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Dual Adversarial Variational Embedding for
Robust Recommendation
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Abstract—Robust recommendation aims at capturing true preference of users from noisy data, for which there are two lines of methods
have been proposed. One is based on noise injection, and the other is to adopt the generative model Variational Auto-encoder (VAE).
However, the existing works still face two challenges. First, the noise injection based methods often draw the noise from a fixed noise
distribution given in advance, while in real world, the noise distributions of different users and items may differ from each other due to
personal behaviors and item usage patterns. Second, the VAE based models are not expressive enough to capture the true preference
since VAE often yields an embedding space of a single modal, while in real world, user-item interactions usually exhibit multi-modality
on user preference distribution. In this paper, we propose a novel model called Dual Adversarial Variational Embedding (DAVE) for
robust recommendation, which can provide personalized noise reduction for different users and items, and capture the multi-modality
of the embedding space, by combining the advantages of VAE and adversarial training between the introduced auxiliary discriminators
and the variational inference networks. The extensive experiments conducted on real datasets verify the effectiveness of DAVE on

robust recommendation.

Index Terms—Robust Recommendation, Adversarial Variational Embedding, Adversarial Training

1 INTRODUCTION

ECOMMENDER systems have been attracting grow-
Ring interest of researchers due to their vital role
in various online applications, such as e-commerce and
social media. In recommender systems, recommendation
models are learned from historical interaction (feedback)
data which are often seen as noise-free by most of
the existing works. In big data era, however, data are
usually full of noise. For example, one click of a user
might be a random operation which cannot represent
the true preference of the user. Noisy data will cause
the recommendation models without robustness to weak
generalizability and inability to capture true preference
from data with even small perturbations [32].

Recently, a few methods have been proposed for ro-
bust recommendation, which roughly follow two lines.
One line of the existing works improves the robustness
of recommendation models by injecting extra noise to
training data or model parameters during training pro-
cess [9], [14], [30], [32], while the other line adopts a
generative process to learn powerful recommendation
models with noise tolerability [16], [25], [31]. However,
robust recommendation is still far from being well solved
partly due to the following challenges.

o Personalized Noise Reduction In the line of the
existing works that obtain robustness by injecting
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extra noise to training data or model parameters, the
added noise is often drawn from a fixed probability
distribution shared by different users [9], [14], [30],
[32], where the underlying assumption is that data
of different users have the same noise level. In real
world, however, the noise in data of different users
and items has different distribution, due to different
behaviors and item usage patterns. Therefore, as
part of personalization, robust recommendation is
expected to provide personalized noise reduction
with adaptability to different noise distributions.

Multimodal Distribution of Preference Inspired
by the success of Variational Auto-encoder (VAE)
in computer vision, one line of the existing works
on robust recommendation captures user preference
by latent embeddings generated from VAE based
models [1f], [15], [16], [25]. However, recent studies
show that VAE tends to yield a latent space with
a single modal that is not expressive enough to
capture the true posterior distribution of embed-
dings [19]. In the context of recommender systems,
user-item interactions often exhibit multi-modality
on user preference distribution, i.e., different users
have different preference distributions around dif-
ferent modes. For example, in music recommender
systems, users’ preferences to music styles can be
separated into multiple clusters each of which can
be viewed as a unique distribution, say, a Gaussian
distribution with its unique mean (a specific music
style) and variance. Such multi-modality means that
users’ preferences should be approximated with
multiple distributions rather than with only one
as the existing works did. Therefore, to improve
the robustness of the embedding learning for users
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and items, we need a model expressive enough to
capture the multi-modality of preference.

In this paper, to address the above challenges, we
propose a novel model called Dual Adversarial Varia-
tional Embedding (DAVE) for robust recommendation.
The main idea of DAVE is to adaptively capture the
different noise distributions of different users or items
and the multi-modality of preference with an inferred
distribution unique to a user or an item, using variational
inference combined with adversarial training. At first,
to provide personalized noise reduction for different
users and items, DAVE introduces two VAEs to infer
a unique latent distribution for each user and item in
a dual form, respectively, from which user and item
embeddings against noise can be drawn and then fed
into a neural collaborative filtering network [10] for
subsequent preference prediction. Here the advantages
are two-fold. The first advantage is that by the power
of variational inference, DAVE can adaptively generate
a unique embedding distribution for each user and
item for their personalized noise reduction, instead of
manually setting a fixed noise level. The second advan-
tage is that to enhance the robustness of embeddings,
the noise is modeled with the variance of the inferred
distributions, which can be viewed as corrupting the
latent space by learning the stochastic noise of user-
item interactions, unlike the traditional methods where
embeddings of users and items are essentially a point
estimation. In DAVE, the VAEs are trained jointly with
the subsequent neural collaborative filtering network,
where the objectives are minimizing the decoding error
of VAE and the prediction error of neural collaborative
filtering simultaneously.

To improve the expressiveness of DAVE for capturing
the preference multi-modality, inspired by the idea of
Adversarial Variational Bayes [19], we further introduce
two auxiliary discriminators together with the infer-
ence networks of the VAEs to form two Generative
Adversarial Networks (GAN), which can regularize the
learning of the inference networks of the VAEs for users
and items, respectively. Under the framework of GAN,
the discriminator, which estimates the probabilities of
sampling from the true distribution, and the generator,
which captures the underlying data distribution, are
jointly trained in an adversarial fashion. In DAVE, the
inference network of VAE plays the role of generator.
Unlike traditional VAE training where an explicit rep-
resentation of the posterior distribution is required for
the computation of the KL-divergence, the adversarial
training between the inference network and the auxil-
iary discriminator can approximate the KL-divergence
regularization for any complex posterior distributions,
without the need for explicitly representing the posterior
distribution with parametric expression. Such flexibility
enables DAVE to capture the multi-modality of user
preferences by inferring complex posterior distributions
that are multimodal and cannot be explicitly formulated.

The main contributions of this paper are summarized

as follows:

(1) We propose a novel model called Dual Adversarial
Variational Embedding (DAVE) for robust recom-
mendation, which can provide personalized noise
reduction for different users and items, and capture
the multi-modality of preference.

(2) For the personalized noise reduction, we introduce
two VAEs, which are jointly learned with a neural
collaborative filtering network, to infer a unique
embedding distribution for each user and item, re-
spectively. Due to the variational inference power of
VAE, the noise levels of different users or items can
be adaptively captured by their own distributions
from which robust embeddings can be drawn.

(3) To capture the multi-modality of preference, we in-
troduce two auxiliary discriminators for user and
item, respectively, to regularize the learning of the
inference networks via an adversarial training, which
endows DAVE with the flexibility to infer the pref-
erence distributions with multi-modality.

(4) We conduct extensive experiments on real world
datasets and the experimental results verify the ef-
fectiveness of the proposed model.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the preliminaries and formally de-
fine the target problem. We present the details of DAVE
in Section 3. In Section 4, we empirically evaluate the
performance of DAVE over real world datasets, verify
the robustness and expressiveness of DAVE, and analyze
the influence of hyper-parameters. At last, we briefly
review the related works in Section 5 and conclude in
Section 6.

