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Efficient Retrieval of the Top-k Most Relevant
Event-Partner Pairs

Dingming Wu, Erjia Xiao, Yi Zhu, Christian S. Jensen, and Kezhong Lu�

Abstract—The proliferation of event-based social networking (EBSN) motivates studies on topics such as event, venue, and friend
recommendation as well as event creation and organization. In this setting, the notion of event-partner recommendation has attracted
attention. When recommending an event to a user, this functionality allows the recommendation of partners with whom to attend the
event. However, in existing proposals, recommendations are pushed to users at the system’s initiative. In contrast, EBSNs provide
users with keyword-based search functionality. This way, users may retrieve information in pull mode. We propose a new way of
accessing information in EBSNs that combines pull and push, thus allowing users to not only conduct ad-hoc searches for events, but
also to receive partner recommendations for retrieved events. Specifically, we define and study top-k event-partner (kEP) pair retrieval
querying that integrates keyword-based search for events with event-partner recommendation. This type of query retrieves
event-partner pairs, taking into account the relevance of events to user-supplied keywords and so-called together preferences that
indicate the extent of a user’s preference to attend an event with a given partner. To compute kEP queries efficiently, we propose a
rank-join based framework with three optimizations. Results of empirical studies with implementations of the proposed techniques
demonstrate that the proposed techniques are capable of excellent performance.

Index Terms—Social networking, query processing.
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1 INTRODUCTION

THE recent proliferation of event-based social network-
ing (EBSN), as exemplified by Meetup1 and Eventbrite2,

has not gone unnoticed in the research community, where
substantial efforts have been devoted to the recommenda-
tion of events [1], [2], [3], [4], [5], venues [6], [7], [8], [9],
[10], and friends [11], [12]. Unlike previous recommendation
techniques that each focus on recommending only one type
of items (either events or friends), event-partner recom-
mendation [13], [14] aims to recommend events together
with partners. Attending an event with a partner may be
more attractive than attending an event alone, and a user
may not attend an event if the user has to do so alone.
However, recommendations are delivered in push mode
based on historical data. This means that when users are
interested in new events, not reflected in their historical
data, the push-based solutions face the well-known cold-
start problem. Although studies exist that address the cold-
start problem [15], [16], push-based solutions fail to provide
interesting event-partner recommendations in response to
ad-hoc user needs.

This paper addresses the cold-start problem by integrat-
ing ad-hoc search and recommendation. This yields a new
way of accessing information in EBSNs that allows users to
not only perform ad-hoc event searches, but also to receive
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partner recommendations for retrieved events. Given user-
specified keywords and historical data related to a user,
this functionality, called the top-k event-partner (kEP) pair
retrieval query, retrieves k event-partner pairs, consisting of
events that are relevant to the keywords and partners with
whom the user is willing to attend the events. For instance,
a user “Jordan” who wants to know about events related
to “rock concert” can search for events matching the key-
words “rock concert,” and then a partner is recommended
for each retrieved event. This query differs from keyword
queries that retrieve relevant events without partners, and
it differs from event-partner recommendation that uses only
historical data.

The query retrieves k event-partner pairs that score the
highest according to a scoring function with two compo-
nents. One concerns the text relevance of events w.r.t. the
query keywords; here, any existing models, e.g., language
models [17], can be used. The other takes into account so-
called together preferences that capture whether the user
and a potential partner are willing to attend an event to-
gether. In one study [13], the together preference of users uq
and u for event e takes into account the number of events
that are similar to e and that uq and u have both attended.
This definition disregards the similarity between users, and
if users search for events that are not relevant to their
historical data, there will be no valid event-partner pairs.
Thus, to facilitate the ad-hoc search setting, we propose
a new approach to determining together preferences that
takes the similarity between the historical attendances of
users into account. The paper’s empirical study provides
a detailed comparison between the new approach and the
existing approach.

The kEP query can be seen as a top-k join query that
returns the k highest scoring pairs of events and users that
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join. The kEP query can then be computed by first joining
events and users and then, for each event e, choose the k
highest scoring pairs of e and a user as result candidates.
Next, the candidate pairs are ranked across events, and the
k pairs with the highest score are returned. However, this
method is inefficient because the join considers all combina-
tions of events and users. Another approach to computing
kEP queries is to extend the rank-join algorithm [18]. Here,
the idea is to scan input events and users ordered according
to scoring functions. However, while events may be ordered
according to the relevance of their textual descriptions to the
query keywords, there is no obvious scoring function for the
partners with which to attend events.

We propose a rank-join based framework for computing
kEP queries where the scoring predicate for the partners
(users) is the number of events that they have attended.
The intuition is that users who have attended many events
tend to have high together preferences (cf. Section 4). We
study two representative join strategies, nested loop join
and ripple join [19], within the framework. To improve the
performance of the framework further, we propose three op-
timizations. First, an unpromising-event pruning technique
enables disregarding events that cannot enter the result.
Next, to reduce the computational cost of finding the partner
with the highest together preference for an event, we pro-
pose two algorithms: one that uses an Event-Member List
(EML) data structure and one that uses a Shared-Event User
Graph (SEUG) data structure. We also combine these opti-
mizations and propose a more efficient partner computation
algorithm that also includes an effective event pruning
technique. To obtain insight into pertinent properties of the
framework and its optimizations, we conduct experiments
with an implementation of the framework using real data.
The study offers evidence that the framework is useful in
practice.

The paper extends our previous work [20] by proposing
a new way of measuring the together preference (Equa-
tion 2) that takes the similarity between the historical at-
tendances of users into account, while our previous work
adopts an existing method [13] to compute together pref-
erences. The experimental results provide evidence that
the proposed method outperforms the existing method in
terms of recommendation accuracy. Since the kEP query in
this paper adopts a different together preference from the
previous work, the key partner optimization in the previous
work is no long applicable and has been discarded. Instead,
this paper proposes a new optimization technique based on
the SEUG data structure for efficient partner computation
and also provide an efficient algorithm that combines the
use of the SEUG data structure and the EML data structure
for partner computation (Section 5.3).

The rest of this paper is organized as follows. Sec-
tion 3 formally defines the top-k event-partner retrieval
problem. Section 4 presents the solution framework. The
three optimizations are detailed in Section 5. We report on
a performance evaluation in Section 6. Finally, we cover
related work in Section 2 and offer conclusions and research
directions in Section 7.

