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Tackling Virtual and Real Concept Drifts: An
Adaptive Gaussian Mixture Model Approach

Gustavo Oliveira, Leandro Minku, Senior Member, IEEE, and Adriano Oliveira, Senior Member, IEEE,

Abstract—Real-world applications have been dealing with large amounts of data that arrive over time and generally present changes in
their underlying joint probability distribution, i.e., concept drift. Concept drift can be subdivided into two types: virtual drift, which affects
the unconditional probability distribution p(x), and real drift, which affects the conditional probability distribution p(y|x). Existing works
focuses on real drift. However, strategies to cope with real drift may not be the best suited for dealing with virtual drift, since the real
class boundaries remain unchanged. We provide the first in depth analysis of the differences between the impact of virtual and real
drifts on classifiers’ suitability. We propose an approach to handle both drifts called On-line Gaussian Mixture Model With Noise Filter
For Handling Virtual and Real Concept Drifts (OGMMF-VRD). Experiments with seven synthetics and seven real-world datasets show
that OGMMF-VRD outperforms other approaches with separate mechanisms to deal with virtual and real drifts. It also has more stable
rankings and smaller drops in performance during drifting periods than existing ensemble approaches, thus being more reliable for
adoption in practice.

Index Terms—Data Streams, Virtual Concept Drift, Real Concept Drift, Gaussian Mixture Model.

F

1 INTRODUCTION

In recent years, real-world applications like credit card
fraud detection, flight delay and weather forecasting have
been dealing with tremendous growth in the amount of
data, which typically arrive continuously and sequentially
over time and evolve due to the underlying dynamics of
real-world activities. Such sequences of data are known as
data streams [2]. They are challenging for data modeling
systems [3], requiring classifiers to adapt to changes over
time. Changes in the underlying distributions of the prob-
lem are called concept drifts [4].

Concept drift can be subdivided into two types: virtual
drift and real drift [3]. Virtual drift can be defined as a
change in the unconditional probability distribution P (x)
and real drift can be defined as a change in the conditional
probabilities P (y|x). They may occur separately or simul-
taneously and may have different impacts on the classifier
performance.

Most existing work on data stream learning focuses on
real drifts, because such drifts change the true decision
boundaries of the problem, directly degrading the perfor-
mance of classifiers [5]. As virtual drifts do not change
the true decision boundaries of the problem, they attracted
much less attention from the research community. Neverthe-
less, they can also affect the classifier performance, because
they may affect the suitability of the decision boundaries
learned by the classifiers. For instance, the appearance of
observations in regions of the space that were not covered
by training examples may reveal insufficient or incorrectly

A preliminary version of this research was published in [1].
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learned decision boundaries, which need to be adjusted for
the classifier to remain suitable.

No existing work provides an in depth understanding
of the differences between the effect of these two types of
drift on the suitability of classifiers. As a result, existing
data stream learning approaches treat virtual drifts using
the same strategies as for real drifts [5]. A common strategy
to adapt to a new (previously unseen) concept is to create
a new classifier to learn it. However, such strategy may not
be the best for dealing with virtual drifts. This is because
the knowledge acquired before the drift may remain valid
after a virtual drift occurs [3], given that the true decision
boundaries do not change. Learning a new classifier from
scratch thus wastes potentially useful knowledge that could
speed up adaptation to virtual drifts.

Moreover, the strategy of creating new models can be
prone to noise, which could be very problematic in the
presence of virtual drifts. For instance, approaches based
on drift detectors could potentially be tuned to detect mi-
nor changes in the underlying distribution such as virtual
drifts. This tuning may cause the system to confuse these
drifts with noise, thus triggering the unnecessary creation of
new models. This could potentially harm system predictive
performance as a whole, given that new models require
incoming observations to train to become accurate.

With that in mind, this paper provides the first in-depth
analysis of the differences between the impact caused by
virtual and real drifts on the suitability of Bayesian ap-
proaches, as they lend themselves to dealing with different
types of drift, due to their pertinence inferences [1]. Besides
that, we propose a new approach to handle both virtual and
real drifts simultaneously while achieving more robustness
to noise. This approach has been guided by the following
Research Questions (RQs), which have not been considered
by previous work:

RQ1) What is the difference between the impact of
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virtual and real drifts on the suitability of classifiers’
learned decision boundaries and predictive performance
over time? This RQ provides the foundation for proposing
novel approaches able to more efficiently and effectively
deal with both types of drift at the same time. We hypoth-
esize that when virtual drifts occurs, the previously learned
decision boundaries remain suitable, and the only thing that
needs to be done is to learn the emerging region. We also
hypothesized that when non-severe real drifts happen, only
a small portion of the learned decision boundaries becomes
unsuitable, whereas severe real drifts require a significant
reset of the learned decision boundaries.

RQ2) How to deal with both virtual and real drifts
while achieving robustness to noise? We explore the poten-
tial of GMM to enable different strategies to be used to tackle
these different types of drift. GMM has pertinence inferences
useful for virtual drifts, which enable us to verify whether
or not a new observation belongs to the trained distribution.
If new observations arrive in regions of the space that are
not covered by existing Gaussians, a new Gaussian can
be created for them. As incoming observations could be
noise, it is essential for the work to handle it. Therefore,
we hypothesize that creating a filter using techniques of
instance hardness can help the system be less affected by
noise. Also, a selection of models from the pool may increase
robustness to false alarms in the drift detections, typically
caused by noisy examples.

RQ3) How to best harness knowledge gained from past
similar concepts to accelerate adaptation to both virtual
and real drifts? The most widely used strategy to deal
with concept drift is to learn previously unseen concepts
from scratch. This forces the system to use obsolete models
until sufficient new data have arrived for retraining, causing
a large degradation in performance. Some studies have
considered the storage of past models in a pool to accelerate
adaptation to recurrent concepts [6]. We hypothesize that
saving past GMMs in a pool can not only help the system to
adapt to recurrent concepts, but also to accelerate adaptation
to virtual and real drifts that lead to new concepts that share
similarities to old concepts.

In our previous work [1], we preliminary demonstrated
the potential benefit of GMMs for tackling virtual and real
drifts. However, that preliminary work (i) did not provide a
detailed understanding of how virtual and real drifts affect
classifier performances; (ii) ignored the impact of noisy
observations on virtual drift adaptation, which makes the
system to create Gaussians in unwanted regions which can
cause misclassification; (iii) delayed the learning of new
regions through Gaussians because it was limited only to
very distant areas; (iv) delayed the ability to track data
evolution since the Gaussians were updated only when
misclassification occurred; and (v) in real drift adaptation,
new concepts were learned entirely from scratch, which
in turn discard useful knowledge that could be useful
in the drift adaptation. Together, these drawbacks limited
the predictive performance of that framework. Therefore,
the current paper proposes a new approach called On-line
Gaussian Mixture Model With Noise Filter For Handling
Virtual and Real Concept Drifts (OGMMF-VRD), which
overcomes these problems.

