
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Generative and Contrastive Self-Supervised
Learning for Graph Anomaly Detection

Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T. Phan, Yi-Ping Phoebe Chen

Abstract—Anomaly detection from graph data has drawn much attention due to its practical significance in many critical applications
including cybersecurity, finance, and social networks. Existing data mining and machine learning methods are either shallow methods
that could not effectively capture the complex interdependency of graph data or graph autoencoder methods that could not fully exploit
the contextual information as supervision signals for effective anomaly detection. To overcome these challenges, in this paper, we
propose a novel method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD). Our method constructs different contextual
subgraphs (views) based on a target node and employs two modules, generative attribute regression and multi-view contrastive
learning for anomaly detection. While the generative attribute regression module allows us to capture the anomalies in the attribute
space, the multi-view contrastive learning module can exploit richer structure information from multiple subgraphs, thus abling to
capture the anomalies in the structure space, mixing of structure, and attribute information. We conduct extensive experiments on six
benchmark datasets and the results demonstrate that our method outperforms state-of-the-art methods by a large margin.

Index Terms—Anomaly detection, self-supervised learning, graph neural networks (GNNs), unsupervised learning.

F

1 INTRODUCTION

R ECENT years have witnessed increasing domains that
continuously generate complex, interdependent, and

connected data, represented in the form of graphs or net-
works. Typical examples include social networks, biological
networks, traffic networks, and financial transaction net-
works, to name a few. Data mining and analysis from these
graph-structured data have drawn much attention, partic-
ularly for the task of graph anomaly detection, where the
goal is to identify patterns (e.g., nodes, edges, subgraphs)
which differ significantly from the majority patterns in the
graphs. For instance, in the financial transaction network,
it is critically important to identify the abnormal edges
(fraudulent transactions) between two accounts [1]. In a
social network, it is also crucial to detect the abnormal
nodes (social bots) as they may spread rumours over social
networks [2].

Detecting graph anomalies however is a challenging task
because many graphs contain complex linkage (structure)
information as well as node attribute information. As a
result, anomalies can be hidden in the structure space,
attribute space, and the mix of both. Furthermore, in many
cases, the ground truths of the anomalies are unknown,
rendering many supervised classification approaches not
applicable. These two challenges have motivated increasing
efforts for efficient anomaly detection in recent years, rang-
ing from shallow methods to deep representation methods
for anomaly detection, in a purely unsupervised manner.

• Y. Zheng, L. Chi, K. T. Phan, and Y-P. P. Chen are with Department
of Computer Science and Information Technology, La Trobe University,
Melbourne Australia
E-mail: Yu.Zheng@latrobe.edu.au, l.chi@latrobe.edu.au,
K.Phan@latrobe.edu.au, phoebe.chen@latrobe.edu.au

• M. Jin and Y. Liu are with the Department of Data Science and AI, Faculty
of IT, Monash University, Clayton, VIC 3800, Australia
E-mail: ming.jin@monash.edu; yixin.liu@monash.edu;

• Corresponding Authors: Ming Jin and Lianhua Chi.

The shallow methods mainly focus on defining anomaly
quantify measures for graphs and developing methods to
capture the anomaly based on these measures. Perozzi
and Akoglu [3] propose a normality measure to evaluate
neighbourhoods both internally and externally by consid-
ering both attributes and graph structure, where Anomaly
Mining of Entity Neighborhoods (AMEN) is proposed to
optimise the measure to get the anomaly score. Noticing
that the residual of regression plays an important role for
qualifying the anomaly score, Li et al. [4] propose a Radar
framework that learns a linear regression function to fit the
node attributes regularized by the network structure. The
residual from the regression function is used as a score
to measure the anomaly. Similarly, Peng et al. [5] propose
a joint modelling approach to conduct attribute selection
and anomaly detection using the residual. While being
simple, these shallows are not able to model (or capture)
the complex interdependent relations of graphs.

Deep learning-based approaches have shown impres-
sive progress in many domains, including image, text, and
graphs. For the task of graph anomaly detection, autoen-
coder becomes a popular choice as it is a purely unsuper-
vised framework and fits settings where no ground-truth
label is available. Specifically, Dominant [6] employs a graph
convolution network (GCN) to encode both structure and
node content into a latent embedding, based on which both
attribute and structure reconstruction decoders are used.
The anomaly score is calculated by the weighted sum of the
reconstruction errors of attribute and structure. SpaceAE [7]
employs a spectral autoencoder with a density estimation
model for anomaly detection. AEGIS [8] further generalises
the graph autoencoder to the inductive setting where un-
seen anomalies may exist.

However, existing graph autoencoder based methods do
not fully exploit the contextual information (e.g., neighbour-
ing nodes or subgraphs) which is critically important for

ar
X

iv
:2

10
8.

09
89

6v
2

 [
cs

.L
G

]
 2

3
Ja

n
20

22

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Reg.

Reg.

(+)

(-)

Full Graph Subgraph
Sampling

Contrastive
Learning

Attribute
Regression

Anomaly
Scoring

Fig. 1. The workflow chart of SL-GAD on self-supervised graph anomaly
detection. The abnormality of a node is estimated on twofold perspec-
tives, namely generative and contrastive graph anomaly scoring.

anomaly detection. These autoencoder approaches typically
aim to reconstruct the whole graph structure or attributes
for every single node. As anomaly detection aims to “iden-
tify patterns in data that do not conform to expected be-
haviour” [9], it is natural to define the expected behaviour
based the contextual information, which is largely ignored
in existing methods. Furthermore, these algorithms do not
fully exploit the available information as supervision sig-
nals to learn their models. The learning objective in these
methods is mostly focused on the node level (e.g., learning
node-level embedding directly from graph autoencoder).
The subgraph information of a target node can provide more
supervision signals and that are also not well exploited for
graph anomaly detection.

Based on these observations, in this paper, we present
a novel self-supervised algorithm, SL-GAD, for graph
anomaly detection. Our theme is to construct different sur-
rounding contexts (subgraphs) of a target node and employ
self-supervised learning strategies to make comparison and
obtain the anomaly score for each node. Specifically, we
first sample different views (local subgraphs) centralised on
each target node as the contextual information. These views
are then fed into a graph neural network (GNN) encoder
to learn the latent representation of each node. After this,
we employ two modules, namely generative attribute recon-
struction and multi-view contrastive learning, to fully exploit
the available information in a self-supervised manner. By
reconstructing node attributes with a GNN decoder, the
generative attribute reconstruction module is able to capture
anomalies in the attribute space. By directly comparing a
target node with its surrounding contexts, the multi-view
contrastive learning module can capture anomalies in the
structure space and mix of both structure and content in-
formation. Finally, the anomaly score is calculated based on
both generative and contrastive modules to provide a com-
prehensive score to qualify the abnormality of each node.
Experimental results on six datasets show the effectiveness
of our algorithm. A workflow chart of our model is given in
Figure 1.

The main contribution of this paper can be summarised
as follows.

• We propose a novel self-supervised based method
for graph data. By developing a subgraph-based con-

trastive learning module, our method can effectively
exploit the useful information in graphs.

• We develop a new method for graph anomaly de-
tection. By developing both generative attribute re-
gression and multi-view contrastive learning mecha-
nisms, our method provides a new way to qualify the
anomaly score for each node for anomaly detection.

