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Abstract—Unsupervised domain adaptation (UDA) requires source domain samples with clean ground truth labels during training.
Accurately labeling a large number of source domain samples is time-consuming and laborious. An alternative is to utilize samples with
noisy labels for training. However, training with noisy labels can greatly reduce the performance of UDA. In this paper, we address the
problem that learning UDA models only with access to noisy labels and propose a novel method called robust local preserving and
global aligning network (RLPGA). RLPGA improves the robustness of the label noise from two aspects. One is learning a classifier by a
robust informative-theoretic-based loss function. The other is constructing two adjacency weight matrices and two negative weight
matrices by the proposed local preserving module to preserve the local topology structures of input data. We conduct theoretical
analysis on the robustness of the proposed RLPGA and prove that the robust informative-theoretic-based loss and the local preserving
module are beneficial to reduce the empirical risk of the target domain. A series of empirical studies show the effectiveness of our
proposed RLPGA.

Index Terms—Wasserstein distance, unsupervised domain adaptation, noisy label, representation learning, adversarial learning.
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1 INTRODUCTION

UNSUPERVISED domain adaptation emphasizes [1], [2],
[3] the problem of learning a classifier that can be

transferred across two domains. In general, the samples
in the source domain are labeled, while the samples in
the target domain are unlabeled. The main challenge in
this research area is to reduce the difference between the
probability distributions of two domains [4], [5], [6], [7]. To
this end, the strategy based on discrepancy minimization
has attracted much attention. Among them, adversarial
learning methods have achieved remarkable performance
improvements [8].

The training set of unsupervised adversarial domain
adaptation models consists of two parts including the la-
beled source domain samples and unlabeled target domain
samples. However, it is usually very expensive and tedious
to accurately label large source domain training samples.
An alternative way is to collect labels of samples from some
crowdsourcing platforms in which the cost is cheaper and
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easier but the obtained labels are always contaminated by
noise. As a result, the performance of adversarial domain
adaptation models learning from noisy labels will be de-
creased. One reason is that adversarial domain adaptation
models usually learn the classifier by minimizing the cross-
entropy loss. The cross-entropy loss can be regarded as the
distance between the outputs of the classifier and the labels,
so it is sensitive to label noises. That is to say, when a
careless annotator tends to label positive class to negative
class, then the distance-based loss would force adversarial
domain adaptation to learn a classifier who is more likely to
output negative class than to output true label.

However, to make the domain adaptive models robust
to label noises, it is not enough to only employ robust
classification loss to train the models. The main reason is
that robust loss can only reduce the impact of noisy labels,
but can not completely eliminate it. Actually, for the source
domain, learning with noisy labels can reduce the feature
discriminability of samples in the latent space. This can
lead to that a sample belonging to the one class is easy
to be misclassified into another class. From a geometrically
intuitive point of view, if a sample belonging to class i
is incorrectly labeled as class j, then the gradient back-
propagation operation will force the sample to go from a
place surrounded by many samples of the same type to a
place surrounded by many different class samples. There-
fore, besides learning based on a robust classification loss,
designing an unsupervised method to maintain the local
structure of the data distribution is also very important.

To tackle these issues, we propose a novel method for
adversarial domain adaptation named Robust Local Preserv-
ing and Global Aligning Network (RLPGA). RLPGA consists
of three parts including a robust loss function for learning
a classifier, a local preserving module, and a global aligning
module. Firstly, RLPGA projects samples of both domains
into a latent space. Then, a robust informative-theoretic-
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based loss function is minimized to learn the classifier. The
global aligning module minimizes the Wasserstein distance
between source domain distribution and target domain dis-
tribution. The local preserving module constructs two ad-
jacency weight matrices and two negative weight matrices
to encode the local topological relationship among samples
and propose an objective function based on the graphs for
local preserving. The major contributions of this paper are
three-fold:

• A robust informative-theoretic-based loss function is
proposed to measure the performance of the classifier
for adversarial domain adaptation.

• To reduce the effect of label noises from the per-
spective of the learned feature representation, we
propose a new objective function for preserving lo-
cal neighbor topology based on constructing two
adjacency weight matrices and two negative weight
matrices. We jointly minimize the Wasserstein dis-
tance between two domain distributions and the new
objective. In this way, the margins between different
classes are enlarged and hence the learned features
are more discriminative and robust.

• We provide theoretical analysis on the robustness
of RLPGA, and prove that the robust loss and the
enhanced feature discriminability are beneficial to
reduce the empirical risk in the target domain.

2 RELATED WORKS

Domain Adaptation Algorithm. Existing domain adapta-
tion methods can be divided into three categories. The first
is instance-based methods [9], [10], [11], [12], which enhance
feature transferability by reweighting or subsampling the
source domain samples. The second is parameter-based
methods [13], [14], [15], [16], [17], which enhance the feature
transferability by regularized terms or reweighting tech-
niques. The last is representation learning based methods
[18], [19], [20], [21], [22], which first learn a latent space, and
then align feature distributions across domains based on the
learned feature representation by two strategies.

For representation learning based methods, The first
strategy to align feature distributions across domains is that
moment matching based on statistical characteristics [23],
[24]. E.g., Maximum mean discrepancy (MMD) [25], [26]
measures the divergence of two distributions in the repro-
ducing kernel Hilbert space (RKHS) with the advantages
that it can approximate any moment of the distribution
by choosing a suitable kernel function. Deep correlation
alignment (DCORAL) [27], [28] aligns two distributions by
minimizing the difference in the second-order statistics of
the two distributions. The other strategy is adversarial learn-
ing based on a zero-sum two-player game [29]. These ad-
versarial methods have achieved remarkable performance
improvements. The metric for adversarial learning based
methods can be KL-divergence, H-divergence, and Wasser-
stein distance [1], [8], [18], [19], [30], [31], [32], [33]. Among
them, Wasserstein distance takes advantage of gradient su-
periority. E.g., Wasserstein Distance Guided Representation
Learning (WDGRL) [8] aligns the two distributions by min-
imizing the Wasserstein distance, which takes the advan-
tage of gradient superiority. Sliced Wasserstein Discrepancy

(SWD) [33] is a method that based on sliced Wasserstein
distance. As for domain adaptation over noisy labels, there
are few pioneering works [34], [35] to handle this problem,
and most of them focus on a robust classifier loss. [36]
proposes to tackle the label noise problem by clustering-
based UDA methods for person re-ID. RLPGA handles
robustness by considering both a robust classification loss
and an enhanced feature discriminability.

Domain Adaptation Theory. There are rich advances
in domain adaptation theory. A rigorous error bound for
unsupervised domain adaptation is proposed by [37], [38].
Then, many extensions based on these bounds, from loss
functions to Bayesian settings and regression problems, are
put forward [13], [39], [40], [41], [42]. E.g., Kuroki [43]
proposes a discrepancy measure called S-disc, which can
not only provide a tighter generalization error bound but
also have a convergence guarantee. Germain [40] proposed
a PAC-Bayesian theory based on the domain disagreement
pseudometric. Another related work is about the Wasser-
stein distance based domain adaptation algorithm and
proves that Wasserstein distance can guarantee generaliza-
tion for domain adaptation [8]. As for our proposed method,
the theoretical analysis for Wasserstein distance based do-
main adaptation can be directly extended to RLPGA. Also,
RLPGA gives some theoretical analysis for robustness and
advantage of enhancing the feature discriminability.

3 PRELIMINARIES

3.1 Problem definition

This paper considers the classification task of unsupervised
domain adaptation (UDA). Let X represent the input feature
space and η ∶ X → Y be the domain-invariant ground
truth labeling function, where X ∈ X , and Y is the label.
Let Ps be the input distribution over X for the source
domain and Pt be the input distribution over X for the
target domain. Let Z be a latent space and F ∶ X → Z
be a class of feature extractors, where Z ∈ Z . For a domain
u ∈ {s, t}, P f(X)

u (Z) = Pu (f−1 (Z)) represents the induced
probability distribution over Z , where f ∈ F . For a given
Z ∈ Z . Denote H ∶ Z → Y as a class of prediction functions.
Then, the learned classifier can be represented as h (f (X)),
where h ∈ H . The goal is to learn a classifier that can
minimize the following expected target risk:

RPt
(f, h) = ∫ Pt (X) ∣η (X) − h (f (X))∣ dX. (1)

The difference between the supervised domain adaption
(SDA) and UDA is that the label and the feature of the target
domain dataset are all available during training phase for
SDA, but for the UDA, we can only access to the feature
of the target domain dataset during the training phase.
For practical application, Dou [44] propose to utilize the
adversarial learning to UDA from the source Medical Image
Analysis (MIA) domain to the target Computed Tomogra-
phy (CT) domain.