2 RELATED WORK

2.1 Recommendations on Social Platform

A large number of social-platform recommendation tech-
niques exist. They differs in their objectives and the methods
employed. Based on the objectives, the studies relevant to
our work can be categorized roughly into event recommen-
dation, friend recommendation, group recommendation,
and event-partner recommendation. We review each cate-
gory of related work in turn and characterize the relations
to this paper at the end.
Event Recommendation. Event recommendation suggests
the most relevant events for users to participate in. For
this purpose, various methods have been proposed. Qiao
et al. [4] propose a Bayesian probability model that takes
social impact and implicit feedback into account. Qiao et
al. [5] present a Bayesian latent factor model that unifies on-
line and offline social relationships, geographical feature of
events, and implicit rating data from users. Next, SogBmf [1]
is a Bayesian latent factor model that combines social group
influence and individual preferences for event recommen-
dation. Further, HeteRS [21] is a general graph-based model
that can recommend groups to users, recommend tags to
groups, and recommend events to users in one framework.
LCARS [22] offers a particular user a set of venues or events,
giving consideration to both personal interests and local
preferences. Macedo et al. [23] exploit several contextual
signals for learning to rank events for personalized rec-
ommendation, including content-based signals from event’
descriptions, collaborative signals from user’ relationships,
social signals from group memberships, and location and
temporal signals. CBPF [2] is a collective Bayesian Poisson
factorization model for handling the problem of cold-start
event recommendation.
Friend Recommendation. Friend recommendation suggests
user-user relationships, which may involve estimation of the
likelihood that two non-friends will become friends. Wan
et al. [11] recommend friends according to informational
utility, which represents the degree to which a friend sat-
isfies the target user’s unfulfilled informational needs. Lu et
al. [12] propose a Bayesian latent factor model, which jointly
formulates geographical information, implicate user ratings,
and user behavior, for friend recommendation. Yu et al. [24]
propose an end-to-end social recommendation framework
based on Generative Adversarial Nets (GAN), which can
dynamically identify reliable social relations under the su-
pervision of the seeded friends.
Group Recommendation. Group recommendation explores
the preferences of a group of users in relation to individual
items. Gorla et al. [25] combine the relevances of items to
individual group members with the relevance of items to
the group as a whole. The COnsensus Model [26] models
the generative process of group activities, in which each
group has a multinomial distribution over latent topics, and
these topics attract a set of users to join. Group recommen-
dations are based on COM, which is able to exploit both
users’ selection history and users’ personal considerations of
content factors. SIGR [27] adopt an attention mechanism to
learn each user’s social influence and integrate users’ global
and local social network structure information to estimate a
user’s social influence. Guo et al. [28] propose a social self-
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attention based aggregation strategy that models directly
the interactions among group members. Du et al. [29] for-
malize group recommendation as a ranking problem and
propose a group event recommendation framework GERF
based on the learning-to-rank technique. CVTM [30] cap-
tures group interests in an event from an event’s content
and venue. The correlation between organizer and content
is used to alleviate the sparsity of textual content.
Event-Partner Recommendation. Event-partner recommen-
dation [13], [14] helps users find interesting events and
suitable partners for attending events. Tu et al. [13] pro-
vide partner recommendations based on users’ historical
attendance preferences, social contexts, and geographic in-
formation. Yin et al. [14] propose a generic graph-based
embedding model to collectively embed relations among
users, events, locations, time, and text content into a shared,
low-dimension space.
Relation to Recommendation Studies. Most of the above
studies concern the recommendation of only one type of
item, often events or friends, while our study concerns the
recommendation of events and event partners. Thus, the
two previous studies on event-partner recommendation are
most relevant to our study. Our proposal differs from these
in several respects. Tu et al. [13] recommend a partner for
a given target user and event. Yin et al. [14] suggest event-
partner pairs for a given target user based on information
from an EBSN. They propose purely recommendation-based
methods, while we combine search and recommendation.
The kEP query in our study takes keywords provided by
a target user as parameters and returns event-partner pairs
such that the events are relevant to the query keywords and
the target user is likely to be willing to participate in the
event with the partner.

This paper extends our previous work [20]. The new
contributions include a new way of computing together
preferences; efficient partner computation based on SEUG,
EML+SEUG, and unpromising-Event Pruning+SEUG; and
an empirical study that compares the accuracy of the new
together preference function and the original one and eval-
uates algorithm efficiency.

2.2 Rank-Join Algorithms

Based on the A* optimization strategy, the J∗ algorithm [31]
enables querying of ordered data sets by means of user-
defined join predicates. NRA-RJ [32] is a pipelined query
operator that produces a global rank from ranked input
streams based on a scoring function. Ilyas et al. [18] rank
join results progressively during join operations, exploiting
the individual orders of the inputs.

Ranking (top-k) queries have also been integrated into
relational database systems [33], [34]. Mamoulis et al. [35]
identify two phases that any (non-random access) NRA
algorithm should go through: a growing phase and a
shrinking phase. Their LARA algorithm employs a lattice
to minimize the computational cost during the shrinking
phase. The FRPA rank join operator [36] allows efficient
computation of score bounds on unseen join results and
prioritizes the I/O requests of the rank join operator based
on the potential of each input to generate results with
high scores. The Pull/Bound Rank Join (PBRJ) [37] is an

algorithm template that generalizes previous rank join al-
gorithms. The idea is to alternate between pulling tuples
from input relations and upper bounding the score of join
results that use the unread part of the input. The join results
collected as tuples are pulled, and the algorithm stops once
the top-k buffered results have a score at least equal to the
upper bound.

We extend the state-of-the-art rank-join algorithm [18]
and propose a framework with optimizations that supports
the efficiently processing of kEP queries.

2.3 Query Processing on Social Networks

Recently, various methods have been proposed for querying
social networks. TCS-SSN [38] retrieves communities from
spatio-social networks that cover given keywords and that
are characterized by high social influence and small travel-
ing time. Co-located community search [39] considers users’
spatial information in k-truss search that aims to find highly
correlated user groups in social networks. Multi-attribute
community (MAC) search [40] finds communities that are
highly relevant to query users and have top overall scores
for multiple attributes according to user preferences. Kou et
al. [41] address team formation in social network by taking
into account both structure constraints and communication
constraints related to team members. Li et al. [42] retrieve
skyline cohesive groups in social networks, in which each
group cannot be dominated by any other group in terms of
social and spatial cohesiveness. Targeting attributed com-
munity search, the parameter-free contextual community
model [43] uses a set of keywords describing a desired
matching community context and retrieves the community
that is both structure and attribute cohesive w.r.t. the pro-
vided query context. The CGNN query [44] incorporates
cohesive social relationships into group nearest neighbor
(GNN) search over road-social networks such that both the
query users of highest closeness and the corresponding top-
j objects are retrieved.

The querying methods underlying the above queries are
generally designed specifically for the proposed queries,
and the methods differ from the methods we propose. As
a result, these methods cannot be applied to our problem.

3 PROBLEM DEFINITION

An event-based social network (EBSN) can be modeled as a
bipartite graph G = (U,E,R), where U represents a set of
users, E represents a set of events posted by the users, and
R ⊆ U ·E is set of participation relationships between users
and events, i.e., r = (u, e) ∈ R, u ∈ U, e ∈ E. Each event
e ∈ E is associated with a text document e.ψ that describes
the content and features of the event. Specifically, we assume
that a document is represented by a term vector [45]. The
members of an event e are the users u who have joined
e : {u|(u, e) ∈ R}.

A top-k most relevant Event-Partner pair retrieval (kEP)
query Q = (k, uq, ψq) takes three parameters: (i) k is the
number of requested event-partner pairs, (ii) uq is a query
user, and (iii) ψq is a set of query keywords. Let t(ψq, e.ψ)
be the textual relevance (e.g., defined using language mod-
els [17]) of event e w.r.t. the query keywords ψq . The result
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of a kEP query contains k event-partner pairs (e, u) with
the highest score f(uq, ψq, e, u) (Equation 1). The events in
the result are distinct, but the same partner user may be
paired with multiple events. The scoring function considers
both textual relevance t(ψq, e.ψ) and together preference
p(u∗, e, u). The together preference p(u∗, e, u) measures the
probability that user u∗ is willing to attend event ewith user
u, u∗ 6= u. Ties are broken arbitrarily.