This paper is further organized as follows. Section 2

explains related work. Section 3 presents our problem for-
mulation. Section 4 presents the datasets used in our study.
Section 5 presents our analysis to answer RQ1. Based on
that, Section 6 proposes our approach OGMMF-VRD, partly
answering RQ2 and RQ3. Section 7 presents our experi-
mental analysis of the proposed approach, completing the
answer to RQ2 and RQ3. Section 8 concludes the paper and
gives directions for further research.

2 RELATED WORK

In general, several existing methods have been proposed to
deal with concept drift, and a few different surveys discuss
these approaches. For general learning in non-stationary
environments, we refer readers to [8, 3]. For ensemble ap-
proaches for non-stationary environments, we refer readers
to [9, 10]. For class imbalance learning in non-stationary
environments, we refer readers to [11]. Despite all these
studies, few of the existing approaches differentiate between
virtual and real drifts, and propose to handle both. In this
sense, the following works stand out:

Oliveira et al.’s Incremental Gaussian Mixture Model
for Concept Drift (IGMM-CD) [7] uses on-line learning to
incorporate new incoming observations. If an incoming
observation is classified correctly, the nearest Gaussian to
it is updated in an attempt to handle virtual drifts. If the
system misclassifies the incoming observation and does
not have a Gaussian with the minimum distance (Cver)
to it, a new Gaussian with size (sigma ini) is created in
an attempt to handle real drifts. Besides that, the system
excludes Gaussians with lower density if the predefined
number of Gaussians per class (T ) is exceeded. Despite that,
virtual drifts resulting in misclassifications are treated in the
same way as real drifts, causing the unnecessary addition
of new Gaussians. In addition, this approach suffers from
delays in excluding obsolete Gaussians in the presence of
abrupt drifts, degrading performance.

Almeida et al.’s Dynamic Selection Based Drift Handler
(Dynse) is an approach based on Dynamic Classifier Selec-
tion (DCS) [6]. DCS is the process of selecting a specific
classifier for each test instance according to its neighborhood
(k) in a validation set. The validation set (M ) used by Dynse
is represented by a sliding window which traverses the
incoming data excluding the oldest observations. Virtual
drifts can be dealt with by using a sliding window with
very large size, because it will contain many observations
corresponding to the current concept. Real drifts can be
dealt with by using a sliding window with small size, since
its observations can be excluded faster. New classifiers are
added into a pool (D) at each batch of m observations to
learn new concepts as they arrive. However, as Dynse relies
on a pre-defined window size, it can only deal with one
type of drift (virtual or real) at a given run. If the data stream
presents both virtual and real drifts, or if the chosen window
size does not match the type of drift presented in the data
stream, Dynse is likely to have its predictive performance
negatively affected.

Oliveira et al.’s Gaussian Mixture Model for dealing with
Virtual and Real concept Drifts (GMM-VRD) [1] combines
batch and on-line learning to handle both virtual and real
drifts. A GMM is trained using a batch with m observations.
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(a) Dynse - Virtual 9 (Bfr.) (b) Dynse - Virtual 9 (Aft.) (c) Dynse - Circles (Bfr.) (d) Dynse - Circles (Aft.)

(e) IGMM-CD - Virtual 9 (Bfr.) (f) IGMM-CD - Virtual 9 (Aft.) (g) IGMM-CD - Circles (Bfr.) (h) IGMM-CD - Circles (Aft.)

Fig. 1: Execution of Dynse [6] and IGMM-CD [7] on Virtual 9 and Circles datasets (Tbl. 1). The points represent the first
50 before (bfr.) and after (aft.) the concept drift. Dynse uses as base classifier the Gaussian Naive Bayes and IGMM-CD the
GMM. Gray and dotted lines represent the true decision boundaries of the problem. The solid colored lines represent the
decision boundaries learned by each approach. The text G0, ..Gn represents the Gaussian number.

The parameter (Kmax) is used to define the maximum
number of Gaussians and the Akaike Information Criterion
(AIC) is used to define the best number. If a misclassification
occurs, the pertinence of the new incoming observation is
used to decide whether to update or to create new Gaussians
to handle virtual drifts. In parallel, a Concept Drift Test
(CDT) is used to monitor the system’s performance. If the
performance is decreasing, the system is reset to cope with
real drifts. The drawback of this approach is its sensitivity
to noisy observations, which can cause creation and update
of Gaussians on unwanted regions, degrading performance.

Our approach OGMMF-VRD is proposed to overcome
the above mentioned problems of existing approaches, aim-
ing at dealing with both virtual and real drifts concurrently.

3 PROBLEM DEFINITION

Consider a data stream as follows: S =
{(x1, y1), (x2, y2), · · · , (xt, yt), · · · }, where xt ∈ χ is a
d-dimensional vector of input attributes, yt ∈ γ is a
categorical output attribute, χ is the input space and γ is
the output space, in which each observation (xt, yt) comes
from a joint probability distribution Pt(x, y).

On-line supervised learning from this kind of data con-
sists of creating a model ft : χ → γ where at each new
time step t, the previous model ft−1 is updated with the
new incoming observation (xt, yt) to be able to generalize
to unseen observations of Pt(x, y).

A challenge faced by on-line supervised learning is
that observations produced at distinct time steps t and
t+∆ may come from different joint probability distributions
Pt(x, y) 6= Pt+∆(x, y), i.e., the data stream may present
concept drift [12]. The joint probability is formalized as
Pt(x, y) = Pt(y|x)Pt(x), where Pt(x) is the probability dis-
tribution of inputs and Pt(y|x) is the conditional probability

of the outputs given the inputs. The latter represents the true
decision boundaries of the problem. So, drifts can happen if
Pt(x) 6= Pt+∆(x), if Pt(y|x) 6= Pt+∆(y|x), or both. Drifts
affecting P (x) are categorized as virtual drifts and drifts
affecting P (y|x) are categorized as real drifts [13]. Only real
drifts affect the true decision boundaries of the problem,
whereas both types of drift may affect the suitability of
the learned decision boundaries, depending on the learning
algorithm and model being adopted.

4 DATASETS

We used synthetic and real-world datasets, whose charac-
teristics are presented in Tbl. 1. These datasets are available
on Github1. All datasets described in Tbl. 1 have continuous
attributes, as data clustering methods like the EM algorithm
used in GMM are not applicable for datasets with categori-
cal input attributes [14].

Synthetic datasets: Datasets were generated using the
Tornado framework (Python) proposed in [15]2. The de-
scriptions of how to generate them are presented in the sup-
plementary material due to space constraints. The virtual
drift datasets have been proposed in [1].

About their characteristics, incremental drifts consist of a
steady progression from an old concept to a new one, it can
be seen as a sequence of abrupt drifts of low severity. Grad-
ual drifts refers to the transition phase where the probability
of observations from the old concept decreases while the
probability of the new one increases [16]. Severity represents
the percentage of the input space which has its target class
changed after the drift is complete [16]. It was calculated

1. https://github.com/GustavoHFMO/OGMMF-
VRD/tree/master/data streams

2. https://github.com/alipsgh/tornado
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TABLE 1: Dataset descriptions.