2 PRELIMINARIES AND PROBLEM DEFINITION
2.1 Notation Definition

Let U be the set of N users, and V be the set of
M items. We define the user-item interaction matrix as
R € RY*M based on implicit feedbacks (e.g., clicking,
buying, or commenting an item), where R,, = 1 if the
interaction between user v € U and item v € V is
observed, otherwise R,, = 0. We associate each user
u € U with two vectors. One is the user interaction
vector u € {0,1}, which is the transpose of u-th row of
R, and the other is the user embedding x,, € R4, where
d is the dimensionality of user latent representation.
Similarly, each item v€V are also associated with two
vectors. One is the item interaction vector v € {0,1}%,
which corresponds to the v-th column of R, and the
other is the item embedding y, € R?%. The set of items
that a user u has interacted with is denoted by V4, i.e,,
Vi = {v|Ryv = 1}. Its complementary set is denoted by
Vy ie, Vy=V\V, = {v|R,, =0}, which is the set of
items that u has not interacted with.

2.2 Problem Definition

Given a user set U, an item set V, and the observed
interaction matrix R, our goal is to recommend to a
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Fig. 1. The architecture of DAVE.

TABLE 1

Notations
Symbol Description
u user interaction vector
v item interaction vector
Ty embedding of user u
Yo embedding of item v
u reconstructed user interaction vector
v reconstructed item interaction vector
pu(-) user prior
pv(-) item prior
qu(-lu) posterior of user embeddings
qv(-|v) posterior of item embeddings
gu(-|ew) distribution of reconstructed user interaction vectors
gv(-lyw) distribution of reconstructed item interaction vectors
Qu(-;®u)  user inference network with parameters @
Qv(:;Pv) item inference network with parameters ®
Dy(-;Wy)  user discriminator with parameters ¥y
Dy(-;Wy)  item discriminator with parameters Uy
Gu(-;©u) user probabilistic decoder with parameters ©y
Gy(;©y)  item probabilistic decoder with parameters Oy
€u auxiliary noise for user embedding
€ auxiliary noise for item embedding

specific user v € U an item v € V, with maximal
predicted }A%w. The predicted score ﬁm, is constrained
to the range [0, 1], which represents the probability of u
will interact with v.

3 THE PROPOSED METHOD

In this section, we first present the architecture of
the proposed Dural Adversarial Variational Embedding
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(DAVE) model, and then describe its optimization objec-
tive and learning in detail.

3.1 Architecture of DAVE

Figure I|shows the architecture of DAVE, where the main
notations are summarized in Table [l From the Vertical
view, we can see that DAVE comprises two dual parts
including the User Adversarial Embedding (UserAVE)
and the Item Adversarial Embedding (ItemAVE), which
respectively take a user interaction vector u and an item
interaction vector v as inputs, and generate the user em-
bedding x,, and the item embedding y,. Once the user
and item embeddings are prepared, DAVE will make the
rating prediction Ry by feeding the embeddings into a
neural collaborative filtering function F(x,,y,) which is
realized by an MLP network [10].

In Figure [1} the UserAVE consists of three parts, (1)
user inference network (Q,), which takes the user inter-
action vector (u) to generate the user embedding (x,,), (2)
user probabilistic decoder (G,), which reconstructs the
the user interaction vector (u) from the user embedding
(z,), and (3) the user discriminator (Dy) to help the user
inference network in (1) to generate more robust user
embedding.

In particular, UserAVE uses a variational inference
network Qy(u; ®,) with parameters ®, to infer a unique
posterior distribution gy(x,|u) of the latent represen-
tation for each user u, from which the embedding =z,
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of user u can be drawn out. The inference network
Qu(u; y) is trained jointly with the probabilistic decoder
Gu(xy; ©y) with parameters ©,, which reconstructs the
user interaction vector w as u with the probability
gu(ul|z,) that minimizes the reconstruction error. Due to
the merit of variational inference, UserVAE can capture
the different noise distributions of the interaction data
for different users by the variance of their unique poste-
rior distribution. Note that the dashed arrow represents
sampling auxiliary noise ¢, from the standard normal
distribution, which will be used for the reparameteriza-
tion trick [12], [23] to optimize the inference network.

As we have mentioned before, due to the nature of
VAE, the inferred posterior distributions gy (@, |u) for dif-
ferent users tend to lie around a single mode [12], which
might make the embedding spaces of different users in-
distinguishable from each other and consequently fail to
accurately capture the user personalized preference. To
improve the expressiveness of the user embeddings, we
further introduce an auxiliary discriminator Dy, (z,; ¥Vy)
with parameters ¥,, which together with the genera-
tor Qu(u; ®,) forms a Generative Adversarial Network
(GAN). The optimization objective of Dy (x,;¥y) is to
distinguish the user embeddings drawn from two dis-
tributions: the inferred posterior distribution ¢,(x,|u)
unique to each user, and a given prior distribution
pu(zy) ~ N(0,I) shared among different users. As we
will see in the experiments, the adversarial training
of the discriminator D, (x,;¥,) against the generator
Qu(u; ®y) can approximate the KL-divergence regular-
ization between any complex posterior distributions and
the prior distribution, which offers DAVE the flexibility
without the need to make an explicit assumption about
the posterior distribution, and enables DAVE to infer
complex posterior distributions that are multimodal and
cannot be formulated explicitly.

As the dual part, the structure of ItemAVE is similar
to that of UserAVE. Particularly, ItemAVE also gener-
ates the robust item embeddings y, via a VAE with
item interaction vector v as input, where the variational
inference network Qy(v;®,) with parameters ®,, the
probabilistic decoder Gy (y,;©y) with parameters Oy,
and the auxiliary noise variable ¢, are the counterparts
of Qu(u; ®y), Gy(zy; Oy), and €, in UserAVE. Again due
to the variational inference power, the item embeddings
will also benefit from the item posterior distribution
¢v(yv|v) unique to each item v, which makes them adapt-
able to the different noise distributions in interaction
data of different items. Similar to UserAVE, ItemAVE
introduces an auxiliary discriminator Dy(y,;¥y) with
parameters ¥,, of which the role is also to distinguish
the item embeddings drawn from each inferred unique
posterior distributions ¢,(y,|v) from those drawn from
a given prior distribution py(y,) ~ N(0,I). Similar to
UserAVE, the multi-modality of the inferred posterior
embedding distributions of different items can also be
captured due to the flexibility offered by the adversarial
training of the Dy (y,; ¥y) and Qy(v; ®y).

3.2 Objective Function

As UserAVE, ItemAVE, and the neural collaborative
filtering network F(x,,y,) will be jointly trained in
an end-to-end fashion, the overall objective function of
DAVE is defined as

L=Ly+Ly+ Ly, 1)

where Ly, Ly, and L; are the objective functions of
UserAVE, ItemAVE, and F(x,,y,), respectively, which
will be detailed in the following subsections.

