
1

Composite Neural Network: Theory and
Application to PM2.5 Prediction

Ming-Chuan Yang and Meng Chang Chen
Institute of Information Science, Academia Sinica, Taiwan

{mingchuan,mcc}@iis.sinica.edu.tw

Abstract

This work investigates the framework and statistical performance guarantee of the composite neural network, which is
composed of a collection of pre-trained and non-instantiated neural network models connected as a rooted directed acyclic graph,
for solving complicated applications. A pre-trained neural network model is generally well trained, targeted to approximate a
specific function. The advantages of adopting a pre-trained model as a component in composing a complicated neural network are
two-fold. One is benefiting from the intelligence and diligence of domain experts, and the other is saving effort in data acquisition
as well as computing resources and time for model training. Despite a general belief that a composite neural network may perform
better than any a single component, the overall performance characteristics are not clear. In this work, we propose the framework
of a composite network, and prove that a composite neural network performs better than any of its pre-trained components with
a high probability.

In the study, we explore a complicated application—PM2.5 prediction—to support the correctness of the proposed composite
network theory. In the empirical evaluations of PM2.5 prediction, the constructed composite neural network models perform better
than other machine learning models.

Index Terms

deep learning, pre-trained component, composite neural network, PM2.5 prediction.

I. INTRODUCTION

Deep learning has seen great success in dealing with natural signals such as images and voices as well as artificial signals
such as natural language, whereas it is still in the early stages of handling complicated social and natural applications shaped
by diverse factors (e.g., stock market prediction [1]) or that result from complicated natural processes (e.g., PM2.5 pollution
level prediction [2]). Common to these complicated applications is their unbounded applicable data sources, which may not
be available all at once, and their processes, which are difficult to learn from limited data. Consequently, their neural network
based solutions often require frequent revisions as more relevant data are available or more data is made available, or the
understanding of the process is enhanced. Although neural networks can approximate arbitrary functions [3], competent neural
networks for complicated applications are unrealistic for the above reasons, which motivates this study to devise an effective,
realistic approach for such applications.

The obvious drawbacks of traditional approaches to suitable neural network models include a lack of flexibility given new
data sources and knowledge, difficulty in improving problem modeling and decomposition, and an inability to employ the
proven efforts of others. The main idea of the proposed composite neural network is to compose several neural network
models, especially pre-trained models (i.e., neural network models with instantiated weights), based on the availability of data
and domain knowledge, to solve complicated applications.

An emerging trend in deep learning solution development is to employ well-crafted pre-trained neural networks, especially
for use as a specific function/component to synthesize a neural network model. Many popular pre-trained neural network models
are fine-tuned with adequate training data and made available to the public either as open-source or commercial products. In
practice, training a large neural network is infeasible due to the limitations of computing resources. Pre-trained components may
alleviate the problem by decomposing the problem into several sub-problems, each of which can be solved by a neural network
component which can be trained separately. The advantages of adopting a pre-trained model in composing a complicated neural
network are two-fold. One is benefiting from the intelligence and diligence of domain experts, and the other is saving effort
in data acquisition as well as computing resources and time for model training.

During the training phase of a composite network, the weights of pre-trained models are frozen to maintain their original
quality, and to save training time for less trainable parameters, whereas the weights of their incoming and outgoing edges
are trainable. Note that a user may choose the weights of a pre-trained component trainable for their particular purpose. For
instance, in transfer learning, the weights of the pre-trained network may be used as initial values in the training phase of the
overall neural network. Ensemble learning [4] and transfer learning [5] both apply additional data and neural network models
to improve accuracy. In deep learning, ensemble learning (Fig. 1(a)) employs multiple neural networks together to make
decisions whereas transfer learning (Fig. 1(b)) applies knowledge learned from other neural networks to assist in solving the

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

ar
X

iv
:1

91
0.

09
73

9v
2

 [
cs

.L
G

]
 1

9
Ju

l 2
02

1

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

Fig. 1. Illustrations of (a) ensemble learning, (b) transfer learning, and (c) composite neural network.

Fig. 2. Framework of Composite Neural Network Construction

original problem. Although all the models consider pre-trained components, the ensemble learning basically adopts homogeneity
learners (i.e., learners for the same function), and transfer learning methods are applied in the situation of insufficient training
data. However, the proposed composite neural network is mainly for the incorporation of solutions of sub-problems, regardless
heterogeneous not.

Ensemble learning and transfer learning have their constraints. Ensemble learning ensembles learners that must have the
accuracy > 50% [6]. Transfer learning [5] assumes, for a source-target domain pair, there is an intermediate representation
that can be transferred for domain adaptation. Unlike ensemble learning or transfer learning, the proposed composite network
framework allows a generic condition with a statistical performance guarantee. In addition, in the literature, some negative
effects have been observed, e.g., Zhou et al. [7] pointed out that “many could be better than all” in the typical ensemble settings,
and Chen et al. [8] showed the transfer learning has suffered from the “negative transfer” problem. The papers of Džeroski et
al. [9] and of Gashler et al. [10] also concluded that an ensemble is not always strictly better than its best component because
of the low diversity between members. These facts imply that the claim ”the more components, the better performance” may
be not always true. The gap of theoretical analysis that supports or opposes the claim motivates this study.

PM2.5 (particulate matter with a diameter less than 2.5 µm) has become a great concern due to its proven threat to human
health [11]. PM2.5 is a collection of aerosol material primarily composed of ammonium sulfate, ammonium nitrate, organic
carbonaceous mass, elemental carbon, and crustal mineral material emitted from sources such as vehicles, power plants and
factories, fossil fuel burning, construction, farming activities, sea salt and dust, and remote transportation [2], [12]–[14]. Both
the constituents and sources of PM2.5 vary from one location to the other [12], [13], from one season to the other [2], [14]. For
instance, for the seaside rural areas, dust and sea salt are the major causes, while in industrialized countries, fossil fuel burning
is the major source. Therefore, PM2.5 prediction must be temporally and spatially dependent. The life cycle and dispersion
of PM2.5 depend on factors such as the type of PM2.5, weather conditions, terrain context, and chemical transformations that
furthermore complicate the PM2.5 prediction [2]. As a result, predicting the PM2.5 level in the next few hours for a particular
area is a great challenge.

In this paper, we answer the challenge of solving complicated applications, and propose a framework and construction
algorithms for a composite neural network. Then we use the complicated application – PM2.5 prediction to demonstrate the
efficacy of the composite neural network and its applicability to complicated real-world problems. As illustrated in Fig 2, first,
a complicated application is decomposed into subtasks, and then some of them are selected as the candidates of pre-trained
components. Once the pre-trained components are trained separately or obtained elsewhere, and the topology is decided, then
an end-to-end training is performed to construct the final composite neural network.

The contributions in this paper are the following. (1) We propose a framework for the composite neural network, and provide
a theoretical analysis of statistical performance guarantee. (2) We provide two heuristic algorithms with alternative composite
neural network design principles for performance comparison. (3) We empirically evaluate the performance of composite neural
network algorithms and several traditional machine learning methods on PM2.5 prediction data sets; the outcomes support the
proposed theory.

The remainder of this paper is organized as follows. We introduce the composite neural network in Section 2, and analyze
its performance bounds in Section 3. Section 4 includes several algorithms for composite neural network construction. Section
5 shows intensive evaluations of various composite neural network constructions and traditional machine learning methods,
and their comparisons. We discuss related work in Section 6 and the issues discovered during this study in Section 7.

2

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

II. CONCEPT OF COMPOSITE NEURAL NETWORK

A typical single-layer neural network can be presented as fσ,W1(x)=w1,1σ
(∑d

i=1 w0,ixi + w0,0

)
+w1,0, where x is the input

vector, W1 is the matrix of weights, and σ is the activation function. In this work we consider differentiable activation functions
σ : R → R such as the the logistic function σ(z) = 1/(1 + e−z) and the hyperbolic tangent σ(z) = (ez − e−z)/(ez + e−z).
If there is no ambiguity on the activation function, the σ function is skipped to simplify notation and the neural network is
denoted as fW(x).

A composite neural network (also termed a composite network) is composed of a set of pre-trained and non-instantiated
neural network models that form a directed acyclic graph. For a pre-trained model, its weight matrix Wj is fixed after its
original training process, denoted as fj to distinguish it from a non-instantiated network. A non-instantiated network is denoted
as fWj

; its weights Wj are not determined until the completion of the training process of the whole composite neural network.
Both pre-trained and non-instantiated networks are called components of a composite neural network.

TABLE I
SUMMARY OF NOTATIONS

notation definition

W a matrix of weights in a neural network
σ(z) activation functions in a neural network
[N] {1, ..., N}; further, [K]+ , {0, 1, ...,K}

{(x(i), y(i))}i∈[N] a set of N input-label pairs
fσ,W(x) a neural network defined by σ and W

{fj(x)}j∈[K1] a set of K1 pre-trained networks; K1 ≥ 1
{fWj

(x)}j∈[K2] a set of K2 non-instantiated networks
{hj(x)}j∈[K] {fj(x)}j∈[K1] ∪ {fWj

(x)}j∈[K2]

Θ a matrix of weights in a composite network
gΘ(h1, ..., hK) an r-layer composite network of hjs by σ, Θ:

LΘ(r+1)

(
σ(r+1)

(
· · ·σ(1)

(
LΘ(0)

(h1, ..., hK)
)))

L(Θ;h1, ..., hK)
∑K
j=0 θjhj(x); h0 = 1, linear combination

~hj (hj(x
(1)), · · · , hj(x(N))); ~h0 , ~1

~ej an unit vector in the standard basis of RK+1

BK+1 {~ej}j∈[K]+

For a given set of K components {hj(x)}Kj=1, each component hj , which can be pre-trained or non-instantiated, has
an input vector x and an output vector yj . Let h0 be the constant function 1. Then the linear combination with a bias
Θ = (θ0, θ1, . . . , θK) is defined as L(Θ;h1, ..., hK) =

∑K
j=0 θjhj(x). When Θ is learned in the training phase, the composite

network is denoted as LΘ(h1, ..., hK). To extend the notation further, a neural network with h hidden layers is denoted as
LΘ(h+1)

(
σ(h+1)

(
· · ·σ(1)

(
LΘ(0)

(h1, ..., hK)
)))

, illustrated as in Fig. 2(c), where the braced number in the subscript indicates
the layer number. The components can be in any layer and its output can be fed to any components in the upper layers.
Example 1 shows an example composite network.

Example 1. A composite neural network σ(2)(θ1,0 + θ1,1f4(x4) + θ1,2σ(1)(θ0,0 + θ0,1f1(x1)+ θ0,2fW2
(x2) + θ0,3f3(x3))),

as depicted in Fig. 2(c), can be denoted as σ(2)

(
L(1)

(
f4, σ(1)

(
L(0)(f1, fW2 , f3)

)))
, with Θs removed for simplicity.

We assume that the training algorithm of the composite network is the stochastic gradient descent backpropagation algorithm
and the loss function is the L2-norm of the difference vector. The loss function for a trained composite neural network gΘ is
defined as

EΘ (x; gΘ) =
〈gΘ (x)− ~y, gΘ (x)− ~y〉

N
, (1)

where 〈·, ·〉 is the standard inner product and ~y is the ground truth. EΘ (x; gΘ) may be shortened to E (gΘ). Clearly, the total
loss depends on the training data x, the components defined by {hj}Kj=1, the output activation σ, and the weight vector W.
Define E(x; fj) (shortened to E(fj), if there is no ambiguity) as the loss function of a single component fj . It is expected
that a good composite network design has low L2 loss, in particular lower than all its pre-trained components. Therefore, the
goal is to find a feasible Θ such that it meets the “No-Worse” property, i.e., E (gΘ) < minj∈[K] E(fj).