Type Datasets Attributes #Classes #Examples Concept Size #Drifts Drift Type Severity of Each Drift

Synthetic

Virtual 5 2 3 10000 2000 5 Virtual Abrupt [23.47, 34.1, 24.9, 34.95]
Virtual 9 2 3 10000 1000 9 Virtual Abrupt [28.23, 33.9, 28.32, 33.8, 27.23, 32.6, 23.39, 31.6]
Circles 2 2 8000 2000 4 Virtual/Real Incremental [44.15, 37.55, 32.6]
Sine1 2 2 10000 2000 5 Real Abrupt/Recurrent [89.7, 88.85, 89.45, 87.75]
Sine2 2 2 10000 2000 5 Real Abrupt/Recurrent [89.8, 88.85, 89.2, 87.75]
SEA 3 3 8000 2000 4 Real Gradual [50.4, 24.15, 47.1]

SEAREC 3 3 16000 2000 8 Real Gradual/Recurrent [49.4, 24.1, 45.55, 17.95, 47.8, 26.65, 46.2]

Real

PAKDD 29 2 50000 - - - - -
ELEC 4 2 27549 - - - - -

NOAA 9 2 18159 - - - - -
GasSensor 128 6 13910 - Real - -

INS-Inc-Reo 33 6 79986 - Real Incremental/Recurrent -
INS-Inc-Abt 33 6 79896 - Real Incremental/Abrupt -

INS-Grad 33 6 24150 - Real Gradual -

by generating 2000 random instances and checking the
percentage of such instances whose labels change from one
concept to another, considering 10% label noise. For virtual
drifts, the severity is calculated when a region of the space
that previously had P (x) = 0 receives observations of a
class. Thus it is considered that this region had its target
class changed.

Real-world datasets: Only one modification was made
on ELEC dataset, where missing values were removed,
resulting in the number of examples in Tbl. 1. These datasets
are also available on-line3, and they were discussed in [17].

5 IMPACT OF VIRTUAL AND REAL DRIFTS ON
CLASSIFIER SUITABILITY

This section analyses the impacts of virtual and real drifts
on classifiers suitability, answering RQ1. Two representative
methods from the literature, IGMM-CD [7] and Dynse [6]
(see Section 2), are used. Fig. 1 illustrates some represen-
tative plots of their execution in the Virtual 9 and Circles
datasets before and after a concept drift.

Virtual drifts had a different effect on the GMM-based
(IGMM-CD) and Bayesian-based (Dynse) classifiers. In par-
ticular, we can see from Fig. 1b that the decision boundary
of Class 2 was incorrectly learned by Dynse, even though a
considerable portion of the previously acquired knowledge4

remained valid after the drift. Therefore, part of the past
knowledge acquired for Class 2 must be forgotten in order to
modify the decision boundary, while most past knowledge
about the Classes 0 and 1 should ideally be retained along
with a good portion of the past knowledge of Class 2.
Different from Dynse, for IGMM-CD, all past knowledge
remained valid after the drift (except for some Gaussians
that were incorrectly learned due to noise, which were
never valid knowledge), even though such knowledge is
insufficient once the virtual drift occurs. This type of model
only needs to accommodate additional knowledge when a
virtual drift occurs, rather than fixing incorrectly learned
knowledge. Accommodating additional knowledge could
be done for instance by expanding the decision boundaries
of existing Gaussians or adding new Gaussians.

Real drifts always result in a need for forgetting at least
part of the previously acquired knowledge. An example of
this drift is presented in Fig. 1d when the model chosen
by Dynse does not reflect the true decision boundaries well.

3. https://en.wikipedia.org/wiki/Concept drift#Real
4. We use the term “knowledge” here to refer to the portions of the

space considered to belong to each class by the learned classifier.

DCS-based techniques, according to the selection rule, tend
to choose the best classifier from the pool for current data.
So, achieving good accuracy depends on good classifiers
already trained on the new concept. If such classifiers are
unavailable, they will have low accuracy. As this real drift
is non-severe, an approach with on-line learning like IGMM-
CD (Fig. 1h) was able to keep up faster. However, we can
observe a blue Gaussian within the red class, which is a
remnant of the old concept learning. Because IGMM-CD
does not implement rapid forgetting, old knowledge can
cause misclassifications.

Overall, in terms of accuracy drop, we can see that both
virtual and real drifts will result in an accuracy drop, given
that the learned decision boundaries become either incorrect
or insufficient. This drop will be smaller/larger depending
on the severity of the drift and on how fast the approach
can adapt to the drift. However, it is likely that the drop
in accuracy for virtual drifts is more in line with the drop
in accuracy of non-severe real drifts, as in both cases a
good portion of the past knowledge will remain valid. In
such cases, adaptation mechanisms able to retain valid past
knowledge would enable faster adaptation to the drifts.
The drop in accuracy for severe real drifts is likely to be
larger, given that a large portion of the previously acquired
knowledge will become invalid. In such situation, resetting
the system to speed up adaptation to the drift may be useful.

In terms of the need for forgetting past knowledge, for
approaches not based on GMM, virtual drifts can have a
similar effect to non-severe real drifts as they require for-
getting part of the past knowledge. Severe real drifts would
still have a considerably different effect from virtual drifts
on these approaches, as they would require most knowledge
to be forgotten, whereas in virtual drifts a good portion of
the previously acquired knowledge remains valid. How-
ever, for approaches based on GMM, virtual drifts have
a considerably different effect from both severe and non-
severe drifts, as they do not result in the need for forgetting
past knowledge. A good GMM-based approach should be
able to benefit from that to adapt to virtual drifts faster.

6 PROPOSED METHOD

Considering the problems highlighted in Section 5, we de-
scribe in Sections 6.1 and 6.2, the components to answer
to RQ2, being the adaptation to virtual and real drifts and
the noise filter. Finally, in Section 6.3, the strategy of pool
adaptation to answer RQ3.

We present in Fig. 2 the general procedure of the
OGMMF-VRD. In the first block, the main system mecha-
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Fig. 2: OGMMF-VRD’s overall procedure.

nisms, such as GMM batch training, are initialized. In the
second block, we perform the on-line classification of the
observations received from the data stream. In the third
block, we update the batch-trained GMM on-line, i.e., using
each new observation received. Finally, in the fourth block,
we introduce knowledge reset mechanisms for dealing with
severe drifts.

To clearly understand how OGMMF-VRD works, we
provide the source code on GitHub5, and we present some
consecutive plots (Fig. 3) of its execution on Virtual 9 dataset
in a video on youtube6.

6.1 Initialization

The OGMMF-VRD framework is initialized through two
steps: (i) GMM training and (ii) drift detector initialization.