We use a scoring function that takes the form of a
weighted sum of the textual relevance and the together pref-
erence. The techniques we propose are, however, applicable
to any scoring function that is monotone in terms of both
the textual relevance and the together preference. The kEP
query finds event-partner pairs (e, u) such that the events
are relevant to the query keywords and the query user is
likely to participate in the events with partners.

f(uq, ψq, e, u) = α · t(ψq, e.ψ) + (1− α) · p(uq, e, u)
s.t. t(ψq, e) ∈ (0, 1] ∧ p(uq, e, u) ∈ (0, 1] (1)

The together preference function p(u∗, e, u) is defined in
Equation 2, and it is motivated by two observations. First,
a user may wish to attend an event that is similar to events
that the user has previously participated in. Second, people
tend to join an event with a partner with whom they share
common interests. In our scenario, the common interests
are captured by the common events that two people have
participated in.

p(u∗, e, u) =

∑
ei∈N(e) s(e, ei) · b(ei, u) · J(Eu∗ , Eu)∑

ei∈N(e) s(e, ei)
(2)

Function p(u∗, e, u) takes three arguments, i.e., a target
user u∗, an event e, and a partner user u. The range of
p(u∗, e, u) is [0, 1]. Large values of p(u∗, e, u) indicate that
target user u∗ is very likely to want to attend event e with
partner user u. In the definition, N(e) is the neighborhood
of an event e, which is the set of events ei whose document
similarity s(e, ei) is no less than a threshold τ . We define
the similarity s(e, ei) as cosine similarity [46]. However,
the proposed method is independent of the choice of the
similarity measure, and any reasonable similarity function
can be adopted. Given a partner user u and an event ei,
b(ei, u) = 1 if u has participated in event ei; otherwise,
b(ei, u) = 0. The common interests between u∗ and u is
defined as the Jaccard similarity coefficient J(Eu∗ , Eu) [47]
of the sets of events Eu∗ and Eu that u∗ and u has attended,
respectively. The denominator is the sum of the similarities
between event e and each event ei in the neighborhood
N(e). The together preference function is not symmetric, i.e.,
p(u∗, e, u) 6= p(u, e, u∗). The together preference function
can be interpreted in three steps. First, an event e is taken as
a candidate event for user u∗. Second, a user u is considered
a candidate partner for u∗ if the two users have common
interests, i.e., J(Eu∗ , Eu) > 0. Third, u should have partici-
pated in events similar to e, i.e., b(ei, u) = 1, where ei is in
N(e).

In an EBSN, some events may occur periodically, e.g.,
weekly or monthly. A user may attend same such event
multiple times. Hence, in the result of a kEP query, events
may exist that have been attended previously by the query

user. We do not exclude such events, since the query user
may be interested in them and may attend them again.

Example 1. Consider the EBSN in Figure 1, where there
are five users U = {u1, u2, · · · , u5} and five events E =
{e1, e2, · · · , e5}. The participation relationship R between users
and events is given by the edges. Table 1 shows the term vectors of
the documents of the events, and Table 2 shows the similarities be-
tween the documents of the events. Given τ = 0.3, the neighbor-
hood of event e3, N(e3), is {e2, e4, e5} because these events have
similarity no less than 0.3 to e3, as shown in Table 4. The together
preference p(u4, e3, u3) = (0.5+0.6) · 0.8/(0.5+0.3+0.6) =
0.63 because u3 has attended events e2 and e5 in neighborhood
N(e3) and the Jaccard similarity coefficient of the sets of events
Eu3 and Eu4 is 0.8–see Table 4.

Example 2. Continuing Example 1, given a kEP query Q with
k = 2, uq = u4, and ψq = {t1, t3}, the textual relevance of
each event w.r.t. the query keywords is shown in Table 3, the
Jaccard similarity coefficient of the sets of events that are attended
by users ui and uj are shown in Table 5, and the neighborhoods
of events are shown in Table 4 (given τ = 0.3). Given query
user u4, for each event e, we choose user ue as a partner if the
together preference p(u4, e, ue) exceeds the together preference
of any other user. Table 4 shows the partner for each event and
the corresponding together preference. Given α = 0.5, the top-2
event-user pairs of query Q are (e2, u3) and (e3, u3) with scores
0.75 and 0.71, respectively.

4 RANK-JOIN BASED FRAMEWORK

We proceed to present the rank-join based framework for
the processing of kEP queries. Section 4.1 presents the main
data structures used in the framework. Section 4.2 explains
the query processing algorithm, and Section 4.3 covers the
two join strategies in the framework.

4.1 Data Structures

The rank-join based framework includes two main data
structures. One is a representation of the event-user graph
G that is stored in main memory. The other is a disk-
resident inverted index II d that indexes the documents of all
events in the EBSN. The inverted index consists of two main
components: (1) a vocabulary of all distinct terms in the
collection of documents and (2) a posting list for each term
t in the vocabulary. Each posting list is a sequence of pairs
(id , w), where id identifies an event e whose document e.ψ
contains term t and w is the weight of term t in document
e.ψ.

4.2 Query Processing Algorithm

Following the idea of the rank-join algorithm [18], the
framework conducts a join operation on the ranked input
events and users. The ranked input events are obtained by
issuing a keyword query using the inverted index II d. The
relevant events are retrieved in descending order of their
textual relevance.

In contrast, there is no straightforward way to obtain
the ranked input users. Following the definition of the
together preference function (Equation 2), the framework
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u1 u2 u3 u4 u5

e1 e2 e3 e4 e5

Fig. 1: Example EBSN

TABLE 1: Term Vectors

Event Term Vector
e1 t2 t3 t4 t9
e2 t1 t3 t7 t8
e3 t1 t3 t5
e4 t2 t3 t6 t9
e5 t1 t3 t4 t5 t6

TABLE 2: Similarities

s(ei, ej) e1 e2 e3 e4 e5
e1 1 0.2 0.2 0.7 0.3
e2 0.2 1 0.5 0.2 0.3
e3 0.2 0.5 1 0.3 0.6
e4 0.7 0.2 0.3 1 0.3
e5 0.3 0.3 0.6 0.3 1

TABLE 3: Textual Relevances

Event t(ψq , e.ψ)
e1 0.4
e2 0.7
e3 0.8
e4 0.3
e5 0.6

TABLE 4: Neighborhoods and Partners

Event N(ei) ue p(u4, e, ue)
e1 e4, e5 u5 0.42
e2 e3, e5 u3 0.8
e3 e2, e4, e5 u3 0.63
e4 e1, e3, e5 u3 0.8
e5 e1, e2, e3, e4 u3 0.64

TABLE 5: Jaccard Similarity Coefficients

J(Eui , Euj ) Eu1 Eu2 Eu3 Eu4 Eu5

Eu1 1 0 0.25 0.2 0
Eu2 0 1 0.25 0.2 0
Eu3 0.25 0.25 1 0.8 0.4
Eu4 0.2 0.2 0.8 1 0.6
Eu5 0 0 0.4 0.6 1

uses a heuristic user scoring predicate, namely the number
of events users have attended. The motivation is that users
who have attended many events are expected to have high
together preferences w.r.t. query user uq and event e. This
heuristic assumes that the attended events are similar to
event e. Therefore, the framework retrieves users based on
two constraints, i.e., (1) the retrieved users should have
attended at least one event in neighborhood N(e), and (2)
the users are retrieved in descending order of the number
of events they have attended. Specifically, the set of users
U(uq, e) that is fed to the join is constructed as follows. For
each retrieved event e, its neighborhood N(e) is computed.
Then, for each event in the neighborhood, its participants
are obtained from the event-user graph. Among the mem-
bers of all the events in neighborhood N(e), a user is added
to U(uq, e) if the user has attended at least one event in Euq .
Next, the users in U(uq, e) are sorted descendingly on the
number of events they have attended.