In the following section we will prove that in some reasonable conditions, with high probability, a composite network has
strictly lower training L2 loss than all of its pre-trained components. The expectation of L2 loss of a composite network is
also with high probability lower than the expectation of the loss of all its pre-trained components. Furthermore, we will show
a multi-layer composite network of mixed non-instantiated and pre-trained models that also, with high probability, performs
better than any of its pre-trained models.

III. THEORETICAL ANALYSIS

In this section, we first analyze the loss functions of a single-layer composite network, and subsequently extend the analysis
to a complicated composite network to explore the characteristics of the composite network. Due to limited space, only ideas

3

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

and sketches of proof are presented in this section. For the complete proof, please refer to the appendix in the supplementary
material.

A composite network constructed from a given set of pre-trained components {fj}Kj=1 forms an acyclic directed graph, which
can be represented by postorder tree traversal. Without loss of generality, we assume the dimension of the output vector of all
components is 1 in the following proofs. We denote [K]+ the set from 0 to K, ~f0 = ~1, and ~fj = (fj(x

(1)), · · · , fj(x(N)))
as the sequence of the status of fj with input data x during the training phase. Similarly, the representation of the ground
truth is ~y := (y(1), · · · , y(N)). Let ~ej be an unit vector in the standard basis of RK for j ∈ [K], e.g., ~e1 = (1, 0, · · · , 0) and
BK := {~ej}Kj=1. By C1-mapping (function) we mean the mapping is differentiable and its derivative is a continuous function.

The following assumptions are the default conditions in the following proofs.
A1. Linearly independent components assumption:

∀i ∈ [K]+,@{βj} ⊂ R, s.t. ~fi =
∑
j∈[K]\{i} βj

~fj .
A2. No perfect component assumption:

minj∈[K]

{∑
i∈[N] |fj(x(i))− y(i)|

}
> 0.

A3. The activation function and its derivative are C1-mappings (i.e., it is differentiable and its differential is continuous) and
the derivative is non-zero at some points in the domain.

A4. The number of components, K, is less than 2
√
N − 1, where N is the size of the training data set.

A. Single-Layer Composite Network

The first theorem states that if a single-layer composite network satisfies the above five assumptions, it meets the “No-Worse”
property with high probability.

Theorem 1. Consider a single-layer composite network g(x) = L(1)(σ(L(0)(f1, ..., fK)))(x). Then with probability of at least
1− K+1√

N
there exists Θ = {Θ1,Θ0} s.t. EΘ (x; g) < minj∈[K] E(fj(x)).

We discuss two cases of the activation σ.
• Case 1: σ is a linear function.
• Case 2: σ is not a linear function.
(Case 1) σ is a linear activation such that a single-layer composite network such as L(1)(σ(L(0)(f1, ..., fK))) can be rewritten

as a linear combination with bias, i.e., gθ(x) =
∑
j∈[K]+ θjfj(x) with a mean squared error of EΘ (x; g) = 1

N

∑N
i=1(gΘ(x(i))−

y(i))2. Clearly, the composite network gθ should have a mean squared error equal to or better than any of its components fj ,
as gθ can always act as its best component. To obtain the minimizer Θ∗ for the error EΘ (x; g), we must compute the partial
differential ∂EΘ/∂θj for all j ∈ [K]+. After some calculations [15], we have Eq (2).

Θ∗ = [θj]j∈[K]+ =
[
〈~fi, ~fj〉

]−1

i,j∈[K]+
×
[
〈~fi, ~y〉

]
i∈[K]+

(2)

Since Assumption A1 holds, the inverse matrix
[
〈~fi, ~fj〉

]−1

i,j∈[K]+
exists and can be written down concretely to obtain Θ∗ as

in Eq. (2). Lemma 1 summarizes the above arguments.

Lemma 1. Set Θ∗ as in Eq. (2); then
E(gΘ∗) ≤ min

j∈[K]+
{E(fj)}. (3)

There is a ≤ constraint on the loss function E(gΘ∗) in Eq. (3) that is replaced by < and a probability bound. If Θ∗ is
not a unit vector, it is obvious that E(gΘ∗) must be less than any E(fj). Therefore, we proceed to estimate the probability of
Θ∗ = ~ej∗ , where j∗ ∈ [K]+.

∀i ∈ [K]+,
∂E
∂θi

∣∣
Θ=~ej∗

= 2〈~fj∗ − ~y, ~fi〉 (4)

Eq. (4) shows the gradient of the error function with respect to θi conditioned on Θ∗ = ~ej∗ , which is the inner products of
the difference between fj∗ (the output of gΘ∗) and the ground truth ~y, and the output of each pre-trained component ~fi. When
the minimizer Θ∗ = ~ej∗ , all the differentials ∂E

∂θi
must equal zero, i.e., 〈 ~fj∗ −~y, ~fi〉 = 0, or ~fj∗ −~y is perpendicular to ~fi. The

following Lemma 2 is an implication from the proof of the Johnson-Lindenstrauss Lemma [16], which states that a randomly
sampled unit vector ~v (denoted as Pr~v∈RN) is approximately perpendicular to a given vector ~u with high probability in a high
dimensional space..

Lemma 2. For a large enough N and given ~u ∈ RN , there is a constant c > 0, s.t. for η = cos−1(1− c/
√
N),

Pr
~v∈RN

{
|∠~u,~v −

π

2
| ≤ η

}
≥ 1− 1√

N
(5)

where ∠~u,~v is the angle between ~u and ~v.

4

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

The complement of Eq. (5) is

Pr
~v∈RN

{
|∠~u,~v −

π

2
|>η

}
<

1√
N

(6)

Note that angles ∠~y,~f , ∠~f−~y,~f , and ∠~f−~y,−~y are the three inner angles of the triangle such that ∠~y,~f +∠~f−~y,~f +∠~f−~y,−~y = π.
From Lemma 2, as ∠~y,~f is likely a vertical angle (i.e., π/2), ∠~f−~y,~f must be less likely to be a vertical angle, which implies
Pr{〈~f − ~y, ~f〉 = 0} ≤ Pr{|∠~f−~y,~f −π/2| < η}; thus, ≤ Pr{|∠~y,~f −π/2| > η}. The following Lemma 3 immediately follows
Lemma 2 and Eq. (6).

Lemma 3. Following Lemma 2, then for given ~y ∈ RN ,

Pr
~f∈RN

{
〈~f − ~y, ~f〉 = 0

}
<

1√
N
.

Lemma 3 shows that the probability of the output of one component is perpendicular to the difference between itself and
the ground truth. For K components and a bias, Lemma 4 gives a worst bound.

Lemma 4. Pr
{
E(gΘ∗) = minj∈[K]+{E(fj)}

}
< K+1√

N
, i.e., Pr

{
∃Θ∗ : E(gΘ∗) < minj∈[K]+{E(fj)}

}
≥ 1− K+1√

N
.

(Case 2) σ is not a linear function. The idea of the proof is to find an interval in the domain of σ such that the output of
L(1)(σ(·)) approximates a linear function as close as possible. This means there is a setting such that the non-linear activation
function performs almost as well as the linear one; since the activation L(1)(σ(·)) acts like a linear function, the lemmas of
Case 1 are applicable. The conclusion of this case is stated as Lemma 7, while we introduce important properties in Lemmas 5
and 6 for key steps in the proof.

Since σ satisfies Assumption A3, the inverse function theorem of Lemma 5 is applicable.

Lemma 5. (Inverse function theorem [17])
Suppose µ is a C1-mapping of an open set E ⊂ Rn to Rn, µ′(z0) in invertible for some z0 ∈ E, and y0 = µ(z0). (I.e., µ
satisfies Assumption A3.) Then
(1) there exist open sets U and V in Rn such that z0 ∈ U , y0 ∈ V , µ is one-to-one on U , and µ(U) = V ;
(2) if ν is the inverse of µ, defined in V by ν(µ(x)) = x for x ∈ U , then ν ∈ C1(V).

We also need the following lemma as an important tool.

Lemma 6. (Taylor’s theorem with Lagrange remainder [18])
If a function τ(y) has continuous derivatives up to the (l+ 1)-th order on a closed interval containing the two points y0 and
y, then

τ(y) = τ(y0) + τ (1)(y0)(y − y0) + · · ·+ τ (l)(y0)

l!
(y − y0)l +Rl

with the remainder Rl given by the expression for some c ∈ [0, 1]:

Rl =
τ (l+1)(c(y − y0))

(l + 1)!
(y − y0)l+1.

Let l = 1, τ(y) be obtained such that

τ(y) = τ(y0) + τ (1)(y0)(y − y0) +
τ (2)(c(y − y0))

2!
(y − y0)2. (7)

The second-degree term can be used to bound the approximation error.
Now we are ready to give more details to sketch the proof of Case 2. Denote Θ∗0 as the minimizer of Case 1, i.e., the

corresponding gΘ∗0 = L∗(0)(f1, ..., fK) satisfies E(gΘ∗0) < minj∈[K]+{E(fj)} = E(fj∗) with high probability, and denote
Θε = {Θ1,ε,Θ0,ε} corresponding to

gΘε
= L(1),ε(σ(L(0),ε(f1, ..., fK))), (8)

called the scaled σ function. Lemma 7 below states a clear condition of a linear approximation of a non-linear activation
function.

Lemma 7. For the given gΘ∗0 , {x(i)}i∈[N], and any 0 < ε ≤ 1, there exists Θε = {Θ1,ε,Θ0,ε} such that

∀i ∈ [N], |gΘε(x
(i))− gΘ∗0 (x(i))| < ε. (9)

Furthermore, for small enough ε,

Pr

{
E(gΘε

) < min
j∈[K]+

{E(fj)}
}
≥ 1− K + 1√

N
. (10)

5

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

From the definition of gΘε
, finding a proper L(0),ε(·) and L(1),ε(·) are the major steps in the proof of Eq. (9). L(0),ε(·)

maps the output range of gΘ∗0 (x) to an interval (−γ + z0, γ + z0) ⊂ U0 for some γ > 0 satisfying σ′(z0) 6= 0. The scaling
factors M0 and L(0),ε(·) are defined as

M0 =
2

γ
max
i∈[N]
{|gΘ∗0 (x(i))|} (11)

L(0),ε(x) = M−1
0 gΘ∗0 (x) + z0. (12)

It is clear that the range of L(0),ε(x) falls within U0. L(1),ε(y) intends to map the output range of σ back to gΘ∗0 (·), and is
defined as the expansion of τ(·) following Eq. (7) without the error term.

L(1),ε(y) = M0 · τ (1)(y0) · y +M0 ·
(
z0 − τ (1)(y0) · y0

)
. (13)

Reversing the scaling and translating, Eq. (13) can be rewritten as

M0

(
τ(y0) + τ (1)(y0)(σ

(
M−1

0 gΘ∗0 (x) + z0

)
− y0)

)
− z0, (14)

which equals gΘ∗0 (x) plus an error bounded by M0M1γ
2, where

M1 = 5 sup
z∈U0

{
|τ (2)(σ(z)− σ(z0))| ·

(
σ(z)− σ(z0)

z − z0

)2
}
. (15)

The precise setting of γ can be obtained from M0M1γ
2 < ε. Then, with γ and the properties of Lemmas 5 and 6, it can

be verified that gΘε
(x(i)) = L(1),ε(σ(L(0),ε(x

(i)))) fits Eq. (9).
Eq. (9) implies (gΘε

(x(i))− y(i))2 < (|gΘ∗0 (x(i))− y(i)|+ ε)2, which can derive E(gΘε
) < E(gΘ∗0) + ∆(ε), where ∆(ε) is

an increasing function of ε when the other parameters are fixed. Hence, if ε is small enough, we have ∆(ε) ≤
E(fj∗)−E(gΘ∗0

)

3 .
By further considering E(gΘε) < E(gΘ∗0) + ∆(ε), it is easy to see that E(gΘε) < E(fj∗). The probability of E(gΘ∗0) < E(fj∗)
of Eq. (10) can be inferred from Lemma 4 of Case 1. Example 2 below shows how to construct a scaled activation function
that satisfies Eq. (9).