• We have conducted extensive experimental results
on six datasets to test our design for graph anomaly
detection. Experimental results show that our algo-
rithm outperforms state-of-the-art algorithms by a
large margin.

The rest of the paper is organised as follows: Section 2
reviews the related work. Section 3 depicts the definition of
the problem. Section 4 presents the proposed method. Sec-
tion 5 discusses the experimental results and we conclude
this paper in Section 6.

2 RELATED WORK

This work is closely related to graph anomaly detection, self-
supervised learning, and graph representation learning. We
briefly review these related works in this section.

2.1 Anomaly detection

Anomaly detection has been a long-standing research topic
[9], [10]. Aiming to identify patterns that significantly differ
from the expected patterns, research in this area has been
evolving from traditional statistic methods such as local
outlier factor [11] and one-class support vector machine
[12] to deep learning approaches such as Outlier Exposure
(OE) [13] and Deep Semi-Supervised Anomaly Detection
(Deep SAD) [14]. While these methods typically target data
in the Euclidean domain, recently, anomaly detection from
graph structure data which are outside Euclidean space
draws increasing attention [3], [4], [5], [15]. Because how to
measure the anomaly is an important problem for anomaly
detection in graphs, Perozzi and Akoglu [3] defined the
normality as a measure and proposed an AMEN approach
for anomaly detection. Exploiting the residual for anomaly
detection, Li et al. proposed the Radar approach [4] and
Peng et al. proposed the Anomalous approach [5] which
employ matrix regression approach and regard nodes with
large residual as anomalies. Recently, deep approaches have
been also applied in graphs for anomaly detection [6], [7],
[8]. These methods typically employ a graph autoencoder
to embed the nodes in a latent space, and then reconstruct
the graph information. The reconstruction errors are used
to detect anomalies. Recently, Liu et al. proposed a self-
supervised approach called CoLA [15], which exploits the
local information from network data by sampling pairs
of instance, and employs the contrastive learning to learn
the node representation. The abnormal score is calculated
based on the predicted scores on the contrastive pairs.
However, CoLA only utilizes self-supervised learning in a
contrastive manner to capture the anomaly patterns, which
limits supervision signals to learn the model due to the lack
of generative self-supervised learning.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

2.2 Self-supervised learning

Self-supervised learning (SSL) [16] is a new learning
paradigm which aims to learn a neural model from the
unsupervised data itself without using human-annotated la-
bels. By training on well-designed pretext tasks, SSL enables a
model to learn better representations that can be generalized
to downstream tasks. SSL has achieved great success on
computer vision (CV) [17] and natural language process-
ing (NLP) [16]. Recently, SSL has been extended to graph
domains (please refer to [18] for a comprehensive survey
for graph SSL). In particular, Veličković et al. proposed the
first contrastive learning algorithm, Deep Graph Infomax
(DGI) [19], to learn the embedding form graph data in an un-
supervised manner. Hassani and Khasahmadi proposed an
approach MVGRL [20] which performs contrastive learning
on graphs from first-order neighbours and a graph diffusion
on two views. Wan et al. proposed an algorithm CG3 [21]
which exploits contrastive learning based on both graph
structure and limited labelled information among nodes. By
capitalizing on the idea of self-knowledge distillation, Jin
et al. proposed a method MERIT [22] to enrich supervision
signals by maximizing the agreement of node embeddings
across different views and networks. JOAO [23], on the other
hand, proposed to automatically learn graph augmentations
with the self-supervised model, which alleviates the reliance
on the design of augmentations. However, while all these
algorithms only focus on learning the representation for
nodes in graphs, they have not been applied for anomaly
detection.

2.3 Graph representation learning

Our work is also related to graph representation learning,
where the goal is to learn a representation for each node
or the entire graph, so that downstream graph analysis
tasks (such as node classification and anomaly detection)
can be easily performed. Graph neural networks (GNNs)
[24], particularly graph convolutional networks [25], [26],
have achieved great success for this task. Kipf and Welling
proposed the graph convolutional networks (GCNs) [25]
which employs a two-level architecture and performs mes-
sage passing in the spectral domain, showing impressive
performance in the node classification task. Veličković et al.
proposed a graph attention network (GAT) [26] which em-
ploys a neural network to automatically learn the weights
(attentional scores) of each neighbour in the process of
message passing, further improving the performance of
GCN. To improve the scalability of graph neural networks,
Hamiltion et al. proposed a GraphSage algorithm [27] which
performs sampling for the neighbour message aggrega-
tion. Differently, Frasca et al. proposed a method SIGN
based on graph convolutional filters with different size [28],
which alleviates the reliance on graph sampling. To improve
the robustness of graph representation learning, Pan et
al. proposed an adversarial regularised graph autoencoder
(ARGA) which employs an adversarial training method to
regularise the embedding in the latent space. Geisler et al.,
on the other hand, proposed a robust aggregation func-
tion to learn robust graph representations [29]. To improve
the rigidness and inflexibility of deterministic classification
functions employed in existing GNN methods, Wang et

TABLE 1
Summary of the primary notations.

Symbols Description

G = (X,A) An attributed graph
V, E The node and edge set of G

A ∈ RN×N The adjacency matrix of G
X ∈ RN×D The node features matrix of G
xi ∈ RD The feature vector of vi that xi ∈ X
N (vi) The neighbors of node vi ∈ V
vt ∈ V A selected target node
Gφ1
t , Gφ2

t Two generated graph views of vt
Xφi
t ∈ RK×D The node feature matrix of Gφi

t

X̂φi
t [−1, :] ∈ RD The reconstructed feature vector of

anonymized target node in Gφi
t

Aφi
t ∈ RK×K The adjacency matrix of Gφi

t

f(vt) The anomaly score of vt

ht ∈ RD
′

The embedding vector of target node vt
gφi ∈ RD

′
The graph embedding vector of Gφi

t

Hφi ∈ RK×D
′

The node embedding matrix of Gφi
t

Hφi [j, :] ∈ RD
′

The embedding vector of vj in Hφi

H
(l)
φi
∈ RK×D

′
l The node embedding matrix of Gφi

t on
the l-th GNN layer

H
(l)
φi
[j, :] ∈ RD

′
l The embedding vector of vj in H

(l)
φi

Wenc ∈ RD×D The trainable parameter matrix of graph
encoder

Wdec ∈ RD×D The trainable parameter matrix of graph
decoder

Ws ∈ RD
′×D′

The trainable parameter matrix of con-
trastive discriminator

N The number of nodes in G
K The number of nodes in graph views
D The dimension of node features in G
D′ The dimension of embeddings in Hφi

D′l The dimension of embeddings in H
(l)
φi

R The number of evaluation rounds to cal-
culate final anomaly scores

al. proposed a novel framework named Graph Stochastic
Neural Networks (GSNN) [30], which aims to model the
uncertainty of the classification function by simultaneously
learning a family of functions, i.e., a stochastic function. As
many GNNs lack the flexibility to model intrinsic complex
graph geometry by embedding graphs into either Euclidean
or hyperbolic spaces, a graph geometry interaction learning
algorithm (GIL) [31] is proposed recently to utilize the
strength of both Euclidean and hyperbolic geometries. Wu
et al. proposed an algorithm [32] to handle data in a positive
and unlabelled learning setting, in which only part of the
nodes are labelled as positive nodes and the majority of
nodes are unlabelled nodes. Graph representation learning
techniques have also been widely applied in heterogeneous
networks [33], spatial-temporal networks [34], community
detection [35], and image classification [36]. However, exist-
ing GNNs approaches are mostly focused on generic graph
representation learning. Employing GNNs for anomaly de-
tection is still under-explored. By integrating GNNs with
self-supervised learning, we will develop a new approach
for graph anomaly detection in this paper.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