3.2.1 Objective Function of UserAVE

As we have mentioned early, UserAVE consists of a VAE
and an auxiliary GAN, and therefore its optimization
objective is

Ly= LM+ L7, )

where £YAE and LD are the objective functions of VAE
and the auxiliary GAN in UserAVE, respectively.

Traditional objective function of VAE usually regu-
larizes the variational inference network @, using KL-
divergence, which cannot serve our purpose to learn
multimodal embedding space as it will cause the in-
ferred posterior distributions ¢, (z,|u) indistinguishable
for different u. Our overall idea to overcome this issue
is to instead regularize ), via an adversarial training
between it and the auxiliary discriminator D,. Due to
such adversarial regularization, the inferred posterior
distributions ¢, (z,|u) of different users can stay away
from each other, which benefits the learning of multi-
modal embedding space.

As the observed data are just the user interaction
vectors u, we will learn the parameters of VAE, ®, and
©y, by maximizing the log-likelihood logp(u), where
p(u) is the distribution of user interaction data. By
applying Variational Bayes and Jensen’s inequality [12]],
for a specific user v we have

logp(u) > ]Ea:urwqu(mu|u) [lOg gu<'u’|$u)]
— KL(qu(zu|w) || pu(zu)),

where the right side is the evidence lower bound (ELBO)
[3] also known as variational lower bound, and py(x,)
is the Gaussian prior of x,. In the ELBO, the variational
distribution ¢, (x,|u) is also a Gaussian distribution with
mean u, and variance o2, which are outputs of the
inference network ¢, (u; @), and g¢,(u|x,) is the recon-
struction probability dependent on the decoder G (©y).
In variational inference, maximizing the log-likelihood is
reduced to the maximization of ELBO over user set U,
ie.,

®)

EXAE(@ua o) = IEu~p(u) E:curvqu(acu\u) [log gu(u | z.,)]
- KL(Qu(mu ‘ u) H pu(wu)) .
4)

Note that the reconstruction probability g.(u | ,) im-
plicitly represents the negative reconstruction error [12],
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and therefore, maximizing its expectation is equivalent
to minimizing the expected reconstruction error.
As the KL-divergence is

Ingu(mu)]v @)

we can rewrite the objective function (4) as

EXAE(@Uv (bu) = Euwp(u)Emquu(mu\u) [log gu(u ‘ wu)

+ log pu(®y) — log Qu(wu|u)] .
(6)

When the variational posterior distribution g, (z,|u)
has explicit representation that is tractable like Gaus-
sian distribution, we can directly compute the objective
function for maximization. However, recent studies [11]],
[19], [27] show that if the VAE is optimized only accord-
ing to Equation (), the KL-divergence will make the
variational posterior distributions ¢, (z,|u) of different
users all close to the same prior p,(x,), which results
in inferior user embeddings that are not expressive
enough to capture the multi-modality of the prefer-
ence distributions of users. Therefore, to improve the
expressiveness of the variational inference network of
UserAVE, we assume gy (@, |u) is implicit and introduce
an auxiliary discriminator Dy (z,; ¥y) together with the
inference network Qu(u; ®,) as generator to form a GAN
to help the inference of the implicit posterior distribution
qu(xy|u). It is easy to define the objective function of the
discriminator as

LY(Vy) = Eupw)Ba, ~py(@.) 1080 (Dy(@; W)

+ EUNP(U)]Emu"“Iu(mulu) 1Og(1 - O-(Du(wlﬂ \Iju))7
@)

where o(-) is the sigmoid function. As we treat the
samples from the prior as true while ones from the
variational posterior as fake, it is easy to show that
when the generator Q,(u; ®,) is fixed (and equivalently,
qu(x, | u) is fixed), LY achieves its maximum at ¥}, such
that

Eg,~gu(@. |u) [log qu(xy|u) —

D (:Eu, ) Ingu(mu) log Qu(mu | u), (8)

where U represents the optimal parameters of the dis-
criminator [7]. Therefore, Equation @ can be further
rewritten as

LI (Oy, Py) = Eyp(u) By g (o u) [ 108 9u(u | 24)

+ Da(w; 3], ©

As we have mentioned before, the insight here is that
although the adversarial training between D, and Q)
will also cause the posterior distributions inferred by Q
to be close to the prior, which exactly approximates the
regularization that minimizes the KL-divergence of the
posterior distribution to the prior, it obviates the require-
ment to explicitly represent the posterior distribution.
This is in contrast with the existing VAE based models.
Such flexibility enables DAVE to infer any complex
posterior distributions that are multimodal and cannot
be formulated with a simple parametric expression, with

the result that the drawn user embeddings have chance
to stay far away from each other, which benefits the
capturing of diverse user preference distributions.

The user embeddings x, are generated by sampling
from ¢y(x,|u), which, however, makes the objective
functions not differentiable. Using the reparameteriza-
tion trick [12], we draw an auxiliary noise €, ~ N(0,I)
and instead generate the user embeddings by a compos-
ite function ¢y(u,€,) = ¢u(Qu(u; Py), €,). Then Equa-
tions (7) and (9) can be finally rewritten as follows:

) = Euwp(u)E:l:uN;Du(wu) log O'(Du(.’llu; \I/u))

(Pu(u, €4); Wy)),
(10)

L3,
+ Eynp(u)Ee,~a(0,1) log(1 — o (Dy

and

[’XAE(GLH CI)u) = Eu~p(u)Eeu~N(0,I) [1Og gu(u | (bu(u’ (:'u))

+ Dy(¢u(u, €.); ‘1’{'1)] .
(11)

In the experiments of this paper, we define the reparam-
eterization function as ¢y(u, €,) = py + 04 © €,, Where
© is element-wise product, p,, and o2 are the mean and
variance of q,(x,|u), respectively. Note that p, and o2
are outputs of the inference network Qy(u; ®,).

3.2.2 Objective Function of ItemAVE

As ItemAVE is the dual part of UserAVE, its objective
function can be similarly defined as

Ly =LA+ L7, (12)

where L£YAE and LD are the objective functions of
VAE and the auxiliary GAN in ItemAVE, respectively.
Through a similar derivation, £{Af and LY can be re-
spectively defined as follows:

) = Eypnp ) By, ~p(y,) 108 0 (Dy(yv; ¥y))

Dy(¢v(v, €); Uy))
(13)

LY
+ E‘l}r\/p(‘l})Eyquv(yu‘v) log(l - J(

and

EXAE<@V3(I)V) = vap( )Eeu~/\/ 0,I) [IOggV('U | ¢V(U76v))
+ Dy (¢v VU, €y a : ]7
(14)

where auxiliary noise €, ~ N(0,I) and ¥ is the op-
timal parameters of the discriminator Dy (y,; ¥y). The
reparameterization function is defined as ¢y(v,€,) =
1y + 0y, © €, where p, and o2 are the mean and
variance of ¢,(y,|v), respectively, which are outputs of

the inference network Qy(v; ®,) of ItemAVE.