The query processing algorithm in the framework bor-
rows the idea of the TA (Threshold Algorithm) [48] and
consumes the input events and users to generate candidate
event-user pairs. A threshold T is maintained that is calcu-
lated by setting the textual relevance to that of the upcoming
event and the together preference to 1 in the scoring function
(Equation 1). When the score of the kth largest candidate
pair is no less than T , the algorithm reports the obtained
top-k pairs. It is straightforward to prove that threshold T
serves as an upper bound on the scores of the event-partner
pairs that have not yet been considered, since the events are
retrieved in descending order of the textual relevance and
because the maximum value of the together preference is set
to 1. Algorithm 1 is the pseudo code of the query processing
algorithm. Different join strategies can be adopted for the
join in the algorithm.

Algorithm 1 kEP(uq, ψq, k)

1: PriorityQueue Queue ← ∅
2: Eq ← GetAttendedEvent(uq, G)
3: Threshold T ←∞
4: while e← GetNextEvent(ψq, II d) do
5: T ← α · t(ψq, e) + (1− α) · 1
6: if T ≤ the score of the kth largest pair in Queue then
7: break
8: end if
9: N(e)← ∅

10: for each event ei ∈ E do
11: if s(e, ei) ≥ τ then
12: Add ei to N(e)
13: end if
14: end for
15: U(uq, e) ← {∪{U(ai)|ai ∈ N(e)}}

⋂
{∪{U(bi)|bi ∈

Euq
}} \ {uq}

16: if U(uq, e) is empty then
17: continue
18: end if
19: Sort the users in U(uq, e) in the descending order of

the number of events they have attended.
20: Candidate pairs P ← Join(e, U(uq, e))
21: Calculate the score f(uq, ψq, e, u) of each candidate

pair in P .
22: Add all candidate pairs in P to Queue
23: end while
24: return the k pairs with the highest f() in Queue

4.3 Join Strategies
We consider two state-of-the-art join strategies in the frame-
work, namely nested loop join and ripple join [19]. The
nested loop join consists of a nested loop, where the outer
loop consumes events in descending order of the textual
relevance and the inner loop, executed for each (outer)
event, consumes the users in U(uq, e). When the inner loop
for an event finishes, the partner for the event with the
highest together preference has been identified, and this
event-partner pair is output as a candidate.

In the ripple join, e.g., the “square” version, a previously
unseen tuple (user or event) is retrieved from each of the
two input lists in each step; these new tuples are joined with
all previously seen tuples and with each other. As in the
nested loop join, events are retrieved in descending order
of the textual relevance. Unlike in the nested loop join, the
users to be retrieved are organized in a priority queue sorted
descendingly on the number of events they have attended.
For each upcoming event e, the priority queue is updated
dynamically by adding its user set U(uq, e). The square
version consumes one event and one user at a time. In the
empirical study, we also evaluate the performance of the
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“rectangular” version that consumes different numbers of
events and users at a time.

5 OPTIMIZATIONS

Although the rank-join based framework take advantage of
both the rank-join and the TA algorithm, it is still inefficient
in some cases. For instances, it may take a long time to find
the partner for an event if the number of users considered
in the join process is large. In addition, before returning the
top-k pairs, unnecessarily many candidate pairs may have
been produced, which incurs high computational cost. We
develop three performance optimizations.

5.1 Unpromising-Event Pruning

This optimization reduces the computational cost by prun-
ing events early that can not contribute to top-k pairs. We
derive a worst allowed together preference pw(e) (Defini-
tion 1) for a newly retrieved event, which is a necessary
condition of the event being able to contribute to the top-
k result. This value is a lower bound on the together
preference of the events in the final result. We also derive a
best possible together preference pub(e) (Definition 2) for a
newly retrieved event, which estimates the highest possible
together preference of the event with its partner.

Definition 1. Worst Allowed Together Preference pw(e):
Given a query user uq and query keywords ψq , let fk be the
score of the current kth candidate event-partner pair. The worst
allowed together preference pw(e) of e is defined as pw(e) =
(fk − α · t(ψq, e))/(1− α).

Lemma 1. If ∀u ∈ (U \ {uq})(p(uq, e, u) ≤ pw(e)), event e
cannot belong to the result [20].

Proof. Given event e, if ∀u ∈ (U \{uq})(p(uq, e, u) ≤ pw(e)),
we can derive that if p(uq, e, u) ≤ (fk −α · t(ψq, e))/(1−α)
then α · t(ψq, e) + (1 − α) · p(uq, e, u) ≤ fk, which means
that event e cannot find a partner with a better score than
fk. Since fk is the score of the current kth candidate event-
partner pair, event e cannot belong to the result.

Definition 2. Best Possible Together Preference pub(e):
Let N(e) be the neighborhood of e, and define m =
maxu∈(U\{uq}){|Ec| | Ec = N(e) ∩ Eu} and r =
maxu∈(U\{uq}){|Ec| | Ec = Euq ∩ Eu}, where Eu is the set
of events that user u has attended. The best possible together
preference pub(e) of e is given as follows.

pub(e) =

∑
ei∈TopM (uq,e)

s(e, ei)∑
ei∈N(e) s(e, ei)

· r

|Euq
|
, (3)

where |TopM (uq, e)| = m, TopM (uq, e) ⊆ N(e), and
∀ei ∈ TopM (uq, e) ∀ej ∈ (N(e) \ TopM (uq, e)) (s(e, ei) ≥
s(e, ej)).

Lemma 2. The best possible together preference pub(e) of e is an
upper bound on the together preference of e with its partner.

Proof. According to Equation 2, the numerator of the to-
gether preference sums up the similarities between the
events ei that user u has attended in neighborhood N(e).
This can be rewritten as follows:

∑
ei∈N(e)∩Eu

s(e, ei). Set

TopM (uq, e) contains the top-m similar events in neigh-
borhood N(e). Since m = maxu∈(U\{uq}){|Ec| | Ec =
N(e) ∩ Eu} is the maximum number of events attended
by a user in N(e) and ∀u ∈ (U \ {uq})(|TopM (uq, e)| ≥
|N(e) ∩ Eu|), we can derive that ∀u ∈ (U \
{uq})(

∑
ei∈N(e)∩Eu

s(e, ei) ≤
∑

ei∈TopM (uq,e)
s(e, ei)).

Since r = maxu∈(U\{uq}){|Ec| | Ec = Euq ∩Eu} is the max-
imum number of events attended by both uq and another
user, we have ∀u ∈ (U \ {uq})(r/|Euq | ≥ J(Euq , Eu)).
The denominators of pub(e) and the together preference
are the same. This proves that ∀u ∈ (U \ {uq})(pub(e) ≥
p(uq, e, u)).

Example 3. Given query user u4, we compute the best pos-
sible together preference of event e3. Neighborhood N(e3) =
{e2, e4, e5}, m = 2, and r = 4. Then we have TopM (u4, e3) =
{e2, e5} and r/|Eu4

| = 4/5 = 0.8. The best possible together
preference is calculated as pub(e3) = 0.8 · (0.5 + 0.6)/(0.5 +
0.3 + 0.6) = 0.63.