In GMM training, we collect an initial portion (m ob-
servations) of the data stream as the training set (T ) used
to initialize a GMM for each class in T using the algorithm
Expectation-Maximization (EM). This algorithm initializes
each Gaussian Ci on a random subset from the training
set (T ), and then iteratively adjusts its mean (µi), covari-
ance (Σi) and weights (wi) to maximize the probability of
each Gaussian in the distribution modeled. The modeled
distribution is given by P (x) =

∑K
i=1 P (x|Ci) · wi, where

K is the number of Gaussians and x is a multivariate
observation with d dimensions, formally represented by:
xd = {x1, x2, .., xd}. Each constant wi is a weight represent-
ing the number of observations that constitute the Gaussian
i, where 0 ≤ wi ≤ 1 and

∑K
i=1 wi = 1. P (x|Ci), represents

the conditional probability of observation x with respect to
the Gaussian Ci. This probability is computed using the
mean (µi) and the covariance (Σi) of the Gaussian Ci as
follows:

P (x|Ci) =
1

(2πd/2
√
|Σi|)

exp(−1

2
(x− µi)

TΣ−1
i (x− µi))

(1)

5. https://github.com/GustavoHFMO/OGMMF-VRD
6. https://www.youtube.com/watch?v=lP-onPHSR0A

In order to define the optimum number of Gaussians,
for each class, we train different GMMs ranging the number
of Gaussians from 1 to Kmax. The best resulting GMM
model is chosen using the higher value of AIC criterion
and is added to the final GMM model. The AIC criterion
is defined by 2 · p− 2 · L. Here, p represents the number of
model parameters. In a GMM with only one Gaussian, the
parameters are the mean (µi), covariance (Σi), and weight
(ωi). So, for each existing Gaussian in a GMM, the value
of p is multiplied by three. The parameter L represents the
maximum likelihood function of the GMM on a set of m
observations, defined by Eq. 2:

L =
m∑
i=1

log
K∑
j=1

P (xi|Cj) · wj (2)

The final GMM will be used to predict the labels of the
incoming observations (xt) in Part 2 (On-line classification)
of Fig. 2. The predicted label can be used by users for
decision-making, using ŷ = argmaxi∈{1,2,··· ,K} P (Ci|x),
where ŷ represents the predicted label and P (Ci|x) rep-
resents the posterior probability of a Gaussian Ci given
the observation x, as defined by Eq. 3. Thus, the incoming
observation (xt) is classified with a class of the Gaussian
that presented for it the higher posterior probability.

P (Ci|x) =
P (x|Ci) · wi∑K
i=1 P (x|Ci) · wi

(3)

In drift detector initialization, we start a CDT to moni-
tor the system error and identify performance degradation.
In an experiment we evaluate ECDD [18], CUSUM [19],
FHDDM [20], DDM [21], and EDDM [22]. EDDM reached
the best results and so was chosen. After initialization, non-
severe drifts are treated as in Section 6.2.1 and severe drifts
as in Section 6.2.2.

6.2 Coping with Virtual and Real Drifts While Achieving
Robustness to Noise

6.2.1 Dealing with Virtual Drifts and Non-Severe Real Drifts

This part of the OGMMF-VRD aims to maintain the useful
knowledge of the system in the presence of virtual and non-
severe real drifts. Alg. 1 presents the overall procedure.

Algorithm 1 NonSevereDriftAdaptation()

Input: observation (xt, yt)
1: gaussian, pertinence← GaussianClose(xt, yt)
2: UpdateGaussian(gaussian, xt)
3: if pertinence > θ then
4: CreateGaussian(xt, yt)
5: UpdateReach(pertinence)
6: end if

In Line 1, Gaussian Close represents the mechanism used
to determine when to create a new Gaussian, and which
Gaussian will be updated. For each incoming observation
(xt), we need to know where it is located in relation to
existing Gaussians. For that, we use Alg. 2.
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Algorithm 2 GaussianClose()

Input: observation (xt, yt)
Output: gaussian, pertinence

1: aux← ∅
2: for each gaussian in GMM do
3: if gaussian ∈ yt then
4: aux.append(P (xt|gaussian)) . Eq. 1
5: else
6: aux.append(0)
7: end if
8: end for
9: ngaussian← argmax(aux) . Nearest gaussian

10: pertinence← aux[ngaussian] . Pertinence of xt

This routine computes the conditional probability (Eq. 1)
of an incoming observation (xt) for all existing Gaussians
with the same class as the incoming observation (yt) (Lines
1 to 8). This algorithm returns the nearest Gaussian with
the same class of the incoming observation (Line 9), and
the pertinence of the incoming observation to the Gaussians
(Line 10). With this information, we can trigger appropriate
drift handling strategies (Sections 6.2.1.1 and 6.2.1.2).

6.2.1.1 Adjusting Existing Gaussians: Line 2
(Gaussian Update) of Alg. 1, represents the process to adapt
to non-severe real drifts. The idea is that non-severe real
drifts change little the decision boundaries of the problem,
so a simple displacement of existing Gaussians can handle
this. Therefore, we used the modifications to the equations
of the EM algorithm proposed by Engel et al. [23]. These
modifications can update a Gaussian based on a single
new observation (xt) and its current parameters (mean µt

i,
covariance Σt

i and weightwt
i ). Another parameter necessary

is the variable spti, defined by spti = spt−1
i + P (Ci|x),

that will store the accumulated posterior probability (Eq.
3) of each Gaussian. Thus, the Equations used to update the
Gaussian parameters are shown below [23]:

wt
i =

spti∑K
j sptj

(4)

µt
i = µt−1

i +
P (Ci|x)

spti
· (x− µt−1

i ) (5)

Σt
i = Σt−1

i − (µt
i − µ

t−1
i )T (µt

i − µ
t−1
i )

+
P (Ci|x)

spti
· [Σt−1

i − (x− µt
i)

T (x− µt
i)]

(6)

6.2.1.2 Adding New Gaussians: Line 4 (Create
Gaussian) of Alg. 1 represents the process to adapt to virtual
drifts. Since virtual drifts do not change the true decision
boundaries of the problem, new Gaussians can be used to
accommodate new data that is far from existing Gaussians.
For this, when the pertinence of the incoming observation
(xt) is less than θ (line 3 of Alg. 1), we consider that this
observation is far away from existing Gaussians and it is
necessary to create another Gaussian to represent the new
region in the feature space. Theta (θ) is the lowest pertinence
(Eq. 1) obtained from the observations in the training set (T ).
Points more distant than theta (θ) are out of GMM’s reach.

Thus, the new Gaussian is initialized using spi = wi = 1,
µi = xi and Σi = Cfc · I , where I represents the identity

matrix, which has the same number of dimensions as xt,
and Cfc represents the size of the Gaussian circumference
defined by Cfc = (xmax − xmin)/20, where xmax and xmin

represent the highest and lowest observed value for at-
tributes in the initialization training set (T ), and 20 was fixed
for all datasets, but can be adjusted (block Define Radius
in Fig. 2). After the initialization of the new Gaussian’s
parameters, we re-normalize the weights of all existing
Gaussians using Eq. 4.

Line 5 (Update Reach) represents the process of updating
θ. For that, we use the pertinence of the incoming observa-
tion to substitute the older value (Line 1 of Alg 1). This
update indicates that, for the creation of new Gaussians, the
incoming observation must have a lower pertinence than
theta (θ), indicating that it is farther away.

6.2.2 Dealing With Severe Real Drifts
This part of the OGMMF-VRD aims to reset useless sys-
tem knowledge. Given the adoption of the mechanisms
explained in 6.2.1, non-severe drifts will not degrade the
system’s predictive performance so much as severe real
drifts. Therefore, we consider that severe real drifts will
significantly degrade the system’s performance, and such
degradation can be used to detect such drifts. Thus, to
identify these degradations, we will use a CDT, which
monitors the classification performance of the system using
the error obtained for each new observation. If the system
error rises above a threshold, the CDT reports a concept
drift, indicating that system knowledge is obsolete. At that
time new observations of the data streams are stored and
used to retrain the whole system.