Example 2. Here we take a logistic function σ(z) = 1
1+e−z in the context of PM2.5 prediction to construct a scaled logistic

function. Let notations gΘ∗0 (·), z0, U0, V0, and τ(·) be as previously defined. The assumption that the highest PM2.5 measurement
is less than 1000 (i.e., maxi∈[N]{|gΘ∗0 (x(i))|} < 1000) fits the reality for most countries. Observe that σ(1)(0) = 1

4 , σ(0) = 1
2 ,

and hence it is valid to set z0 = 0. Consider (−γ, γ) ⊂ [−1, 1] and hence , y0 = σ(0) and y = σ(z) ∈ (0.25, 0.75).
The inverse function of σ(z) is τ(y) = ln y

1−y for y ∈ (0, 1), which also can be represented as τ(y) = 4y − 2 +
τ(2)(c(y−y0))

2 (y−y0)2 for some c ∈ (0, 1) by Lemma 6. From Eq. (11), the scaling factors M0 = 2γ−1maxi∈[N]{|gΘ∗0 (x(i))|} <
2 · 103γ−1, and from Eq. (15), M1 = 5 supz∈U0

{
τ (2)(σ(z)− σ(z0)) [(σ(z)− σ(z0)) /(z − z0)]

2
}

, which is less than 50 for

z ∈ (−γ, γ). From Eq. (14), the scaled logistic function as gΘε(x) = M0 ·
(
4σ
(
M−1

0 gΘ∗0 (x)
)
− 2
)
.

Now we claim that for any given ε ∈ (0, 1], gΘ∗0 (·) and {x(i)}i∈[N], we have |gΘε(x
(i)) − gΘ∗0 (x(i))| < ε. Here is a

short verification. Observe ∀i ∈ [N],M−1
0 gΘ∗0 (x(i)) ∈ (−γ, γ). Also, if z ∈ (−γ, γ), then | τ

(2)(c(y−y0))
2 |(y − y0)2 < M1γ

2.
Recall that τ ◦ σ(·) is an identity function, y = σ(M−1gΘ∗0 (x)), and |τ(y) − (4y − 2)| < M1γ

2. That is, |M−1
0 gΘ∗0 (x) −[

4σ(M−1
0 gΘ∗0 (x))− 2

]
| < M1γ

2. Multiply by M0 on both sides and replace the bracket term with gΘε
(x); we have |gΘ∗0 (x)−

gΘε
(x)| < M0M1γ

2 < 105γ. Hence, setting γ = 10−5ε verifies this claim.

From Lemma 7, we can conclude that there exists Θε such that a non-linear single-layer composite network performs at
least as well as the linear case with arbitrary small error. Thus, the proof of Case 2 is concluded. The proofs of Cases 1 and
2 above complete the proof of Theorem 1.

B. Complicated Composite Network

In the previous section, we investigated the performance of a single-layer composite network comprising several pre-trained
components connected by an activation function. Now we consider expanding the composite network in terms of width
and depth. Formally, for a given pre-trained component fK and a trained composite network gK−1 of K − 1 components
(f1, ..., fK−1), we study the following two questions in this section.
Q1: (Adding width) By adding a new pre-trained component fK , we define gK = L(1)(σ(L(0)(f1, ..., fK−1, fK)). Is there Θ

such that E(gK−1) > EΘ(gK)?
Q2: (Adding depth) By adding a new pre-trained component fK , let gK = L(K)(σ(L(K−1)(gK−1, fK)). Is there Θ such that

E(gK−1) > EΘ(gK)?

Lemma 8 answers Q1, and we require Proposition 1 as the base of induction to prove it.

6

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

Lemma 8. Set gK = L(1)(σ(L(0)((f1, ..., fK−1, fK))). With probability of at least 1 − K+1√
N

, there is Θ s.t. E (gK−1) >

EΘ (gK).

Proposition 1. Consider the case of only two pre-trained models f0 and f1. There exists (α0, α1) ∈ R2 s.t.∑
i∈[N]

(f1(x
(i))− y(i))2 >

∑
i∈[N]

(
α0f0(x

(i)) + α1f1(x
(i))− y(i)

)2

with a probability of at least 1− 2√
N

.

Proposition 1 can be proved by solving the inequality directly for the case of K = 2, and then generalizing the result to
larger K by induction with the help of Lemma 3 to prove Lemma 8. Adding a new component fK to a composite network
gK−1 as in Q2, the depth of resulting gK increments by 1. If ~gK−1 and ~fK satisfy A1 and A2, consider {gK−1, fK} as a
new set of {f1, f2} in the same layer. Consequently, we can apply the arguments in Case 2 of Theorem 1 to show Lemma 9
in the following, which answers Q2 and says the resulting gK has a minimizer Θ∗ such that with high probability the loss
decreases.

Lemma 9. Set gK = L(1)(σ(L(0)((gK−1, fK)). If ~gK−1 and ~fK satisfy A1 and A2, then with a probability of at least 1− 2√
N

,
there is Θ s.t. E (gK−1) > EΘ (gK).

The proof of Lemma 9 is similar to the proof of Case 2 in the previous sub-section. Lemmas 8 and 9 imply a greedy
strategy to build a complicated composite network. Recursively applying both lemmas, we can build a complicated composite
network as desired. Theorem 2 gives a formal statement of the constructed complicated composite network with a probability
bound. The proof of Theorem 2 is based on mathematical induction on layers and the worst case probability is over-estimated
by assuming each layer could have up to K components.

Theorem 2. For an H-hidden layer composite network with K pre-trained components, there exists Θ∗ s.t.

EΘ∗(g) < min
j∈[K]+

{E(fj)}

with a probability of at least
(

1− K+1√
N

)H
.

IV. COMPOSITE NETWORK CONSTRUCTION

The theoretical analysis in the previous section suggests that with high probability, a trained composite network performs
better than any of its pre-trained components. It also encourages users to apply their domain expertise to design and train critical
pre-trained components and incorporate them in their composite network. In this section, we propose heuristic algorithms for
composite network construction. Ensemble learning is a simple case of the composite network that will be evaluated and
compared with the proposed algorithm.

For a given set of components, we define the component whose output gives an answer to the main problem as a base
component. If the outputs of a component do not directly answer the main problem, we call this an auxiliary component. For
example, in the problem of PM2.5 value prediction, the base components output their PM2.5 predictions, whereas a component
predicting weather conditions such as wind speed and precipitation is categorized as an auxiliary component.

The Deep Binary Composite Network (DBCN) Algorithm depicted in Algorithm 1 is a greedy method, the main idea of
which is to construct a composite network by inserting one component at a time in some particular order. After each insertion,
the depth of the network is increased by 1, as described in Lemma 9. We consider the base components first in the insertion
order since a base component answers the main problem and it makes sense to use auxiliary components to enhance the
performance of the base components later. The pre-trained components are considered before the non-instantiated ones, as pre-
trained components are commonly well-crafted and performance-proven. Thus, we insert the components such that pre-trained
components are ahead of non-instantiated components, and for each pre-trained and non-instantiated set, the base components
are ahead of auxiliary components; finally, the components with lower L2 errors are before those with higher L2 errors.

Algorithm 1 takes pre-trained components {fj}K1
1 and non-instantiated components {fWj

}KK1+1, sorted according to the
criteria in the previous paragraph, as inputs, and outputs a deep binary composite network. Line 1 initializes the variables used
in this algorithm. The first-level for block (from Lines 2 to 12) computes the composite network gj of depth j, iteratively.
The second-level for block from Lines 3 to 9 generates possible composite networks with both linear and modified logistic
activation functions σ(·). In Line 10, we use traditional stochastic gradient descent backpropagation to train every composite
network in Tj . Line 12 finds the composite network with the lowest L2 error. Lines 13 to 20 prune the obtained {gj} to avoid
over-fitting. Once the L2 loss gain is larger than a specified pruning threshold ∆, the pruning process stops and the algorithm
outputs the current gj ; otherwise, gj−1 is examined as a consequence.

The second algorithm, Balanced Base Composite Network (BBCN), is presented in Algorithm 2. The first-level for block
(from Lines 4 to 16) generates a flat composite network from the base components, in which each iteration constructs a level
of the composite network. The for block (Lines 5 to 15) combines a pair of two base components or two subtrees. Line 18

7

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

Algorithm 1: Deep Binary Composite Network
Input: F = {fj}K1

0 ∪ {fWj }KK1+1, a set of activation functions A, pruning threshold ∆
Output: gK

1 g1 ← f1; ∀j ≤ K, Tj ← ∅
2 for j = 2 to K do
3 for σ(·) ∈ A do
4 if j ≤ K1 then
5 Tj ← Tj ∪ {σ(gj−1, fj)}
6 else
7 Tj ← Tj ∪ {σ(gj−1, fWj)}
8 end
9 end

10 Train all h ∈ Tj
11 gj ← argminh∈Tj {E(h)}
12 end
13 for j = K to 2 do
14 if E(gj)− E(gj−1) ≤ ∆ then
15 gj ← gj−1

16 else
17 output gj
18 break
19 end
20 end

Algorithm 2: Balanced Base Composite Network
Input: F = {fj}K1

0 ∪ {fWj }KK1+1, a set of activation functions A, the number of base components K0, pruning threshold ∆
Output: gK

1 ∀j ∈ [K0], h0,j ← fj
2 ∀s ≤ dlog2(K0)e, t ≤ dK0/2se, Ts,t ← ∅
3 ∀j ≤ K, Tj ← ∅
4 for s = 1 to dlog2(K0)e do
5 for t = 1 to dK0/2se do
6 if dK0/2s−1e is an odd number & t = dK0/2se then
7 hs,t ← hs−1,2t−1 ;
8 else
9 for σ(·) ∈ A do

10 Ts,t ← Ts,t ∪ {σ(hs−1,2t−1, hs−1,2t)};
11 end
12 Train all h ∈ Ts,t;
13 hs,t ← argminh∈Ts,t{E(h)} ;
14 end
15 end
16 end
17 gK0

← hdlog2(K0)e,1

18 Run Algorithm 1 on ({gK0
} ∪ F \ {fj}j∈[K0])

calls Algorithm 1 to complete the execution. In general, Algorithm 1 generates a deep binary composite network, whereas
Algorithm 2 constructs a more balanced composite network, as shown in Fig. 4.

V. PM2.5 PREDICTIONS

In this section, we design five pre-trained components and a non-instantiated component and apply composite network
construction methods including exhaustive search, ensemble learning [6], and Algorithm 1 (DBCN) and Algorithm 2 (BBCN)
for PM2.5 prediction. Real-world open data was used to numerically compare the performance of different construction methods
and to examine the correctness and efficacy of the proposed theory. In addition, we also compared the methods with traditional
machine learning methods, namely, SVM [19] and random forests [20]. For the hardware and software environment, each of
the three servers used in this evaluation was equipped with two Intel Xeon CPUs, 128GB memory, four NVIDIA 1080 GPUs,
the Linux operating system, and Keras and Tensorflow as deep learning platforms.

A. Datasets

The open data were from two sources: the Environmental Protection Administration (EPA) for air quality data [21], and
the Central Weather Bureau (CWB) for weather data [22]. There are 21 features in the EPA dataset including values such as
PM2.5, PM10, SO2, CO, NO, and NOx. The EPA air quality data were collected from eighteen monitoring stations recorded
hourly. The second dataset, the CWB open data, has one record per six hours, collected from 31 monitoring stations with 26

8

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

features, including temperature, dew point, precipitation, and wind speed and direction. In this study, for all evaluations, the
data of years 2014 and 2015 were used as training data and those of 2016 as testing data.