3 PROBLEM DEFINITION

In this section, we introduce the unsupervised graph
anomaly detection problem and notations used in the paper.
Specifically, we use bold uppercase and lowercase letters
to denote matrices and vectors, respectively. All important
notations have been summarized in Table 1. Graph and
graph neural network (GNN) are defined as follows:

Definition 3.1 (Graph). Given an attributed graph G =
(X,A), we use X ∈ RN×D and A ∈ RN×N to denote the
node features and graph adjacency matrix, where N = |V|
and V = {v1, v2, . . . , vN} is a set of nodes in the graph.
Specifically, we use xi ∈ RD to symbolize the feature
of node vi. Let E denotes a set of graph edges, where
eij = {vi, vj} ∈ E is an edge between node vi and vj .
The underlying graph structure is represented by a N × N
square matrix A, where Aij = 1 if eij = {vi, vj}, otherwise
Aij = 0. Particularly, the neighborhood of a node v is
defined as N (v) = {u ∈ V|evu ∈ E}.

Definition 3.2 (Graph Neural Networks). Given an at-
tributed graph G = (X,A), a graph neural network
GNN(·) aims to learn a local aggregation rule to map the
original node features X = {x1,x2, . . . ,xN} ∈ RN×D to
low-dimensional representations (i.e., embeddings) H =
{h1,h2, . . . ,hN} ∈ RN×D

′
.

In this paper, we mainly focus on the problem of unsu-
pervised anomaly detection on attributed graphs, which is
defined below:

Definition 3.3 (Unsupervised Graph Anomaly Detection).
Provided an attributed graph G = (X,A), we aim to learn
a model F(·) : RN×D → RN×1, which measures the degree
of abnormality of a node in the graph by calculating its
anomaly score without relying on any labelling information.
Thus, the main task is to rank nodes according to their
anomaly scores in a descending order, where anomalies can
be easily detected based on this ranking list.

4 METHODOLOGY

In this section, we present the overall framework of our
proposed algorithm SL-GAD to detect node-level graph
anomalies in an unsupervised manner. As shown in Figure
2, our method has three different components, including
graph view sampling, generative and contrastive self-supervised
learning, and graph anomaly scoring. Firstly, we select a target
node from the input graph, then we exploit the contextual
information for this node. Specifically, we generate two
associated graph views by leveraging different augmenta-
tions. After this, to fully utilize the rich node- and subgraph-
level information to detect anomalies, we construct two dif-
ferent self-supervised objectives, namely generative attribute
reconstruction and multi-view contrastive learning. The former
objective is inspired by the idea of graph auto-encoder
(GAE) [37], which aims to reconstruct the feature vector of
target node based on its neighboring attributive informa-
tion. In such a way, if a selected target node is an anomaly,
the attributive mismatch between it and its surrounding
contexts can be reflected as the regression loss between
its reconstructed and original feature vector. Similar to but

different from this node-level generative objective, we intro-
duce another mixed-level contrastive objective to compare
a target node with its surrounding contexts directly on the
embedding and structure space, which injects richer struc-
tural information during the discrimination. As a result,
our model optimizes two self-supervised objectives that are
closely related to the graph anomaly detection. During the
inference, two scoring functions are elaborately designed
based on the aforementioned two objectives, which tend to
assign attributive and structural anomalies in a graph with
higher anomaly scores.

In the rest of this section, we introduce the three core
components of SL-GAD from Subsection 4.1 to 4.4. In Sub-
section 4.5, we present and analyse the training objective,
algorithm, and its time complexity.

4.1 Graph View Establishment for Anomaly Detection

Recent work in graph self-supervised learning suggests that
the design of discrimination pairs is the key to allow graph
encoders extracting rich structural and attributive informa-
tion [20], [38], [39], [40]. Similar to the visual domain, graph
self-supervised learning can be roughly divided into two
categories: Generative-based and Contrastive-based. As for
the generative branch, existing work mainly lies on the
attributive and structural auxiliary property prediction [18],
where the comparisons are typically placed on the same
scale, such as "node v.s. node" (e.g., attribute regression) and
"graph v.s. graph" (e.g., structure prediction). On the other
hand, contrastive learning could discriminate instances not
only from the same but also across different scales, such
as "node v.s. graph" in [20] and [41]. However, not all
of aforementioned discriminations are applicable to our
task because graph anomaly detection and representation
learning are two fundamentally different tasks. In graph
anomaly detection, inspired by [15], we conjecture that an
anomaly is typically reflected as the mismatch between it
and its surrounding contexts, which forms the foundation
of our graph view construction.

In our method, to establish the connection between
a target node and its surrounding contexts, we propose
two self-supervised learning objectives from different scales
and spaces. Specifically, we first conduct the node-level
discrimination, which reconstructs the feature vector of a
target node by leveraging a GAE and then compares it with
ground truth in the attribute space. To inject richer structural
information, we further construct a mixed-level contrastive-
ness between a target node and its local subgraphs in the
embedding and structure space, where sampling multiple
views benefits our contrastive module exploring diverse
semi-global (i.e., surrounding contextual) information dur-
ing its discrimination [42]. Based on this, as shown in the
leftmost part in Figure 2, we first sample a target node from
the input graph, and then we sample two different views
(local subgraphs) around it by leveraging different graph
augmentations. Although it is possible to equip SL-GAD
with more than two views, it may introduce redundant
information depending on the choice of augmentations [20],
[43] and thus degrading model performance.

For our generative objective, the discrimination pair is
the original and reconstructed target node. On the other

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

GNN
Encoder

View Sampling

Graph View Sampling Generative and Contrastive Discrimination Modules Anomaly Scoring

Subgraph 1 Subgraph 2

Full Graph
GNN
Decoder

GNN
Decoder

Readout

Readout

D

0.93

0.35
0.62 0.74

0.28
0.57

Generative
Anomaly Scores

Contrastive
Anomaly Scores

D
(+)

(+)
(-)

(-)

Contrastive Scores Generative
Scores

R

R

Target Node

Fig. 2. The conceptual framework of SL-GAD, which consists of three main components: Graph view sampling, self-supervised discrimination, and
graph anomaly scoring. Orange and blue nodes denote the abnormal and normal nodes in a given graph. Firstly, a selected target node and two
sampled subgraphs are encoded via a GNN encoder in the leftmost part. After this, two self-supervised objectives are introduced in the middle part,
where D andR are shared discriminators and regressors. The GNN decoder are also shared across two graph views. Finally, in the rightmost part,
we calculate the anomaly score for each node from two sources, where the anomalies can be easily detected (e.g., the orange node).

hand, the target node and two sampled graph views consist
of two discrimination pairs in our contrastive objective.
Now we give a detailed explanation of the aforementioned
processing steps:

1) Target node sampling. Since we mainly focus on de-
tecting node-level anomalies in graphs, a target node
needs to be sampled first. In this paper, we sample a
target node from the given input graph via the uniform
sampling without replacement.