Lemmas 1 and 2 present the properties of pw(e) and
pub(e), respectively. Using these lemmas, Pruning Rule 1
is able to prune events that cannot contribute to pairs in the
top-k result, thus enabling reduction of the computational
cost.

Pruning Rule 1. Given query user uq and query keywords ψq ,
for event e, if pw(e) > pub(e), event e cannot contribute to a
result pair and can be pruned.

5.2 Partner Computation based on EML

The operation of finding a partner for an event is expen-
sive. In particular, the cost is high when user set U(uq, e)
considered in the join is large. The following optimization
provides a way of finding the partner for an event without
examining each user in set U(uq, e). The optimization uses
an Event-Member List (EML) for each event that consists of
pairs (u,num) sorted descendingly on num , the number of
events attended by user u.

Table 6 shows the event-member lists of the five events
in Figure 1. For instance, event e4 has members u4 and u5
that have attended 5 and 3 events, respectively..

TABLE 6: Event-Member Lists

Event Member List
e1 (u4, 5), (u3, 4), (u5, 3)
e2 (u4, 5), (u3, 4), (u5, 3)
e3 (u4, 5), (u3, 4), (u2, 1)
e4 (u4, 5), (u5, 3)
e5 (u4, 5), (u3, 4), (u1, 1)

Algorithm 2 shows the pseudo code of the efficient
partner computation. It takes a query user uq , an event
e, and a neighborhood N(e) as arguments, and it re-
turns the partner u who maximizes the together preference
p(uq, e, u). Given neighborhood N(e), the member lists of
the events in the neighborhood are fetched (line 4). Func-
tion GetNextPair() chooses the pair (u,num), u 6= uq
with the largest num from the first elements of all fetched
member lists. If multiple pairs have the same largest num ,
the pair from the member list of event ei with the largest
similarity s(e, ei) is selected (line 6). The together preference



7

p(uq, e, u) is computed, and pair (u,num) is removed from
each member list that contains it. If p(uq, e, u) exceeds the
together preference p1 of the current candidate partner up,
user u is taken as the candidate partner (lines 7–10). Then
function GetNextPair() is called again to obtain the next
pair (u,num) that is used to compute an upper bound
pr (Lemma 3) on the together preferences of the rest of
the users in the fetched member lists (lines 12–14). If the
together preference p1 of the current candidate partner up
is no less than pr, user up is the partner who maximizes
p(uq, e, u) and is returned (Pruning Rule 2). Otherwise, the
algorithm repeats the above process.

Algorithm 2 ComputePartner(N(e), uq, e)

1: p1 ← −1
2: pr ← +∞
3: up ← null
4: Fetch the member list ml(ei) of each event in N(e)
5: while p1 < pr do . Pruning Rule 2
6: (u,num)← GetNextPair()
7: if p1 < p(uq, e, u) then
8: p1 ← p(uq, e, u)
9: up ← u

10: end if
11: Remove (u,num) from the member list
12: (u,num)← GetNextPair()
13: x← min{num, |N(uq, e)|}
14: Compute pr according to Lemma 3
15: end while
16: return up

Lemma 3. Given a query user uq and an event e, let (u,num)
be the pair returned by function GetNextPair() and define
x = min{num, |N(e)|}. Then set TopX (uq, e) contains the
top-x events {ei} in neighborhood N(e) with the largest simi-
larity s(e, ei). An upper bound on the together preference of the
users in the member lists of the events in N(e) is

pr =

∑
ei∈TopX (uq,e)

s(e, ei)∑
ei∈N(e) s(e, ei)

· r

|Euq |
, (4)

where r is defined in Definition 2.

Proof. Recall that (i) the pairs (u,num) in the member
list are sorted descendingly on num and that (ii) function
GetNextPair() returns the pair with the largest num from
the first elements in all member lists of the events in N(e).
This means that no user in the member lists of the events in
N(e) can have attended more events than the returned num .
Since x = min{num, |N(e)|}, no user in the member lists of
the events in N(e) has attended more than x events in N(e).
Given that set TopX (uq, e) contains the top-x events {ei} in
neighborhood N(e) with the largest similarity s(e, ei) and
∀u ∈ (U \ {uq})(r/|Euq

| ≥ J(Euq
, Eu)) which has been

proved in Lemma 2, then, for any user ui in the member
lists of the events in N(e), we have pr ≥ p(uq, e, ui).

Pruning Rule 2. In Algorithm 2, let p1 be the together preference
of the current candidate partner up. If p1 ≥ pr , user up is
returned as the partner of event e, and no other user in the fetched
member lists can be the partner and can be pruned.

Example 4. Given query user u4 and event e2, according to Ta-
ble 4, neighborhood N(u4, e2) = {e3, e5}. According to Table 6,
the pair returned by function GetNextPair() is (u3, 4). The
together preference p(u4, e2, u3) = 0.8 ·(0.5+0.6)/(0.5+0.3+
0.6) = 0.63. Pair (u3, 4) is removed from the member list of each
event in N(u4, e2). User u3 is taken as the candidate partner.
Next, GetNextPair() returns (u2, 1). We have x = 1 and
pr = (0.5/(0.5 + 0.3)) · 0.2 = 0.13. Since p(u4, e2, u3) ≥ pr ,
no other user can have higher together preference than does user
u3. Finally, user u3 is returned as the partner for u4 at e2.

5.3 Partner Computation based on SEUG

According to the definition of the kEP query, the partner of
an event is the user who maximizes the together preference
(Equation 2). A candidate partner may have a high together
preference if (i) the number of events in N(e) that both the
query user and the candidate partner attended is large and
if (ii) the query user and the candidate partner share many
historical events. The partner computation based on the
EML proposed in Section 5.2 uses the number of events the
users have attended as the scoring predicate, which relates
only item (i) above. The algorithm for partner computation
presented here uses a Shared-Event User Graph (SEUG)
that related to item (ii) above. We will eventually provide a
method that combines EML and SEUG, resulting in a more
efficient algorithm.

An SEUG Gu is an undirected, weighted graph. The
vertices in Gu are the users in the EBSN. An edge (ui, uj)
is present if users ui and uj have co-attended at least one
event, i.e., Eui

∩ Euj
6= ∅. The weight of edge (ui, uj) is

the number of events ui and uj have co-attended. Graph
Gu is stored as adjacency lists. For each user, the edges in
its adjacency list are ordered descendingly on their weights.
The adjacency list of a user is called the user’s partner list.
Given a user u, only the users in their partner lists can be the
partner of u for any event. This is because the users who are
not in the partner list of u have not co-attended any event
with u, so the together preferences of these users and u for
any event is 0.

Example 5. Figure 2 shows the SEUG Gu for the five users in
Figure 1. Table 7 shows the adjacency lists of graph Gu. The users
in the partner lists are ordered descendingly on the number of
shared events.

4u

2u

5u

3u

1u 1

1

1

1

4

2

3

Fig. 2: Shared-Event User Graph

We extend Algorithm 2 to compute partners using the
SEUG instead of the EML. Given a kEP query, the algorithm
fetches the partner list of the query user. For event e, the



8

TABLE 7: Adjacency Lists of SEUG

User Partner List
u1 (u3, 1), (u4, 1)
u2 (u3, 1), (u4, 1)
u3 (u4, 4), (u1, 1), (u2, 1)
u4 (u3, 4), (u5, 3), (u1, 1), (u2, 1)
u5 (u4, 3), (u3, 2)

users in the partner list are paired sequentially with e, the
together preference is computed, and the event-partner pair
having the highest together preference at the moment is
maintained as the candidate pair. In addition, an upper
bound p∗r (Lemma 4) on the together preference of the
remaining users in the partner list is derived. If the together
preference of the current candidate pair is no less than p∗r ,
the candidate pair is returned (Pruning Rule 3). Otherwise,
the algorithm continues to pair the next user with e until
Pruning Rule 3 is satisfied.

