can lead to more compact and well-sepa-
rated clusters than VAGE and ARVGA. Although ARNL
can also generate a clear separation of groups, our CoANE
can further attract those possessing the same labels to be

TABLE 3
Macro and Micro F1 Scores for Node Label Classification of WebKB, and Flickr Datasets

Dataset WebKB Flickr

Training ratio 5% 20% 50% 5% 20% 50% 5% 20% 50% 5% 20% 50%

Method Macro F1 Micro F1 Macro F1 Micro F1

node2vec 0.448 0.473 0.491 0.169 0.166 0.207 0.437 0.489 0.506 0.400 0.476 0.496
LINE 0.455 0.478 0.500 0.142 0.143 0.166 0.257 0.303 0.328 0.236 0.288 0.317
GAE 0.478 0.478 0.491 0.131 0.129 0.144 0.243 0.251 0.272 0.181 0.195 0.213
VGAE 0.449 0.490 0.530 0.204 0.220 0.270 0.287 0.312 0.347 0.234 0.274 0.314
GraphSAGE 0.483 0.522 0.563 0.183 0.202 0.254 0.145 0.158 0.170 0.098 0.123 0.142
DANE 0.472 0.483 0.511 0.146 0.148 0.182 0.160 0.205 0.233 0.135 0.195 0.228
ASNE 0.451 0.486 0.489 0.151 0.150 0.176 0.395 0.457 0.489 0.362 0.440 0.477
STNE 0.432 0.476 0.487 0.169 0.156 0.200 0.251 0.282 0.301 0.222 0.264 0.281
ARGA 0.434 0.483 0.528 0.152 0.192 0.254 0.155 0.189 0.213 0.131 0.168 0.201
ARVGA 0.431 0.514 0.559 0.166 0.226 0.286 0.159 0.109 0.128 0.095 0.022 0.043
ANRL 0.494 0.512 0.590 0.198 0.190 0.310 0.215 0.286 0.330 0.196 0.278 0.324

CoANE 0.553 0.597 0.683 0.268 0.296 0.396 0.482 0.544 0.589 0.436 0.518 0.573

TABLE 4
AUC Scores for Link Prediction (Left); NMI Scores for Node Clustering (Right)

Task Link Prediction Node Clustering

MethodnDataset Cora Citeseer Pubmed WebKB Flickr Cora Citeseer Pubmed WebKB Flickr

node2vec 0.896 0.901 0.927 0.684 0.748 0.367 0.149 0.273 0.058 0.165
LINE 0.632 0.626 0.754 0.664 0.648 0.052 0.005 0.003 0.074 0.088
GAE 0.921 0.934 0.947 0.507 0.903 0.374 0.198 0.228 0.007 0.109
VGAE 0.923 0.949 0.975 0.639 0.914 0.361 0.157 0.275 0.092 0.131
GraphSAGE 0.757 0.836 0.744 0.700 0.502 0.382 0.305 0.147 0.128 0.037
DANE 0.663 0.768 0.869 0.635 0.901 0.021 0.032 0.148 0.083 0.015
ASNE 0.571 0.586 0.792 0.448 0.848 0.073 0.005 0.165 0.078 0.111
STNE 0.846 0.885 0.880 0.670 0.913 0.207 0.068 0.038 0.069 0.081
ARGA 0.941 0.966 0.920 0.614 0.925 0.452 0.181 0.211 0.092 0.066
ARVGA 0.927 0.972 0.877 0.765 0.926 0.530 0.381 0.244 0.104 0.108
ANRL 0.871 0.965 0.769 0.752 0.601 0.391 0.407 0.099 0.132 0.014

CoANE 0.947 0.982 0.969 0.784 0.926 0.544 0.435 0.313 0.180 0.211

5. 40 cases = 5 datasets � 8 task settings, in which 8 tasks consists of
3 training percentages (5, 20, 50 percent) for node label classification
with 2 metrics (Macro F1 and Micro F1), node clustering (NMI), and
link prediction (AUC).
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much closer and push those with different labels farther
away from each other. Such visualization also unveils why
CoANE can achieve better performance on both supervised
and unsupervised tasks.

Sensitivity Analysis. We analyze three hyperparameters
and training runtime in CoANE: (a) length of contexts, (b)
number of sampled sequences for random walk, and (c)
embedding dimension. For (a) and (b), we use WebKB and
compare with node2vec, and consider CoANE without the
attribute preservation for the analysis. For (c), we apply link
prediction for CoANE in various embedding dimensiona-
lies, and present the results of training and test sets.