3.2.3 Objective Function of Prediction

For a pair of user u and v, once their embeddings .,
and y, are generated, DAVE will predict a score R,
of v given by u, by feeding the embeddings into the



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 1 Learning DAVE.

Input:
User-item interaction matrix R, batchsize B, dimen-
sionality of embedding d.

Output:
DAVE parameters &, ®,, 0,0y, ¥, ¥y, Q.

1: Initialize the parameters.

2: repeat

3:  Sample a mini-batch {(u,v)} of size B.

4:  Fixing Qu, Gu, Qv, Gy, and F, generate the uer
embedding x, and the item embedding y, for
each pair (u,v) in the mini-batch by inference
networks @, and @, respectively.

5. For each u, sample a d-dimensional vectors !,
from user prior py(x,).

6: For each v, sample a d-dimensional vectors vy,
from item prior py(y,).

7. Update the parameters ¥, of D, with the gradient
of L£D(¥,) (Equation ), using {x,} as fake
examples and {x } as real examples.

8:  Update the parameters ¥, of Dy, using the gradi-
ent of £D(¥,) (Equation ), using {y,} as fake
examples and {y,} as real examples.

9:  Fixing D, and Dy, jointly update &, ®,,0,, 0Oy,
and Q, with the gradient of the sum of LYAF (Equa-
tion (1)), LYAE (Equation (14)), and £ (Equation
(16).

10: until convergence.

neural collaborative filtering function F(x,,y,) which
is implemented as the following MLP network [10]:

=ar1(Wr_i(.ai(Wi(xy © yy) +b1)...) + br_1)

huv
Eu’u = aL(WLhuv + bL)a

(15)

where L is the number of layers, W;, b;, a; (1 < i <
L) denote the weight matrix, bias vector, and activation
function of the i-th layer, respectively. In this paper, we
choose ReLU for the activation functions a; (1 < i <
L — 1) of the hidden layers, and Sigmoid function for
the activation function ar, of the output layer.

We reduce the score prediction to a binary classifi-
cation over implicit feedback matrix R, of which the
optimization objective can be defined as to maximize the
following log-likelihood function:

£f(Q) = Z Ruv log Euv + (1 - Ruv) 1Og(1 - fguv)v

ueU,veV
(16)

where Q@ = {W;,b;,1 < i < L} is the parameters that
need to be learned. It is easy to show that maximizing
the likelihood £¢(2) equivalently minimizes the classifi-
cation error.

3.3 Model Learning
DAVE will be trained with the following objective

max L, 17)
Dy, ®v,0u,0y, Wy, Uy, 02
where £ = LAE + £D 4+ LYAE + 2D 4 £,
To fulfill the adversarial training, the overall training
process consists of the following two alternate steps:

« Step 1: Fixing Qu, Gy, Qv, Gy, and the neural collab-
orative filtering network F, optimizing D, and D,
with respect to £ (Equation (10)) and £P (Equation
(13)), respectively;

« Step 2: Fixing D, and Dy, jointly training (Qu, Gy),
(Qyv,Gy), and F, with respect to LYAE (Equation
(11)), £YAE (Equation (14)), and L; (Equation (16)),

respectively.

Note that at each iteration, the discriminators D, and
D, should be updated before the variational inference
networks Q., Qy, because LYAF and LYAF depend on the
optimal Dy and Dy so far. It is also worth noting that in
Step 2, the two VAEs, (Qu, Gy) and (Qv, Gy), are trained
jointly with the neural collaborative filtering network, by
which the reconstruction error and prediction error can
be minimized simultaneously. The joint training can take
advantage of multi-task learning which makes the super-
vision signal of R,, able to be propagated back to the
inference networks @), and @y. The training procedure
is summarized in Algorithm 1 which iteratively updates
the parameters of DAVE using mini-batch stochastic
gradient ascent.

4 EXPERIMENTS

The experiments mainly aim to answer the following
research questions:

RQ1 How does DAVE perform as compared with state-
of-the-art recommendation methods?

RQ2 How is the robustness of DAVE?

RQ3 How is the expressiveness of DAVE?

RQ4 How do the hyper-parameters, embedding dimen-
sionality and negative sampling ratio, affect the
performance of DAVE?

Since we use implicit feedback data, as most of the
existing work did [9]], [10], [30], [32], we will evaluate
DAVE over top-k recommendation task.

41
4.1.1

We conduct experiments on five publicly available
datasets: Yelp ﬂ Digital Music H MovieLens 1M E] (ML-
1M), MovieLens 100K [f| (ML-100k) and Pinterest [}, which

Experimental Setting
Datasets

1. https://github.com/hexiangnan/sigir16-eals

2. https:/ /nijianmo.github.io/amazon/index.html

3. https:/ /github.com/hexiangnan/neural_collaborative_filtering
4. https:/ /grouplens.org/datasets/MovieLens/100k /

5. https:/ /github.com/hexiangnan/neural_collaborative_filtering
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TABLE 2
Statistics of Datasets
Dataset #Interactions  #Items  #Users  Sparsity
Yelp 730,790 25,815 25,677  99.89%
Digital Music 123,518 12,381 9,906 99.90%
MovieLens 1M 1,000,209 3,706 6,040 95.53%
MovieLens 100K 100,000 1,682 943 93.69%
Pinterest 1,500,809 9,916 55,187  99.73%

are summarized in Table [2| The first four datasets pro-
vide users’ explicit ratings on items, so we transform
them into implicit data, where each entry is marked as 1
if the rating is observed, otherwise 0. Specially, there are
at least 20 ratings for each user in the two MovieLens
datasets, while in Yelp, we only retain the users who
have at least 10 interactions, due to the higher sparsity of
Yelp. In Yelp, a user may rate an item many times. These
repetitive ratings count only once in the building of the
interaction matrix, which can prevent an interaction from
appearing in both the training set and the testing set.
Digital Music is a public dataset collected from Amazon.
Since it is highly sparse, we only retain the users and
items with at lest 5 ratings, which results in a subset
that contains 9,906 users and 12,381 items. Pinterest is
a dataset consisting of implicit feedbacks, which has
been used to evaluate collaborative recommendations on
images [9], [10]. In Pinterest, an interaction represents a
user has pinned an image to his/her board.