Generally, UDA models learn a classifier h using source
domain samples with their ground truth labels. For real-
world applications, it is costly to obtain the true data labels.
Instead, we focus on using noisy labels to learn the classifier.
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Fig. 1: The framework of RLPGA. Xs and Xt are the input datasets, f is the feature extractor, Zs and Zt are the feature
representations, h is the classifier. First, RLPGA constructs four weight matrices by the local preserving module and
maps the input samples to the latent space through the feature extractor. Then, RLPGA feeds Zs into h to calculate
the classification loss Lclf , feeds Zs and Zt into the Critic to calculate the Wasserstein distance between two domain
distributions, and calculate the loss Dispn based on the four weight matrices. Then, RLPGA minimizes the equation 15 to
update the parameters of f , h, and the Critic.

We denote the source domain data asXs and its correspond-
ing labels as Y s∗, where Y s∗ is the noisy version of the
clean ground truth labels Y s. Therefore, our goal is to learn
a robust classifier based on the source domain data with
noisy labels, which can be transferred to the target domain.

Formally, we denote Y ∗ as the noisy version of Y and
PY Y ∗ as the transition distribution from Y to Y ∗. Let
Y, Y ∗

∈ {1, 2, ..., C}, and C be the total number of the cate-
gories. Then we denote Pr (Y ∗

= j ∣Y = i) as the transition
distribution to transfer the ground truth label i to the class
j, where i, j ∈ {1, 2, ..., C}. We use TY→Y ∗ to represent
the C × C matrix, and TY→Y ∗ (i, j) = Pr (Y ∗

= j ∣Y = i).
Generally, the label noise can be defined into several kinds
based on TY→Y ∗ [45], e.g., define the label noise as class
independent (or uniform), then TY→Y ∗ can be written as
TY→Y ∗ (i, j)=a if i ≠ j and TY→Y ∗ (i, j)=b if i = j, where
a, b > 0 and (C − 1) a + b = 1. For real-life data, although
the type of label noise is complicated, its TY→Y ∗ can be
estimated through empirical distribution. Then, we have

Assumption 3.1. Assume the Markov chain: X → Y → Y ∗

is hold. i.e., X is independent of Y ∗ conditioning on
Y . Assume the transition distribution matrix TY→Y ∗ is
invertible. i.e., det (TY→Y ∗) ≠ 0.

From the Assumption 3.1, we can know that X ⫫

Y ∗ ∣ Y . The invertible transition distribution matrix is to
emphasize that the any class in {1, 2, ..., C} can be polluted
by noise, and each class can be transferred to every C class
with a certain possibility. This assumption is also to simulate
the fact that every real label in the actual situation can be
artificially incorrectly labeled as other classes.

3.2 Representation leaning-based domain adaptation

This paper focus on learning a domain-invariant representa-
tion for domain adaptation. The objective of representation
learning-based domain adaptation methods is composed
of three components [19], [21]. First, all training samples
is mapped into the latent space Z to obtain the feature
representation by a projection function (or feature extractor)
f . The first is to minimize a metric which measures the
difference between two probability distributions to align
the distributions of two domains. The second part is to
minimizing the source domain classification risk. The third

is to minimize a regularization term. In short, the objective
is formulated as

min
f,h

RPs
(f, h) + αD (P f(X)

s , P
f(X)
t ) +∆ (f, h) , (2)

where D (⋅) is the metric that measures the difference be-
tween two domain distributions, ∆ is a regularization term
to punish the parameters of the feature extractor f and the
classifier h, α is the corresponding hyperparameters, RPs

is
the risk of the classifier h over source domain samples based
on the learned latent space Z :

RPs
(f, h) = ∫ Ps (X) ∣η (X) − h (f (X))∣ dX. (3)

In our setting, we only have access to the source domain
samples with noisy labels. The aim is to learn an expected
classifier h∗ that is robust to label noises. Thus, in our
setting, the equation 3 is written as

RPs
(f, h) = ∫ Ps (X) ∣Y ∗

− h (f (X))∣ dX. (4)

4 PROPOSED METHOD

In this section, we introduce the proposed robust local
preserving and global aligning network (RLPGA). RLPGA
consists of four parts. The first part is the feature extractor
f that mapping the input dataset into the latent space to
obtain the feature representation. The second part is the
classifier to be learned based on the noisy labels of the
source domain dataset. The third part is the local preserving
module, which is to improve the robustness to the label
noise based on preserving the local topological structure
of the data in the input space. The fourth part is the
global aligning module, which is to align the distributions
of the source domain and the target domain. The overall
framework of RLPGA is shown in Fig. 1.

4.1 The informative-theoretic-based loss for classifier

To learn a classifier h with the noisy label for UDA, we em-
ploy the determinant based mutual information (DMI) [46]
to measure the performance of the classifier. We maximize
the DMI between the the output of h and the noisy label Y ∗.
From the [46], [47], we can obtain the follows:
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Fig. 2: A motivating example for the local preserving module. It contains an example for the adjacency graph and an
example for the negative graph. We set k = 3 in construct the adjacency graph. The number of the finally obtained clusters
in the negative graph is 4.

Definition 4.1. (Determinant based Mutual Information) For
two discrete random variables X1,X2, the determinant
based mutual information between them is defined as

DMI (X1,X2) = ∣det (TX1,X2
)∣ , (5)

where TX1,X2
is the matrix format of the joint distribu-

tion Pr (X1,X2) over X1 and X2.

Therefore, let Y ∗ be the one-hot vector, the measure-
ment for the performance of the classifier h is presented as
DMI (h (⋅) , Y ∗). As we can see, calculating DMI (h (⋅) , Y ∗)
need to obtain the joint distribution Pr (h (⋅) , Y ∗). Because
h is also a random variable, therefore, we can obtain:

Pr (h (⋅) , Y ∗) = ∫
X

Pr (h (⋅) , Y ∗
,X)d (X)

= ∫
X

Pr (h (⋅) , Y ∗ ∣X )P (X) d (X)

= ∫
X

Pr (h (X) , Y ∗ (X))P (X) d (X)

(6)

Also, we can obtain the Markov chain: h (X) ← X → Y ∗.
So, we can see: h (X) ⫫ Y ∗ ∣ X . Thus, during training
process, a mini-batch of samples of source domain with their
noisy labels are sampled and denoted as {(Xi, Y

∗
i )}Ni=1. We

denote the outputs of the classifier h for these samples as
the N ×C matrix O. Each row of O represents the output of
a sample, and each column of O is a probability value over
C categories. We denote the Y ∗ by a 0 − 1 matrix L. Each
row of L is a one-hot vector and represents the label of the
corresponding sample. We have Th(X),Y ∗ = OL/N , Thus,
DMI (h (X) , Y ∗) = ∣det (OL/N)∣.

To this end, the final loss function is defined as

Lclf = − log (
»»»»»»»»
det ( 1

N
OL)

»»»»»»»»
) + γLr (7)

where γ > 0 is the hyperparameter to weight the importance
of the regularization item, the regularization item Lr is
defined as

Lr =
1

N

N

∑
i=1

H (Oi,∶) −H
⎛
⎜
⎝

1

N

N

∑
j=1

O∶,j
⎞
⎟
⎠

(8)

where the first term of equation 8 aims at forcing the output
of h to be sparse enough to approximate an one hot vector,
the second term of equation 8 aims at forcing the output of h
to be equally distributed. The regularization item can also be
interpreted as to constrain the source domain samples to be
clustered into multiple clusters in a unsupervised manner.

4.2 The local preserving module

The local preserving module is to improve the robustness
of RLPGA to label noise from the perspective of the learned
feature representation. As we can see, the label noise of the
source domain samples can cause a sample belonging to
class i to be annotated into class j. From the Fig. 1, we can
see that these noisy labels will influence the measurement
of the classifier, e.g., the loss Lclf . During the gradient
propagation stage, the feature representation will be learned
by mistake. From a geometrically intuitive point of view,
this mistake can be regarded as pushing a i-th class sample
from an area surrounded by i-th class samples to an area
surrounded by j-th class samples. Therefore, one solution
to improve this problem is to design a method that can
maintain the local structure of the original input space
in the learned latent feature space. To this end, inspired
by [48], we propose to excavate two kinds of relations.
One is a similar relationship that should be preserved, the
other is a dissimilar relationship that should be punished.
We construct two weight matrices including an adjacency
weight matrix and a negative weight graph to describe the
above two relations.