We created a grid of 30 × 38 = 1140 km2 covering the Taipei area, each block of which was 1 × 1 km2. The EPA and
CWB data were loaded into the corresponding blocks so that both datasets were temporally aligned at the hour scale (i.e., one
record per hour). Interpolation was applied to the CWB data to downscale from 6 hours to 1 hour. Note that there were 1140
blocks in the grid, whereas there were only 18 EPA stations and 31 CWB stations; thus more than 1000 blocks were empty,
i.e. without EPA or CWB data. We adopted the KNN method (K = 4, i.e., averaging the values of the four nearest neighbors)
to initialize the values of the empty blocks, as discussed in [23].

B. Pre-trained Component Design

Here we introduce the design rationales of the five pre-trained components in this evaluation. As PM2.5 dispersion is highly
spatially and temporally dependent, we designed four pre-trained components as base components to model this dependency.
Among these, two were convolutional LSTM neural networks (ConvLSTMs [24]) with the EPA data (denoted as f1) and
CWB data (denoted as f2) as input; the other two were fully connected neural networks (FNNs) with the EPA data (denoted
as f3) and CWB data (denoted as f4) as input. To model the temporal relationship conveniently using the neural network,
the data was fed to the pre-trained components one sequence at a time. We used two pairs of components—f1 and f2, and
f3 and f4—for the same functions to determine whether component redundancy improves performance. The fifth pre-trained
component (denoted as f5) was to model the association between time and the PM2.5 value.

TABLE II
LSTM (LSM) V.S. CONVLSTM (CVL)

Hour Dataset EPA CWB

Models Training Testing Training Testing

+24h LsM 8.4158 10.9586 8.2741 11.3947
CvL 7.5873 10.5789 8.5529 11.2074

+48h LsM 8.7185 11.5229 8.5232 11.8144
CvL 8.6541 11.3904 8.2890 11.7081

+72h LsM 8.7530 11.7329 8.8905 11.8672
CvL 8.8170 11.5279 9.2177 11.7756

The first experiment was designed to examine the effect of the grid structure in capturing the spatial relationship by comparing
the outcomes of LSTM and ConvLSTM. The LSTM model only used the EPA and CWB data without spatial information
about the monitoring stations, whereas the ConvLSTM model used the grid data (i.e., considering the whole 1140 blocks
with KNN (K = 4) initialization). The accuracy of both models measured in RMSE is presented in Table II, which shows
the ConvLSTM performs consistently better for the +24h (next 24 hours), +48h (next 48 hours), and +72h (next 72 hours)
predictions. Hence, we selected ConvLSTM as the model for f1 and f2.

TABLE III
VARIOUS CONFIGURATIONS OF PRE-TRAINED COMPONENTS

Forecast +24h +48h +72h

Model Train.Params Training Testing Training Testing Training Testing

f1 917492 7.5873 10.5789 8.6541 11.3904 8.8170 11.5279
f1,Wr 3632482 9.3054 11.9440 9.1503 11.6550 8.1616 11.7556
f1,Dr 1278692 7.6342 10.9471 8.6297 11.4844 9.0803 11.5993

f2 916908 8.5529 11.2074 8.2890 11.7081 9.2177 11.7756
f2,Wr 3631322 7.0685 11.4974 9.2233 12.0710 9.1766 11.9827
f2,Dr 790828 6.5404 11.7970 8.4491 8.4491 9.1500 11.9162

f3,(2) 1038054 11.6064 10.8907 11.9008 11.6977 12.1729 11.9999
f3,(3) 1068538 11.5648 10.9179 11.9726 11.7017 12.0585 11.9414

f4,(2) 582038 11.8238 11.3400 11.6948 11.6147 11.9484 11.8687
f4,(3) 603318 11.8253 11.2748 11.7112 11.6176 12.0199 11.7512

In the second experiment, we trained the four pre-trained components (f1, f2, f3, f4) individually with different configura-
tions. For instance, we trained the ConvLSTM models (f1 and f2) with a normal configuration, a deeper one (denoted as Dr)
with stack of two LSTMs, and a wider one (denoted as Wr) with a double-width ConvLSTM. Similarly, FNN models f3 and
f4 were trained with two or three hidden layers, (denoted as fi, (2or3)). Their performance was measured by RMSE as shown
in Table III. The best performing configurations were selected for the pre-trained components in the following experiments.

Note that instead of using execution time as a measurement of time complexity, we indicated the complexity using the
number of trainable (tunable) parameters in our study, as shown in the second column of Table III, as the execution times
varied widely even for the same training configuration due to diverse server execution contexts, randomness incurred from
training commands, and hyperparameter tuning setups.

9

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

Fig. 3. Annual PM2.5 values at different frequencies

The fifth pre-trained component (f5) is the association between time and PM2.5 value, which is highly temporally dependent.
Fig. 3 shows the PM2.5 values resulting from the different frequency filters [25]. The top figure shows the original PM2.5

values of the Taitung EPA station in 2014 and the second figure shows the annual trend, which clearly shows that cold months
are prone to high PM2.5 pollution. The third graph shows the PM2.5 trend from May to July, which does not reveal a consistent
pattern. The fourth figure shows the trends within a week: we observe lower PM2.5 values during the weekend. The fifth figure
is the daily trend: PM2.5 values are lower after midnight. Based on these observations, we generated an embedding [26] of
features including the month, day of the week, and the hour of the day, and trained a LSTM model labeled with PM2.5 values
as the pre-trained component f5.

C. Composite Network

TABLE IV
PRE-TRAINED COMPONENTS AND TESTING RMSE

Component Data +24h +48h +72h

f1 : ConvLSTM (2 CNN layers, 1 LSTM) EPA 10.5789 11.3904 11.5279
f2 : ConvLSTM (2 CNN layers, 1 LSTM) CWB 11.2074 11.7081 11.7756
f3 : FNN (2 hidden layers) EPA 10.6459 11.3291 11.6169
f4 : FNN (2 hidden layers) CWB 11.5112 11.6915 11.8017
f5 : LSTM hr-week-month 11.4738 11.5359 11.4540

EPA 9 features: CO, NO, NO2, NOx, O3, PM10, PM2.5, SO2, THC
CWB 5 features: AMB-TEMP, RH, rainfall, wind direction-speed (represented as a vector)

There are five pre-trained components from f1 to f5 and one non-instantiated auxiliary component, denoted as fW6 , for the
composite network construction. The model of fW6

is a convolutional neural network (CNN) with CWB weather data and
forecasts as input to predict upcoming precipitation. The six components are connected by activation functions, either a linear
function or a scaled logistic function (S(z) = 2000/(1 + e−z/500) − 1000). Note that any activation function that meets all
six assumptions in Sec. 3 could be used; for simplicity, we used only the scaled logistic function. The prediction accuracy
in RMSE of all five pre-trained components is listed in Table IV. Note that in this study we did not set out to design an
optimized composite network for the best PM2.5 prediction. Rather, our main purpose was to implement and evaluate the
proposed composite network theory. Nevertheless, the design of components and composite network follows the advice of
domain experts and exhibits reasonably good performance in PM2.5 prediction.

1) DBCN and BBCN: The step-by-step running of Algorithm 1 (DBCN) and the results are shown in Table V for the
+24h predictions. First, f1 is automatically selected as g1, after which f3 is included, as it has the lowest RMSE among the
remaining components. In the first column of the table, L(g1, f3) has a lower RMSE than SL(g1, f3) and is selected as g2,
as marked in the last column (“Front-runner”). (Note that SL is an abbreviation of the scaled logistic function cascading a
linear function.) Next, Algorithm 1 generates the composite network L(g5, fW6

) with a testing RMSE of 10.9531 for the +24h
prediction. Table VI shows the +48h and +72h prediction results: the generated models are different from each other and the
model for +24h.

The “Trainable/total” column indicates the number of trainable parameters and total parameters during the training phase. The
trainable parameters are updated during each backpropagation stochastic gradient descent optimization, and the total parameters
are the number of trainable parameters plus the fixed parameters in the pre-trained components. As only the trainable parameters
are updated during training, the composite network framework may greatly alleviate many burdens in training a complicated
composite network.

The processes and results of Algorithm 2 (BBCN) are shown in Table VII for the +24h PM2.5 predictions and in Table VIII
+48h and +72h. Note that Algorithm 2 constructs a composite network by merging the base components in the beginning:

10

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

TABLE V
COMPOSITE NETWORKS USING ALGO 1: DBCN, +24H

RMSE Parameters

Model Training Testing Trainable/total Front-runner

g1 ← f1 0/
L(g1, f3) 7.2128 10.2277 666/1956230 g2
SL(g1, f3) 7.3311 10.3454 666/1956230

L(g2, f2) 7.1364 10.2410 666/2873814
SL(g2, f2) 7.3208 10.2409 666/2873814 g3

L(g3, f4) 7.0787 10.3039 666/3456518 g4
SL(g3, f4) 7.1931 10.3501 666/3456518

L(g4, f5) 7.0911 10.3275 666/4411100
SL(g4, f5) 7.0560 10.2119 666/4411100 g5

L(g5, fW6
) 6.9608 10.1131 42046/4453146

SL(g5, fW6
) 6.9705 10.1053 42046/4453146 g6

TABLE VI
COMPOSITE NETWORKS USING ALGO 1: DBCN, +48H, +72H

RMSE Parameters

Prediction Model Training Testing Trainable/total Front-runner

+48h SL(g4, f2) 8.0678 11.0469 666/4411100 g5

SL(g5, fW6
) 7.8941 10.9531 42046/4453146 g6

+72h L(g4, f3) 8.2305 11.4274 666/4411100 g5

L(g5, fW6
) 8.2448 11.2541 42046/4453146 g6

the first row of Table VII combines f1 and f2, and the second row combines f3 and f4. Generally, both DBCN and BBCN
methods meet the claim of the proposed composite network theory: combining more pre-trained components yields improved
RMSE results. The composite networks constructed using Algorithms 1 and 2 for +24h prediction are contrasted in Fig. 4.

2) Exhaustive Search Construction: In this subsection, an exhaustive search method based on Algorithm 2 is introduced to
construct a high-accuracy PM2.5 prediction composite network for use as a high-mark benchmark for comparison. In contrast
to the previous approaches, in the exhaustive search approach the parameters inside a pre-trained component can be either
fixed or open in order to guarantee the best construction. Hence, instead of the 5 pre-trained and 1 non-instantiated components
used by the previous algorithms, we now have five additional pre-trained components with open (tunable) parameters (i.e.,
non-instantiated components). The new notation × denotes pre-trained components and ◦ denotes non-instantiated components.
For instance, f◦1 is component 1 but non-instantiated. Inherently, with exhaustive search the construction takes a substantially
longer time to complete (i.e., with time complexity of O(2K)), but has the potential for better performance. A complete
exhaustive search example for PM2.5 prediction is conducted to evaluate the performance improvement.

For +24h prediction, the the exhaustive search algorithm employs the same composite network layout as Algorithm 2. The
best composition combining f1 and f2 is g1 = SL(f◦1 , f

◦
2)), as shown in Table IX, which corresponds to combining non-

instantiated f1 and f2 and applying the scaled logistic activation function results in the lowest RMSE. In the next step, f3 and
f4 are combined with the front-runner as g2 = SL(f◦3 , f

◦
4)) as shown in Table X. Step 3 considers all possible combinations

of g1 and g2 to find the best g3, as shown in Table XI. Note that we treat g◦i as having all non-instantiated components; for
g×i , all components are pre-trained.