4.1.2 Evaluation Protocol

To evaluate the performance of DAVE, we adopt the
leave-one-out method, which is widely used in top-k
recommendation evaluation [9], [10], [32]. Specifically, in
Yelp, MovieLens 1M and MovieLens 100K, for each user
in a dataset, we leave out the latest user-item interaction
to form the testing set and use the remaining interactions
to form the training set. In Digital Music and Pinterest,
since each rating or pin has no timestamp, we randomly
leave out one user-item interaction for each user to form
the testing set. Note that we also randomly set aside
one interaction for each user to form the validation
set for the tuning of hyper-parameters. Since it is too
time-consuming to rank all items for every user during
testing, we follow the common strategy [10]], [32] that we
will check whether the testing item, which the user rated,
is ranked ahead of 99 unrated items which are randomly
selected from the datasets in advance. The performance
of the ranked list is judged by Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG). The
HR@f is the ratio of the ranking list that the testing
item is ranked in the first k£ positions, while the NDCG
accounts for the position of the hit, which assigns higher
weight to hits at higher positions. For both metrics,
larger values indicate better performance. We will report
the results of £ = 5,10, 20 on five datasets.

4.1.3 Baselines

We will compare DAVE with the following advanced
methods, whose characteristics are shown in Table 3.

o NeuMF [10]: NeuMF is a general framework NCF
for collaborative filtering based on neural net-
works. It employs a Multi-Layer Perceptron (MLP)
to model non-linear user-item interactions between
latent features of users and items.

o« CDAE [30]: CADE is a Denoising Auto-encoder
based collaborative filtering framework for top-k
recommendation. By utilizing denoising technique,
CDAE can learn robust latent representations of cor-
rupted user-item interactions for recommendation.

o CFGAN [5]: CFGAN is a GAN-based collaborative
filtering framework, where a real value vector-wise
adversarial training is introduced to improve the
representation learning of the users or items.

o APR [9]: APR is an Adversarial Personalized Rank-
ing framework, which enhances the pairwise rank-
ing method BPR [21] by adversarial training. Par-
ticularly, APR offers the robustness at the level
of model parameters rather than model input, by
injecting adversarial noise to parameters of BPR
model [21] during the adversarial training.

o ACAE [32]]: ACAE is a general adversarial training
framework for neural network-based recommenda-
tion models, which also applies adversarial training
for improving the robustness of recommendations.

o AVB [19]: AVB is a technique for training variational
auto-encoders with arbitrarily expressive inference
models based on adversarial training, which intro-
duces an auxiliary discriminative network that al-
lows to rephrase the maximum-likelihood problem
as a two-player game.

o VAEGAN |[31]: VAEGAN is a Collaborative Filtering
Framework based on Adversarial Variational auto-
encoders, which utilizes a flexible black-box infer-
ence model as well as adversarial training to train
VAEs for implicit variational inference.

o CVAE-GAN [2]: CVAE-GAN is variational genera-
tive adversarial networks, which is a general learn-
ing framework that combines a variational auto-
encoder with a generative adversarial network.

e RecVAE [25]: RecVAE is a Recommender VAE model
with a new architecture for the encoder network
that can be trained with corrupted implicit user-item
interaction vectors.

4.1.4 Parameter Setting

The hyper-parameters are tuned on validation sets. We
set the batch size to 256 for MovieLens 100K, MovieLens
1M and Pinterest, and 128 for Yelp and Digital Music.
The negative sampling ratio is set to 4 for Yelp and
MovieLens 100K, 3 for MovieLens 1M, and 2 for Digital
Music and Pinterest. The embedding dimensionality is
set to 32 for Yelp, and 64 for MovieLens 1M, MovieLens
100K, Digsital Music and Pinterest. We use Adam to
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TABLE 3
Comparison of Baselines

Characteristics

Baselines User ) Item ) Noise- Personalizgd noise Embgddi.ng Multi.-
Embedding Embedding tolerant reduction Distribution =~ Modality

CDAE v v

APR v v v

ACAE v v

NeuMF v v

CFGAN v

AVB v v

VAEGAN v v

CVAE-GAN v v v v

RecVAE v v v v

DAVE-adv v v v v v

DAVE+aae v v v

DAVE v v v v v v

TABLE 4

learn the VAEs (Qu,Gy) and (Qy,Gy) and the neural
collaborative filtering network F, and use RMSprop to
learn the discriminators D, and D,, where learning rate
is set to 0.0001. For D, and D,, we set the number of
hidden layers to 2 and the numbers of hidden nodes
are respectively 50 and 100. For F, we set three hidden
layers each of which consists of 32 hidden nodes. We
use standard Gaussian distribution as the prior of the
embeddings.

4.2 Experimental Analysis
4.2.1 Recommendation Performance (RQ1)

Tables [4} [} [6] [7] and [8] show the results of top-k rec-
ommendation on the five datasets, respectively, where
k = {5,10,20}.

At first, from Tables [ B} [6] [7] and [8] we can see that
on MovieLens 100K, MovieLens 1M, Yelp and Digital
Music, DAVE shows better performance than the robust
recommendation methods CDAE, APR and ACAE with
respect to HR@E, except for HR@10 on MovieLens 100K
and HR@20 on Yelp.

We can also note that DAVE consistently outperforms
CDAE, APR and ACAE with respect to NDCG@*F on five
datasets. In particular, on MovieLens 100K, compared
with the most competitive method APR, DAVE increases
the NDCG@5 by 5%, NDCG@10 by 1.9%, and NDCG@20
by 2.2% (see Table @); on MovieLens 1M, compared to
the most competitive method ACAE, DAVE increases the
NDCG@5 by 8.3%, NDCG@10 by 8.2%, and NDCG@20
by 6.4% (see Table EI); on Yelp, compared to the best
competitor APR, DAVE increases the NDCG@5 by 4.3%,
NDCG@10 by 3.5%, and NDCG@20 by 2.6% (see Table
[6); on Digital Music, compared to the best competitor
APR, DAVE increases the NDCG@5 by 1.5%, NDCG@10
by 1.5%, and NDCG@20 by 2.8% (see Table [7); on
Pinterest, compared to the best competitor APR, DAVE
increases the NDCG@5 by 1.3%, NDCG@10 by 0.9%, and

Recommendation Performance on MovieLens 100K. The
best runs per metric are marked in boldface. The best
runs per metric among robust recommendation methods
CDAE, APR, and ACAE are underlined.