(a) Length of contexts. The length of contexts represents
the size of neighbors. Larger sizes would result in high com-
putation cost. We show how the context length affects the
performance of link prediction (AUC) and node clustering
(NMI) in Fig. 4a. The stable results in both AUC and NMI
inform us that as the size of neighbors gets higher (i.e.,
larger context length), the performance can be kept and
does not change too much. The context length ¼ 3 may be
enough. We think the reason is that local information is
enough for link prediction and node clustering.

(b) Number of sampled sequences. In the random walk, the
number of sampled node sequences can affect the quality of
embeddings because fewer sampled sequences provide less
neighborhood information. By varying the number of sam-
pled sequences, as shown in Fig. 4b, we compare the perfor-
mance of link prediction (AUC) between node2vec and
CoANE using WebKB data. We can find that node2vec
needs at least two sampled sequences for achieving stable
performance. As for CoANE, requiring only one sampled
sequence can lead to earlier stable results.

(c)Dimension of embeddings.We show how the dimension of
embeddings affects the performance of link prediction. The
results shown in Fig. 4c demonstrate that a bit higher
dimensionality can lead to better performance in both training
and testing. The performance gets stable when the dimension-
ality is larger than 150, implying that most information on net-
work structure and node attributes is preserved.

Runtime Analysis. We present runtime analysis to under-
stand the time efficiency of competing methods using the
larger-scale Pubmed data. We conduct link prediction and
report the AUC scores (y-axis) in validation and testing, and
the training time in seconds for each epoch (x-axis) for CoANE
and two stronger competing methods, VGAE and ARGA. The

experiment is performed under Google Cloud Platformwhose
computing environment contains 8 vCPUwith 30 GBmemory
and 1 NVIDIA Tesla K80 (12 GB GDDR5). The results are
exhibited in Fig. 4d. We can clearly find that both VGAE and
ARGA require more training time to reach their converged
performance. It is because VGAE needs to indirectly aggregate
the higher-order context neighbors, which results in taking
more time to capture latent features.With the benefit of the dis-
criminator, ARGAgains the improvement of effectiveness and
efficiency. However, ARGA ignores the aggregation of related
neighbors and cannot find all latent links. CoANE leads to
high AUC scores with fast convergence (in only one epoch) in
terms of training time. It is because CoANE can extract more
representative contexts and utilize multiple filters that effi-
ciently can learn important features.

4.4 Discussion on CoANE Superiority

Experimental results show that CoANE leads to better and
stable performance than existing solutions. The fundamental
reason is the modeling of latent social circles by the proposed
multi-channel 1-D convolutional layer and the information
preservation in CoANE. It can be further divided into two
parts. First, CoANE can directly learn how subsets of neigh-
bors sharing similar attributes can shape the potential social
circles, which cannot be well captured by joint structure-attri-
bute learning-basedmodels. Second, CoANE can give differ-
ent distributions of weights to neighbors in the same hop
and different hops away from the target node, which cannot
be achieved by graph autoencoder-based models. Therefore,
CoANE allowsmore flexibility and providesmore deliberate
learning in trainable parameters for fine-grained social circle
modeling. The details are summarized as below.

Joint structure-attribute learning-based models, including
DANE [4], ASNE [16], and ANRL [35], first independently
encode respective information (either graph structure or node
attributes), then learn the correlation between structure and
attributes, and have two prediction tasks: preserve the target/
neighbor node(s) and reconstruct the attributes. However, in

TABLE 5
NMI for Clustering on WebKB Networks

MethodnDataset Cornell Texas Washington Wisconsin

node2vec 0.066 0.070 0.044 0.053
LINE 0.066 0.093 0.085 0.051
GAE 0.002 0.000 0.027 0.000
VGAE 0.086 0.081 0.103 0.096
GraphSAGE 0.105 0.157 0.140 0.111
DANE 0.067 0.087 0.118 0.061
ASNE 0.066 0.094 0.103 0.047
STNE 0.071 0.088 0.065 0.052
ARGA 0.086 0.093 0.099 0.091
ARVGA 0.091 0.094 0.128 0.101
ANRL 0.114 0.116 0.167 0.131

CoANE 0.191 0.200 0.181 0.148

Fig. 3. Visualizing various approaches for Cora data.
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this way, the direct interactions between graph structure and
node attributes cannot be captured. These methods simply
treat node attributes as independent input, instead of viewing
individual node attributes togetherwith graph neighborhood.
Therefore, they cannot learn the latent social circles of the target
node represented by how some neighbors possess similar
attributes.