Now only f5 and fW6 are not combined. Here we examine different sequences of f5 and fW6 . In Steps 4a and 5a, f5 is
considered first and then fW6 . The results are shown in Table XII. Steps 4b and 5b consider the opposite sequence from the
results listed in Table XIII. The best models of g5a and g5b are illustrated in Fig. 5. The composite networks for +48h and

Fig. 4. Composite networks using Algorithms 1 (left) and 2 (right) for +24h prediction

11

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

TABLE VII
COMPOSITE NETWORKS USING ALGO 2: BBCN, +24H

RMSE Parameters

Model Training Testing Trainable/total Front-runner

h0,1 ← f1, h0,2 ← f2
L(h0,1, h0,2) 7.1016 10.4075 666/1835094 h1,1
SL(h0,1, h0,2) 6.5801 10.4581 666/1835094

h0,3 ← f3, h0,4 ← f4
L(h0,3, h0,4) 11.4359 10.7670 666/1620758 h1,2
SL(h0,3, h0,4) 11.5389 10.8508 666/1620758

L(h1,1, h1,2) 7.2375 10.4536 666/3456518
SL(h1,1, h1,2) 7.2523 10.3226 666/3456518 h2,1

h2,2 ← h1,3 ← h0,5 ← f5
L(h2,1, h2,2) 7.1069 10.4712 666/4411100 h3,1
SL(h2,1, h2,2) 7.1202 10.5064 666/4411100

g5 ← h3,1
L(g5, fW6

) 6.9828 10.1938 42046/4453146 g6
SL(g5, fW6

) 6.9964 10.2257 42046/4453146

TABLE VIII
COMPOSITE NETWORKS USING ALGO 2: BBCN, +48H, +72H

RMSE Parameters

Prediction Model Training Testing Trainable/total Front-runner

+48h SL(h2,1, h2,2) 7.9949 11.0516 666/4411100 h3,1

L(g5, fW6
) 8.5736 11.0182 42046/4453146 g6

+72h L(h2,1, h2,2) 8.4460 11.5100 666/4411100 h3,1

L(g5, fW6
) 9.1848 11.4153 42046/4453146 g6

+72h predictions using exhaustive search were conducted accordingly and their results are used for performance comparisons
in the next subsection.

3) Comparisons of All Methods: In this section, we compare the performance of different composite network algorithms,
including DBCN, BBCN, exhaustive search, and ensemble methods, as well as machine learning methods, SVM and random
forest. In addition, we use Relu and logistic activation functions to replace the scaled logistic function in DBCN and BBCN
to show the performance differences. As claimed, the composite network theory guarantees, with high probability, that the
composite network has lower RMSE than any of its components, which is supported by all DBCN, BBCN, exhaustive search,
and ensemble methods.

We summarize the results of all methods in Table XIV for RMSE, and in Table XX for MAE (mean absolute error) and
SMAPE (symmetric mean absolute percentage error). For the SVM and random forest experiments, we used the tools from
scikit-learn [27] with pre-trained components only (i.e., f1 to f5, with α the total parameters inside these five components.)
Likewise with ensemble learning and with ensemble learning with the scaled logistic function as the activation function (denoted
as SL(ensemble)). The four evaluations yielded close testing RMSE values for all predictions, but the ensemble learning method
performed slightly better, while the random forest method seems overfitted, as the training RMSE is low. DBCN performs
slightly better than DBNN, and the exhaustive search has the best outcome. For the activation functions, it is interesting to
discover that the scaled logistic function performs almost better than the regular logistic and Relu functions.

Now that fW6
is included in composite network construction, it can be seen that DBCN, DBNN, Exhaustive Search (a),

and Exhaustive Search (b), as depicted in Fig. 5, show improvements over the composite networks without fW6
.The sum of

parameters inside these six components is denoted as β in Table XIV. The second column of the table gives the number
of trainable parameters for each evaluation; this shows that for the composite network the training parameters are moderate.
Table XX shows the MAE measurements of the evaluations in Table XIV. The ordering of the testing MAE results are very

Fig. 5. Composite networks of (a) Tables XII and (b) XIII for +24h prediction

12

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

TABLE IX
COMPOSITE NETWORKS OF f1, f2 USING EXHAUSTIVE SEARCH, +24H

Step Model Training Testing Front-runner

1 L(f
×
1 , f

×
2) 7.1016 10.4075

L(f
×
1 , f◦2) 6.5417 10.2097

L(f◦1 , f
×
2) 6.6574 10.3484

L(f◦1 , f
◦
2) 6.3394 10.0423

SL(f
×
1 , f

×
2) 6.5801 10.4581

SL(f
×
1 , f◦2) 6.6648 9.9048

SL(f◦1 , f
×
2) 6.5052 10.1654

SL(f◦1 , f
◦
2) 6.5109 9.7275 g1

TABLE X
COMPOSITE NETWORKS OF f3, f4 USING EXHAUSTIVE SEARCH, +24H

Step Model Training Testing Front-runner

2 L(f
×
3 , f

×
4) 11.4359 10.7670

L(f
×
3 , f◦4) 10.9690 10.8618

L(f◦3 , f
×
4) 11.0442 10.8285

L(f◦3 , f
◦
4) 11.2553 10.7017

SL(f
×
3 , f

×
4) 11.5389 10.8508

SL(f
×
3 , f◦4) 11.2916 10.9000

SL(f◦3 , f
×
4) 11.1600 10.8505

SL(f◦3 , f
◦
4) 11.1543 10.6877 g2

similar to that of the RMSE results.

VI. RELATED WORK

In this section, we discuss related work in the literature from the perspective of the composite network framework and
PM2.5 prediction. For the framework, the composite network is related to the methods such as ensemble learning [6], transfer
learning [28] and model reuse [29], [30]. We will also discuss some representative work on air quality prediction.

Ensemble Learning. Typical ensemble learning methods include bagging, boosting, stacking, and linear combination/regression.
Since the bagging groups data by sampling and boosting tunes the probability of data [7], these frameworks are not similar
to composite neural networks. However, there are fine research results that are instructive for accuracy improvement [7], [9],
[10]. In this work, we consider the neural network composition, but not data enrichment.

Among the ensemble methods, stacking is closely related to our framework. The idea of stacked generalization [31], in
Wolpert’s terminology, is to combine two levels of generalizers. The original data are taken by several level-0 generalizers,
after which their outputs are concatenated as an input vector to the level-1 generalizer. According to the empirical study of
Ting and Witten [32], the probability distribution of the outputs from level 0, instead of their values, is critical to accuracy.
Their experimental results also imply that multi-linear regression is the best level-1 generalizer, and a non-negative weight
restriction is necessary for regression but not for classification. However, our analysis shows that the activation functions that
satisfy Assumption A3 have a high probability guarantee of reducing the L2 error. In addition, our empirical evaluations show
that the scaled logistic activation usually performs well.

The work of Breiman [33] restricts non-negative combination weights to prevent poor generalization errors and concludes
that it is not necessary to restrict the sum of weights to equal 1. In [34], Hashem shows that linear dependence of components
could be, but is not necessarily always, harmful to ensemble accuracy, whereas our work allows a mix of pre-defined and
non-instantiated components as well as negative weights to provide flexibility in solution design.

Transfer Learning. In the context of one task with a very small amount of training data with another similar task that has
sufficient data, transfer learning can be useful [35]. Typically the two data sets—the source and target domains—have different
distributions. A neural network such as an auto-encoder is trained with source-domain data and the corresponding hidden layer
weights or output labels are used for the target task. Part of transplanted weights can be kept fixed during the consequent steps,
whereas others are trainable for fine-tuning [28]. This is in contrast to the composite neural network, in which the pre-trained
weights are always fixed.

Model Reuse. In recent years, some proposed frameworks emphasize the reuse of fixed models [29], [30], [36]. In this
framework, pre-trained models are usually connected with the main (i.e., target) model, and then the dependency is gradually
weakened by removing or reducing the connections during the training process. In this way, the knowledge of the fixed model
is transferred to the main model; the key point is that model reuse is different from transfer learning as well as the composite
neural network.

Pre-trained models are widely applied in applications of natural language processing to improve the generation ability of
the main model, such as in BERT [37] and ELMo [38]. Multi-view learning [39] is another method to improve generalization
performance. In this approach, a specific task owns several sets of features corresponding to different views, just like an object

13

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

TABLE XI
COMPOSITE NETWORKS OF g1, g2 USING EXHAUSTIVE SEARCH, +24H

Step Model Training Testing Front-runner

3 L(g
×
1 , g
×
2) 5.8897 9.6059

L(g
×
1 , g
◦
2) 5.6321 9.5278

L(g◦1 , g
×
2) 4.9207 9.8139

L(g◦1 , g
◦
2) 4.5724 9.5881

SL(g
×
1 , g
×
2) 5.8941 9.6162

SL(g
×
1 , g
◦
2) 5.3703 9.5250 g3

SL(g◦1 , g
×
2) 4.7438 9.8185

SL(g◦1 , g
◦
2) 4.1957 9.6039

TABLE XII
COMPOSITE NETWORKS OF g3 AND f5 , THEN fW6 , +24H

Step Model Training Testing Front-runner

4a L(g
×
3 , f

×
5) 5.3349 9.3055

L(g
×
3 , f

◦
5) 5.2516 9.3186

L(g◦3 , f
×
5) 5.5953 9.5570

L(g◦3 , f
◦
5) 6.6938 9.4190

SL(g
×
3 , f

×
5) 5.5415 9.4504

SL(g
×
3 , f

◦
5) 5.1646 9.2438 g4a

SL(g◦3 , f
×
5) 7.2401 9.4492

SL(g◦3 , f
◦
5) 7.0476 9.4947

5a L(g
×
4a, f

◦
W6

) 5.3665 9.2730

L(g◦4a, f
◦
W6

) 4.3968 9.4362

SL(g
×
4a, f

◦
W6

) 5.5986 9.1971 g5a

SL(g◦4a, f
◦
W6

) 5.5421 9.4882

observed from various perspectives, and separate models are trained accordingly. Then, the trained models for different views
are combined using co-training, co-regularization, or transfer learning methods.

Air Quality Forecasting. There are several air quality prediction systems that combine different components, although these
components are usually not pre-trained. In [40], Zheng et al. propose a model combining two components—an artificial neural
network as the spatial classifier and a conditional random field as the temporal classifier—to infer air quality indices. Zheng et
al. [41] propose a prediction model for +48h forecasting composed of four components: a temporal predictor (linear regression),
a spatial predictor (neural network), a dynamic aggregator of both temporal and spatial predictors, and an inflection predictor
capturing sudden changes. According to the data provided by the monitoring stations, Hsieh et al. [42] propose a system to
predict the air quality class even for locations without monitoring stations. Furthermore, for locations with poor prediction, a
location is recommended to install a new monitoring station for best prediction. Their inference model is based on an affinity
graph. In [12], Wei et al. employ transfer learning to address the problem of big cities with a large amount of air quality
data along with small cities that have insufficient data to train a model from scratch. Using pre-trained components shows
strengths in flexibility in design and efficiency in training, the work in [13] presents well-thought component designs, and
feature engineering and encoding that are valuable for forthcoming PM2.5 prediction studies. Yi et al. [2] propose a deep neural
network consisting of a spatial transformation component and a deep distributed fusion network to fuse heterogeneous urban
data to capture the factors affecting air quality. The hybird architecture of CNN and Bi-LSTM trained from scratch by Du et
al. [43] is designed to learn the correlation and interdependence spatial-temporal information. In the reverse of decomposition,
Qi et al. [44] integrate the three tasks, feature analysis, prediction and interpolation, into one deep learning model.

VII. CONCLUSIONS

In this work, we investigate a composite neural network composed of pre-trained components connected by differentiable
activation functions. Through theoretical analysis and empirical evaluations, we show that if assumptions A1 to A4 are satisfied,
especially when training data is sufficient, then a composite network has better performance than all of its components with
high probability.

While the proposed theory ensures overall performance improvement, it is still not clear how to decompose a complicated
problem into components and how to construct them into a composite network to yield acceptable performance. Another
problem worth investigating is when the performance improvements diminish even after adding more components. Note that
in real-world applications, the amount of data, the data distribution, and the data quality affect performance considerably.

REFERENCES

[1] F. Feng, X. He, X. Wang, C. Luo, Y. Liu, and T. Chua, “Temporal relational ranking for stock prediction,” ACM Trans. Inf. Syst., vol. 37, no. 2, pp.
27:1–27:30, 2019.