Let Xs
= {Xs

1 , ...,X
s
ms

} be the source domain dataset,
where Xs

i is a source domain sample and ms is the to-
tal number of samples in the source domain dataset. Let
Xt

= {Xt
1, ...,X

t
mt

} be the target domain dataset, where Xt
i

is a target domain sample and mt is the total number of
samples in the target domain dataset. Inspired by Locally
Preserved Projection (LPP) [49], k-nearest-neighbor method
is introduced to construct the adjacency graph. For the input
space of the source domain, if Xs

j is one of the k nearest
neighbors of Xs

i (or Xs
i is one of the k nearest neighbors

of Xs
j ), we build an edge between Xs

i and Xs
j . We traverse

all the input samples, and then get the adjacency graph,
which consists of the vertexes (the source domain samples)
and the edges. An example of the adjacency graph is shown
in Fig. 2 and we set k = 5. It is known that an instance
and its k nearest neighbors are very likely to belong to the
same category. Thus, the adjacency graph can represent the
local similar relationship of the input dataset. We also define
Hs

pos ∈ R
ms×ms as adjacency weight matrix. Hs

pos (i, j) can
be regarded as the similarity between Xs

i and Xs
j , which

can be defined as: If Xs
i ∈ Nk (Xs

j ) or Xs
j ∈ Nk (Xs

i ),

H
s
pos (i, j) = exp(

−(d (Xs
i ,X

s
j ))

2

t1
) (9)

otherwise, Hs
pos (i, j) = 0. Nk (Xs

i ) is the k nearest neigh-
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bors of Xs
i , d (⋅) is a distance metric, and parameter t1 is a

prespecified hyperparameter. As we can see, the adjacency
weight matrix Hs

pos can not only represent the connection
state of any two input samples, but also the importance of
any connected edge (or the similarity of any two input sam-
ples). Similarly, for target domain dataset, we can also obtain
the corresponding adjacency weight matrix Ht

pos ∈ R
mt×mt .

The negative weight matrix is to express the structure
of dissimilar among input samples. We need to divide
the samples of each domain into several clusters, and we
suppose the samples that belong to different clusters are
dissimilar. For source domain, if Xs

j is the nearest neighbors
of Xs

i , we build an edge between Xs
i and Xs

j . We traverse
all the input samples and finally construct a graph called
negative graph, which consists of the vertexes (the source
domain samples) and the edges. We definite that if there is
a path between Xs

i and Xs
j , then Xs

i and Xs
j belonging to

the same cluster. We traverse the obtained graph and finally
construct several clusters. An example of obtained clusters
is shown in Fig. 2 and we obtain 3 clusters. Let {1, 2, . . . ,M}
be cluster number and M is the total number of clusters. Let
B ∈ Rms×1, and Bi = m, which means that sample Xs

i

belongs to the cluster m, m ∈ {1, 2, . . . ,M}. We also define
the negative weight matrix as Hs

neg ∈ Rms×ms . Hs
neg (i, j)

represents dissimilarity between Xs
i and Xs

j , which can be
defined as: If Bi ≠ Bj , we have

H
s
neg (i, j) = exp(

− (d (Xs
i ,X

s
j ))

2

t1
) (10)

otherwise,Hs
neg (i, j) = 0. The parameter t1 is a prespecified

hyperparameter. We can observe from the equation 10 that
if Xs

i and Xs
j belong to different clusters, the closer the

distance between them, the larger the value of Hs
neg (i, j).

This indicates that the boundary points of different clusters
are important. Also, the negative weight matrix can not only
indicate whether any two input samples belong to the same
cluster, but also the dissimilarity of any two input samples.
Similarly, as for target domain samples, we can also obtain
a negative weight matrix Ht

neg ∈ R
mt×mt .

To this end, let Hu
pn = Hu

pos − H
u
neg and u ∈ {s, t}, the

objective of the local preserving module is denoted as:

min
f
Dispn (f) =

log (1 + ∑
u∈{s,t}

mu

∑
i,j=1

exp (∥f (Xu
i ) − f (Xu

j )∥
2

2
Hu

pn (i, j)))

(11)
Also, the choice of distance d (⋅) in equation 9 and 10 is
based on different dataset. For higher dimensional data, we
choise cosine distance, otherwise, choise Euclidean distance.

We can see that minimizing equation 11 can make points
that are near in the original space project closer to the
latent space, and points that belong to different clusters in
the original space project farther into the latent space. This
can be regarded as preserving the local structure including
the similarity structure and dissimilar structure. Based on
the prior knowledge that samples belonging to the same
category are likely gathered together and samples belong-
ing to different categories are likely separated from each
other. So, minimizing equation 11 can enhance the feature
discriminability. As the training process continues, noisy

label could make samples from some classes are mixed
with samples from other classes. This can reduce the feature
discriminability in the latent space. Thus, when aligning the
distributions of two domains, some bad results will occur.
However, the proposed local preserving method is to hap-
pen to force the features learned to be more discriminative,
thereby improving the robustness of RLPGA to label noises.

4.3 The global aligning module
The global aligning module is to align the distributions
between the source domain and target domain. The ’global’
means the alignment operation is related to the whole
distribution. Motivated by [8], we minimize the Wasser-
stein distance to align the two distributions. Specifically,
for ∀Pr, Pg ∈ Prob (X) and the corresponds support set
Σr,Σg , the pth Wasserstein distance can be defined as

Wp (Pr, Pg) = ( inf
ς(Xa,Xb)∈Π(Xa,Xb)

∫ c(Xa,Xb)pdς)
1
p

, (12)

where Xa ∈ Σr,Xb ∈ Σg , c (Xa,Xb) represents the dis-
tance of two patterns in Σr,Σg and Π (Xa,Xb) denotes
the set of all joint distributions ς (Xa,Xb) that satisfies
Pr = ∫y ς (Xa,Xb) dXb, Pg = ∫x ς (Xa,Xb) dXa. Based
on Kantorovich-Rubinstein theorem [50], the dual form of
Wasserstein distance is written as
Wp (Pr, Pg) = sup

∥ϑ∥L≤1
E

Xa∼Pr

[ϑ (Xa)] − E
Xb∼Pg

[ϑ (Xb)] ,
(13)

where ϑ ∶ X → R is the 1-Lipschitz function and satisfies
∥ϑ∥L = sup

X1≠X2

∣ϑ (X1) − ϑ (X2)∣/∣X1 −X2∣ ≤ 1. Also, the ϑ

is called as the Critic and is implemented by an MLP.
To this end, the objective of the global aligning module

is defined as,
min
f
Wp (P f(X)

s , P
f(X)
t ) . (14)

4.4 The final objective function
Based on Subsection 4.1, 4.2, and 4.3, the overall objective
function of RLPGA is formulated as following, and the
training process of RLPGA is shown in Algorithm ??.

min
f,h

Lclf (f, h) + αDispn (f)+

βWp (P f(X)
s , P

f(X)
t ) +∆ (f, h)

(15)

4.5 Theoretical analysis
We provide some theoretical analysis about the robustness
and target risk on our proposed RLPGA.
Lemma 4.1. (Properties of DMI [46]). DMI is non-negative,

symmetric, and information-monotone. Moreover, it is
relatively invariant: for random variables X1,X2 and
X3, if X3 is independent of X2 conditioning X1, let
TX1→X3

be the matrix format of the joint distribution
Pr (X3 ∣X1 ), then, the following holds

DMI (X2,X3) = DMI (X2,X1) ∣det (TX1→X3
)∣ (16)

Theorem 4.1. For UDA with the noisy label, the proposed
RLPGA is robust to label noise and the informative-
theoretic-based loss is conducive to shrinking the upper
bound of target risk RPt

.
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Algorithm 1 : RLPGA

Input: source data Xs, target data Xt, minibatch size m,
the Critic learning rate α1 in Wasserstein distance, the
feature extractor learning rate α2, the classifier learning
rate α3, hyperparameters α, β, γ, and the number of
neighbor points k.
Initialize the neural network parameters of the feature
extractor f , the classifier h, and the Critic ϑ with random
weights ωf , ωh, ωϑ.
repeat

Sample minibatch samples from Xs and Xt. Construct
four weight matrices Hs

pos, Hs
neg , Ht

pos, Ht
neg .

for t = 1 to m do
Zs
← fωf

(Xs) , Zt
← fωf

(Xt)
ωwd ← ωwd + α1∂ωϑ

Wp

end for
ωh ← ωh − α3∂ωh

Lclf

ωf ← ωf − α2∂ωf
[Lclf + αDispn + βWp +∆]

until ωf , ωh, ωϑ converge.