MovieLens 100K

HR HR HR | NDCG | NDCG | NDCG

@5 @10 | @20 @5 @10 @20
CDAE 0.4284 | 0.6331 | 0.7996 | 0.2855 | 0.3511 | 0.3934
APR 0.4772 | 0.6755 | 0.8261 | 0.3253 | 0.3896 | 0.4276
ACAE 0.4602 | 0.6437 | 0.8049 | 0.3107 | 0.3697 | 0.4106
CFGAN 0.2810 | 0.4422 | 0.632 | 0.1921 | 0.2438 | 0.2913
NeuMF 0.4645 | 0.6257 | 0.7943 | 0.3183 | 0.3704 | 0.4128
AVB 0.3648 | 0.5514 | 0.7328 | 0.2402 | 0.3000 | 0.3620
VAEGAN | 0.3107 | 0.4634 | 0.6459 | 0.2044 | 0.2531 | 0.2992
CVAE-GAN | 0.2609 | 0.4008 | 0.5832 | 0.1673 | 0.2117 | 0.2571
RecVAE 0.4793 | 0.6448 | 0.8028 | 0.3216 | 0.3753 | 0.4157
DAVE-adv |0.4634 | 0.6288 | 0.7794 | 0.3193 | 0.3727 | 0.4108
DAVE+aae |0.4942 |0.6776 | 0.8282 | 0.3317 | 0.3907 | 0.4291
DAVE 0.4995 | 0.6723 | 0.8293 | 0.3415 | 0.3971 | 0.4369

NDCG@20 by 1% (see Table [§). We argue that these im-
provements are mainly due to the better expressiveness
of DAVE. Unlike the existing robust recommendation
methods that assume user preference distribution is a
single modal, DAVE is able to handle the multi-modality
of user-item interaction data so that true user preference
distributed around different modes can be captured. At
last, we also note the exception that DAVE is slightly
inferior to APR with respect to HR@k on Pinterest. This
is partly because in Pinterest the number of users is
far more than the number of items. Such unbalance
reduces the preference diversity revealed by the data
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TABLE 5
Recommendation Performance on MovieLens 1M. The
best runs per metric are marked in boldface. The best
runs per metric among robust recommendation methods
CDAE, APR, and ACAE are underlined.

MovieLens 1M

HR HR HR |NDCG | NDCG | NDCG

@5 @10 | @20 @5 @10 @20
CDAE 0.4343 | 0.6134 | 0.7882 | 0.2948 | 0.3527 | 0.3970
APR 0.4603 | 0.6396 | 0.8167 | 0.3148 | 0.3728 | 0.4176
ACAE 0.5002 | 0.6649 | 0.8164 | 0.3473 | 0.4004 | 0.4388
CFGAN 0.3070 | 0.4594 | 0.6339 | 0.2077 | 0.2568 | 0.3007
NeuMF 0.5089 | 0.6833 | 0.8321 | 0.3562 | 0.4124 | 0.4503
AVB 0.3891 | 0.5705 | 0.7500 | 0.2582 | 0.3167 | 0.4576
VAEGAN | 0.3166 | 0.4652 | 0.6512 | 0.2118 | 0.2596 | 0.3064
CVAE-GAN | 0.2877 | 0.4348 | 0.6308 | 0.1879 | 0.2365 | 0.2847
RecVAE 0.5371 | 0.6993 | 0.8467 | 0.3729 | 0.4257 | 0.4631
DAVE-adv |0.4752 | 0.6575 | 0.8270 | 0.3242 | 0.3832 | 0.4261
DAVE+aae |0.5248 | 0.6909 | 0.8397 | 0.3625 | 0.4162 | 0.4541
DAVE 0.5417 | 0.7185 | 0.8518 | 0.3761 | 0.4334 | 0.4671

TABLE 6

Recommendation Performance on Yelp. The best runs
per metric are marked in boldface. The best runs per
metric among robust recommendation methods CDAE,
APR, and ACAE are underlined.

Yelp

HR | HR | HR |NDCG |NDCG |NDCG

@5 @10 | @20 @5 @10 @20
CDAE 0.3231 | 0.4444 | 0.5963 | 0.2289 | 0.2680 | 0.3064
APR 0.6494 | 0.7920 | 0.9048 | 0.4810 | 0.5274 | 0.5560
ACAE 0.6125 | 0.7569 | 0.8746 | 0.4527 | 0.4996 | 0.5294
CFGAN 0.3027 | 0.4252 | 0.5626 | 0.2110 | 0.2504 | 0.2850
NeuMF 0.6529 | 0.7838 | 0.8793 | 0.4836 | 0.5262 | 0.5505
AVB 0.3244 | 0.4476 | 0.5944 | 0.2297 | 0.2694 | 0.3064
VAEGAN  ]0.3273 | 0.4506 | 0.6044 | 0.2320 | 0.2717 | 0.3105
CVAE-GAN | 0.3227 | 0.4495 | 0.5976 | 0.2293 | 0.2701 | 0.3074
RecVAE 0.6464 | 0.7843 | 0.8936 | 0.4866 | 0.5313 | 0.5590
DAVE-adv | 0.6192 | 0.7643 | 0.8744 | 0.4504 | 0.4976 | 0.5256
DAVE+aae |0.6687 | 0.8022 | 0.9025 | 0.4980 | 0.5415 | 0.5670
DAVE 0.6688 | 0.8032 | 0.9015 | 0.5018 | 0.5456 | 0.5706

and consequently hinders DAVE from best capturing the
multi-modality of the preference distributions.

We can also see that DAVE outperforms NeuMF and
CFGAN on all datasets. For NeuMF, this is because that
DAVE can model different noise distributions via VAE
during the representation learning for different users
and items, which leads to more robust embeddings than
naive neural collaborative filtering. Note that CFGAN

TABLE 7
Recommendation Performance on Digital Music. The
best runs per metric are marked in boldface. The best
runs per metric among robust recommendation methods
CDAE, APR, and ACAE are underlined.

Digital Music

HR HR HR | NDCG | NDCG | NDCG

@5 @10 @20 @5 @10 @20
CDAE 0.2018 | 0.3001 | 0.4215| 0.1375 | 0.1692 | 0.1997
APR 0.4861 | 0.6145 | 0.7435 | 0.3500 | 0.3908 | 0.4235
ACAE 0.4562 | 0.5930 | 0.7319 | 0.3355 | 0.3796 | 0.4147
CFGAN 0.1978 | 0.2896 | 0.4066 | 0.1340 | 0.1636 | 0.1931
NeuMF 0.3534 | 0.4707 | 0.6049 | 0.2597 | 0.2974 | 0.3312
AVB 0.2000 | 0.2956 | 0.4164 | 0.1367 | 0.1675 | 0.1980
VAEGAN |0.2081 | 0.3059 | 0.4348 | 0.1416 | 0.1730 | 0.2054
CVAE-GAN | 0.2058 | 0.3048 | 0.4284 | 0.1402 | 0.1721 | 0.2032
RecVAE 0.4128 | 0.5226 | 0.6504 | 0.3190 | 0.3544 | 0.3866
DAVE-adv |0.4328 | 0.5680 | 0.7156 | 0.3131 | 0.3566 | 0.3939
DAVE+aae |0.4760 | 0.6192 | 0.7594 | 0.3420 | 0.3883 | 0.4239
DAVE 0.4872 | 0.6269 | 0.7651 | 0.3555 | 0.4007 | 0.4357

also combines GAN as well as adversarial training with
collaborative filtering, but it directly generates user-item
interaction vectors for collaborative filtering rather than
learns latent representations for users and items, which
is in contrast with DAVE. Although the output of a
certain hidden layer of the generative model of CFGAN
can serve as user latent representation, learning only the
user latent representation is not enough to model the
non-linear interactions between users and items, so it is
difficult for CFGAN to effectively capture the preference
of user to item, which leads CFGAN to almost the worst
performance.