Lemma 4. Given a query user uq and an event e, let (u,num)
be the next entry from the partner list of uq , and define x =
min{num, |N(e)|}. Then set TopX (uq, e) contains the x events
{ei} in neighborhood N(e) with the largest similarity s(e, ei).
An upper bound on the together preference of the users in the
partner list of uq is

p∗r =

∑
ei∈TopX (uq,e)

s(e, ei)∑
ei∈N(e) s(e, ei)

· num
|Euq
|
. (5)

Proof. Since the users in the partner list of uq are ordered
descendingly on their shared events, num is an upper
bound on the number of shared events between uq and
the users after u. Then, for each user ui after u in the
partner list, we have num/|Euq

| ≥ J(Euq
, Eui

). Following
Lemma 3, no user in the partner list has attended more
than x events in N(e), so set TopX (uq, e) contains the x
events {ei} in neighborhoodN(e) with the largest similarity
s(e, ei). Then, for each user ui after u in the partner list, we
have p∗r ≥ p(uq, e, ui).

Pruning Rule 3. In the extended Algorithm 2, let p1 be the
together preference of the current candidate partner up. If p1 ≥
p∗r , user up is returned as the partner of event e, and no other user
in the fetched member lists can be the partner and can be pruned.

Example 6. Given query user u4 and event e2, according to Ta-
ble 4, neighborhood N(u4, e2) = {e3, e5}. According to Table 7,
(u3, 4) is first fetched from the partner list of u4. The together
preference p(u4, e2, u3) = ((0.3 + 0.5)/(0.3 + 0.5)) · (4/5) =
0.8. User u3 is taken as the candidate partner. Next, (u5, 3) is
fetched. We have num = 3 and p∗r = ((0.3+0.5)/(0.3+0.5)) ·
(3/5) = 0.6. Since p(u4, e2, u3) > p∗r , no other user can have
higher together preference than does user u3. Finally, user u3 is
returned as the partner for u4 at e2.

EML + SEUG. When using the EML, the users are retrieved
in descending order of the number n1 of events they have
attended. When using the SEUG, the users are retrieved in
descending order of the number n2 of shared events with
the query user. We combine these two orders by retrieving
users in descending order of n1 ·n2. This scoring predicate is
relevant to both the two elements in the together preference

and may result in more efficient computation. The empirical
study confirms this intuition.
Unpromising-Event Pruning + SEUG. In Section 5.1, an
event is pruned if pw(e) > pub(e). When using the SEUG,
the variable num in Lemma 4 can be used to replace the
variable r in pub(e) (Definition 2), so that the new pub(e) is
a tighter upper bound on the together preference, which can
help pruning more events.

6 EMPIRICAL STUDY

6.1 Data and Queries
We have crawled a data set from Meetup3 that contains
224,238 events and 7,822,965 users. The average number of
members per event is 116. We have also downloaded the
text descriptions (documents) of the events. The number of
unique terms in the document collection is 519,885, and the
average number of tokens per document is 72.

The proposed model (Equation 1) is evaluated in a sim-
ulated event-partner retrieval scenario. Subsets of the data
are extracted, based on which a ground truth is constructed.
We compute the top-k event-partner pairs for a target user
and validate the result using the ground truth. Specifically,
following the idea of time series cross-validation, we sort
the events in the data in chronological order and extract 4
subsets, namely the bottom 40%, 30%, 20%, and 10% of the
data, as validation sets.

For each validation set, we generate 5 query sets, in
which the number of keywords is 1, 2, 3, 4, and 5, respec-
tively. Each query set comprises 100 queries. Specifically, to
generate a query, we randomly pick a user uq as the query
user, and we randomly choose words from the document
of a randomly selected event e attended by uq as the query
keywords. We ensure that no query has an empty result. The
selected pairs (uq, e) are also used to construct the ground-
truth of the event-partner retrieval as follows. For each pair
(uq, e), if uq and another user u have attended e in the
validation set, they are considered as partners of each other
w.r.t. event e, denoted as (uq, e, u). This way, we obtain the
ground-truth set Y = {(uq, e, u)}.

6.2 Setup
All algorithms were implemented in Java, and a machine
with an Intel(R) Xeon(R) CPU E5-2630 v2@2.60GHz and
128 GB main memory was used for the experiments. The
document inverted index is implemented by Lucene4 and is
disk resident. The text relevance of the events is measured
by Okapi BM25 [49]. The user-event graph G is represented
by adjacency lists and is stored in main memory. Since the
structure of the member lists of the events is similar to
the adjacency lists of the user-event graph, we extend the
adjacency lists of the event nodes inG to include the number
of events attended by each user, so that the member list of
any event can be obtained from the user-event graph.

Following an existing study [14], we use Accuracy@n to
evaluate the event-partner retrieval model. For each positive
triple (uq, e, u) in the ground-truth set Y , we fix (uq, e) and
randomly select 500 users from U − Ue to replace u and

3. http://www.meetup.com
4. https://lucene.apache.org
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form a set of negative triples. Similarly, we fix (uq, u) and
randomly select 500 events from E − (Euq

∩ Eu) to replace
e and form another set of negative triples. Then, a score
is calculated for each triple in Y and the 1,000 negative
triples using the event-partner retrieval model (Equation 1).
By ranking the positive and negative triples in descending
order of their scores, if the rank of a positive triple is not
larger than n, we have a hit. Otherwise, we have a miss.
Accuracy@n is defined as follows.

Accuracy@n =
#hit@n

|Y|
, (6)

where #hit@n is the total number of hits.
In the experiments, we compare with a previous pro-

posal [20]. In that proposal, together preferences are com-
puted using an existing method [13], while we propose a
new way of computing together preferences (cf. Equation 2).
In the following experiments, the previous method is de-
noted by kEP, and the method proposed in this paper is
denoted by kEP*. We compare these two methods when
varying different parameters. Table 8 shows the parameters
and values used in the experiments, where the values in
bold are default values.