Proof: For objective 2, the first term, used to measure
the performance of the classifier, is influenced by the noisy
label, directly. From Lemma 4.1 , we can obtain

DMI (h (⋅) , Y ∗) = DMI (h (⋅) , Y ) ∣det (TY→Y ∗)∣ (17)

where Y ∗ is the noisy version of the ground truth label Y .
For every two classifiers h1 and h2, we can see that the
necessary and sufficient conditions for DMI (h1 (⋅) , Y ) >

DMI (h2 (⋅) , Y ) is DMI (h1 (⋅) , Y ∗) > DMI (h2 (⋅) , Y ∗). In
this paper, we propose to use the informative-theoretic-
based loss to measure the performance of the classi-
fier, we thus obtain that the necessary and sufficient
conditions for Lclf (f, h1 (⋅) , Y ) > Lclf (f, h2 (⋅) , Y ) is
Lclf (f, h1 (⋅) , Y ∗) > Lclf (f, h2 (⋅) , Y ∗). Therefore, we can
obtain that the measurement based on noisy labels is con-
sistent with the measurement based on clean labels. To this
end, we conclude that RLPGA is robust to label noise.

Let h1 be the learned classifier, from [8], we can know
that the target error of the UDA can be bounded by the
follows:

RPt
(hi) ≤ RPs

(hi) + 2Wp (P f(X)
s , P

f(X)
t ) + ψ (18)

As we can see, if the objective 2 is minimized, the first
term RPs

(hi) is equal to 0. When the label is the noisy
version, for traditional loss function such as cross entropy
loss, even if RPs

(hi) is equal to 0, the value of RPs
(hi)

under the clean ground truth label is greater than 0. But for
our proposed loss function, the result under the noisy labels
is consistent with result under the clean labels. Thus, we can
obtain that the upper bound of RPt

(f, h1) is less than the
upper bound of RPt

(f, h2).

Proposition 4.1. When Z is a deterministic function of X ,
minimizing the equation 11 is also conducive to mini-
mizing the target risk RPt

(f, h).

Proof: When Z is a deterministic function of X , we
can obtain Pr (Z ∣Xu ) , u ∈ {s, t} is Dirac. Therefore, RPt

can also be rewritten as
RPt

(f, h)
= ∫ PX

t (X) »»»»»h (f (X)) − Y t»»»»» d (X)
.
= ∫ P f(X)

t (Z) »»»»»h (Z) − Y t»»»»» d (Z)
= RPs

(f, h) − ∫ P f(X)
s (Z) ∣h (Z) − Y s∣ d (Z)
+ ∫ P f(X)

t (Z) »»»»»h (Z) − Y t»»»»» d (Z)
= RPs

(f, h) + ∫ P f(X)
t (Z) (Ψt −Ψs) d (Z)

+ ∫ (P f(X)
t (Z) − P f(X)

s (Z))Ψsd (Z)

(19)

where Ψu (Z) = ∣h (Z) − Y u∣, u = {s, t}. Compared equa-
tion 19 with equation 15, we can know that minimizing the
first term and the third term in equation 15 corresponds to
the minimizing first and third terms in equation 19. It is
impossible to directly minimize the second term of equation
19 in equation 15. However, this paper mainly focuses on
the covariance shift, so, we have Y s

= Y t. The first term
of equation 15 can increase the ability of the classifier h to
correctly classify the source domain samples. Minimizing
equation 11 can increase the feature discriminability of both
source domain samples and target domain samples, and
the label information is related to the feature discriminabil-
ity. So, minimizing equation 11 is conducive to make the
learned classifier h to predict the true label of the target
domain samples. Therefore, we can conclude that minimiz-
ing equation 11 is conducive to minimizing the second term
equation 19 thus is also conducive to minimizing target risk
RPt

(f, h).

5 EXPERIMENTS

We conduct experiments on one synthetic data and four
benchmark datasets. Also, due to space constraints, addi-
tional experiments of three datasets can be found in Ap-
pendix. Besides, we put the deepgoing analysis of the dis-
crepancy metric and the training time analysis in Appendix.
The main lines behind the experiment section are as follows.
In Subsection 5.3, we take experiments on the synthetic
dataset is to show that the gradient of our proposed model
is stable and can converge during the training process under
different scales of label noise. In Subsection 5.4, we first
conducted conventional unsupervised domain adaptation
experiments of transfer tasks on benchmark datasets, and
the reported tables show the experimental results when
the source domain samples have ground truth labels. This
subsection is to verify that our method also has performance
advantages in the absence of noise. In Subsection 5.5, we
show the experimental results when the labels of source
domain samples are polluted by different noise ratios. This
is to verify that our method is not only suitable for learning
with label noise, but also for learning without label noise.
In Subsection 5.6, we show the experimental results of the
ablation study. This is to verify that both the informative-
theoretic-based loss and the local preserving module can
improve the robustness to the label noise. In Subsection 5.7,
we perform several experiments to study the influence of
the hyper-parameters in our proposed RLPGA. In Subsec-
tion 5.9, we show the feature transferability and the feature
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Fig. 3: Synthetic dataset

discriminability of our proposed RLPGA, intuitively. Also,
in Appendix, we have given the experimental results in the
case of random noise under the Digits dataset.

Synthetic dataset is the combination of source and tar-
get domain samples. Each domain includes 1000 positive
samples and 1000 negative samples. The synthetic dataset
is visualized in Fig. 3. We can see that the positive samples
and negative samples of the source domain are represented
by red dots and blue dots, and the positive samples and
negative samples of the target domain are represented by
green dots and black dots. Office-Caltech10 dataset [51] in-
cludes four domains, e.g., Amazon (A), Webcam (W), DSLR
(D). and Caltech (C). We adopt 4096-dimensional DeCaf
feature [52] for the samples in Office+Caltech10 dataset.
Office31 dataset [53] includes three domains, e.g., Amazon
(A), Webcam (W) and DSLR (D). Office-Home dataset [54]
includes four domains, e.g., Artistic images (Ar), Clip Art
(Cl), Product images (Pr), and Real-World images (Rw).
Digits datasets [19] includes two dataset including MINIST
dataset and USPS dataset.

5.1 Compared Approaches
In this paper, we mainly compare our proposed RLPGA
with both traditional learning methods and deep domain
adaptation methods. The specific transfer task classification
accuracy and average classification accuracy are reported.
All experimental results of the compared methods in our
submission are quoted from their respective original papers.
To ensure the fairness and authenticity of the experimental
results, we have not reproduced the experimental results of
the compared methods on the data set that did not appear
in the original article.

Traditional learning methods: Transfer Joint Matching
(TJM) [55], Scatter Component Analysis (SCA) [56], Adap-
tation Regularization (ARTL) [57], Joint Geometrical and
Statistical Alignment (JGSA) [58], CORrelation Alignment
(CORAL) [59], Distribution Matching Machine (DMM) [55].

Deep domain adaptation methods: AlexNet [60],
ResNet-50 [61], Deep Domain Confusion (DDC) [62], Deep
Adaptation Network (DAN) [23], Maximum Mean Dis-
crepancy Metric (MMD) [25], Domain Adversarial Neu-
ral Network (DANN) [19], Deep Correlation Alignment
(DCORAL) [28], Adversarial Discriminative Domain Adap-
tation (ADDA) [63], Joint Adaptation Network (JAN) [31],
Multi-Adversarial Domain Adaptation (MADA) [64], Sim-
ilarity Network (SimNet) [65], Generate to Adapt (GTA)

[32], Deep Adversarial Attention Alignment (DAAA) [66],
Conditional Domain Adversarial Network (CDAN) [67],
Mainfold Embedded Distribution Alignment (MEDA) [68],
Batch Spectral Penalization (BSP) [14], Wasserstein Distance
Guided Representation Learning (WDGRL) [8], Contrastive
Adaptation Network (CAN) [69], Certainty Attention based
Domain Adaption (CADA) [70], Sliced Wasserstein Discrep-
ancy (SWD) [33].

5.2 Implementation
All compared models in our experiments are implemented
with TensorFlow and optimized by Adam optimizer. For
each approach, all hyper-parameters are fixed, the batch size
is set to 64 with 32 samples from each domain, the learning
rate is set to 10−4, the projection function f , the classifier h,
and the Critic to approximate the Wasserstein distance are
all set as MLP network, in which the activation function is
set as Relu. Also, a softmax function is attached behind the
classifier h to obtain a probabilistic output.