2) Graph view sampling. Although several augmenta-
tions have been proposed on graphs, such as node
feature masking and edge modification [22], these aug-
mentations are not applicable to graph anomaly de-
tection because they introduce extra anomalies (e.g.,
modifying the underlying linkages and node features).
Alternatively, in this paper, we leverage random walks
with restart (RWR) [44] as augmentations, which avoid
violating the underlying graph semantic information.
Specifically, this approach samples graph views cen-
tered at a target node with the fixed size K , which
controls the radius of surrounding contexts. It worths
noting that graph diffusion [45] could also be a possi-
ble augmentation in our method to further injects the
global information into our multi-view contrastiveness,
which we leave in our future work.

3) Graph view anonymization. The target node in sam-
pled graph views is anonymized (i.e., its features have
been zeroed) to increase the difficulty of two predefined
self-supervised learning pretext tasks, which helps fa-
cilitate the model training [18], [46]. In such a way, the
raw attributive information of the target node will not
contribute to its feature reconstruction, as well as the

calculation of graph view embeddings. This mechanism
prevents the information leakage and encourages the
model to identify anomalies by relying on the contex-
tual information.

4.2 Generative Learning with Attribute Reconstruction

As suggested in [6], the abnormality of an instance can
be typically reflected as the degree of mismatch between
its original and reconstructed information. Specifically, this
type of mismatch can be quantified by the `2-norm distance,
where a higher distance denotes a higher reconstruction er-
ror, indicating that the given instance is more likely to be an
anomaly. Among existing anomaly detection methods, deep
autoencoder (AE) [47] has shown a strong performance. AE
is a type of neural network that has been firstly introduced
to learn latent representations in an unsupervised manner,
which consists of two components: Deep encoder and de-
coder. Given an input feature vector x, a typical AE can be
defined as:

x′ = AE(x) = fdec
(
fenc(x)

)
, (1)

where x′ = fdec(h) and h = fenc(x) are deep decoder
and encoder, respectively. In above equation, x′ is the recon-
structed feature vector, and h denotes the latent representa-
tion of x. The optimization objective of AE is to make x′ and
x as close as possible, which can be achieved by minimizing
their `2-norm distance, i.e., ‖x′ − x‖22, to encourage AE to
learn latent invariant patterns among inputs.

However, in the context of graph anomaly detection,
a conventional AE only reconstructs the attributive
information of a node and fails to take the underlying

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

topological information into the consideration, which
makes it unfavorable to this task. To alleviate this limitation,
as shown in the middle part of Figure 2, we construct a GAE
with two components: GNN-based encoder and decoder.

GNN-based encoder. Given two graph views Gφ1
t and Gφ2

t

of a target node vt, we resort to transform their high-
dimensional node features to low-dimensional representa-
tions via a GNN encoder, which is formulated as:

Hφi = GNNenc(X
φi
t ,A

φi
t), (2)

where Hφi
, Xφi

t , and Aφi
t denote the node embedding

matrix, node feature matrix, and adjacency matrix of Gφi
t ,

respectively. GNNenc(·) is the graph encoder, which consists
of a L-layer GNN. Specifically, we define it as follows:

m
(l)
φi
[j, :] = AGGREGATE(l)(H

(l−1)
φi

[k, :] : vk ∈ N (vj)),

H
(l)
φi
[j, :] = COMBINE(l)(H

(l−1)
φi

[j, :],m
(l)
φi
[j, :]), (3)

where H
(l)
φi
[j, :] denotes the latent vector of vj in H

(l)
φi

,
which is the latent representation of Gφi

t at the l-th layer.
In particular, Hφi

= H
(L)
φi

and Xφi
t = H

(0)
φi

. In the above

formulas, we use m
(l)
φi
[j, :] to denote the aggregated mes-

sage of vj in Gφi
t at the l-th layer. AGGREGATE(l)(·) and

COMBINE(l)(·) are message aggregation and combination
(a.k.a. transformation) functions in a typical GNN layer.

In this paper, for simplicity, we apply a one-layer GCN
[25] as our backbone graph encoder. In such a way, Equation
(2) can be specifically formulated as:

Hφi
= GNNenc(X

φi
t ,A

φi
t) = σ(Âφi

t Xφi
t Wenc), (4)

where Âφi
t = (D̃φi

t)−
1
2 Ãφi

t (D̃φi
t)−

1
2 , Ãφi

t = Aφi
t + I,

and D̃φi
t [i, i] =

∑
j Ã

φi
t [i, j]. Specifically, σ(·) denotes a

non-linear activation function (e.g., ReLU), and Wenc is a
trainable parameter matrix in our graph encoder.

GNN-based decoder. Similarly, we build our graph decoder
with a single GCN layer, which is slightly different from
Equation (4). During the attribute reconstruction, we take
node embedding matrix as the input and then reconstruct
the node features accordingly:

X̂φi
t = GNNdec(Hφi

,Aφi
t) = σ(Âφi

t Hφi
Wdec), (5)

where Wdec is a trainable parameter matrix in our graph
decoder.

Generative graph anomaly detection. By aggregating the
neighboring information, the attributive reconstruction of
Gφ1
t and Gφ2

t is mainly based on the attributive information
of local surrounding subgraphs centred at vt. In this paper,
we anonymize the target node vt in its two graph views
to enforce its attributive reconstruction purely based on
the contextual information. As we mentioned, this schema
better reflects node-level anomalies in the attribute space.
Thus, we propose to minimize the Mean Squared Error
(MSE) between target node’s original and reconstructed
features in two graph views, as shown in Figure 2.

Ljgen =
1

N

N∑
i=1

(X̂
φj

i [−1, :],xi)2, j ∈ {1, 2}, (6)

where xi is the feature vector of a target node vi, and
X̂
φj

i [−1, :] denotes the reconstructed feature vector of
anonymized target node vi in its j-th graph view. Specifi-
cally, X̂φj

i can be obtained via Equation (4) and (5). Finally,
we have our generative objective by combining Ljgen in
Equation (6):

Lgen =
1

2
(L1

gen + L2
gen). (7)

4.3 Multi-View Contrastive Learning

As we mentioned before, node anomalies are typically
reflected as the mismatch between nodes and their
surrounding contexts. Our generative module identifies
anomalies in the attribute space with the help of our GNN
encoder and decoder, but the structural information has
not been directly utilized. To overcome this limitation
and inject richer structural information, we propose a
multi-view contrastive module, which contrasts a target
node with two associated graph views directly. Different
from the generative objective where the discrimination
is placed on the node-level and in the attribute space,
our multi-view contrastive learning mixes different graph
topological scales, which discriminates the representation
of a target node with its local subgraph representations
in the embedding and structural space, emphasizing
more on semi-global information. As illustrated in Figure
2, our contrastive module mainly consists of three
different components: Graph encoder, readout module, and
contrastive module.