TABLE 8: Parameter Settings

Parameter Values
Percentage of validation sets 10%, 20%, 30%, 40%
Number of requested event-partner pairs k 1, 5, 10, 15, 20
Number of query keywords 1, 2, 3, 4, 5
Event similarity threshold τ 0.1, 0.15, 0.2
Parameter α in Equation 1 0.1, 0.2, 0.3, 0.5, 0.7, 0.9

6.3 Event-Partner Retrieval Model Evaluation
6.3.1 Varying α
In the scoring function (Equation 1), parameter α is used
to specify the relative importance of the text relevance
of a retrieved event w.r.t. the query keywords versus the
probability of the query user and a partner joining an
event together. A small α favors the together preference,
while a large α favors the text relevance. For the retrieved
event-partner pairs of a query, we use Accuracy@10 to
evaluate the willingness of a query user to join an event
with a partner, and to compute the average text relevance
of the retrieved events. Table 9 shows the results of kEP
and kEP* when varying α. The last column in Table 9
is the average text relevance of the retrieved events and
the corresponding rank of kEP*. Taking 11.51 (top-36) as
an example, if ranking all the events according to their
text relevance w.r.t. the query keywords, the value of text
relevance 11.51 is at the top-36 position. As α increases, for
both methods, the Accuracy@10 decrease while the average
text relevance of the retrieved events increases, which is
expected. This occurs because when the event-partner pairs
are ranked more based on the together preferences, the
ranks of the triples with large together preference but small
text relevance may be below top-10. On the other hand, if the
event-partner pairs are ranked more based on text relevance,
the ranks of the triples with small together preference but
large text relevance may be below top-10. For most values
of α, kEP* outperforms kEP by roughly 50%. The kEP*

query aims to retrieve event-partner pairs such that the
query user is willing to join the events with the partners
and the events are relevant to the query keywords. Based
on this intuition, α = 0.2 achieves a good Accuracy@10
and average text relevance. We thus use this value in the
remaining experiments.

TABLE 9: Accuracy@10 When Varying α

α kEP kEP* Average textual relevance
0.1 0.398 0.778 10.79 (top-59)
0.2 0.379 0.717 11.51 (top-36)
0.3 0.360 0.656 12.37 (top-21)
0.5 0.322 0.534 14.27 (top-8)
0.7 0.285 0.412 15.72 (top-4)
0.9 0.247 0.290 16.20 (top-4)

6.3.2 Varying the Percentage of Validation Sets

We extract 4 subsets of the data as validation sets. Table 10
shows the Accuracy@10 of kEP and kEP* when varying
the percentage of validation sets. As expected, the smaller
the validation set, the higher the Accuracy@10 . This is
because having more historical information helps determine
the relationships among users and events. Further, kEP* also
beats kEP in this experiment.

TABLE 10: Varying the Percentage of Validation Sets

Percentage kEP (Accuracy@10 ) kEP* (Accuracy@10 )
40% 0.342 0.669
30% 0.358 0.696
20% 0.364 0.696
10% 0.379 0.717

6.3.3 Varying k

Table 11 shows the Accuracy@k of kEP and kEP* when
varying k. As k increases, the Accuracy@k also increases.
The reason is that a positive triple has better chance to be
ranked within the top-k for large k than for small k. In
this experiment, kEP* outperforms kEP significantly for all
values of k.

TABLE 11: Varying k

k kEP (Accuracy@k ) kEP* (Accuracy@k )
1 0.176 0.338
5 0.337 0.629
10 0.379 0.717
15 0.396 0.749
20 0.401 0.768

6.3.4 Varying the number of query keywords

Table 12 shows the Accuracy@10 of kEP and kEP* when
varying the number of query keywords. As the number
of keywords increases, the Accuracy@10 increases slightly.
Few number of keywords (e.g., 1 or 2) get more events
involved into the computation than many number of key-
words (e.g., 4 or 5). The chance of a positive triple to
be ranked within the top-k is worse for few number of
keywords. Again, kEP* outperforms kEP significantly.
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TABLE 12: Accuracy@10 When Varying |ψq|

|ψq | kEP kEP* Average textual relevance
1 0.355 0.694 9.90 (>top-100)
2 0.374 0.712 10.93 (top-55)
3 0.379 0.717 11.51 (top-36)
4 0.381 0.719 12.08 (top-25)
5 0.381 0.719 12.49 (top-19)

6.3.5 Varying document similarity threshold τ

The document similarity is measured using cosine similar-
ity. The maximum cosine similarity in the data set is roughly
0.2. Hence, we vary τ in the range (0, 0.2]. Table 13 shows the
Accuracy@10 of kEP and kEP* for various value of τ . The
Accuracy@10 increases as τ increases. When computing
the together preference for triple (uq, e, u), a small τ gets
some events with low similarity to e involved. Then, the
probability of uq attending the retrieved event-partner pairs
is lower. In this experiment, kEP* outperforms kEP by
roughly 50%.

TABLE 13: Varying Document Similarity Threshold

τ kEP (Accuracy@10 ) kEP* (Accuracy@10 )
0.1 0.379 0.717
0.15 0.385 0.725
0.2 0.408 0.792

6.3.6 ROC-Curve based Evaluation

In order to evaluate the proposed method using the ROC
curve, we convert the kEP problem into a binary classifica-
tion problem. Using Accuracy@k as defined in Equation 6
mentioned in Section 6.2, we construct 100 testing samples.
Each sample consists of 1 positive triple and 1000 negative
triples. Let r be the average rank of the positive triple in one
sample. If r ≤ k, the label of this sample is “1”. Otherwise,
the label of this sample is “0”. The Accuracy@k of each
sample is the classification probability. Figure 3 shows the
ROC curves of kEP∗ and kEP when k = 10 and k = 15. The
areas under the ROC curves of kEP∗ are larger than those of
kEP.
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Fig. 3: ROC Curves

6.4 Efficiency Evaluation

We proceed to cover a study of the performance of the
proposed framework and its three optimizations.

6.4.1 Methods Compared and Parameter Default Values

In the experiments, F-NLJ denotes the framework adopting
the nested loop join without optimizations. Further, we let
F-NLJ1, F-NLJ2, and F-NLJ3 denote the approach with the
optimization technique proposed in Section 5.1, Section 5.2,
and Section 5.3, respectively. Next, we let F-NLJ∗ denote
the framework adopting the nested loop join with all three
optimizations. Similarly, we use F-RJ, F-RJ1, F-RJ2, F-RJ3,
and F-RJ∗ to represent the approaches using the ripple join
strategy.

We study the efficiency of the proposed algorithms when
varying a single parameter and keeping the remaining
parameters at default values that are given as follows: the
number k of requested event-partner pairs is 10; the number
of query keywords is 3; parameter α in the scoring function
(Equation 1) is set to 0.2. Some queries take a long time to
compute using the framework without optimizations. If the
processing of any query exceeds 20 seconds, we stop the
processing.

In each experiment, for each algorithm, we report the
average runtime, the average number of computed events
per query, the average number of pruned events, and the
average number of computed users per query.

6.4.2 Computational Complexity

In the kEP problem, the number of users is |U |, and the
number of events is |E|. The complexity of the kEP problem
is O(|U | · |E|), which means that in the computation, |E|
events are involved and that for each event, |U | users are
considered.

The proposed algorithm reduces the computational cost
mainly with respect to the following two aspects:

• Two techniques are included in the algorithm that
aim to reduce the number of events |E| that need
to be considered in computations, i.e., threshold T
in Algorithm 1 and the unpromising-event pruning
covered in Section 5.1.

• Two techniques are included in the algorithm to
reduce the number of users |U | that need to be
considered in computations, i.e., the partner compu-
tation based on the EML covered in Section 5.2 and
the partner computation based on the SEUG covered
in Section 5.3.

The number of events that need to be considered de-
pends on the distribution of the textual relevance of the
events, t(ψq, e), the distribution of the document similarity
between events, s(e, ei), and the distribution of the number
of events attended by both the query user and by other
users. The number of users that need to be considered
depends on the distribution of the document similarity
between events, s(e, ei), the distribution of the number of
events attended by both the query user and by other users,
and the distribution of the number of events attended by
users.