For the Synthetic dataset, the projection function f is
approximated by a MLP network with one hidden layer of
20 nodes, the Critic in Wasserstein distance is approximated
by a MLP network with two layers of 20 and 1 nodes.
For Amazon and Email datasets, the projection function
f is approximated by a MLP network with one hidden
layer of 500 nodes, the Critic is approximated by a MLP
network with two layers of 100 and 1 nodes. For Office-
Caltech10, Office31, Office-Home, and Digits datasets, the
projection function f is approximated by a MLP network
with two hidden layers of 500 and 100 nodes, the Critic is
approximated by a MLP network with two layers of 100 and
1 nodes. Note that the deep representations obtained by 50-
layer ResNet are used as features for Office31, Office-Home,
and Digits datasets.

To verify the robustness of our proposed RLPGA, we
conduct experiments under different ratio noise. We list
the explicit noise transition matrices as following, and for
all experiments, r ranges from {0.2, 0.4, 0.6}. For Synthetic
dataset, case (1):

PY Y ∗ = [ 1 0
r 1 − r

] . (20)

For the rest of dataset, case (2):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
⋯

r 1 − r r
⋯

1 − r r
1

⋯
r 1 − r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

There are four hyperparameters in our proposed
RLPGA, that is α, β, γ, and k. For the synthetic dataset,
we set α = 1, β = 0.1, γ = 1, and k = 3. For Office-Caltech10
dataset, we set α = 1, β = 10, γ = 1, and k = 3. For Office31
dataset, we set α = 1, β = 0.1, γ = 1, and k = 3. For Office-
Home dataset, we set α = 1, β = 103, γ = 1, and k = 3.
For Digits dataset, we set α = 1, β = 10, γ = 1, and k = 3.
For Email Spam Filtering dataset, we set α = 1, β = 10−2,
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TABLE 1: Performance (accuracy) on Office+Caltech10 dataset with DeCaf features

Domains A→C A→D A→W W→A W→D W→C D→A D→W D→C C→A C→W C→D Average
TJM 84.3 76.4 71.9 87.6 100 83.0 90.3 99.3 83.8 88.8 81.4 84.7 86.0
SCA 78.8 85.4 75.9 86.1 100 74.8 90.0 98.6 78.1 89.5 85.4 87.9 85.9

ARTL 87.4 85.4 88.5 92.3 100 88.2 92.7 100 87.3 92.4 87.8 86.6 90.7
JGSA 84.9 88.5 81.0 90.7 100 85.0 92.0 99.7 86.2 91.4 86.8 93.6 90.0

CORAL 83.2 84.1 74.6 81.2 100 75.5 85.5 99.3 76.8 92.0 80.0 84.7 84.7
DMM 84.8 92.4 84.7 86.5 98.7 81.7 90.7 99.3 83.3 92.4 87.5 90.4 89.4

AlexNet 83.0 87.4 79.5 83.8 100 73.0 87.1 97.7 79.0 91.9 83.7 87.1 86.1
DDC 85.0 89.0 86.1 84.9 100 78.0 89.5 98.2 81.1 91.9 85.4 88.8 88.2
DAN 84.1 91.7 91.8 92.1 100 81.2 90.0 98.5 80.3 92.0 90.6 89.3 90.1
MMD 88.6 90.5 91.6 92.2 100 88.6 90.1 98.9 87.8 93.1 91.6 91.2 92.0

DANN 87.8 82.5 77.8 82.9 100 81.3 84.7 98.9 82.1 93.3 89.5 91.2 87.7
DCORAL 86.2 91.2 90.5 88.4 100 88.6 85.8 97.9 85.4 93.0 92.6 89.5 90.8

MEDA 87.4 88.1 88.1 99.4 99.4 93.2 93.2 97.6 87.5 93.4 95.6 91.1 92.8
WDGRL 86.9 93.7 89.5 93.7 100 89.4 91.7 97.9 90.2 93.5 91.6 94.7 92.7

SWD 85.1 92.3 89.5 92.2 100 88.1 90.9 97.4 91.6 92.9 90.7 92.9 92.0
RLPGA 96.7 96.5 100 96.8 100 93.5 93.7 93.7 93.5 97.5 100 98.2 96.7

γ = 0.1, and k = 3. For Amazon Review dataset, we set
α = 1, β = 1, γ = 10, and k = 3.

5.3 Experimental results on synthetic dataset

We mainly compare our proposed RLPGA with RGA and
WDGRL. Specifically, in RGA, the hyperparameter α is set
to 0, which aims to eliminate the impact of the proposed
two weight graphs. Fig. 4 shows the experimental results
of the synthetic dataset for three methods including WD-
GRL, RGA, and our proposed RLPGA. Each row in Fig.
4 represents a different label noise ratio, and each column
represents a different method. We record the value of the
Wasserstein distance and the test classification accuracy
during each iteration of the training process. As we can
see, the Wasserstein distances in all three methods converge
when step > 2000, and the convergence curve is very
smooth. So, we can conclude that all three methods show
the gradient priority. Compared RGA with WDGRL, when
the noise ratio is 0, we can see that the accuracy curve of
RGA and WDGRL is almost the same. However, as the
proportion of noise increases, the accuracy curve of WDGRL
is obviously more oscillating than the accuracy curve of
RGA. As the noise ratio goes to 0.6, the accuracy curve of
RGA and WDGRL is almost the same again. This indicates
that the proposed robust informative theoretic-based loss
function is effective to reduce the impact of label noise to a
certain degree. Compared RLPGA with WDGRL and RGA,
we can see that the accuracy curve of RLPGA is obviously
more stable than the accuracy curves of WDGRL and RGA
under all noise ratios. In particular, in the case of all 4 noise
ratios, the oscillation of the RLPGA accuracy curves is very
weak, and the accuracy reaches 1. This demonstrates that
the proposed two weight graphs are effective to reduce the
impact of label noise and can promote the stability of the
training process.

5.4 Conventional comparisons on transfer task

We conducted conventional unsupervised domain adapta-
tion experiments of transfer tasks on benchmark datasets,
and the reported tables show the experimental results when
the source domain samples have ground truth labels. We

TABLE 2: Performance (accuracy) on Office31 dataset

Domains A→D A→W D→A D→W W→A W→D Average
ResNet-50 68.9 68.4 62.5 96.7 60.7 99.3 76.1

DAN 78.6 80.5 63.6 97.1 62.8 99.6 80.4
DANN 79.7 82.0 68.2 96.9 67.4 99.1 82.2
ADDA 77.8 86.2 69.5 96.2 68.9 98.4 82.8

JAN 84.7 85.4 68.6 97.4 70.0 99.8 84.3
MADA 87.8 90.0 70.3 97.4 66.4 99.6 85.3
SimNet 85.2 88.6 73.4 98.2 71.6 99.7 86.1

GTA 87.7 89.5 72.8 97.9 71.4 99.8 86.5
DAAA 88.8 86.8 74.3 99.3 73.9 100.0 87.2
CDAN 93.4 93.1 71.0 98.6 70.3 100.0 87.7
MEDA 86.2 85.9 72.3 97.4 73.4 99.4 85.8
CAN 81.5 99.7 85.5 65.9 63.4 98.2 82.4

CADA 95.6 97.0 71.5 99.3 73.1 100.0 89.4
SWD 83.5 82.5 85.7 88.9 72.5 96.4 84.9

RLPGA 97.3 97.2 74.8 97.8 73.3 100.0 90.1

compare the performances of different methods based on
specific transfer task classification accuracy and average
classification accuracy.

1) Comparisons on the Office+Caltech10 dataset with DeCaf
features: From Table 1, we observe that the average classifi-
cation accuracy of RLPGA is 96.7%, which are 3.9% higher
than the best among the 21 benchmark domain adaptation
methods, especially, 4.0% higher than WDGRL, and 5.9%
higher than DCORAL. As for specific transfer task classi-
fication accuracy, RLPGA achieves the best results on 10
specific transfer tasks. Also, we can observe that the best
results among the 12 specific transfer tasks also appear in
the deep domain adaptation methods compared with the
traditional learning methods, and the best results are more
likely to appear in the last line. The improvements of our
Proposed RLPGA in this dataset are significant.