OGMMF-VRD thus detects drifts by using the Early
Drift Detection Method (EDDM) [22]. If EDDM detects a
drift, the system collects new data to learn its knowledge
from scratch. EDDM has as parameters the tolerance lev-
els defined by warning (w) and drift (c) levels, and can
be tuned so that it only detects severe drifts, which will
degrade the system’s performance more than non-severe
drifts. Each tolerance level yields a different response: (i)
for the normal error level the model remains untouched;
(ii) for the warning error level, the system begins to collect
incoming observations to retrain the model; and (iii) for
the drift level, new observations are collected and added
to the observations collected during the warning level to fill
a batch with m new observations to compose a new training
set T to initialize a new model.

6.2.3 Noise Filter
In this Section, we will discuss how to address the part of
RQ2 which seeks to know how to achieve robustness to
noise in virtual and real drifts. Noisy observations cause
two main problems to GMM models: (i) if an observation
is too far from its class, the system tends to create a new
Gaussian. If this observation was noisy, it means that a
Gaussian of an undesired class will be created in the region
belonging to another class; (ii) if a Gaussian is updated on a
noisy observation, it will move to a region of the space that
does not correspond to its true boundary. These points may
impair the performance of the GMM over time. To overcome
them, we use k-Disagreeing Neighbors (kDN) [24], defined
in Eq. 7, as a noise filter.
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(a) Time: 6050 (b) Time: 6080 (c) Time: 6110 (d) Time: 6140 (e) Time: 6170

Fig. 3: Execution of OGMMF-VRD on dataset Virtual 9. Each image presented illustrates the learned decision boundaries
over a batch with 200 observations for different time periods. The text G0, ..Gn represent the number of the Gaussian.

kDN(x) =
|∀x′|x′ ∈ kNN(x) ∧ label(x′)|

k
(7)

Consider that we need to determine if an observation
(x, y) is noise. The kDN represents the fraction of the k
nearest neighbors of this observation that do not share the
same class y. Values close to 0 indicate that (x, y) is easy to
classify and unlikely to be noise, and close to 1 indicate that
it (x, y) is difficult to classify and may be noise.

In OGMMF-VRD, we use the noise filter in two parts:
(i) during the GMM initialization and (ii) before the non-
severe drift adaptation (Section 6.2.1). In the GMM initial-
ization, we use kDN as a pre-processing to remove all noisy
observations of the initialization training set (T ).

Before the non-severe drift adaptation (Block Noise on
Part 3 of Fig. 2), we use kDN to avoid updates using noisy
observations. To do this on-line, we use a validation set (V ).
This set has the same size as the training set (T ) used to
initialize the GMMs. The difference between them is that
the T set is only used for initializing the GMMs (Part 1 of
Fig. 2) and the V set acts like a sliding window (Part 3 of
Fig. 2), on which for each new observation inserted an older
one is removed.

Note that the validation set (V ) helps to distinguish
between noise-free observations, noisy observations and
gradual drifts. A noise-free observation has many neighbors
with the same class. A noisy observation is an observation
that appears in a region with a different class from its own
class only once. Gradual drifts are a set of observations that
over time are more likely to appear in a new region. Since
we store all data in the validation set (V ), we will be able
to verify the growth of observations in a new region, thus
avoiding confusion between gradual drift and noise.

For our approach, we have specified the neighborhood to
k = 5, and observations with kDN greater than 0.8 should
be avoided because they have 80% of their neighborhood
with a different class which can strongly indicate that it is a
noise, and can hinder the generalization of the system.

6.3 Harnessing Knowledge From Past Similar Con-
cepts by Using a Pool Adaptation Strategy

This section presents our method proposed to answer RQ3,
which seeks to harness past knowledge to accelerate adapta-
tion to both virtual and real drifts. For this, we use a pool (P )
to store previously trained GMMs. GMMs are re-initialized
at two occasions: (i) when EDDM [22] reaches drift level (c)
indicating that the system must be reset, i.e. after collecting

m observations from the data stream to use as a new train-
ing set (T ); and (ii) when EDDM reaches warning level (w)
indicating that a severe drift may be occurring (see Section
6.2.2), i.e. when 30% of m are collected. This is represented
by block Store GMM in Fig. 2.

Classifiers are estimated from the pool when EDDM [22]
reaches the drift level (c). So to avoid waiting for all m
observations used for retraining, when we get 30% of m,
we select the classifier from the pool with the best accuracy
for this data and use it to replace the current model. This is
represented by block Estimate GMM in Fig. 2.

If the maximum number of models in P is reached, the
oldest GMM is removed from P . Some preliminary experi-
ments were done and the maximum pool size of 20 obtained
the best cost-benefit between accuracy and runtime.

7 EXPERIMENTS AND DISCUSSIONS

Three experiments were realized in this work: (i) compari-
son with literature works (Section 7.2); (ii) noise filter robust-
ness (Section 7.3); and (iii) proposed method mechanisms
analysis (Section 7.4). All experiments were evaluated using
the datasets discussed in Section 4 and the metrics discussed
in Section 7.1.

7.1 Metrics and Statistical Tests

Cross Validation for Data Streams: traditional cross-
validation cannot be applied to data streams because it
splits data randomly, making it impossible to see concepts
in the order that they should be viewed. Therefore, we use a
modified version proposed in [25]. It consists of leaving out
an observation every period X to construct the stream. For
example, we remove the first element within the first thirty,
then remove the first element from the thirty second and so
on. For all datasets, 30 runs were executed, i.e. X=30. The
element removed corresponds to the order of the execution.

Overall accuracy and G-mean: both are calculated based
on the on-line predictions given by the system. Accuracy has
been used in several data stream learning studies, such as
[25, 7, 6]. G-mean is the geometric mean of the recall on
each class, and is a metric independent of the level of class
imbalance in the data [11].

Accuracy Over Time (AOT): this is the time series show-
ing the system’s accuracy over time [25, 7, 6], where each
value represents the accuracy over a batch. For example,
if the batch size is X = 250: batch1 = [0 to 250), batch2 =
[251 to 500), batch3 = [501 to 750), etc, until the end of the
data stream. In order to increase the discriminative power
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TABLE 2: Parameters used for the compared approaches. A
grid search was executed for the most important parameters
and the best was chosen considering the average accuracy
across datasets.

Algorithm Parameters Grid Search Synthetic Real

IGMM-CD
Sigma ini [0.5, 1, 2, 5, 10] 0.05 10

Cver - 0.01 =
T [1, 5, 7, 9, 13] 13 =

Dynse

D - 25 =
m (Chunk Size) [50, 100, 200, 300, 400] 50 =

M - 100 =
k - 5 =

CE - A Priori =
PE - Age Based =
BC - Gaussian Naive Bayes =

GMM-VRD

m (Chunk Size) [50, 100, 200, 300, 400] 50 200
EM it. - 10 =
kmax [2, 4, 6, 8] 2 =
kDN - 5 =

Detector - ECDD =
c - 1 =
w - 0.5 =

OGMMF-VRD
P - 20 =

radius [10, 15, 20, 25] 20 =
c [1, 1.5, 2, 2.5] 1 =

Ensemble Methods Chunk Size [50, 100, 200, 300, 400] 50 200
HAT+Drift Detectors Chunk Size [50, 100, 200, 300, 400] 50 200

of the metric, the standard deviation between the several
accuracies is also reported.