Algorithm A0 [50] is a general framework for returning
the top-k answers for a monotone query by aggregating sev-
eral sorted lists. Fagin derives the cost of algorithmA0 to be
O(N (m−1)/mk1/m), where m is the number of aggregated
sorted lists and k is the number of requested results. In the
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proposed algorithm, given N = max{|U |, |E|}, m = 2, and
k = 1, the cost is O(N

1
2 ).

In real datasets, on average, many events have low
textual relevance to query keywords, many event pairs
have low document similarity, and many users attend few
events (compared to |E|). Hence, the proposed algorithm
on average is able to disregard large numbers of events
and users in computations. To quantify the performance
improvements, Table 14 compares the complexity of the kEP
problem and the proposed algorithms F-NLJ∗ and F-RJ∗

in terms of the number of events and users considered in
computations on the real dataset used in the experiments.
We report the fractions of events and users considered by
the algorithm for different values of parameters α, k, and
the number of keywords. Each row shows the fractions
when one parameter has been changed while the other two
parameters take the default values shown in Table 8. Both
F-NLJ∗ and F-RJ∗ consider six orders of magnitude fewer
pairs that the worst case.

TABLE 14: Complexity Comparision

Parameters F-NLJ∗ F-RJ∗
α = 0.1 4.71‰|E| · 2.11‰|U | 4.74‰|E| · 2.04‰|U |
α = 0.5 2.52‰|E| · 0.43‰|U | 2.61‰|E| · 0.49‰|U |
α = 0.9 1.83‰|E| · 0.07‰|U | 2‰|E| · 0.16‰|U |
k = 1 2.18‰|E| · 0.3‰|U | 2.35‰|E| · 0.29‰|U |
k = 10 3.6‰|E| · 1.32‰|U | 3.66‰|E| · 1.32‰|U |
k = 20 4.05‰|E| · 1.89‰|U | 4.11‰|E| · 1.89‰|U |

#keywords = 1 1.51‰|E| · 0.91‰|U | 1.54‰|E| · 0.86‰|U |
#keywords = 3 3.6‰|E| · 1.32‰|U | 3.66‰|E| · 1.32‰|U |
#keywords = 5 5.05‰|E| · 1.38‰|U | 5.1‰|E| · 1.37‰|U |

6.4.3 Tuning the Number of Fetched Events and Users in
the Ripple Join
This experiment studies the effect of the numbers of fetched
events and users at a time in the ripple join on performance.
We thus vary the numbers of fetched events and users from
1 to 100. Figure 4 shows that the performance is insensitive
to the number of fetched events and users. Thus, in the
following experiments, the numbers of fetched events and
users in the ripple join are both set to 1.

6.4.4 Evaluation of Optimizations
Figures 5 and 6 show the performance of the proposed op-
timizations when using the nested loop join and the ripple
join, respectively. F-NLJ1 and F-RJ1 adopt the unpromising-
event pruning proposed in Section 5.1. Figures 5(c) and 6(c)
show that this optimization technique reduces the number
of events computed during the processing of the kEP query.
F-NLJ2 and F-RJ2 find partners for events using the EML
(introduced in Section 5.2). F-NLJ3 and F-RJ3 compute part-
ners for events using the SEUG (presented in Section 5.3).
These two optimization techniques both aim for efficient
partner computation. Figures 5(d) and 6(d) show that these
two optimizations reduce the number of users computed for
each query on average. F-NLJ∗ and F-RJ∗ are the algorithms
that combine all three optimization techniques. As shown
in Figures 5 and 6, F-NLJ∗ and F-RJ∗ significantly outper-
form F-NLJ and F-RJ that are the algorithms without any
optimization. Overall, the proposed optimizations speed up
the processing of the kEP query. The performance of the
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Fig. 4: Varying the Number of Fetched Users in Ripple Join

algorithms using the ripple join is better than that using
the nested loop join. The reason is that the ripple join
is designed to avoid complete data scans and has been
shown more efficiently than the nested loop join [19]. In
the remaining experiments, we only consider F-NLJ, F-NLJ∗,
and F-RJ∗.
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Fig. 5: Performance of Optimizations Using Nested Loop
Join

6.4.5 Varying the Number k of Requested Event-Partner
Pairs
Figure 7 shows the performance of the evaluated algo-
rithms when varying k. The average runtime of the three
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Fig. 6: Performance of Optimizations Using Ripple Join

approaches increases slightly as k increases, since more
relevant events are retrieved and more users are involved.
The unpromising event pruning optimization prunes many
events, as shown in Figure 7(c). The efficient partner compu-
tation optimizations reduce the number of retrieved users
per query, as shown in Figure 7(d). F-NLJ retrieves more
events than do F-NLJ* and F-RJ* (Figure 7(b)). This is
because F-NLJ* and F-RJ* have tighter upper bounds on the
together preferences. Thus, the framework with optimiza-
tions outperforms F-NLJ significantly in terms of runtime.
F-RJ* has slightly fewer pruned events than does F-NLJ*,
but it has slightly fewer retrieved users per event than does
F-NLJ*. Thus, the runtimes of F-RJ* and F-NLJ* are similar.

6.4.6 Varying the Number of Query Keywords
Figure 8 shows the performance of the evaluated algorithms
when varying the number of query keywords. It can be
seen that also here, the unpromising event pruning and
efficient partner computation optimizations are effective, cf.
Figures 8(c) and 8(d). The runtime shows an increasing trend
as the number of query keywords increases. This is because
more query keywords results in more events being involved
in the computation. Overall, F-NLJ* and F-RJ* outperform
F-NLJ significantly in terms of runtime.

6.4.7 Varying α
Figure 9 reports on the findings when varying α that con-
trols the weight of the textual relevance in the scoring func-
tion. The three approaches perform slightly better (shorter
runtime, fewer retrieved events and users) as α increases.
The reason is that a large α gives high weight to the
textual relevance, so that the ranking of the event-partner
pairs is affected more by the textual relevance of the events
than by the together preferences. Since events are retrieved
in descending order of the textual relevance in the three
approaches, the top-k event-partner pairs are determined
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Fig. 8: Varying the Number of Keywords

faster when α is large. Consistent with the previous results,
this experiment shows that the proposed optimizations are
effective, i.e, many unpromising events are pruned, and the
number of retrieved users per query is reduced.

6.4.8 Summary
Overall, for a broad range of parameter settings, the pro-
posed optimizations improve the performance of the frame-
work substantially. Unpromising events are pruned. The
numbers of users needed for finding partners for events are
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reduced. In most cases, the ripple join and the nested loop
join perform similarly.

7 CONCLUSION

This paper defines and enables efficient computation of the
top-k event-partner (kEP) pair retrieval query that accom-
modates both event-partner recommendation and keyword-
based search. Given a query user, keywords, and a number
k, the query retrieves event-partner pairs from a bipartite
event-user graph, where events have text descriptions, tak-
ing into account both the textual relevance of events to
the query keywords and so-called together preferences that
capture how much the query user prefers to attend an event
with a particular partner. A rank-join based framework is
proposed for computing this query. To improve efficiency,
the framework comes with three optimizations. The paper’s
empirical study offers insight into the proposed techniques,
indicating that they are effective and that the framework is
practical.

The paper’s study opens to a number of promising direc-
tions for future studies. First, it is of interest to understand
how kEP queries can be best processed when the query
user’s current location is taken into account. Second, how
to measure together preferences is an interesting problem.
This paper considers the relationship between one partner
and the query user. It is also of interest to investigate the
effect of collectiveness [51] when a query user belongs to a
group of partners.
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