2) Comparisons on the Office31 dataset: From Table 2, we
observe that the average classification accuracy of RLPGA
is 90.1%, which is 0.7% higher than the best among the
compared 14 domain adaptation methods, especially, 5.2%
higher than SWD, and 7.9% higher than DCORAL. As for
specific transfer tasks, RLPGA achieves the best results on
2 specific transfer tasks and obtains comparable results on
1 specific transfer task. Also, we observe that the results of
domain adaptation methods are all better than the results of



SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Fig. 4: The Wasserstein distance and test classification accuracy of WDGRL, RGA and RLPGA during each iteration
TABLE 3: Performance (accuracy) on Office-Home dataset

Domains Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average
ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

CDAN+E 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP+DANN 51.4 68.3 75.9 56.0 67.8 68.8 57.0 49.6 75.8 70.4 57.1 80.6 64.9
BSP+CDAN 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3

RLPGA 54.3 73.3 76.9 57.7 69.9 71.2 57.6 51.4 79.4 71.9 60.2 82.5 67.2

TABLE 4: Performance (accuracy) on Digits dataset

Domains MNIST→USPS USPS→MNIST Average
DANN 90.4 94.7 92.6
ADDA 89.4 90.1 89.8
UNIT 96.0 93.6 94.8

CyCADA 95.6 96.5 96.1
CDAN 93.9 96.9 95.4

CDAN+E 95.6 98.0 96.8
BSP+DANN 94.5 97.7 96.1
BSP+ADDA 93.3 94.5 93.9
BSP+CDAN 95.0 98.1 96.6

SWD 98.1 97.1 97.6
RLPGA 97.2 98.6 97.9

the source-only based method, i.e., ResNet-50 [61]. Overall,
the improvements of our Proposed RLPGA in this dataset
are not significant.

3) Comparisons on the Office-Home dataset: From Table 3,
we can know that RLPGA achieves the best results on most
tasks. For example, the average classification accuracy of
RLPGA is 67.2%, which is 0.9% higher than the best among
the compared 8 domain adaptation methods, 9.6% higher
than DANN, and 21.1% higher than ResNet-50. As for spe-
cific transfer task classification accuracy, RLPGA achieves
the best results on 8 of 12 specific transfer tasks and obtains

comparable results on the other 4 specific transfer tasks. The
improvements of RLPGA in this dataset are significant.

4) Comparisons on the Digits dataset: From Table 4, we
observe that the average accuracy of RLPGA outperforms
all other methods. The experimental results are consistent
with the comparisons of the previous experiments. The
improvements of our Proposed RLPGA in this data are not
significant.

In general, we can draw the following conclusions for
the conventional comparisons on transfer task: 1) Deep do-
main adaptation methods are more effective than traditional
learning methods; 2) The adversarial based methods are
more effective than metric-based methods; 3) The learned
latent feature representation of our proposed RLPGA is the
most discriminative.

5.5 Denoising comparisons on transfer task

Fig. 5, 7, and 6 show the experimental results when the
labels of source domain samples are polluted by different
noise ratios. The hyper-parameter α of RGA is also set to
0, which aims to eliminate the impact of the two weight
graphs. We compare the performances of different methods
based on specific transfer task classification accuracy and
average classification accuracy.
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Fig. 5: Robustness evaluation on Office+Caltech10 dataset with DeCaf features

Fig. 6: Robustness evaluation on (a) Office31 dataset; (b) Digits dataset

1) Comparisons on the Office+Caltech10 dataset with DeCaf
features: From Fig. 5, we observe that RLPGA achieves the
best results under all noise ratios in 10 of 12 tasks. Especially,
the resulting curve of RLPGA is the most stable and least
decline with the addition of noise in all tasks.

2) Comparisons on the Office31 dataset: From Fig. 6 (a), we
observe that RLPGA achieves the best results on 23 of 24
specific transfer tasks, and for A to D, A to W, D to W, W
to A, and W to D transfer tasks, RLPGA achieves the best
results on all different noise ratios. Also, when the noise

ratio is equal to 0.6, the accuracy of RLPGA is at least 10%
higher than the other five methods on average.

3) Comparisons on the Digits dataset: From Fig. 6 (b), we
observe that RLPGA achieves the best results on all specific
transfer tasks. Especially, when the noise ratio is equal to
0.6, the accuracy of RLPGA is almost 10% higher than the
other five methods on average. Also, the curve of RLPGA is
smoother than other benchmark methods.

4) Comparisons on the Office-Home dataset: From Fig. 7, we
observe that RLPGA achieves the best results on 34 of 48
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Fig. 7: Robustness evaluation on Office-Home dataset

specific transfer tasks. For specific transfer tasks, such as Ar
to Cl, Ar to P r, Ar to Rw, P r to Rw, and Rw to P r, RLPGA
achieves the best results on 8 of 12 specific transfer tasks and
obtains comparable results on other 4 specific transfer tasks.
Also, when the noise ratio is equal to 0.6, the accuracy of
RLPGA is higher than the other five methods on all specific
transfer tasks.

Therefore, the denoising comparisons on the transfer
task can thoroughly verify the robustness against label noise
of our proposed RLPGA.

5.6 Ablation study
The proposed RLPGA is mainly composed of two parts
including the proposed robust informative theoretic-based
loss function and the constructed two adjacency weight
matrices and two negative weight matrices to enhance the
robustness to the noisy label. For ablation study, a simplified
version of RLPGA, which does not use the two kind of
weight matrices is verified and is named RGA. So, by
evaluating the classification accuracy of RGA on different
datasets under different noise ratio, we can verify whether
the robust informative theoretic-based loss function is ef-
fective to improve the robustness. Comparing RLPGA with
RGA, we can evaluate whether the constructed four weight
matrices are effective to improve the robustness.

The main difference between RGA and WDGRL is that
RGA adopts the proposed robust informative theoretic-
based loss function to improve the robustness to label
noise. Compared RGA with WDGRL, we observe that RGA
outperforms WDGRL in most specific transfer tasks under
different noise ratios of different data sets, where RGA
achieves better results in 31 tasks out of all 48 tasks on

the Amazon review dataset, 42 tasks out of all 48 tasks on
the Office-Caltech10 dataset with DeCaf features, 40 tasks
out of 48 tasks on the Office-Caltech10 dataset with SURF
features, 23 tasks out of 24 tasks on the Office31 dataset, 46
tasks out of 48 tasks on the Office-Home dataset, 10 tasks
out of 12 tasks on the Email Spam Filtering dataset, and 7
tasks out of 8 tasks on the Digits datasets. Therefore, we
can conclude that it is effective to consider the proposed
robust informative theoretic-based loss function to reduce
the sensitivity to label noise.

The main difference between RLPGA and RGA is that
RLPGA constructs two weight graphs to enhance the feature
discriminability, thereby reducing the influence of noise
labels on the learned feature representation. We observe
that RLPGA obtains better classification accuracy in many
specific transfer tasks on different datasets, where RLPGA
achieves better results in 41 tasks out of all 48 tasks on the
Amazon review dataset, 44 tasks out of all 48 tasks on the
Office-Caltech10 dataset with DeCaf features, 40 tasks out of
48 tasks on the Office-Caltech10 dataset with SURF features,
23 tasks out of 24 tasks on the Office31 dataset, all tasks
on the Office-Home dataset, 11 tasks out of 12 tasks on the
Email Spam Filtering dataset, and all tasks on the Digits
datasets. Therefore, we can conclude that it is effective to
reduce the influence of noise labels on the learned feature
representation by enhancing the feature discriminability.

Note that many methods focus on adaptation architec-
ture design. As for our proposed method, we mainly focus
on the objective function, and the new network structures
can be easily integrated into our framework. Even so, from
the discussion in Subsection 5.2, we can know that the
average accuracy of RLPGA outperforms most compared
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Fig. 8: The influence of hyper-parameters

methods on most datasets. Therefore, we can conclude that
both the proposed robust informative theoretic-based loss
and the constructed two weight graphs are effective to
improve the robustness to label noise.

5.7 Influence of Hyper-parameters
Specifically, we performed several experiments to study the
influence of the hyper-parameters in our proposed RLPGA
including α which is used to balance the impact of the term
Dispn (f), β which is used to balance the impact of the term
Wp (P f(X)

s , P
f(X)
t ), γ which is used to balance the impact

of the term Lr . To intuitively understand the influences of
the hyper-parameters, we take several experiments based
on the transfer task Pr→Cl of Office-Home dataset. As
the results are shown in Fig. 8, the plots further elaborate
our deepgoing studies’ results with RLPGA. To explore the
influence of α, we first fix β = 103, γ = 1 and k = 3 and then
select the α from range of {10−6, ..., 10−1, 1, 101, ..., 106}.
From the results, we observe that appropriate enhancement
of feature discrimination can promote the performance of
our proposed method. To explore the influence of β, we first
fix α = 1, γ = 1 and k = 3 and then select the β from
range of {10−9, ..., 103}. From Fig. 8, we observe that the
transferability of learned feature representation is important
to the classification task. To explore the influence of γ, we
first fix α = 1, β = 103, k = 3, and then select the γ from
range of {0, 10−5, ..., 1, ..., 105}. From the results, we observe
that the cross entropy loss and Lr are all important to the
classification task.