Runtime: the execution time of the approaches was
measured in seconds considering the difference between the
end time and the start time on a machine with 8GB of ram
and processor Intel Xeon E3-1220 v5.

Friedman and Nemenyi Tests: Friedman is a non-
parametric statistical hypothesis test that can be used to
compare multiple approaches across multiple datasets [26].
It ranks the algorithms and checks whether the null hy-
pothesis that they are all equal can be rejected. If the null
hypothesis is rejected, then the Nemenyi post-hoc is used
to check which of the approaches is significantly different
from each other. Both tests were used in this work for a
significance level of α = 0.05.

Wilcoxon Test: this is a non-parametric statistical hy-
pothesis test used in our experiments to evaluate how a
specific mechanism has improved over the accuracy of the
complete system. This test was used with a significance level
of α = 0.05.

7.2 Comparison With Existing Approaches

This experiment aims to validate the performance of the
OGMMF-VRD in comparison with literature works. The dis-
cussions are divided in Section 7.2.1, literature approaches
with separate mechanisms to deal with virtual and real
drifts, and Section 7.2.2, other approaches from the concept
drift literature.

For the first comparison, we selected: IGMM-CD [7],
Dynse [6] and GMM-VRD [1] (see Section 2), as they have
explicit separate mechanisms to deal with virtual and real
drifts. The parameters used for the approaches are shown in
Tbl. 2. An analysis of sensitivity of OGMMF-VRD to the ra-
dius (Gaussian Circumference) and c (drift level for EDDM)
parameters is presented in the supplementary material, due
to space constraints, and shows that these parameters do
not significantly affect OGMMF-VRD’s accuracy. Its other
parameters were the same as GMM-VRD, for fair compari-
son.

For the second comparison, we selected two groups of
approaches (i) ensemble methods and (ii) drift detectors

with an incremental algorithm. Methods based on ensem-
bles are: Accuracy Weighted Ensemble (AWE) [27], Adap-
tive Random Forest (ARF) [28], Leveraging Bagging en-
semble classifier (LevBag) [29], and Oza Bagging Ensemble
classifier (OzaAS) with and without ADWIN drift detector
(OzaAD) [30]. Execept of ARF, all used Gaussian Naive
Bayes as the base classifier. Methods based on drift detectors
are: ADWIN [31], DDM [21], and EDDM [22], combined
with Hoeffding Adaptive Tree classifier (HAT) [32]. All of
these approaches are available on-line in the library scikit-
multiflow7 and the chunk size was chosen as part of the
hyperparameter tuning procedure based on a grid search
presented in Tbl. 2; the other parameters were the default
values provided by the library.

7.2.1 Approaches With Separate Mechanisms to Deal with
Virtual and Real Drifts
A heat map is shown in Fig. 6 for the compared ap-
proaches using both synthetic and real-world datasets. The
numerical table with standard deviation is in the supple-
mentary material. To attest the statistical difference of the
results, we present in Fig. 4 the rank of Friedman with
the Nemenyi post-hoc for all metrics evaluated. For all
performance metrics, Friedman rejected the null hypothesis
that the algorithms have equal performance at the level
of significance of α = 0.05. According to the Nemenyi
post-hoc tests for average accuracy (Fig. 4a), and G-mean
(Fig. 4b), OGMMF-VRD is significantly better than all these
approaches (GMM-VRD, IGMM-CD, and Dynse). For run-
time (Fig. 4c), OGMMF-VRD is only better than Dynse. To
provide a more detailed understanding of these results, Fig.
5 presents in the first row of figures some plots of AOT for
GMM-VRD, IGMM-CD, and Dynse. AOTs for the rest of the
datasets are presented in the supplementary material due to
space constraints.

Looking at the dataset which has abrupt virtual drifts
(Virtual 9 in Fig. 5a), we can see that IGMM-CD and GMM-
VRD had good AOT. This is because these datasets have
similarities between their concepts, and despite this ap-
proach potentially generating too many Gaussians over time
can handle this type of drift properly. Regarding Dynse,
its AOT has high peaks indicating that the choice of good
classifiers from the pool improves the results. However, in
the presence of drifts, its performance declines. OGMMF-
VRD presents high accuracy almost all the time. One reason
for this is its ability to quickly find out which new regions
of space need to be learned.

We now look at the datasets with real drifts: Circles
(Fig. 5b), which has virtual/real drifts, and Sine 2 (Fig. 5c),
which has abrupt/recurrent shifts, we see that Dynse has
the biggest drop in accuracy compared to other approaches.
This is explained by two points: (i) in the presence of a new
concept, Dynse’s accuracy only rises when several classifiers
are trained on the new concept; (ii) if its pool is small, over
time older classifiers are deleted when a new one is added,
so if a similar concept is slow to appear the pool may no
longer have a suitable model. Regarding IGMM-CD, it is
observed that its accuracy drops dramatically and hardly
goes back up. This is because IGMM-CD does not have a

7. https://scikit-multiflow.readthedocs.io/en/stable/index.html
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(a) Accuracy (b) G-mean (c) Runtime

Fig. 4: Friedman ranking for the results obtained for all datasets used in Tbl. 1. Friedman’s p-values were 2.07E-311, 2.53E-
290 and 4.92E-243, respectively, indicating rejection of the null hypothesis at the level of significance of α = 0.05. Any
pair of approaches whose distance between them is larger than CD is considered to be different according to the Nemenyi
posthoc tests.

(a) Virtual 9 (VR) (b) Circles (VR) (c) Sine 2 (VR) (d) NOAA (VR) (e) PAKDD (VR)

(f) Virtual 9 (Bests) (g) Circles (Bests) (h) Sine 2 (Bests) (i) NOAA (Bests) (j) PAKDD (Bests)

Fig. 5: Average accuracy over time for all methods on each dataset. The first row of figures (Figs. 5a, 5b, 5c, 5d, 5e) shows
only the methods that deal with virtual and real drifts (VR). The second row of figures (Figs. 5f, 5g, 5h, 5i, 5j) shows only
the five approaches with the best performances for each dataset (Bests). The standard deviation is represented by shadow
lines of the same color. Each point represents the accuracy for a batch observations, where 500 was used for synthetic
datasets, and 1000 for real datasets.

fast reset mechanism, and it forces the system to spend a lot
of time with obsolete Gaussians. Regarding GMM-VRD and
OGMMF-VRD, it is observed that in the presence of drifts
their accuracy does not decrease so much in relation to other
approaches, because both have a CDT that informs quickly
when their performance is deteriorating, allowing it to be
reset to fit the new concept.