GNN-based encoder. Our contrastive module takes the
node feature vector and matrices of a selected target node
and two associated graph views as the input, where the un-
derlying graph encoder shares the same parameters with the
generative module. The encoding of two graph views has
been formulated in Equation (4), while the transformation
of target node feature vector follows a different formula:

ht = σ(xtWenc), (8)

where ht and xt are embedding and feature vectors of the
target node vt. It is worth noting that a single target node
has no underlying graph structure, so the graph adjacency
matrix in Equation (4) is discarded in Equation (8). Thus,
Equation (8) is equivalent to a non-linear mapping of xt,
where Wenc is shared with Equation (4).

Readout module. Since we aim to contrast ht with the
surrounding subgraphs directly, we are motivated to design
a readout module to generate two semi-global (subgraph-
level) representations based on Hφ1

and Hφ2
, as shown in

the middle part of Figure 2.
In general, several readout functions are commonly used

to generate graph-level representations based on node-level
embeddings, such as average and differentiable pooling
[20], [48]. For simplicity, we adopt the average pooling in
this paper, which can be formulated as:

gφi =
1

K

K∑
j=1

Hφi
[j, :], (9)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

where gφi
denotes the graph-level embedding vector of

view Gφi
t . K is the number of nodes in a graph view.

Contrastive module. Given ht, gφ1
, and gφ2

, we aim to
discriminate them pairwise. Specifically, we first formulate
the positive and negative pairs of vt as follows:

Pφi
t = (ht,gφi

), (10)

P̃φi
t = (ht, g̃φi), (11)

where Pφi
t and P̃φi

t are positive and negative pairs of the
selected target node vt. In Equation (11), g̃φi

denotes the
negative samples, which are the representations of ran-
domly cropped subgraphs from G and different from Gφ1

t

and Gφ2
t .

To contrast two elements in positive and negative pairs,
we design a discriminator based on the bilinear transforma-
tion [15], where the discrimination scores of Pφi

t and P̃φi
t

are defined as follows:

sφi
t = σ(htWsg

T
φi
), (12)

s̃φi
t = σ(htWsg̃

T
φi
), (13)

where sφi
t and s̃φi

t are contrastive discrimination scores
of the pairs Pφi

t and P̃φi
t . In the above equations,

Ws ∈ RD
′×D′

is a learnable scoring matrix, which
measures the similarity between two input vectors.
Particularly, we resort to use the sigmoid function as our
non-linear transformation σ(·) in above two equations to
ensure our discrimination scores fall within the range [0, 1].

Multi-view contrastive graph anomaly detection. Con-
ceptually, graph anomalies should be different from their
surrounding contexts on both attributive and topological
perspectives. Thus, we conjecture that sφi

t should be sig-
nificantly larger than s̃φi

t , which indicates that for most
of normal nodes in G, target node representations (e.g.,
ht) should share more similarities with their surrounding
contexts (e.g., gφi

) than other subgraphs (e.g., g̃φi
).

Motivated by this, we form our multi-view contrastive
objectives based on the Jensen-Shannon divergence [38],
which maximizes the agreement between a target node and
its surrounding contexts:

Ljcon = − 1

2N

N∑
i=1

(log(s
φj

i) + log(1− s̃φj

i)), j ∈ {1, 2},

(14)
where Ljcon denotes the contrastive loss of graph view j
across all nodes in G. By combining Ljcon in Equation (14),
we have our final contrastive objective:

Lcon =
1

2
(L1

con + L2
con). (15)

4.4 Graph Anomaly Scoring
Until now, we have introduced two different self-supervised
discrimination schemes for graph anomaly detection by
leveraging our generative and contrastive modules to com-
pare nodes with their contextual information. As the major-
ity of nodes in G are not anomalies, a well-trained graph
encoder and decoder are expected to map the feature vector

of a normal node to an appropriate latent space and vice
versa. For anomalies in G, their embeddings and recon-
structed features are likely to be distorted because of their
attributive or structural abnormalities.

For the generative learning, the attributive reconstruc-
tion of an anonymized target node is purely based on its
local (i.e., neighbouring) contextual information, where the
degree of mismatch between the reconstructed and original
feature vector is an ideal metric to measure the abnormality
of a node. In this paper, we adopt the `2-norm distance as
the generative anomaly scoring function. For a node vi ∈ V ,
we define this function as follows:

fgen(vi) =
1

2

2∑
j=1

(
δ1(‖X̂φj

i [−1, :]− xi‖22)
)
, (16)

where fgen(vi) denotes the generative anomaly score of vi.
In above formula, X̂

φj

i [−1, :] is the reconstructed feature
vector of vi, which is calculated in Equation (5). Specifically,
δ1 denotes a scaler, which scales a `2-norm distance to the
range of [0, 1]. In such a way, if vi is an anomaly, fgen(vi)
is expected to be close to 1, otherwise this score should be
close to 0.

However, our generative learning focuses only the node-
level discrimination on the attribute space, where the graph
topological information has not been directly utilized. To
overcome this limitation, our contrastive module discrimi-
nates a target node with the surrounding subgraphs directly
on the embedding space, where the discrimination scores in
Equation (12) and (13) can be naturally combined to form an
abnormality metric. Inspired by [15], for a node vi ∈ V , we
define our contrastive anomaly scoring function as follows:

fcon(vi) =
1

2

2∑
j=1

δ2
(
s̃
φj

i − s
φj

i

)
, (17)

where fcon(vi) denotes the contrastive anomaly score of
vi. Specifically, sφj

i and s̃
φj

i are positive and negative con-
trastive discrimination scores defined in Equation (12) and
(13). If vi is a normal node, sφj

i is expected to be close to
1, and s̃

φj

i is likely to be close to 0. Otherwise, if vi is an
anomaly, sφj

i and s̃φj

i are expected to be close to 0.5 because
of the mismatch between vi and its surrounding subgraphs.
Thus, s̃φj

i − s
φj

i falls in the range of [−1, 0]. By introduce a
scaler δ2, our final contrastive anomaly scores will be scaled
to the range of [0, 1].

By combining aforementioned two anomaly scoring
functions, we have our final graph anomaly scoring function
to estimate the abnormality of a node vi ∈ V :

f(vi) = αfcon(vi) + βfgen(vi), (18)

where α and β are two tunable balancing factors to weight
the importance of contrastive and generative scoring func-
tions. In practice, as suggested in [15], we may have to
repeat this calculation R times to obtain a statistical stable
anomaly score. This is because two sampled graph views
Gφ1
t and Gφ2

t are partial observations on vt’s contextual
information, which may be insufficient to estimate the ab-
normality of vt.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 1 The Proposed SL-GAD Algorithm
Input: Attributed graph G; Maximum training epochs E;
Batch size B; Number of evaluation rounds R.
Output: Graph anomaly scoring function f(·).

1: Randomly initialize the trainable parameters Wenc,
Wdec, and Ws;

2: // Training stage
3: for e ∈ 1, 2, · · · , E do
4: B ← Randomly split V into batches with size B;
5: for batch b = (v1, · · · , vB) ∈ B do
6: Sample two graph views for each of node in b, i.e.,

(Gφ1

1 , · · · ,Gφ1

B) and (Gφ2

1 , · · · ,Gφ2

B);
7: Calculate node and associated graph view embed-

dings via Eq. (8) and (4);
8: Calculate the reconstructed feature vectors for

nodes in b via Eq. (5);
9: Calculate the loss L via Eq. (7), (15), and (19);

10: Back propagation and update trainable parameters
Wenc, Wdec, and Ws;

11: end for
12: end for
13: // Inference stage
14: for vi ∈ V do
15: for evaluation round r ∈ 1, 2, · · · , R do
16: Calculate f(vi) via Eq. (16), (17), and (18);
17: end for
18: Average f(vi) over R evaluation rounds and output

the final anomaly score for vi;
19: end for

4.5 Model Optimization and Algorithm

By combining our generative and contrastive objectives in
Equation (7) and (15), we have our final optimization goal:

L = αLcon + βLgen, (19)

where L is the training loss to be minimized. α and β are
two balancing factors, which are the same as in Equation
(18) to balance the importance of two self-supervised mod-
ules.