14

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

TABLE XIII
COMPOSITE NETWORKS OF g3 AND fW6 , THEN f5 , +24H

Step Model Training Testing Front-runner

4b L(g
×
3 , f

◦
W6

) 4.5310 9.4551

L(g◦3 , f
◦
W6

) 4.6822 9.4677

SL(g
×
3 , f

◦
W6

) 5.5339 9.3423 g4b

SL(g◦3 , f
◦
W6

) 4.7831 9.4991

5b L(g
×
4b
, f
×
5) 5.6073 9.3961

L(g◦4b, f
×
5) 6.6991 9.2591 g5b

L(g
×
4b
, f◦5) 5.3298 9.2721

L(g◦4b, f
◦
5) 7.1666 9.5607

SL(g
×
4b
, f
×
5) 5.4710 9.3313

SL(g
×
4b
, f◦5) 5.3607 9.3130

SL(g◦4b, f
×
5) 6.2875 9.3586

SL(g◦4b, f
◦
5) 6.5281 9.5541

TABLE XIV
SUMMARY OF ALL METHODS (RMSE)

+24h +48h +72h

Method Trainable Training Testing Training Testing Training Testing

SVM - 11.6440 10.9117 12.1246 11.5469 12.1670 11.6376
Random forests - 3.3181 10.9386 3.4304 11.9037 3.4148 12.0917
Ensemble 1638 11.6955 11.0200 12.2609 11.3969 12.6605 11.6119
SL(Ensemble) 1638 11.5855 10.9184 12.2080 11.2815 12.5690 11.5411
DBCNRelu 2664 12.4800 11.4540 13.3464 12.1947 14.0421 12.6546
DBCNSigm 4032 11.7786 10.9803 13.6521 12.4418 13.4414 12.2825
DBCN 2664 7.0560 10.2119 8.0678 11.0469 8.2305 11.4274
BBCNRelu 2664 13.3711 12.4575 14.6168 13.2662 15.8200 14.0754
BBCNSigm 4032 12.5376 11.4600 13.0951 12.2047 13.5416 12.0388
BBCN 2664 7.1069 10.4712 7.9949 11.0935 8.4460 11.5100
Exhaustive-a 2664+α 5.1646 9.2438 5.0981 10.2402 6.7830 10.4265

(Include fW6
), note that α =4408436, β =4449816

Ensemble 43684 11.5253 10.7338 12.4490 11.1874 12.5822 11.4804
SL(Ensemble) 43684 11.5117 10.8125 12.3939 11.1628 12.7025 11.3376
DBCNRelu 44710 12.9434 11.8209 14.3413 12.8331 14.3562 12.7689
DBCNSigm 46420 11.9444 10.9167 12.1700 10.9474 13.2754 11.8630
DBCN 44710 6.9705 10.1053 7.8941 10.9531 8.2448 11.2541
BBCNRelu 44710 11.4985 10.5742 12.0386 11.0392 12.7188 11.4047
BBCNSigm 46420 12.4675 11.3664 13.1786 11.9285 13.3815 11.8680
BBCN 44710 6.9828 10.1938 8.5736 11.0182 9.1848 11.4153
Exhaustive-a 44710+β 5.5986 9.1971 5.1292 10.2190 7.9572 10.3588
Exhaustive-b 44710+β 6.6991 9.2591 5.6125 10.0632 5.7376 10.2671

[2] X. Yi, Z. Duan, R. Li, J. Zhang, T. Li, and Y. Zheng, “Predicting fine-grained air quality based on deep neural networks,” IEEE Transactions on Big
Data, 2020.

[3] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.
[4] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of computer and system

sciences, vol. 55, no. 1, pp. 119–139, 1997.
[5] T. Galanti, L. Wolf, and T. Hazan, “A theoretical framework for deep transfer learning,” Information and Inference: A Journal of the IMA, vol. 5, no. 2,

pp. 159–209, 2016.
[6] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC press, 2012.
[7] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: many could be better than all,” Artificial intelligence, vol. 137, no. 1-2, pp. 239–263,

2002.
[8] X. Chen, S. Wang, B. Fu, M. Long, and J. Wang, “Catastrophic forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning,”

32th Advances in Neural Information Processing Systems (NeurIPS), 2019.
[9] S. Džeroski and B. Ženko, “Is combining classifiers with stacking better than selecting the best one?” Machine learning, vol. 54, no. 3, pp. 255–273,

2004.
[10] M. Gashler, C. Giraud-Carrier, and T. Martinez, “Decision tree ensemble: Small heterogeneous is better than large homogeneous,” in Machine Learning

and Applications, 2008. ICMLA’08. Seventh International Conference on. IEEE, 2008, pp. 900–905.
[11] M. C. Turner, D. Krewski, W. R. Diver, C. A. Pope III, R. T. Burnett, M. Jerrett, J. D. Marshall, and S. M. Gapstur, “Ambient air pollution and cancer

mortality in the cancer prevention study ii,” Environmental health perspectives, vol. 125, no. 8, p. 087013, 2017.
[12] Y. Wei, Y. Zheng, and Q. Yang, “Transfer knowledge between cities,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM, 2016, pp. 1905–1914.
[13] X. Yi, J. Zhang, Z. Wang, T. Li, and Y. Zheng, “Deep distributed fusion network for air quality prediction,” in Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. ACM, 2018, pp. 965–973.
[14] J. Li, H. Zhang, C.-Y. Chao, C.-H. Chien, C.-Y. Wu, C. H. Luo, L.-J. Chen, and P. Biswas, “Integrating low-cost air quality sensor networks with fixed

and satellite monitoring systems to study ground-level pm2. 5,” Atmospheric Environment, vol. 223, 2020.
[15] R. A. Horn and C. R. Johnson, Matrix analysis, 2nd ed. Cambridge university press, 2012.
[16] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into a hilbert space,” Contemporary mathematics, vol. 26, no. 189-206, p. 1,

1984.
[17] W. Rudin, Principles of mathematical analysis, 3rd ed. McGraw-hill New York, 1964.
[18] R. Courant and F. John, Introduction to calculus and analysis I. Springer Science & Business Media, 2012.
[19] M. A. Hearst, “Support vector machines,” IEEE Intelligent Systems, vol. 13, no. 4, pp. 18–28, Jul. 1998. [Online]. Available:

http://dx.doi.org/10.1109/5254.708428
[20] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324
[21] Environmental Protection Administration. [Online]. Available: https://opendata.epa.gov.tw/Home

15

http://dx.doi.org/10.1109/5254.708428
https://doi.org/10.1023/A:1010933404324
https://opendata.epa.gov.tw/Home

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

[22] Center Weather Bureau. [Online]. Available: https://opendata.cwb.gov.tw/index
[23] D. W. Wong, L. Yuan, and S. A. Perlin, “Comparison of spatial interpolation methods for the estimation of air quality data,” Journal of Exposure Science

and Environmental Epidemiology, vol. 14, no. 5, p. 404, 2004.
[24] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convolutional lstm network: A machine learning approach for precipitation

nowcasting,” in Advances in neural information processing systems, 2015, pp. 802–810.
[25] A. Akansu and R. Haddad, Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets, 2nd ed. Academic Press, 2001.
[26] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic language model,” J. Mach. Learn. Res., vol. 3, pp. 1137–1155, Mar. 2003.
[27] scikit-learn. [Online]. Available: https://github.com/scikit-learn/scikit-learn
[28] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, “Why does unsupervised pre-training help deep learning?” Journal of

Machine Learning Research, vol. 11, no. Feb, pp. 625–660, 2010.
[29] Y. Yang, D.-C. Zhan, Y. Fan, Y. Jiang, and Z.-H. Zhou, “Deep learning for fixed model reuse,” in Thirty-First AAAI Conference on Artificial Intelligence,

2017.
[30] X.-Z. Wu, S. Liu, and Z.-H. Zhou, “Heterogeneous model reuse via optimizing multiparty multiclass margin,” in International Conference on Machine

Learning (ICML), 2019, pp. 6840–6849.
[31] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241–259, 1992.
[32] K. M. Ting and I. H. Witten, “Issues in stacked generalization,” Journal of artificial intelligence research, vol. 10, pp. 271–289, 1999.
[33] L. Breiman, “Stacked regressions,” Machine learning, vol. 24, no. 1, pp. 49–64, 1996.
[34] S. Hashem, “Optimal linear combinations of neural networks,” Neural networks, vol. 10, no. 4, pp. 599–614, 1997.
[35] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.
[36] J. Feng and Z.-H. Zhou, “Autoencoder by forest,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
[37] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” NAACL2019,

2018.
[38] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextualized word representations,” NAACL2018,

2018.
[39] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview: Recent progress and new challenges,” Information Fusion, vol. 38, pp. 43–54, 2017.
[40] Y. Zheng, F. Liu, and H.-P. Hsieh, “U-air: When urban air quality inference meets big data,” in Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2013, pp. 1436–1444.
[41] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li, “Forecasting fine-grained air quality based on big data,” in Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015, pp. 2267–2276.
[42] H.-P. Hsieh, S.-D. Lin, and Y. Zheng, “Inferring air quality for station location recommendation based on urban big data,” in Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015, pp. 437–446.
[43] S. Du, T. Li, Y. Yang, and S.-J. Horng, “Deep air quality forecasting using hybrid deep learning framework,” IEEE Transactions on Knowledge and

Data Engineering, vol. 33, no. 6, 2021.
[44] Z. Qi, T. Wang, G. Song, W. Hu, X. Li, and Z. Zhang, “Deep air learning: Interpolation, prediction, and feature analysis of fine-grained air quality,”

IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 12, 2018.

16

https://opendata.cwb.gov.tw/index
https://github.com/scikit-learn/scikit-learn

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

APPENDIX

A1. More details of Proofs

Proof. (of Lemma 1)
Recall that in the case of linear activate function, g(x) = L(f1, ...fK) =

∑
j∈[K]+ θjfj(x). Also recall that EΘ(x; g) =∑N

i=1 (g(x(i))− y(i))2. To prove the existence of the minimizer, it is sufficient to find the critical point for the deferential of
Eq. (1). That is, to calculate the solution, the set of equations:

∇ΘE (x; g) =

∂E
∂θ0
...
∂E
∂θK

 =

 0
...
0

,
where for each s ∈ [K]+, and

∂E
∂θs

=2

N∑
i=1

(
g(x(i))− y(i)

)
· fs(x(i))

=2

N∑
i=1

 ∑
j∈[K]+

θjfj(x
(i)
j)− y(i)

 · fs(x(i))

=2

 ∑
j∈[K]+

θj〈~fs, ~fj〉 − 〈~fs, ~y〉

 .

Hence, to solve ∇ΘE (x; g) = ~0 is equivalent to solve θts in the equation[
〈~fs, ~ft〉

]
(K+1)×(K+1)

× [θt](K+1)×1 =
[
〈~fs, ~y〉

]
(K+1)×1

where the indexes s, t are in [K]+.
Note that linear independence of {~fj}j∈[K]+ makes

[
〈~fs, ~ft〉

]
(K+1)×(K+1)

a positive-definite Gram matrix [15], which

means the inversion
[
〈~fs, ~ft〉

]−1

(K+1)×(K+1)
exists. Then the minimizer Θ∗ is solved:

[θt](K+1)×1 =
[
〈 ~fs, ~ft〉

]−1

(K+1)×(K+1)
×
[
〈 ~fs, ~y〉

]
(K+1)×1

(16)

The above shows the existence of the critical points. It is easy to check that the critical point can only be the minimizer of
the squared error EΘ (x; g). Furthermore, we immediately have E(gΘ∗) ≤ minj∈[K]+{E(fj)}.