We further conduct experiments based on the transfer
task Pr→Cl of Office-Home dataset to explore the influence
of the number of neighbor points k, and the number of
neighbor points k when constructing two weight matrices.
We first fix α = 1, β = 103, γ = 1, and then select the k
from range of {1, ..., 9}. The results are shown in Fig. 8 (d),
we can see that an appropriate number of neighbor points
is important.

5.8 The deepgoing analysis of the discrepancy metric
The time complexity of our proposed method will vary
depending on the specific discrepancy metric taken, for
instance, Wasserstein distance, KL divergence, etc. For the
exact purpose of exploring the time complexity of RLPGA
based on Wasserstein distance or KL divergence, we conduct
several comparisons on the synthetic dataset. Fig. 10 shows
the experimental results of time complexity, and in details,

TABLE 5: Performance (accuracy) on Digits dataset with
different discrepancy metrics

Domains MNIST→USPS USPS→MNIST Average
DANN 90.4 94.7 92.6
ADDA 89.4 90.1 89.8
UNIT 96.0 93.6 94.8

CyCADA 95.6 96.5 96.1
CDAN 93.9 96.9 95.4

CDAN+E 95.6 98.0 96.8
BSP+DANN 94.5 97.7 96.1
BSP+ADDA 93.3 94.5 93.9
BSP+CDAN 95.0 98.1 96.6

SWD 98.1 97.1 97.6
RLPGA w/ KL 93.6 95.3 94.5
RLPGA w/ WD 97.2 98.6 97.9

(a) represents the time complexity stats on the training stage
of all time, (b) denotes the results on training stage after the
convergence, and (c) represents the results on the testing
stage of all time. The figure (a) actively demonstrates that
in general, the time complexity of RLPGA with Wasserstein
distance (i.e., RLPGA w/ WD) is higher than that of RLPGA
with KL divergence (i.e., RLPGA w/ KL), but the difference
is not significantly large. From figure (b), we observe that
after convergence, the complexity of RLPGA w/ WD is
more unstable than RLPGA w/ KL. As shown in figure
(c), in the testing stage, the complexities of the compared
methods are similar, to some degree.

Fig. 11 demonstrates the time complexity stats of the
critic network on the training stage, and the subfigure (a)
represents the records of all time, and the subfigure (b)
denotes the records after convergence. From figure (a) of
Fig. 10 and figure (a) of Fig. 11, we observe that compared
with the main model of our proposed RLPGA, the critic
network of the discrepancy metric reaches the convergence
state faster. In addition, by observing Fig. 10 (b) and Fig.
11 (b), we find that after convergence, the fluctuation of
time complexity is mainly brought by the critic network,
and the particular reason for this circumstance is that with
the entry of new batch of data, the critic network for the
distribution discrepancy calculation of the source domain
and the target domain will be updated all the way. However,
after convergence, with the entry of a new batch of data, the
main model of RLPGA will generate slight gradients, and
the fluctuation of the optimization is accordingly trivial.

Along the lines of the experimental principle of Section
5.4, we further conduct experiments on the Digits dataset to
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(a) t-SNE of DANN features (b) t-SNE of DCORAL features (c) t-SNE of MMD features (d) t-SNE of WDGRL features

(e) t-SNE of RLPGA-1 features (f) t-SNE of RLPGA-3 features (g) t-SNE of RLPGA-5 features (h) t-SNE of RLPGA-7 features

Fig. 9: Feature visualization of the K → E task in Amazon review dataset

(a) Time complexity on training (b) Time complexity after convergence (c) Time complexity on testing
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Fig. 10: The analysis of time complexity on different discrepancy metrics

(a) Time complexity on training (b) Time complexity after convergence
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Fig. 11: The analysis of time complexity on the training stage of critic network

clarify the performance of RLPGA w/ WD and RLPGA w/
KL. As demonstrated in Table 5, we reckon that although the
calculation of Wasserstein distance is more time-consuming
than that of KL divergence, the former discrepancy metric
can better depict the differences between the distributions
of the source domain and the target domain. In detail,
RLPGA w/ WD outperforms RLPGA w/ KL by 2.6%
on MNIST→USPS task and 3.3% on USPS→MNIST task.
Therefore, we adopt Wasserstein distance as the specific
discrepancy metric for the proposed RLPGA.

5.9 Feature Visualization

To show the feature transferability and discriminability in-
tuitively, we set the noise ratio r as 0.2 and visualize the
features learned by the eight methods based on the K → E

transfer task of Amazon review dataset. We introduce the t-
SNE visualization to visualize the learned features and plot
them in Fig. 9. For all subgraphs in Fig. 9, red and blue dots
separately represent positive and negative samples in the
source domain, and purple and green dots represent posi-
tive and negative samples in the target domain, respectively.
High feature transferability should bring together dots of
the same class in both domains, while high feature dis-
criminability should separate dots of different classes from
each other. We observe the feature transferability is learned
well for all approaches. As for the feature discriminability,
the representations learned by RLPGA outperform other
approaches. So, this indicates that the proposed RLPGA is
more effective and robust.
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6 CONCLUSIONS

In this paper, we propose a novel method called robust
local preserving and global aligning network for adversarial
domain adaptation (RLPGA). RLPGA tackles the problem
of learning domain adaptation models under the setting
of noisy labels. First, RLPGA introduces a robust loss for
solving this problem. We prove that it can reduce the impact
of label noises. Then, to reduce the effect of label noises
from the feature perspective, a local preserving and global
aligning method is proposed. We also provide a theoretical
analysis that RLPGA is conducive to minimize the target
risk. Experiments results on sentiment and image classifi-
cation domain adaptation datasets show the effectiveness
of the proposed method. classification of RLPGA is 83.4%,
which is 1% higher than the best among the 5 domain
adaptation methods. For specific transfer task classification
accuracy, RLPGA achieves the best results on 12 specific
transfer tasks. The improvements of our Proposed RLPGA
in this dataset are significant.
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8 APPENDIX

TABLE 6: Performance (accuracy) on Email dataset

Domains P → u1 P → u2 P → u3 Average
MMD 81.0 86.0 94.1 87.0

DANN 83.3 85.7 91.9 86.9
DCORAL 79.7 83.8 89.8 84.4
WDGRL 85.7 88.3 95.8 89.9

SWD 87.2 88.8 94.5 90.2
RLPGA 87.6 89.1 97.1 91.3

8.1 Datesets

Amazon review dataset [71] records the product reviews
on Amazon.com and includes four domains, e.g., books
(B), DVDs (D), electronics (E), and kitchen appliances (K).
Office-Caltech10 dataset [51] includes four domains, e.g.,
Amazon (A), Webcam (W), DSLR (D). and Caltech (C).
We adopt 800-dimensional SURF feature for the samples in
Office+Caltech10 dataset. Email Spam Filtering dataset [53]
contains four user inboxes. We set the public inbox as the
source domain and the other three private inboxes as target
domains.

8.2 Extended conventional comparisons

We conducted extended conventional unsupervised domain
adaptation experiments of transferring task on benchmark
datasets, and the reported tables show the experimental
results when the source domain samples have ground true
labels. Note that only 5 baselines are presented in Table 6
and Table 7. The first reason is that all experimental results
of the compared methods in our submission are quoted from
their respective original papers. To ensure the fairness and
authenticity of the experimental results, we have not repro-
duced the experimental results of the compared methods
on the data set that did not appear in the original article.
The second reason is that most of the compared methods
are based on image data, the Amazon dataset and Email
dataset are not an image dataset.

1) Comparisons on the Email Spam Filtering dataset: From
Table 6, we observe that the best result always appears in the
last column. RLPGA achieves the best average classification
and reaches 91.3%, which is 1.4% higher than the best
among the compared 4 domain adaptation methods and
7.9% higher than DCORAL. Also, RLPGA achieves the best
classification accuracies on all specific transfer tasks. We
can also observe that adversarial based methods such as
RLPGA, WDGRL, and DANN are better than MMD and
DCORAL. The improvements of our Proposed RLPGA in
this dataset are significant.