Graph autoencoder models, including GAE/VGAE [13]
andARGA/ARVGA [23], can simultaneouslymodel network
structure and node attributes. Besides, ANRL [35] fuses the
technologies of jointly feature learning and graph aggregation
to preserve more information. However, their recursive scan-
ning of same-hop neighbors from the first to higher order can-
not capture the target node’s social circles (e.g., such as “CS
dept”, “family”, and “labmates”), which can span across dif-
ferent orders of neighbors. In otherwords, all neighbors in the
same order are treated as having equal importance. They can-
not distinguish same-hop neighbors from each other.

4.5 Discussion of Information Preserved by CoANE

We discuss the effectiveness with different designs of
CoANE by considering its three main components, includ-
ing (a) random walk, (b) convolutional mechanism, and (c)
objective function. We apply link prediction on Cora dataset
with the same settings as the previous evaluation, and
exhibit the performance in the corresponding cases.

(a)Randomwalk. We pay attention to the contribution of our
randomwalk and the original neighbor selection. First,we ran-
domly choose a node and show the coverage of its neighbors in
the network by depicting their paths on the t-SNE embedding
plots. In Fig. 5, the asterisk represents the chosen node, and

red lines are the real edges in the network. The paths in various
colors in Fig. 5a are contexts extracted by the random walk
with the length of window¼ 5, and the paths in blue in Fig. 5b
are the first two hop neighbors of the chosen node.We observe
both of their regions cover most of the orange points but reach
some nodes with other colors, especially for the randomwalk.
This problem could be solved by paying different attention to
each position in ourCoANEmodel because these uncorrelated
neighbors are located at the tail of the contexts. In addition, we
can also find that the main region of the random walk paths
(Fig. 5a) is more concentrating than the region of the first two
hop neighbors (Fig. 5b). Such an effect implies that our random
walk can help model better distinguish nodes that belong to
the same clusters. Second, we aim at presenting how these
two neighbor selection cases affect the performance of link pre-
diction. For fair and simplified comparison, we set the context
length ¼ 1 for the random walk case, and consider the first-
hop neighbors as another case for comparison. In addition, we
make the average number of generated contexts for two cases
as close as possible by repeatedly generating the contexts.
Eventually, we have 17.5 and 22 contexts per node for the cases
of randomwalk and the first-hop neighbors, respectively. The
results are displayed in Fig. 6a (solid lines). The increment is
obvious when using randomwalk contexts. Such a result indi-
cates that the choice of nodes’ neighbors is crucial for embed-
ding learning.

(b) Convolutional mechanism. We discuss the preservation
of positional information in the context by the learning layer
comparison and the filter weights study. First, we compare
the selection of feature extraction layer, including the con-
volution used by CoANE and the general mapping, i.e.,
fully connected (FC) layer. Applying the FC layer means
that each node’s features in the context are learned by the
same parameters. The results are shown in Fig. 6a (dashed
lines). The convolutional layer leads to better performance
and faster convergence, compared to the FC layer. The results
imply that the positional information of nodes in the context
should be considered. Since the neighborhood’s network
topology can to some extent be depicted by positional infor-
mation in the generated contexts, the convolution exactly
offers a more compatible mechanism to extract diverse posi-
tional properties. That is, CoANE can capture node features
and their relationships by using only one convolutional layer.

Furthermore,we exhibit theweights of filters to explain the
effectiveness of CNN. Althoughwe have no knowledge about
the attributes in the datasets, we expect that filters can give

Fig. 4. (a)-(c) Sensitivity analysis for (a) length of contexts, (b) number of sampled sequences for random walk, (c) embedding dimension. (d) Run-
time analysis.