Now, we look at the real-world datasets: NOAA (Fig.
5d), and PAKDD (Fig. 5e). For the NOAA, it is observed that
Dynse and IGMM-CD sometimes decline their accuracy,
which demonstrates that these methods may not be robust
to different types of drift. For PAKDD, GMM-VRD and
OGMMF-VRD obtained very good AOT, away from that
of the other approaches. One reason for this is that both of
these methods have a model selection mechanism targeted
at improving accuracy in the initialization phase.

7.2.2 Other Approaches From the Concept Drift Literature
When comparing OGMMF-VRD to other approaches that
do not explicitly attempt to deal with real and/or virtual
drifts and may rely on different (non-Bayesian) types of
base learners, for accuracy and G-mean (Fig. 4a and 4b),
OGMMF-VRD was significantly better than all methods,
except for AWE, ARF and LevBag. As shown in the supple-
mentary material, these approaches reached the following
rankings (and corresponding ranking standard deviations)
for accuracy: OGMMF-VRD (Filter): 3.42 (1.59), ARF: 2.48

(1.60), LevBag: 4.48 (1.85), AWE: 3.58 (2.87). For G-mean,
the rankings are: OGMMF-VRD (Filter): 3.44 (1.84), LevBag:
4.16 (1.86), AWE: 3.14 (2.42), ARF: 3.36 (2.47). OGMMF-
VRD achieved rankings with smaller standard deviations
(i.e., more stable rankings) than ARF, AWE and LevBag
across datasets. LevBag obtained competitive stability in
terms of G-mean, but not in terms of accuracy. ARF obtained
competitive stability in terms of accuracy, but not in terms
of G-mean. In practice, a high ranking standard deviation
means that the model is not consistent with its results,
sometimes ranking very well and sometimes ranking very
poorly. For instance, AWE achieved good accuracies but
performed very poorly on datasets such as GasSensor (Fig
6a). Given the more stable rankings, our approach is more
reliable for adoption in practice. Another point observed is
that incremental learning methods combined with detectors
performed poorly, which indicates that only incremental
learning with a reset is not enough to tackle all types of
drifts effectively.

In terms of execution time (Fig. 4c), our approach
OGMMF-VRD is costlier. This is partly because our code
is not optimized like that of scikit-multiflow algorithms,
though it may also be influenced by OGMMF-VRD’s mech-
anisms to deal with different types of drift. To understand
better which components of our approach are the most
time consuming, our supplementary material reports on
experiments that reveal that the most costly mechanisms
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(a) Accuracy

(b) G-mean

(c) Runtime

Fig. 6: Overall Performance Average. Cells closer to
green/red represent better/worse results.

in descending order were (i) drift detector, (ii) virtual and
non-severe real adaptation, and (iii) GMMs pool.

The predictive performance of ensemble methods can
be summarized in two main points based on the results
obtained for the Sine 2 dataset (Fig. 5h). The first point
is that ensemble-based methods have a hard drop in their
performance when drifts happen. This is because these

Fig. 7: Friedman ranking for the accuracy obtained in all
synthetic datasets with all different noise levels. Friedman’s
p-value was 9.73E-25 and its ranking is shown from left
(best) to right (worst). Any pair of approaches whose dis-
tance between them is larger than CD is considered to be
different.

methods were not proposed to understand the drift in
order to apply a corresponding appropriate strategy, they
just reset their knowledge. Although OGMMF-VRD also
has a drop in its predictive performance, its recovery is
much faster, which shows that the strategies for dealing
with virtual and real drifts are efficient. The second point is
related to the performance of the ensembles when there is no
drift. We observed that the combination of several models
allows better performance during periods of stability. In
OGMMF-VRD, we use only a single classifier that is inferior
in periods of stability compared to a combination of models.
Therefore, the combination of models can be an alternative
in future work to further improve OGMMF-VRD’s predic-
tive performance.

7.3 Impact of Noise on Classifier Performance

This experiment aims to determine how well the proposed
approach answers RQ2 through its ability to deal with both
real and virtual drifts while being robust to noise. For this,
we evaluated two components of OGMMF-VRD that help it
deal with noise; (i) the noise filter; and (ii) the GMMs pool
on the synthetic datasets discussed in Tbl 1 varying their
noise level to [5%, 10%, 15%, 20%]. In this experiment, we
compared with GMM-VRD, IGMM-CD, and Dynse, which
are approaches with separate mechanisms to deal virtual
and real drifts. The parameters used are presented in Tbl.
2, but for OGMMF-VRD the batch size used was m = 200,
because the more observations in the batch, the easier it is
to recognize what are the noisy observations.

For the first analysis, Figs. 7, and 8 summarize the re-
sults. We observe in Fig. 8 that, regardless of the noise level,
both mechanisms helped to improve the performance of
OGMMF-VRD, being a significant improvement as shown
in Fig. 7. The line graphs for the other datasets and numeri-
cal values for this analysis are supplementary material.

The filter becomes more effective when using batches
with larger sizes because more observations help recognize
when noise observations appear. To show this, we also
added in the supplementary material this same experiment
with batch size m = 50, and we observed that batches
larger like m = 200 enable the filtering mechanism to
achieve significantly better predictive performance than the
approach without filtering, whereas a smaller batch of 50
does not improve the results in terms of accuracy. This strat-
egy provides advantages over approaches such as IGMM-
CD, which are very sensitive to noise due to updating its
models with single examples.
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Fig. 8: Line graph with the accuracy of the approaches for
different noise levels for the Sine 2 dataset. w/o means the
OGMMF-VRD without some mechanism.

The pool is also an important mechanism to increase
robustness to false alarms in the drift detections, which
are typically caused by noisy examples. It significantly im-
proves OGMMF-VRD’s predictive performance, as shown
in Fig. 7 and in Fig. 5 of the supplementary material. It leads
to increased robustness compared to approaches such as
GMM-VRD, which are very sensitive due to the system reset
that is undesirably performed upon false alarms, requiring
full retraining of the model.

7.4 Impact of Proposed Approach’s Mechanisms

This experiment aims to complement the answer to RQ2
by checking whether it is really necessary to have the
distinct virtual and real drift mechanisms. It also checks
how well the pool used by the proposed approach can
harness past knowledge to accelerate adaptation to both
virtual and real drifts, answering RQ3. Only the synthetic
datasets were used for this analysis, because they enable a
better understanding of the behavior of the approaches in
relation to each type of drift, unlike the real-world datasets.
This experiment was made considering the parameters in
Tbl. 2 with m = 200, because the more observations for
training, the more the system as a whole is favored to obtain
a robust model, thus allowing a better discussion of each
mechanism’s impact on the accuracy.