2) Comparisons on the Amazon review dataset: From Table
7, we observe that the best result always appears in the last
line. For specific transfer tasks, RLPGA achieves the best
results on 12 specific transfer tasks. E.g., the average clas-
sification of RLPGA is 83.4%, which is 1% higher than the
best among the 5 domain adaptation methods. For specific
transfer task classification accuracy, RLPGA achieves the
best results on 12 specific transfer tasks. The improvements
of our Proposed RLPGA in this dataset are significant.

3) Comparisons on the Office+Caltech10 dataset with SURF
features: From Table 8, we observe that the proposed RLPGA
has achieved the best results in more than half of the
tasks. For specific transfer tasks, RLPGA achieves the best
results on 6 of 12 specific transfer tasks and is the one
that has achieved the best results the most times, e.g., the
average classification of RLPGA is 53.4%, which is 0.7%
higher than the best result among the other 14 domain
adaptation methods, 6.1% higher than WDGRL and, 7.3%
higher than DCORAL. As for specific transfer task classi-
fication accuracy, RLPGA achieves the best results on 6 of
12 specific transfer tasks and is the one that has achieved
the best results the most times. Also, we can conclude that
the results of deep domain adaptation methods are overall
better than the results of traditional learning methods. The
improvements of our Proposed RLPGA in this dataset are
significant.

8.3 Extended denoising comparisons
The figures show the extended experimental results when
the labels of source domain samples are polluted by differ-
ent noise ratios.

1) Comparisons on the Email Spam Filtering dataset: From
Fig. 14, we observe that RLPGA achieves the best results on
10 of 12 specific transfer tasks. Especially, for P to u1 and
P to u3 transfer tasks, RLPGA achieves the best results on
all different noise ratios. Also, the curve of RLPGA has the
least decline.

2) Comparisons on the Amazon review dataset: Fig. 12 shows
the experimental results with different noise ratios. Com-
pared RLPGA with the other 4 methods, we observe that
RLPGA achieves the best results under all noise ratios in
all tasks. Especially, when the noise ratio is equal to 0.6, the
accuracy of RLPGA is at least 5% higher than the other five
methods on average.

3) Comparisons on the Office+Caltech10 dataset with SURF
features: From Fig. 13, we observe that RLPGA achieves the
best results on 32 of 48 specific transfer tasks. Especially, for
A to D, A to W, C to D, and C to W transfer tasks, RLPGA
achieves the best results on all different noise ratios.

8.4 Denoising comparisons with random noise
In order to clarify the performance of our proposed method
in different noise circumstances, we conduct extended ex-
periments on Office-Home dataset when the labels of source
domain samples are polluted by random noise. We set the
noise rates in the range of {0, 0.1, 0.2, 0.3}, because the
difficulty of remaining consistent performance under ran-
dom noise is much higher than that of keeping robustness
under the designed noise, which is based on explicit noise
transition matrices of case (1) and (2).

Fig. 15 shows the experimental results on Office-Home
dataset with different noise ratios (0, 0.1, 0.2, and 0,3). We
compare RLPGA with the ablation model, i.e., RGA, and the
other 3 benchmark methods, i.e., BSP+CDAN, SWD, and
WDGRL. To understand the robustness of the compared
methods, we further perform the backbone method, i.e.,
ResNet50, and evaluate it within different noise rates. From
the figure, we observe that under different noise ratios,
RLPGA achieves the best results in most tasks. Especially,
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TABLE 7: Performance (accuracy) on Amazon review dataset

Domains B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E Average
MMD 82.6 80.9 83.5 79.9 82.5 84.1 75.7 77.7 87.4 75.8 78.1 86.3 81.2

DANN 82.1 78.9 82.7 79.3 81.6 83.4 75.9 77.6 86.6 75.8 78.5 86.1 80.7
DCORAL 82.7 82.9 84.8 80.8 83.4 85.3 76.9 78.1 87.9 76.9 79.1 86.8 82.2
WDGRL 83.1 83.2 85.4 80.7 83.5 86.2 77.2 78.3 88.2 77.2 79.9 86.3 82.4

SWD 82.9 83.1 85.1 80.5 83.7 85.9 77.1 78.6 87.7 76.6 79.6 86.1 82.2
RLPGA 83.7 83.9 85.7 81.9 84.2 87.0 78.8 80.5 88.6 78.3 80.8 87.1 83.4

TABLE 8: Performance (accuracy) on Office+Caltech10 dataset with SURF features

Domains A→C A→D A→W W→A W→D W→C D→A D→W D→C C→A C→W C→D Average
TJM 39.5 45.2 42.0 30.0 89.2 30.2 32.8 85.4 31.4 46.8 39.0 44.6 46.3
SCA 39.7 39.5 34.9 30 87.3 31.1 31.6 84.4 30.7 45.6 40.0 47.1 45.2

ARTL 36.1 36.9 33.6 38.3 87.9 29.7 34.9 88.5 30.5 44.1 31.5 39.5 44.3
JGSA 41.5 47.1 45.8 39.9 90.5 33.2 38.0 91.9 29.9 51.5 45.4 45.9 50.0

CORAL 45.1 39.5 44.4 36.0 86.6 33.7 37.7 84.7 33.8 52.1 46.4 45.9 48.8
MMD 44.1 41.4 37.3 34.1 84.7 30.7 32.5 73.6 30.7 54.8 40.3 47.1 45.9

DANN 45.0 41.4 38.6 34.1 82.8 32.7 31.6 74.2 32.2 54.9 43.4 47.8 46.6
DCORAL 45.0 40.1 38.3 34.9 84.1 33.3 31.5 73.9 31.5 53.4 40.0 47.1 46.1
WDGRL 45.9 44.6 40.7 32.2 81.5 31.1 35.6 77.0 32.6 55.2 42.4 48.4 47.3

SWD 44.1 42.3 40.5 32.2 80.4 30.6 32.9 75.6 33.1 54.8 41.9 48.9 46.4
MEDA 43.9 45.9 53.2 42.7 88.5 34.0 41.2 87.5 34.9 56.5 53.9 50.3 52.7
RLPGA 54.5 52.6 46.3 36.7 84.2 30.1 42.4 77.9 32.5 62.7 54.7 66.7 53.4

when the noise ratio is equal to 0.3, the accuracy of RLPGA
is 3.8% higher than the best benchmark methods on average.
We can find that the accuracies of the alternative methods
are not very high under the random noise, but compared
with other methods, our proposed RLPGA is still able to
maintain the robustness to some extent.

8.5 Detailed influence of hyper-parameters
There are four hyper-parameters in our proposed RLPGA
including α which is used to balance the impact of the term
Dispos−neg (f), β which is used to balance the impact of
the term Wp (P f(X)

s , P
f(X)
t ), γ which is used to balance the

impact of the term LRIT , and the number of neighbor points
k when constructing two weight matrices. To understand
the influences of the four parameters intuitively, we take
some experiments based on the transfer task Pr→Cl of
Office-Home dataset. To explore the influence of α, we first
fix β = 10−3, γ = 1 and k = 3 and then select the α
from range of {10−6, ..., 10−1, 1, 101, ..., 106}. The results are
shown in Fig. 16. We observe that appropriate enhancement
of feature discrimination can promote the performance of
our proposed method. To explore the influence of β, we first
fix α = 1, γ = 1 and k = 3 and then select the β from
range of {10−9, ..., 103}. From Fig. 16, we observe that the
transferability of learned feature representation is important
to the classification task. To explore the influence of γ, we
first fix α = 1, β = 103, k = 3, and then select the γ from
range of {0, 10−5, ..., 1, ..., 105}. From Fig. 16, we observe
that the cross entropy loss and LRIT are all important to the
classification task. To explore the influence of the number
of neighbor points k, we first fix α = 1, β = 103, γ = 1,
and then select the k from range of {1, ..., 9}. The results are
shown in Fig. 16, we can see that an appropriate number of
neighbor points is important.
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RLPGA RGA WDGRL

MMD DCORAL DANN

Fig. 12: Robustness evaluation on Amazon review dataset

RLPGA RGA WDGRL

MMD DCORAL DANN

Fig. 13: Robustness evaluation on Office+Caltech10 dataset with SURF features
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RLPGA RGA WDGRL

MMD DCORAL DANN

Fig. 14: Robustness evaluation on Email Spam Filtering dataset

RLPGA RGA ResNet50

WDGRL SWD BSP-CDAN

Fig. 15: Robustness evaluation on Office-Home dataset with random noise

Fig. 16: The influence of parameters
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