Fig. 5. Analyzing the neighbor selection via Cora dataset.
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similarweights on specific attributes between the central node
and its neighbors (contexts). The learned weights of CNN fil-
ters are shown in Fig. 6b. In each subfigure, the x-axis repre-
sents the attribute dimensions, and the y-axis indicates the
positions of the central node and its context nodes. Colors are
used to display the weight values in the filters. To have a bet-
ter observation, we sort the attributes dimensions of filters by
the weights of central nodes. The top subfigure presents the
weights of filters for all dimensions while the bottom subfig-
ures show the weights in the bottom and the top 10 dimen-
sions. We can clearly find that the attribute weights of midst
nodes with higher weights (violet) are often accompanied by
higher weights of their neighbors. Such results imply that fil-
ters concentrate on similar attributes and the positional infor-
mation in the context. These findings become more obvious
when looking into the bottom and the top 10 dimensions.
Most neighbors of the midst have higher positive correlated
weights; otherwise, and the rest have weights close to zero
(cyan). In short, various filters are truly proficient in both
searching features of their targets and giving weights accord-
ing to the positions.

(c)Objective function. We present the contribution of model-
ing context co-occurrence by our likelihood functions. Eight
cases are discussed: (1) CoANE without positive graph likeli-
hood (WP) (i.e., set Lpos ¼ 0), (2) using the general skip-gram
model to replace positive graph likelihood (SG), i.e., simply
computing dot product similarity for pairs ofmidst and neigh-
bor, (3) CoANEwithout contextually negative sampling (WN)
(i.e., set Lneg ¼ 0), (4) using general negative sampling to
replace contextually negative sampling (NS), i.e., simply com-
puting dot product similarity for a fixed number of negative
samples via uniformly random selection, (5) combining skip-
grammodel with negative sampling to replace CoANE’s posi-
tive and negative loss (SGNS) (i.e., (2) + (4)), (6) CoANE using
the original network data without the attribute information
(WF), (7) CoANE without the attribute preservation (WAP),
and (8) the complete CoANE. We compare their performance
in training and testingAUCusing link prediction task.

The results are shown in Fig. 6c. It can be clearly found that
changing or removing any required components of CoANE
brings performance damage. The effectiveness of each compo-
nent of CoANE has been verified. By looking into the details,
theworseAUC scores ofWP and SG (i.e., without proper posi-
tive loss terms) prove the usefulness of our context co-occur-
rence matrices and positive graph likelihood. The worse AUC
scores of WN and NS (i.e., original settings of negative

sampling) imply that it is effective to have our contextually
negative sampling, and higher training scores and lower test-
ing scores may indicate the potential overfitting of WN and
NS. Contextually negative sampling can better deal with over-
fitting. In addition, the AUC scores of combining skip-gram
model and original negative sampling (SGNS) are not worse,
comparing to the complete CoANE. We think it is because the
model is still based on the proposed modeling of context co-
occurrence that effectively distills features fromnetwork struc-
ture and node attributes. Besides, the significant AUC differ-
ence between WF and the complete CoANE shows the
contribution of attributes in embedding learning and the pre-
diction task.

For WAP, removing attribute preservation makes the
model fit the training data well; nevertheless, some attributes
can still benefit the model learning and improve the perfor-
mance, as exhibited by the complete CoANE. We analyze the
capability of attribute preservation by changing the attribute
preservation controller g in Eq. (4) based on the same experi-
mental settings.Wedisplay the results in terms of AUC scores
by varying log ðgÞ in Fig. 6d. It can be found that the curve is
first increasing, and then goes down as the increment of
log ðgÞ. The reason is that much smaller attribute preservation
does not affect the model learning; however, larger g values
would greatly dominate the embedding learning, i.e., focus-
ing more on attribute preservation and weakening structure
learning. In the setting with log ðgÞ ¼ 5 (i.e., 1e5), the attribute
preservation canmake CoANE achieve better performance.

5 CONCLUSION

This paper proposes a novel context co-occurrence-aware
attributed network embedding, CoANE. The main idea is to
preserve three-fold information, the network structure, node
attributes, and distilling the proper convolution between net-
work structure and node attributes through specific contexts.
When applying the embeddings generated by CoANE, we
prove that the performance conducted on three essential net-
work analysis tasks, including link prediction, node label clas-
sification, and node clustering, can get significantly and
consistently boosted across five real datasets, comparing to
state-of-the-art competing methods. Such results clearly
exhibit the effectiveness of CoANE. A number of advanced
analyses on filters’ weights, parameter sensitivity, and model
contributions provide a robust experimental study, and the
results unfoldwhere the superiority of CoANE comes from.

Fig. 6. Analyzing each component in CoANE using Cora data.
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