Finally, we can observe that DAVE outperforms AVB,
VAEGAN, CVAE-GAN and RecVAE on all datasets.
Although AVB and VAEGAN also focus on tackling the
single-modality problem of VAE by utilizing GAN as
well as adversarial training, they cannot provide person-
alized noise reduction for different users. RecVAE im-
proves VAE with a new architecture for the encoder, but
it cannot capture multimodal preference distributions.
In addition, AVB, VAEGAN, CVAE-GAN and RecVAE
learn latent representations only for users, which are
not enough to model the non-linear interactions between
users and items. DAVE infers distributions over embed-
dings for both users and items by two VAEs, which
combines the advantages of the user-based methods and
item-based methods for collaborative filtering.

4.2.2 Noise Tolerability (RQ2)

Now we investigate the robustness of DAVE by compar-
ing it with its variant DAVE+aae over MovieLens 100K.
We also compare DAVE with RecVAE, ACAE, CDAE,
and CAVE-GAN since they can address noise data too.
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Fig. 2. Noise tolerability on MovieLens 100K.

TABLE 8
Recommendation Performance on Pinterest. The best
runs per metric are marked in boldface. The best runs
per metric among robust recommendation methods
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CDAE, APR, and ACAE are underlined.

Pinterest

HR | HR | HR |[NDCG|NDCG|NDCG

@ | @10 | @20 @5 @10 @20
CDAE 0.3303|0.4814|0.6395| 0.2174 | 0.2662 | 0.3063
APR 0.7246 | 0.8884 | 0.9704 | 0.5157 | 0.5691 | 0.5902
ACAE 0.7086|0.8756 |0.9663 | 0.5024 | 0.5569 | 0.5802
CFGAN 0.1596|0.2628 |0.4118| 0.1016 | 0.1348 | 0.1722
NeuMF 0.68900.8664 |0.9619 | 0.4831 | 0.5410 | 0.5656
AVB 0.27310.4611|0.6452| 0.1407 | 0.2013 | 0.2480
VAEGAN ]0.1778|0.2901|0.4576 | 0.1134 | 0.1494 | 0.1915
CVAE-GAN|0.1739]0.2863|0.4530 | 0.1108 | 0.1469 | 0.1887
RecVAE 0.68510.83710.9341| 0.5030 | 0.5525 | 0.5773
DAVE-adv |0.7020]0.8698|0.9617| 0.5016 | 0.5563 | 0.5800
DAVE+aae |0.6864|0.8576|0.9562| 0.4892 | 0.5450 | 0.5704
DAVE 0.72190.8798 |0.9663 | 0.5226 | 0.5741 | 0.5963

Here we want to verify DAVE has better recommenda-
tion performance as well as better noise tolerability in the
face of noisy interaction. For each user u and item v in
the testing set, we intentionally inject some noise to the
data through two steps: first randomly choose a noise
level (i.e., the ratio of the noisy interactions) and then
randomly flipping over some entries of their interaction
vectors u and v with respect to the chosen noise level,
by which we simulate the scenario that different users
or items have different noise levels. Figure [2| reports the
results in terms of HR@%k and NDCG@k with k = 5,10
at the noise levels 0.1, 0.3, 0.5, 0.7, and 0.9.

From Figure [2J] we can observe that the performance
of all methods degrades as noise level increases. At
different noise levels, however, DAVE consistently ex-
hibits better performance than all the alternative meth-
ods, and the greater the noise level (i.e., the more the
noise added), the bigger the gap between DAVE and
the alternative methods. DAVE+aae generates the user

or item embeddings with a point estimate produced
by Adversarial Auto-encoder (AAE) . In contrast,
DAVE generates the embedding for a user or an item
by sampling from an inferred embedding distribution
unique to that user or item. The result shows that
inferring unique embedding distribution for different
users and items brings DAVE the better noise tolerability.
Similarly, DAVE shows much better noise tolerability
than RecVAE, ACAE, CDAE, and CAVE-GAN as it can
generate more expressive preference embeddings due
to its adaptability to the different noise distributions
and the ability to capture the multi-modality of the
preference distributions.

4.2.3 Model Expressiveness (RQ3)

In the experiments, the posterior distributions of embed-
dings unique to different users and items are Gaussian.
For a user u, the variational inference network @, in
UserAVE will generate a pair of mean and standard
deviation, (py,0,,), which defines the posterior distri-
butions of embeddings of that user. Similarly, for an
item v, the variational inference network @y in ItemAVE
will generate the pair (u,,0,) to define the posterior
distributions of embeddings of that item. To evaluate
the expressiveness of DAVE, we will check the distri-
butions of (., 0,) and (u,, 0,) inferred by DAVE and
DAVE-adv on MovieLens 100K. Particularly, for each
pair (g, 0y,), we concatenate p,, and o, to form a new
vector to represent the posterior distribution defined by
(W, 0y), and then visualize the distribution of these new
vectors in a 2-dimensional space using t-SNE algorithm
[28]. The same process is also applied to each (g, o).

Figures 3|and |4| show the visualization of the posterior
embedding distributions of 943 users and 1682 items in
MovieLens 100K, respectively, where a point represents
the 2-dimensional projection of a concatenating vector
and the points belonging to the same cluster are of the
same color.

We can see that the points representing the poste-
rior embedding distributions inferred by DAVE are ob-
viously separated into multiple clusters (distributions)
shown in Figures [3(a) and [(a), and the gaps between
the clusters inferred by DAVE are far more significant
than the gaps between the clusters inferred by DAVE-
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Fig. 3. Visualization of the distribution of the posterior
distributions of user embeddings learned by (a) DAVE and
(o) DAVE-adv in MovieLens 100K.

(a) DAVE

(b) DAVE-adv

Fig. 4. Visualization of the distribution of the posterior
distributions of item embeddings learned by (a) DAVE and
(b) DAVE-adv in MovieLens 100K.

adv shown in Figures [3(b) and [#(b). We argue that such
difference is caused by the different effects offered by
KL-divergence and adversarial training. In DAVE-adyv, in
order to compute the KL-divergence, the posterior dis-
tribution is explicitly represented with a Gaussian, and
minimizing the KL-divergence encourages the posterior
distributions to be close to a common prior distribution,
which consequently makes the posterior distributions
inferred by DAVE-adv tend to be single modal and
unexpressive. On the contrary, although the adversarial
training in DAVE approximates the minimizing of KL-
divergence, it offers the flexibility without the require-
ment to explicitly represent the posterior distribution.
Such flexibility makes it possible for DAVE to infer
complex posterior distributions that are multimodal and
cannot to be explicitly formulated, which improves the
expressiveness of the user embeddings drawn from the
inferred posterior distributions and benefits the captur-
ing of the diversity of user preference.