From the above proof, we can compute the minimizer for the case of the linear activation.
Corollary 1. The closed form of the minimizer is:

Θ∗ = [θj](K+1)×1 =
[
〈~fi, ~fj〉

]−1

(K+1)×(K+1)
×
[
〈~fj , ~y〉

]
(K+1)×1

.

Based on Lemma 2, we can prove our next lemma

Proof. (of Lemma 3)
Apply Lemma 2 to the given ~y and randomly selected ~f , then we have

Pr
~f∈RN

{
|∠~y,~f −

π

2
| ≤ η

}
≥ 1− 1√

N
.

Also note that vectors ~y, ~f and ~f − ~y form a triangle with the three inner angles ∠~y,~f , ∠~f−~y,~f and ∠~f−~y,−~y , which means
∠~y,~f + ∠~f−~y,~f + ∠~f−~y,−~y = π. Hence, for large N ,

∠~y,~f =
π

2
⇒ ∠~f−~y,~f 6=

π

2

⇒ Pr
{
∠~y,~f =

π

2

}
≤ Pr

{
∠~f−~y,~f 6=

π

2

}
⇒ Pr

{
∠~y,~f ≈

π

2

}
≤ Pr

{
∠~f−~y,~f 6≈

π

2

}
⇒ 1− 1√

N
≤ Pr

{
∠~y,~f ≈

π

2

}
≤ Pr

{
∠~f−~y,~f 6≈

π

2

}

17

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

This means there exists a small enough η > 0 s.t.

1− 1√
N
≤ Pr

{
|∠~y,~f −

π

2
| ≤ η

}
≤ Pr

{
|∠~f−~y,~f −

π

2
| ≥ η

}
⇒ 1√

N
> Pr

{
|∠~f−~y,~f −

π

2
| < η

}
In short, as ∠~f−~y,~f is likely π/2, ∠~y,~f must be less likely a vertical angle. Hence, 1 − 1√

N
≤ Pr{|∠~f−~y,~f −

π
2 | ≤ η} ≤

Pr{|∠~y,~f −
π
2 | > η}. This completes the proof.

Proof. (of Lemma 4)
Observe that as j∗ is fixed and known,

Pr
{
∇ΘE|Θ∗= ~ej∗ = ~0

}
= Pr

{
〈~fj∗ − ~y, ~f0〉 = 0 ∧ · · · ∧ 〈~fj∗ − ~y, ~fK〉 = 0

}
≤ Pr

{
〈~fj∗ − ~y, ~fj∗〉 = 0

}
<

1√
N

The last inequality is from Lemma 3. However, in general j∗ is unknown,

Pr

{
∃Θ∗ : E(gΘ∗) = min

j∈[K]+
{E(fj)}

}
= Pr

{
∃j ∈ [K]+s.t.∇ΘE|Θ∗=~ej = ~0

}
≤ Pr

{
∨Kj=0

{
〈~fj − ~y, ~fj〉 = 0

}}
= (K + 1) Pr

{
〈~f − ~y, ~f〉 = 0

}
<
K + 1√
N

Hence,

Pr

{
∃Θ∗ ∈ RK+1s.t.E(gΘ∗) < min

j∈[K]+
{E(fj)}

}
> 1− K + 1√

N

Proof. (of Lemma 7)
For Eq. (8): We first give a procedure of obtaining gΘε

(x(i)), then verify these settings in the procedure fit the conclusion of
the first part: ∀i ∈ [N], |gΘε

(x(i))− gΘ∗0 (x(i))| < ε.
Procedure for Eq. (8):
For the given ε and σ(·), we first find the following items based on the conclusions of Case 1 and Lemmas:
gΘ∗0 (·). (By case 1)
z0 ∈ R s.t. d

dzσ(z) 6= 0. (By A3)
U contains z0. (By Lemma 5)
V contains y0. (By Lemma 5)
τ : V → U s.t. ∀z ∈ U , τ(σ(z)) = z. (By Lemma 5)

18

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

(Denote y0 = σ(z0), so τ(y0) = z0.)
Then compute:

Mg = max

{
1,max
i∈[N]
{2 · |gΘ∗0 (x(i))|}

}
Mσ = max

{
1, sup
z∈U
{2 ·

(
σ(z)− σ(z0)

z − z0

)2

}

}

Mτ = max

{
1, sup
z∈U
{|τ (2)(σ(z)− σ(z0))|}

}
Mγ = dlog2(MgMσMτ ε

−1)e+ 1

γ0 = sup
z∈U
{r = |z − z0| : (z0 − r, z0 + r) ⊂ U}

γ = min
{
γ0, 2

−Mγ
}

M0 = γ−1Mg

M1 = MσMτ

Define:

L(0),ε(x) = M−1
0 gΘ∗0 (x) + z0

L(1),ε(y) = M0 · τ (1)(y0) · y +M0 ·
(
z0 − τ (1)(y0) · y0

)
Verification:
First observe that L(0),ε(x) is a linear combination with a bias, i.e., an affine mapping, since gΘ∗0 (x) itself is an affine mapping.
Similarly, L(1),ε(y) is an affine mapping of y.

Next, for all i ∈ [N], LΘ0,ε
(x(i)) = M−1

0 gΘ∗0 (x(i))+z0 ∈ (−γ+z0, z0 +γ) ⊂ U since γ ≤ γ0

2 and (−γ0

2 +z0, z0 + γ0

2) ⊂ U .
Hence, by Lemma 5,

τ
(
σ
(
LΘ0,ε

(x(i))
))

= LΘ0,ε
(x(i)).

Now let z ∈ (−γ + z0, z0 + γ) and y = σ(z), then by Lemma 6 and Eq. (7),

|τ (y)−
(
τ(y0) + τ (1)(y0)(y − y0)

)
|

=
τ (2)(c(y − y0))

2!
(y − y0)2

< 2 · sup
z∈U

{
|τ (2)(σ(z)− σ(z0))| ·

(
σ(z)− σ(z0)

z − z0

)2
}
· (z − z0)2

≤MτMσγ
2 = M1γ

2

Replace y with σ(z) and simplify the expression in the absolute value symbol, then we have τ (y) = τ (σ(z)) = z. Furthermore,
τ(y0) + τ (1)(y0)(y − y0) = τ (1)(y0) · y +

(
τ(y0)− τ (1)(y0) · y0

)
. Then replace z with LΘ0,ε

(x(i)), and τ(y0) with z0,

|M−1
0 gΘ∗0 (x) + z0 −

{
z0 + τ (1)(y0)

(
σ
(
LΘ0,ε

(x(i))
)
− y0

)}
|

< M1γ
2

This means that
|gΘ∗0 (x)− LΘ1,ε

(
σ
(
LΘ0,ε(x

(i))
))
| < M0M1γ

2

⇒ |gΘ∗0 (x)− gΘε
(x)| < M0M1γ

2

Recall that γ ≤ 2−Mγ < ε
MgMσMτ

. Hence,

M0M1γ
2 = γ−1MgMσMτγ

2 = MgMσMτγ < ε

achieve the goal of the first part of this Lemma.
For Eq. (9): For the second part, we claim the following settings satisfy E(gΘε) ≤

2E(gΘ∗0
)+E(fj∗)

3 < E(fj∗).
Procedure for Eq. (9):
Compute and then set these:

M2 = max
i∈[N]

{
|gΘ∗0 (x(i))− y(i)|

}
ε =
E(fj∗)− E(gΘ∗0)

4N(2M2 + 1)

19

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

Verification:
Observe that

E(gΘ∗0) < E(fj∗)⇒

max
i∈[N]

{
(fj∗(x

(i))− y(i))2 − (gΘ∗0 (x(i))− y(i))2
}
> 0

E(gΘ∗0) +
E(fj∗)− E(gΘ∗0)

3
=

2E(gΘ∗0) + E(fj∗)

3
< E(fj∗)

Besides,

N · (2M2 + 1) · ε <
E(fj∗)− E(gΘ∗0)

3

and
|gΘε

(x)− gΘ∗0 (x)| < ε

⇒ |(gΘε
(x)− y)− (gΘ∗0 (x)− y)| < ε

⇒ 0 ≤ |gΘε(x)− y| < |gΘ∗0 (x)− y|+ ε

⇒ (gΘε
(x)− y)2 < (|gΘ∗0 (x)− y|+ ε)2

Hence, based on above observations we have

E(gΘε
) =

∑
i∈[N]

(gΘε
(x(i))− y(i))2

<
∑
i∈[N]

{|gΘ∗0 (x(i))− y(i)|+ ε}2

=
∑
i∈[N]

(gΘ∗0 (x(i))− y(i))2

+
∑
i∈[N]

{
2ε · |gΘ∗0 (x(i))− y(i)|+ ε2

}
=E(gΘ∗0) + ε ·

∑
i∈[N]

(
2|gΘ∗0 (x(i))− y(i)|+ ε

)
≤E(gΘ∗0) + ε ·N · (2M2 + 1)

<E(gΘ∗0) +
E(fj∗)− E(gΘ∗0)

3

=
E(fj∗) + 2E(gΘ∗0)

3
<E(fj∗)

which means that E(gΘε
) < minj∈[K]+{E(fj)}. The proof is complete.

Proof. (of Proposition 1)
Let

D(α0, α1)

=
∑
i∈[N]

(f1(x(i))− y(i))2 −
(
α0f0(x(i)) + α1f1(x(i))− y(i)

)2

.

First observe that D(0, 1) = 0 and hence if ∇D(0, 1) 6= (0, 0) then it is easy to know that ∃(α∗0, α∗1) s.t. D(α∗0, α
∗
1) > 0.

∇D(α0, α1) = −2 ·

[
〈α0

~f0 + α1
~f1 − ~y, ~f0〉

〈α0
~f0 + α1

~f1 − ~y, ~f1〉

]
Then, by considering (α0, α1) = (0, 1) we have

∇D(0, 1) = −2 ·

[
〈~f1 − ~y, ~f0〉
〈~f1 − ~y, ~f1〉

]
Apply Lemma 3,

Pr
{
∇D|Θ∗= ~ej∗ = ~0

}
≤ Pr{∃j ∈ [1]+s.t.〈~fj − ~y, ~fj〉 = 0}

<
2√
N

20

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

That is,
Pr{∃(α0, α1)s.t.D(α0, α1) > 0}
≥ Pr{∇D(0, 1) 6= ~0}

> 1− 2√
N

Proof. (of Lemma 8)
We first prove this lemma of linear activation, and then similar to previous section apply Lemma 7 to address the non-linear
activation. For the linear activation, it can be proved by induction.

Base case: It is done in Proposition 1.
Inductive step: Suppose as J = k − 1 the statement is true. That is, gk−1 = LΘ(f1, ..., fk−1) and with probability at least

1− K√
N

, there is Θ s.t. E (gK−2) > EΘ (gK−1). As J = k, let f0 and f1 in Proposition 1 be gk−1 and fk respectively. Then
we have α0gk−1 + α1fk as the composite network. Repeat the argument in the previous proposition, then we can conclude
with probability at least 1− k+1√

N
there is (α0, α1) s.t. E (gK−1) > EΘ (α0gk−1 + α1fk). Note that α0gk−1 +α1fk is a possible

form of gK . So the statement holds. The details are as follows:
D(α0, α1)

=
∑
i∈[N]

(gk−1(x
(i)

)− y(i)
)
2 −

(
α0gk−1(x

(i)
) + α1fk(x

(i)
)− y(i)

)2
.

First observe that D(1, 0) = 0 and hence if ∇D(1, 0) 6= ~0 then it is easy to know that ∃(α∗0, α∗1) s.t. D(α∗0, α
∗
1) > 0.