By analyzing the results for the virtual and non-severe
real drift adaptation mechanism (Fig. 9a), we observe that
there was a statistically significant slight performance gain
in 4 out of 7 datasets. Datasets with virtual drifts were
the most favored. The SEAREc with the severity of 17.95-
49% also improved due to its gradual shift allowing the
mechanism to track the drift before it becomes complete,
despite this improvement being smaller than that of the
datasets involving virtual drifts. Finally, Sine 2 also showed
relatively large gains, indicating that this mechanism can
also sometimes benefit the system in the presence of high
severity real drifts. To visibly analyzing these gains we
present in the Fig. 9b the best gain obtained, which was
for Virtual 9. In this dataset, changes occur in one class
at a time, with observations appearing in another region
of the space. This indicates that the proposed mechanism

(a) Bar: Virtual + Ns. Real (b) Bar: Virtual + Ns. Real

(c) Bar: Severe Real (d) Best: Severe Real

(e) Bar: Pool (f) Best: Pool

Fig. 9: Accuracy improvements obtained by each of OGMM-
VRD’s mechanisms. Each bar represents the subtraction of
the average of the complete system from the average of the
system without a given mechanism (e.g. w/o non-severe
drift adaptation). The number above each bar represents
the p-value obtained by Wilcoxon test over the comparison
pair to pair. P-values representing statistically significant
difference at the level of α = 0.05 are marked by *. The
AOT plots represent the dataset with the best improvement
in each bar plot. The blue line represents the complete
OGMMF-VRD system and the orange line represents the
system without the respective mechanism.

to create Gaussians can quickly prevent the system from
losing performance. This complements the discussions of
RQ2 in that the inclusion of a mechanism to deal with low
severity drifts can help improving predictive performance
in the presence of virtual drifts.

By analyzing the results for the severe real drift adapta-
tion mechanism (Fig. 9c), we observe that this mechanism
statistically significantly improved the performances in all
cases, showing that this mechanism can be useful even for
virtual drifts. This may be because CDTs can enable the
system to quickly react to drifts as soon as they are detected.
If the new concept is not too difficult to learn from scratch,
enabling this quick reaction can potentially lead to faster
adaptation than updating existing Gaussians depending on
the adaptation parameters being used. This is unless the
drifts have very low severity, in which case the mechanism
for virtual and non-severe real drifts would likely still be
the most helpful. In the best improvement that was for
Virtual 9 (Fig. 9d), we note that not using a CDT can be
quite derogatory for model performance since the AOTs
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compared are very far apart.
Finally, we compared (i) GMM with EDDM without Pool

against (ii) GMM with EDDM with Pool. Therefore, the
analyzes concern how the use of the Pool improved the
predictive performance of the system. On the results for
estimating GMMs from Pool in the presence of a concept
drift (Fig. 9e), we observed that 6 out of 7 cases significantly
improved predictive performance. In SEARec, despite the
gain is significant, the improvement was low due to the
small pool size. The recurring drifts happen after 4 concepts,
by which time the pool has been entirely renewed. The
gains were mainly significant in datasets that have drifts
that are both real, severe, abrupt and recurrent such as Sine
1 and Sine 2. Looking at the best case improvement, which
was Sine 1 (Fig. 9f), we see that in the presence of concept
drifts, when estimating new models, system performance
degrades less than when having to wait for a lot of data
for re-initialize the classifier. These discussions support our
RQ3, which states that harnessing the knowledge of past
GMM’s can accelerate the adaptation in both virtual and
real drifts.

8 CONCLUSION

This paper provides (i) a detailed understanding of the
effects that virtual and real drifts have on classifiers’ suit-
ability; (ii) the OGMMF-VRD approach, a system for deal-
ing with virtual and real drift simultaneously in classifi-
cation data streams; and (iii) an unsupervised/supervised
methodology with noise filter to train the GMM and achieve
better robustness to noise. The main results showed that the
proposed approach outperforms approaches with separate
mechanisms to deal with virtual and real drifts, has more
stable rankings and fewer drops performance in drifts than
existing ensemble approaches, thus being more reliable for
adoption in practice. With these results, we answer the
research questions of this work as follows:

RQ1) What is the difference between the impact of real
and virtual drifts on the suitability of classifiers’ learned
decision boundaries and predictive performance over
time? (i) Due to the partial representation of the data, some
types of classifiers learn incorrect decision boundaries while
others based on GMM learn insufficient decision boundaries
for the problem. For this reason, when a new observation
from the trained class appears in non-trained regions, the
classifiers make mistakes. (ii) Dealing with virtual drifts us-
ing the same strategy for real drifts wastes useful knowledge
that could be used to expedite the classifier adaptation to
the new concept especially in the case of Bayesian-based
systems. (iii) In the experiments of mechanisms analysis,
we saw that not incorporating a strategy to handle virtual
drifts significantly drops the system’s performance. (iv) Real
drifts change the true decision boundaries of the problem
causing a significant drop in the classifier performance, but
if the drift is non-severe, part of the knowledge can also be
harnessed.

RQ2) How to deal with both virtual and real drifts
while achieving robustness to noise? (i) Using a noise filter
allowed us to avoid adapting to observations that would
cause problems in our system. The experiments showed

that this mechanism with larger batches improved signifi-
cantly the results. (ii) Using pertinence threshold allowed
us to create Gaussians quickly to properly deal with virtual
drifts. (iii) Using on-line learning has enabled us to maintain
existing Gaussians by modeling them as new distributions
arrived. (iv) Using the pool enabled us to be robust to
false alarms in drift detections caused by noisy examples.
(v) Experiments have shown that combinations of these
techniques statistically improved system performance on
both virtual and real drifts.

RQ3) How to best harness knowledge gained from
similar concepts to accelerate adaptation to both virtual
and real drifts? (i) Saving older GMM’s in a pool allowed
the system to be able to choose the best classifier in the
presence of similar concepts regardless the type of drift. (ii)
The results showed that this mechanism led to statistically
significant improvements on the system performance.

Although the results have shown the competitive per-
formance of OGMMF-VRD, our proposals have some lim-
itations, which should be addressed in future work: (i) it
does not perform well on datasets with challenging class
imbalanced distributions; (ii) It has limited performance
because it is based on a single classifier; (iii) it discards
useful knowledge when resetting the entire system; and (iv)
it does not tackle verification latency.

ACKNOWLEDGMENT

The authors would like to thank CNPq, FACEPE and
CAPES (Grant No. 88887.588731/2020-00), for their financial
support. Leandro Minku was supported by EPSRC Grant
No. EP/R006660/2.

REFERENCES

[1] G. H. Oliveira, L. L. Minku, and A. L. Oliveira, “Gmm-
vrd: A gaussian mixture model for dealing with virtual
and real concept drifts,” in IEEE IJCNN, 2019, pp. 1–8.

[2] Y. Song, J. Lu, H. Lu, and G. Zhang, “Fuzzy clustering-
based adaptive regression for drifting data streams,”
IEEE Transactions on Fuzzy Systems, vol. 28, no. 3, pp.
544–557, 2019.
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A. Bifet, R. Gavalda, and R. Morales-Bueno, “Early drift
detection method,” in KDD, vol. 6, 2006, pp. 77–86.

[23] P. M. Engel and M. R. Heinen, “Incremental learning
of multivariate gaussian mixture models,” in IEEE
BRACIS, 2010, pp. 82–91.

[24] F. N. Walmsley, G. D. Cavalcanti, D. V. Oliveira,
R. M. Cruz, and R. Sabourin, “An ensemble genera-
tion methodbased on instance hardness,” arXiv preprint
arXiv:1804.07419, 2018.

[25] Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao, “On-
line ensemble learning of data streams with gradually
evolved classes,” IEEE TKDE, vol. 28, no. 6, pp. 1532–
1545, 2016.
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