The overall procedures of the proposed SL-GAD are
summarized in Algorithm 1. Firstly, we sample a batch of
nodes from the input graph. For each of node, we generate
two graph views. After this, nodes in a batch and associated
graph views are encoded via a trainable GNN encoder. To
calculate the generative loss, the node embeddings of graph
views are decoded via a GNN decoder, where we aim to
reconstruct the feature vector of anonymized target node
in each graph view. Then, we compare the reconstructed
feature vector of a node with its original feature vector.
Simultaneously, the node embeddings of graph views are
aggregated to generate view representations, which are then
compared with the target node embeddings to calculate the
contrastive loss. Finally, by combining two different objec-
tives, we calculate the final training loss, where different
trainable parameters can be updated via backpropagation.
During the inference, the anomaly score of each node in G
will be repetitively calculated R times with different graph
views sampled each time, which ensures the final anomaly
scores are statistically stable.

4.5.1 Complexity Analysis
In this subsection, we analyse the time complexity of the
proposed SL-GAD algorithm. For graph view sampling on a
selected target node vt, the time complexity of our RWR-
based approach is O(ηK), where η denotes the average
node degree in the graph. Given a graph view Gφi

t with
K nodes, the time complexity of the proposed two self-
supervised learning modules is O(K2). Thus, considering
a graph with N nodes, the training complexity of our
algorithm is O(NK(η + K)). During the inference, our
graph anomaly scoring has a constant time complexity. Con-
sidering we have R evaluation rounds, the time complexity
of our algorithm isO(RNK(η+K)) when considering both
model training and inference.

5 EXPERIMENTAL STUDY

In this section, we conduct comprehensive experiments
on six real-world benchmark datasets to demonstrate the
effectiveness of our proposed SL-GAD model. We compare
our method with the state-of-the-art anomaly detection and
self-supervised learning methods, and follow their configu-
rations to carry out our experiments for a fair comparison.
We conduct ablation study and parameter sensitivity exper-
iments to further investigate the property of SL-GAD.

TABLE 2
The statistics of the datasets. The upper two datasets are social

networks, and the remainders are citation networks.

Dataset Nodes Edges Features Anomalies

BlogCatalog [49] 5,196 171,743 8,189 300
Flickr [49] 7,575 239,738 12,407 450
ACM [50] 16,484 71,980 8,337 600
Cora [51] 2,708 5,429 1,433 150

CiteSeer [51] 3,327 4,732 3,703 150
Pubmed [51] 19,717 44,338 500 600

5.1 Dataset Description
To evaluate the performance of SL-GAD and the competi-
tors, six real-world graph datasets, including two social
network datasets and four citation network datasets, are
utilized as benchmarks in our experiments. We provide the
description of these datasets as follows:

• Social Networks. Blogcatalog and Flickr1 [49] are
two social network datasets whose data are collected
from the blog sharing website BlogCatalog and the
image sharing website Flickr, respectively. In these
social network datasets, each node represents a user
of websites, and each link indicates the following
relationships between two users. The personalized
contents (e.g., posting blogs or sharing photos with
tag descriptions) of users are extracted as node fea-
tures.

• Citation Networks. Cora, CiteSeer, Pubmed2 [51]
and ACM [50] are four public citation graph datasets.
The data is collected from the corresponding pub-
lication databases. In these graphs, each node is a

1. http://socialcomputing.asu.edu/pages/datasets
2. http://linqs.cs.umd.edu/projects/projects/lbc

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

published paper, while each edge denotes a citation
relationship between two papers. The text contents
of each paper are treated as its node features.

Since no ground-truth anomalies are included in these
datasets, we need to inject synthetic anomalous data into
the original data manually. To compare fairly, we follow the
anomaly generation strategy used in [6] and [15]. Specif-
ically, when injecting attributive anomalies, we select Na
nodes and then replace their features with randomly se-
lected distant nodes’ features. After this, we further inject
equal number of structural anomalies into six datasets by
selecting N ′a nodes and making them fully connected. We
repeat this process q times such that Na = q × N ′a. The
total numbers of anomalies are also summarized in Table 2
together with the dataset statistics.

5.2 Experimental Setup
We illustrate the experimental setup in this subsection,
including baseline methods, evaluation metrics, and param-
eter settings.

Baselines. We compare SL-GAD against five state-of-the-
art anomaly detection and self-supervised learning meth-
ods. We briefly introduce these methods as follows:

• AMEN [3] detects anomalies via ego-network anal-
ysis. It evaluates the correlation of attributes among
different nodes within a ego-network to discriminate
anomalous information.

• Radar [4] leverages residual analysis to identify the
anomalies in graphs. It considers the residuals of
attribute information and the coherence information
with graph to detect anomalies.

• ANOMALOUS [5] learns the patterns of anomalies
by considering the CUR decomposition and residual
analysis. A joint learning framework is conducted to
select informative attribute to detect anomalies.

• DOMINANT [6] is a deep learning-based graph
anomaly detection method. It leverages a graph au-
toencoder to reconstruct the adjacency matrix and
feature matrix simultaneously to learn the normal
patterns of graph. Then, the abnormality of each
node is measured by the reconstruction error of node.

• DGI [52] is a representative self-supervised learning
method based on unsupervised contrasting. It learn
node representation by maximizing the embedding
agreement between each node and the full graph.
For this method, we leverage its trained bilinear
discriminator with Equation (17) to score node ab-
normalities.

• CoLA [15] is a contrastive self-supervised learning-
based anomaly detection method. It captures
anomaly patterns by evaluating the agreement be-
tween each node and its neighboring subgraph with
a GNN-based encoder model.

Metrics. We utilize ROC-AUC, a widely applied met-
ric for anomaly detection, to quantify the performance of
SL-GAD and the competitors. The ROC curve indicates the
plot of true positive rate (an anomaly is recognized as
an anomaly) against false positive rate (a normal node is
recognized as an anomaly). AUC is a value within a range

[0, 1], which denotes the area under the ROC curve. A larger
AUC value indicates a higher detection performance.

Parameter Settings. We set the sampled subgraph size
K to be 4 for efficiency consideration. The GNN encoder
is a one-layer GCN model, where hidden dimension D′

is 64. α is fixed to 1 for all datasets, while β is selected
from {0.2, 0.4, 0.6, 0.8, 1}. The discrimination modules are
trained with Adam optimizer. Cora, Citeseer, Pubmed, and
Flickr have learning rates of 0.001, BlogCatalog has 0.003,
and ACM has 0.0005. The epoch number for BlogCatalog,
Flickr and ACM are 400, and which for Cora, Citeseer and
Pubmed are 100. The round number R for evaluation is 256.