∇D(α0, α1) = −2 ·

[
〈α0~gk−1 + α1

~fk − ~y,~gk−1〉
〈α0~gk−1 + α1

~fk − ~y, ~fk〉

]
Then,

∇D(1, 0) = −2 ·
[
〈~gk−1 − ~y,~gk−1〉
〈~gk−1 − ~y, ~fk〉)

]
Apply Lemma 4 and by Induction hypothesis, we have

Pr
{
∇D|Θ∗= ~ej∗ = ~0

}
≤ Pr{〈~gk−1 − ~y,~gk−1〉 = 0}+ Pr{〈~fk − ~y, ~fk〉 = 0}

<
k√
N

+
1√
N

=
k + 1√
N

Thus,
Pr{∃(α0, α1)s.t.D(α0, α1) > 0}

≥ Pr
{
∇D|Θ∗= ~ej∗ 6= ~0

}
> 1− k + 1√

N

This completes the inductive step.
For the non-linear activation, repeat the argument of Lemma 7 to obtain a proper gΘε

corresponding to the given ε and
the linear mapping gΘ∗0 , and a small enough ε can yield a proper Θε that fits the conclusion of E(gK−1) > EΘε

(gK). The
probability of existence is inherently obtained as the same as in Lemma 7.

Proof. (of Lemma 9)
Observe that for the given set of pre-tained components {fj}j∈[K] and by the definition of gK−1, fK is not a component
of gK−1. Hence, if the activation functions used in the construction of gK−1 are all linear, the assumption A1 implies that
~gK−1 is linear independent of ~fK . Furthermore, if there is at least one non-linear activation function used in the construction
of gK−1, then as N is large enough, Lemma 2 implies that ~gK−1 and ~fK are not parallel with a very high probability.
This means the assumption that ~gK−1 is linear independent of ~fK is reasonable. Furthermore, this implies that the events
E1 : ∃Θs.t.EΘ(gK) < min{E(gk−1), E(fk)}, and E2 : E(gK−1) < · · · < minj∈[K]+{E(fj)}, are independent. Hence,
Pr{E1|E2} = Pr{E1}.

21

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

Proof. (of Theorem 2)
For a set of given K pre-trained components, gk := L(k)(σ(L(k−1)(· · ·L(1)(σ(L(0)(f1, · · · , fK))) · · ·))) is one of possible
H-hidden layer composite network. Hence obviously,

Pr

{
∃Θ∗ : E(gΘ∗) < min

j∈[K]+
{E(fj)}

}
≥ Pr

{
E(gH) < E(gH−1) < · · · < E(g1) < min

j∈[K]+
{E(fj)}

}
≥ Pr

{
E(g1) < min

j∈[K]+
{E(fj)}

}
× Pr

{
E(g2) < E(g1) | E(g1) < min

j∈[K]+
{E(fj)}

}
× · · ·×

Pr

{
E(gH) < E(gH−1) | E(gH−1) < · · · < min

j∈[K]+
{E(fj)}

}
=

(
1− K + 1√

N

)H
The last inequality is based on Lemmas 8 and 9:

min
k∈[H]

{Pk} ≥ 1− K + 1√
N

,

where
Pk = Pr

{
∃Θ : E(gk) < E(gk−1) | E(gk−1) < · · · < min

j∈[K]+
{E(fj)}

}
= Pr {∃Θ : E(gk) < E(gk−1)} by Lemma 9.

This completes the proof.

22

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

A2. More Details of Experiments
In Table XV shows the details of each component:

TABLE XV
ARCHITECTURES AND HYPERPARAMETERS OF COMPONENTS

Comp. Descriptions: attention (decoder) layer (Att),
time length l ∈ {24, 48, 72}, batch normalization (BN),
convolutional layer (Cvl), max-pooling (MaxP),
flatten layer (Fltn), dense layer (Den), dropout (Drop)

f1 Input layer: (30× 38)× 9
hidden layers: BN, Cvl-1(30× 38, 32 filters), MaxP,

Cvl-2(15× 19, 16 filters), MaxP, Fltn,
LSTM(150, time l), Att, Fltn, Den, Drop(0.2), Den

Output layer: Den(RELU), 18
total parameters: 917,510

f2 Input layer: (30× 38)× 4
hidden layers: same with f1

Output layer: Den(RELU), 18
total parameters: 916,918

f3 Input layer: (30× 38)× 9
hidden layers: Fltn, BN, Den-1(100), Den-2(100)
Output layer: Den(RELU), 18
total parameters: 1,038,054

f4 Input layer: (30× 38)× 4
hidden layers: same with f3

Output layer: Den(RELU), 18
total parameters: 582,038

f5 Input layer: one-hot (24 + 7 + 12)
hidden layers: LSTM(150, time l), Att, Fltn, Den,

Drop(0.2), Den
Output layer: Den(Scaled-Logistic), 18
total parameters: 953,916

fW6
Input layer: (30× 38)× 4
hidden layers: Cvl-1(30× 38, 16 filters)

Cvl-2(15× 19, 16 filters), MaxP, Fltn,
Output layer: Den(RELU), 18
total parameters: 41,380

TABLE XVI
COMPOSITE NETWORKS BY ALGO 1: DBCN, NEXT 48HR.

RMSE parameter

Model Training Testing trainable/total note

g1 ← f1 0/
L(g1, f5) 8.1850 11.0995 666/1872092 g2

SL(g1, f5) 8.1675 11.2399 666/1872092

L(g2, f4) 8.1520 11.2632 666/2454796
SL(g2, f4) 8.1902 11.1647 666/2454796 g3

L(g3, f3) 8.1382 11.1163 666/3493516 g4

SL(g3, f3) 8.1085 11.1442 666/3493516

L(g4, f2) 8.0361 11.0991 666/4411100
SL(g4, f2) 8.0678 11.0469 666/4411100 g5

L(g5, fW6
) 7.8941 10.9531 42046/4453146 g6

SL(g5, fW6
) 7.9009 10.9754 42046/4453146

23

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

TABLE XVII
COMPOSITE NETWORKS BY ALGO 1: DBCN, NEXT 72HR.

RMSE parameter

Model Training Testing trainable/total note

g1 ← f5

L(g1, f1) 8.4308 11.3572 666/1872092
SL(g1, f1) 8.2979 11.3323 666/1872092 g2

L(g2, f2) 8.3579 11.3634 666/2789676 g3

SL(g2, f2) 8.3252 11.4001 666/2789676

L(g3, f4) 8.4116 11.4195 666/3372380 g4

SL(g3, f4) 8.6230 11.4530 666/3372380

L(g4, f3) 8.2305 11.4274 666/4411100 g5

SL(g4, f3) 8.1284 11.4482 666/4411100

L(g5, fW6
) 8.2448 11.2541 42046/4453146 g6

SL(g5, fW6
) 8.2125 11.3232 42046/4453146

TABLE XVIII
COMPOSITE NETWORKS BY ALGO 2: BBCN, NEXT 48HR.

RMSE parameter

Model Training Testing trainable/total note

h0,1 ← f1, h0,2 ← f2

L(h0,1, h0,2) 6.1001 11.1004 666/1835094
SL(h0,1, h0,2) 5.5894 11.0907 666/1835094 h1,1

h0,3 ← f3, h0,4 ← f4

L(h0,3, h0,4) 11.8311 11.5098 666/1620758 h1,2

SL(h0,3, h0,4) 11.6587 11.5436 666/1620758

L(h1,1, h1,2) 8.2277 11.1739 666/3456518
SL(h1,1, h1,2) 7.9990 11.0935 666/3456518 h2,1

h2,2 ← h1,3 ← h0,5 ← f5

L(h2,1, h2,2) 8.0273 11.0808 666/4411100
SL(h2,1, h2,2) 7.9949 11.0516 666/4411100 h3,1

g5 ← h3,1

L(g5, fW6
) 8.5736 11.0182 42046/4453146 g6

SL(g5, fW6
) 7.7346 11.0208 42046/4453146

TABLE XIX
COMPOSITE NETWORKS BY ALGO 2: BBCN, NEXT 72HR.

RMSE parameter

Model Training Testing trainable/total note

h0,1 ← f1, h0,2 ← f2

L(h0,1, h0,2) 7.7873 11.4480 666/1835094
SL(h0,1, h0,2) 7.9830 11.4198 666/1835094 h1,1

h0,3 ← f3, h0,4 ← f4

L(h0,3, h0,4) 12.0284 11.7405 666/1620758 h1,2

SL(h0,3, h0,4) 12.0460 11.8005 666/1620758

L(h1,1, h1,2) 8.3884 11.7030 666/3456518
SL(h1,1, h1,2) 8.5149 11.5703 666/3456518 h2,1

h2,2 ← h1,3 ← h0,5 ← f5

L(h2,1, h2,2) 8.4460 11.5100 666/4411100 h3,1

SL(h2,1, h2,2) 8.4093 11.5526 666/4411100

g5 ← h3,1

L(g5, fW6
) 9.1848 11.4153 42046/4453146 g6

SL(g5, fW6
) 9.0706 11.4474 42046/4453146

24

This work is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).

TABLE XX
SUMMARY OF ALL METHODS (MAE)

+24h +48h +72h

Method Training Testing Training Testing Training Testing

SVM 8.0701 7.7026 8.5887 8.3525 8.6831 8.6157
Random forests 2.3956 8.3523 2.5007 9.2156 2.5131 9.4219
Ensemble 8.8470 8.5245 9.1113 8.7430 9.3899 8.8767
SL(Ensemble) 8.7689 8.4413 9.0365 8.6116 9.3121 8.8657
DBCNRelu 9.3082 8.7309 9.8383 9.1429 10.4367 9.6356
DBCNSigm 8.6927 8.2972 10.0452 9.6134 9.9240 9.5408
DBCN 3.7188 7.7868 4.3161 8.4258 4.3261 8.8250
BBCNRelu 9.7099 9.2274 10.6558 10.0856 11.6371 10.5833
BBCNSigm 9.1872 8.7346 9.7944 9.5822 9.6479 8.8532
BBCN 3.7676 7.9866 4.4403 8.5564 4.5324 8.8781
Exhaustive-a 2.8646 6.8319 2.8078 7.6136 3.6612 7.7701

(Include fW6
)

Ensemble 8.7257 8.2739 8.9901 8.2476 9.2801 8.7263
SL(Ensemble) 8.7470 8.3988 9.0098 8.3065 9.2281 8.4536
DBCNRelu 9.3969 8.5961 10.2851 9.5191 10.4696 9.4412
DBCNSigm 8.7275 8.1512 8.9281 8.2625 9.6004 8.8777
DBCN 3.6608 7.5614 4.2419 8.2766 4.4143 8.5776
BBCNRelu 8.5198 8.0122 8.9259 8.4752 9.2290 8.5274
BBCNSigm 9.1376 8.6430 9.6253 9.0825 9.6115 8.8030
BBCN 3.6698 7.6156 4.6652 8.4528 4.8884 8.6097
Exhaustive-a 3.1250 6.7757 2.8133 7.5986 4.5569 7.6798
Exhaustive-b 3.8088 6.9032 3.1118 7.5156 3.0740 7.6561

Fig. 6. Case study for Tamsui station

Figure 6 illustrates a typical example of the next-24-hour predictions of various models, including g5 and g6 of DBCN,
ConvLSTM, SVM and random forest, of Tamsui for 60 hours starting from 9:00 pm, October 22, 2016. f1 is a ConvLSTM
model that its prediction is central to the average of the ground truth. DBCN (g6) considers the one extra weather feature, i.e.,
the chance of rain in the future, that it produces a lower PM2.5 prediction than DBCN(g5). In this duration, the traditional
machine learning methods SVM and RF usually overestimated, although they apply the same weather and pollutant features.

25

	I Introduction
	II Concept of Composite Neural Network
	III Theoretical Analysis
	III-A Single-Layer Composite Network
	III-B Complicated Composite Network

	IV Composite Network Construction
	V PM2.5 Predictions
	V-A Datasets
	V-B Pre-trained Component Design
	V-C Composite Network
	V-C1 DBCN and BBCN
	V-C2 Exhaustive Search Construction
	V-C3 Comparisons of All Methods

	VI Related Work
	VII Conclusions
	References
	Appendix