4.2.4 Tuning of Hyper-parameters (RQ4)

Now we tune two hyper-parameters of DAVE, embed-
ding dimensionality and negative sampling ratio, in
terms of HR@10 and NDCG®@10 over five validation sets.
The results are shown in Figures [5| and [6} respectively.
From Figure 5, we can see that on MovieLens 100K,
MovieLens 1M, Digital Music and Pinterest, the optimal
embedding dimensionality is 64, while on Yelp it is 32.
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Fig. 5. Tuning of embedding dimensionality.
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Fig. 6. Tuning of negative sampling ratio.

Basically the performance of DAVE improves first with
the increase of embedding dimensionality, then degrades
due to overfitting incurred by excessive embedding di-
mensionality. We also note that on Yelp, after the optimal
embedding dimensionality 32, the performance of DAVE
is on downward trend with some fluctuates that might
be incurred by random initialization of parameters.

Figure 6 shows the effect of negative sampling ratio
on the performance of DAVE. We can see that with
the increase of negative sampling ratio from 1 to 5,
the HR@10 and NDCG@10 grow first, then drop. On
Yelp and MovieLens 100K, DAVE achieves the best
performance at the negative sampling ratio of 4, and
on Digital Music and Pinterest, DAVE achieves the best
performance at the negative sampling ratio of 2 while on
MovieLens 1M, DAVE achieves the best performance at
the negative sampling ratio of 3. The observation also im-
plies that excessively high negative sampling ratio may
mistakenly lead to more false-negative samples, which
results in reduced robustness and weaker generalization
performance of DAVE.

5 RELATED WORK

In this section, we briefly review related work on the
traditional recommender systems and the robust recom-
mendation.

5.1

In traditional recommender systems, collaborative filter-
ing is the most widely used technique for personalized
recommendation, which aims to predict user preference
from historical user-item interactions, with a learnable

Traditional Recommender Systems
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interaction function of informative representations of
users and items that capture the collaborative signals,
i.e., similar users behave similarly [13], [22]]. Early matrix
factorization (MF) based techniques linearly model the
user-item interaction with inner product of user and item
embeddings that are extracted from factor matrices [13]],
[20]. To overcome the drawbacks of the MF based models
that oversimplify the nonlinearity of user-item interac-
tions, recently, various kinds of deep learning based
models have been proposed to learn comprehensive
representations for users and items, and capture the non-
linear user/item relationships [33]. For example, Cheng
et al. [6] and He et al. [10] propose the Wide&Deep
model and the Neural Collaborative Filtering model,
respectively, which can model the nonlinearity of user-
item interactions with a multilayer perceptron. However,
the traditional recommender systems often assume the
user-item interaction data are noise-free, and lack the
consideration on robustness of the models, which makes
them likely fail to capture users’ true preference from the
data with perturbations [32].

5.2 Robust Recommendation

The existing works on robust recommendation roughly
follow two lines, where one line is to improve the
recommendation robustness by injecting noise to input
or model parameters during model training, and the
other line is to adopt a generative model like VAE to
infer a latent representation space from which robust
embeddings of users and items can be generated.

5.3 Noise Injection Based methods for Robust Rec-
ommendation

The existing methods for robust recommendation [9],
[14], [30], [32] often inject extra noise to training data
or model parameters to deal with noisy user-item inter-
actions, which roughly fall into two classes. One class
of methods, such as CDAE [30], use Denoising Auto-
encoder (DAE) [29] for generating robust embeddings of
users and items, which adds random drop-out noise in
user-item interaction vectors and trains an auto-encoder
based on intentionally corrupted input with the objective
of minimizing reconstruction errors.

The other class of the noise based methods introduces
adversarial noise as well as adversarial training to im-
prove the model robustness [7], [9], [26], [32]. He et
al. propose an Adversarial Personalized Ranking (APR)
model which can enhance the pairwise ranking method
BPR [21]] by performing adversarial training [9]. Tang et
al. propose an Adversarial Multimedia Recommendation
(AMR) model for robust recommendation of images,
which is trained to defend an adversary of perturbations
to the target image [26]. Yuan et al. propose a general
adversarial training framework, which can improve both
the robustness and the overall performance of NN-based
recommendation models [32].

There are two main defects in the above two classes
of noise injection based methods. First, the model ro-
bustness depends on a fixed noise injection level set
beforehand, which ignores the personalization of the
noise reduction for different users. Second, for the adver-
sarial noise based methods, it is hard to choose a proper
adversarial noise level for the tradeoff between the over-
all performance and the robustness of the models, and
an over strong adversarial noise level may impair the
recommendation performance of the models.

5.4 Variational Auto-encoder Based methods for Ro-
bust Recommendation

Recently, due to the impressive power of VAE in repre-
sentation learning in the fields of computer vision and
network embedding [4], [18], [24], a line of VAE based
methods have been proposed for robust collaborative
filtering [1], [8]l, [15], [16], [25]. For example, He et al.
propose an additional variational auto-encoder which
can generate robust embeddings encoding side infor-
mation of items, including content information and tag
information [8]. Li et al. propose a collaborative varia-
tional auto-encoder (CVAE) for robust recommendation
of multimedia, where VAE is used to generate latent
representations for multimedia content [15]. Shenbin et
al. propose a Recommender VAE (RecVAE) model with
a new architecture for the encoder network that can be
trained with corrupted implicit user-item interaction vec-
tors [25]. However, as we have mentioned before, VAE
based methods likely leads to less expressive models that
are unable to handle the multi-modality of the distribu-
tions of user preference. At the same time, Makhzani et
al. propose the Adversarial Auto-encoder (AAE) model
[17] which can be used for variational inference. Similar
to our model, AAE also uses an adversarial training to
regularize the variational inference. However, different
from our model where the posterior of each user is
separately regularized (Equation (5)), AAE regularizes
the aggregated (averaged) posterior ¢(x) to be close to
the prior, i.e., minimizes

KL(4(2) = | alalup(u). b)),

u

(18)

which deviates from the VAE’s optimization objective of
improving ELBO and limits its ability to capture multi-
modality.

6 CONCLUSION

To overcome the defects of the existing methods for
robust recommendation, we propose a novel Dual Ad-
versarial Variational Embedding (DAVE) model which
is able to provide the personalized noise reduction and
capture the multi-modality of the preference distribu-
tions, by combining the advantages of VAE and ad-
versarial training. Particularly, to provide the person-
alized noise reduction for different users and items,
we introduce two VAEs, to infer a unique embedding
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distribution for each user and item, respectively. Due
to the variational inference power of VAEs, the differ-
ent noise levels of users and items can be adaptively
captured by their own embedding distributions from
which robust embeddings can be drawn. To improve
the model expressiveness, we further introduce two
GANs to DAVE. Due to the regularization offered by
the adversarial training between the discriminators and
the variational inference networks, DAVE is expressive
enough to approximate the preference distributions with
multi-modality. At last, the extensive experiments con-
ducted on real datasets verify the effectiveness of DAVE
on robust recommendations.
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