5.3 Comparison with the State-of-the-art Methods

We compare our proposed SL-GAD with the six baseline
methods in this subsection. The comparison of ROC curves
is demonstrated in Figure 3, and the results of AUC values
are illustrated in Table 3. According to these results, we
summarize our observations as follows:

• The proposed method SL-GAD outperforms all the
baseline methods on all benchmark datasets, demon-
strating its capability to detect anomalies on graph
data with high-dimensional node features. The rea-
son behind this is that SL-GAD captures the anomaly
patterns by jointly utilizing both generative and con-
trastive self-supervised learning.

• The shallow methods (AMEN, Radar, and ANOMA-
LOUS) do not show a competitive anomaly detection
performance in our experiments. This is because
these mechanisms have limited capability to discrim-
inate anomalies from graphs with high-dimensional
features and complex structures, which results in
relatively poor performance.

• Compared to other deep methods, SL-GAD shows
a stronger detection performance and generalization
ability. A possible reason is that these baselines only
adopt one learning strategy (e.g., DOMINANT solely
uses reconstruction and CoLA considers contrasting
only), which results in a sub-optimal solution to
anomaly detection. In contrast, SL-GAD jointly lever-
ages two self-supervised learning strategies (genera-
tive and contrastive), which takes advantage of each
other to acquire a higher performance.

• Our method obtains more considerable performance
gains on detecting anomalies in citation networks
(ACM, Cora, CiteSeer, and Pubmed) compared to
which in social networks (BlogCatalog and Flickr).
We observe that these social networks have a more
significant degree (mean degree = 32.35) than ci-
tation networks (mean degree = 2.51), which may
lead to an information loss when sampling subgraph
views with a fixed size. We leave the efficient view
sampling strategy for high-degree graphs as our
future work.

5.4 Effectiveness of Components

We investigate the impact of different components of our
method in this experiment. We first consider two variants

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 3
Anomaly detection performance (i.e., AUC values) on six benchmark datasets. The best performance on each dataset is in bold.

Method BlogCatalog Flickr ACM Cora CiteSeer PubMed

AMEN [3] 0.6392 0.6573 0.5626 0.6266 0.6154 0.7713
Radar [4] 0.7401 0.7399 0.7247 0.6587 0.6709 0.6233

ANOMALOUS [5] 0.7237 0.7434 0.7038 0.5770 0.6307 0.7316

DOMINANT [6] 0.7468 0.7442 0.7601 0.8155 0.8251 0.8081
DGI [52] 0.5827 0.6237 0.6240 0.7511 0.8293 0.6962

CoLA [15] 0.7854 0.7513 0.8237 0.8779 0.8968 0.9512

SL-GAD 0.8184 0.7966 0.8538 0.9130 0.9136 0.9672

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AMEN
Radar
ANOMALOUS
DOMINANT
DGI
CoLA
Ours

(a) BlogCatalog

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AMEN
Radar
ANOMALOUS
DOMINANT
DGI
CoLA
Ours

(b) Flickr

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AMEN
Radar
ANOMALOUS
DOMINANT
DGI
CoLA
Ours

(c) ACM

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AMEN
Radar
ANOMALOUS
DOMINANT
DGI
CoLA
Ours

(d) Cora

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AMEN
Radar
ANOMALOUS
DOMINANT
DGI
CoLA
Ours

(e) CiteSeer

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
AMEN
Radar
ANOMALOUS
DOMINANT
DGI
CoLA
Ours

(f) Pubmed

Fig. 3. ROC curves on six benchmark datasets. The larger the area under the curve, the better the performance of graph anomaly detection. "Ours"
in the figure legends denotes the proposed method SL-GAD.

of SL-GAD, where SL-GAD-Con only uses contrastive self-
supervised learning to identify anomalous nodes but ex-
cludes the generative term, and SL-GAD-Gen solely consid-
ers feature reconstruction to detect anomalies while the con-
trastive term is removed from the training loss and anomaly
score. To study the effectiveness of designed anomaly
scoring functions, we further construct SL-GAD-Unscaled
and SL-GAD-Unweighted, where the first variant removes
scalers in Equation (16) and (17), and the second variant
sums generative and contrastive anomaly scores in an un-
weighted manner, i.e., α = β = 1 in Equation (18). We report
the results in Table 4 with the following observations:

• The best performance is achieved by the full SL-GAD,
which validates the effectiveness of combining con-
trastive and generative self-supervised learning in a
joint learning manner for graph anomaly detection.
It also proves that the two self-supervised learning

strategies can mutually benefit each other in our
method since each of them can recognize exclusive
anomaly patterns in graphs.

• In all six datasets, SL-GAD-Con consistently outper-
forms SL-GAD-Gen, which demonstrates that con-
trastive self-supervised learning plays a more criti-
cal role in detecting anomalies than generative self-
supervised learning. A possible reason is that the
agreement between a target node and its neigh-
bouring substructure is highly related to the graph
anomalies, which is suggested in [15]. Compared to
the results in Table 3, both variants can achieve a
competitive performance to most baseline methods.

• Both anomaly score scaling and weighting facili-
tate graph anomaly detection on six datasets. When
score scaling is disabled, adding generative and con-
trastive anomaly scores is likely to distort the final
measurement because they are formed by different

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 4
The results of ablation study to investigate the effectiveness of each component on SL-GAD. Specifically, we use SL-GAD-Con, SL-GAD-Gen,

SL-GAD-Unweighted, and SL-GAD-Unscaled to denote SL-GAD without the generative module, contrastive module, anomaly score weighting,
and anomaly score scaling, respectively.

Method BlogCatalog Flickr ACM Cora CiteSeer PubMed

SL-GAD 0.8184 0.7966 0.8538 0.9130 0.9136 0.9672

SL-GAD-Con 0.7899 0.7540 0.8308 0.8885 0.8830 0.9482
SL-GAD-Gen 0.7466 0.7442 0.7184 0.8143 0.7841 0.7982

SL-GAD-Unweighted 0.8069 0.7951 0.7972 0.9042 0.8908 0.9419
SL-GAD-Unscaled 0.7913 0.7812 0.8519 0.8924 0.8670 0.9632

Beta
0.2

0.4
0.6

0.8
1.0

Alpha 0.2
0.4

0.6
0.8

1.0

AUC

0.86
0.87
0.88
0.89
0.90
0.91

(a) Cora

Beta
0.2

0.4
0.6

0.8
1.0

Alpha 0.2
0.4

0.6
0.8

1.0

AUC

0.78

0.79

0.80

0.81

(b) BlogCatalog

Beta0.2
0.4

0.6
0.8

1.0

Alpha 0.2
0.40.60.81.0

AUC

0.770
0.775
0.780
0.785
0.790

0.795

(c) Flickr

Fig. 4. AUC values of SL-GAD on Cora, BlogCatalog, and Flickr with different weights Alpha and Beta. A warmer color denotes a higher AUC value.

metrics and in different scales. On the other hand,
removing score weights also hurts performance. A
possible reason is that letting α = β = 1 in Equa-
tion (18) causes inconsistencies between training and
inference because: (1). the calculation of two types
of anomaly score relies on trained graph encoder,
generative decoder, and contrastive discriminators;
(2). α and β are not equal to 1 during the training.

5.5 Parameters Sensitivity
In this subsection, we carry out a series of experiments
to study the effectiveness of various hyper-parameters in
SL-GAD, including the factors α and β to balance generative
and contrastive terms, the evaluation rounds R, the sub-
graph size K in graph view sampling, and the dimension of
embedding D′.

5.5.1 Balance Factors
In this experiment, we discuss the impact of the balance
factors α and β in Eq. (18) and (19). We respectively tune the
two factors in a range of {0.2, 0.4, 0.6, 0.8}, and the results
are illustrated in Figure 4. Due to limited space, we only
show the results on Cora, BlogCatalog and Flickr datasets.
According to the results, the AUC values show an upward
trend with the increase of α, except when β is extremely
small. Such observation demonstrates that contrastive self-
supervised learning is dominant in anomaly detection per-
formance compared with generative self-supervised learn-
ing. Furthermore, the selection of β highly depends on the
specific dataset. For instance, Flickr needs a larger value
(β ≥ 0.6) while BlogCatalog prefers a small one (β ≤ 0.6).
The results show that it is necessary to find a trade-off
between contrastive and generative terms according to the

properties of datasets. In practice, we fix α = 1 and fine-
tune the value of β for each dataset.

5.5.2 Evaluation Rounds
We investigate the effectiveness of evaluation rounds R in
the inference stage of SL-GAD. The value of R is selected
from {1, 5, 10, 20, 40, 80, 160, 320}. The visualized results
are shown in Figure 5(a). It can be observed that the perfor-
mance is poor when the evaluation rounds are insufficient.
With larger R, the AUC values rise steadily within a certain
range (R ≤ 80), which indicates that a sufficient number of
rounds is essential to prevent the bias caused by randomly
sampling. However, when R is large enough (R ≥ 160),
AUC does not have a significant increasing trend even if R
is doubled. Consequently, we keep R to be 160 to acquire a
stable performance as well as an acceptable running speed.

5.5.3 Subgraph Size
We further explore the sensitivity of subgraph size K in
graph view sampling. We run SL-GAD on six datasets for
K = {1, 2, 4, 6, 8, 10, 12, 14} and test the anomaly detection
performance. The results are reported in Figure 5(b). As
we can see from the figure, the performance of SL-GAD
increases sharply with the growth of K when K is small
and rapidly reaches the peak values. The peak values of
AUC appear when K = 2 for some datasets and K = 4
for others. After the peak values, the performance drops
with the increase of subgraph size. The results show that
an appreciated subgraph size is needed to ensure a reliable
detection performance. When K is extremely small, the
model is hard to acquire sufficient neighboring information
to detect anomalies; on the other hand, when K is too
large, superfluous information would be included by the
subgraph, which hurts the performance.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

1 5 10 20 40 80 160 320
Evaluation Rounds

0.75

0.80

0.85

0.90

0.95

AU
C

BlogCatalog
Flickr
ACM

Cora
Citeseer
Pubmed

(a) Evaluation rounds versus AUC values

1 2 4 6 8 10 12 14
Subgraph Size

0.70

0.75

0.80

0.85

0.90

0.95

AU
C

BlogCatalog
Flickr
ACM

Cora
Citeseer
Pubmed

(b) Subgraph size versus AUC values

2 4 8 16 32 64 128 256
Hidden dimension

0.70

0.75

0.80

0.85

0.90

0.95

AU
C

BlogCatalog
Flickr
ACM

Cora
Citeseer
Pubmed

(c) Hidden dimension versus AUC values

1 2 4 8 16 32 64 128
Negative ratio

0.75

0.80

0.85

0.90

0.95

AU
C

BlogCatalog
Flickr
ACM

Cora
Citeseer
Pubmed

(d) Negative ratio versus AUC values

Fig. 5. The parameter sensitivity study of SL-GAD on six benchmark datasets. The subfigure (a) shows the performance of our method on different
evaluation rounds, where other hyper-parameters are fixed to the default setting as discussed in Section 5.2. Similarly, subfigure (b), (c), and (d)
studies the impact of subgraph size, hidden dimension, and negative ratio, respectively.

5.5.4 Embedding Dimension

In this experiment, we study the impact of the dimensionD′

of latent embedding in our GNN-based encoder. The results
of varying the values of D′ from 2 to 256 on six datasets are
demonstrated in Figure 5(c). We can observe that in most
datasets, the performance improves following the increase
of hidden dimension when D′ ≤ 32. When D′ is larger,
there is a peak value of AUC for each dataset, and then
the performance drops slightly. The decrease stems from
the over-fitting problem due to the explosive parameter
number. We summarize that D′ should be in an appropriate
range, e.g., from 32 to 128, and finally select 64 as a general
value for all datasets.

5.5.5 Negative Ratio

In this experiment, we change the negative ratio from 1 to
128 to investigate the impact of contrastive negative sam-
ples on detection performance. The results are summarized
in Figure 5(d), where we define the rate of negatives to
positives as the negative ratio, and we have one positive
and one negative sample by default in SL-GAD. In general,
we observe that increasing the number of negative samples
will not significantly affect the detection performance on
most of the datasets (e.g., Cora, PubMed, BlogCatalog, and
Flickr). A possible reason is that the devised multi-round
evaluation mechanism is sufficient for SL-GAD to capture
diverse contextual information without relying on a large
number of negative samples. On the other hand, unlike
other parameter studies, there does not exist a uniform

trend regarding the impacts of contrastive negatives on
our method, e.g., we found that increasing negatives hurts
detection performance on Cora and CiteSeer, but doing so
will improve the performance on ACM.

6 CONCLUSION

In this paper, we studied the problem of unsupervised
graph anomaly detection. We argued that existing ap-
proaches did not fully exploit the contextual information
of a target node and count heavily on available supervision
signals for graph anomaly detection. We proposed a novel
self-supervised approach, SL-GAD, for graph anomaly de-
tection. Our method first generates two different subgraph
views of a target node as its contextual information. Then,
we employ two key components, namely generative at-
tribute reconstruction and multi-view contrastive learning,
to fulfill this task. The attribute reconstruction leverages a
generative learning schema, which identifies nodes differing
from their neighbors in the attribute space, while the multi-
view contrasting tells the difference between nodes and
surrounding contexts directly in the hidden and structure
space. Experimental results on six datasets demonstrate the
superb performance of the proposed algorithm.

The proposed method is manually designed for anomaly
detection. In the future, we will incorporate neural archi-
tecture search approaches [53], [54], [55] to automatically
design models for anomaly detection.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

REFERENCES

[1] T. Pourhabibi, K.-L. Ong, B. H. Kam, and Y. L. Boo, “Fraud detec-
tion: A systematic literature review of graph-based anomaly de-
tection approaches,” Decision Support Systems, vol. 133, p. 113303,
2020.

[2] M. Latah, “Detection of malicious social bots: A survey and a
refined taxonomy,” Expert Systems with Applications, vol. 151, p.
113383, 2020.

[3] B. Perozzi and L. Akoglu, “Scalable anomaly ranking of attributed
neighborhoods,” in Proceedings of the 2016 SIAM International Con-
ference on Data Mining. SIAM, 2016, pp. 207–215.

[4] J. Li, H. Dani, X. Hu, and H. Liu, “Radar: Residual analysis for
anomaly detection in attributed networks.” in International Joint
Conferences on Artificial Intelligence, 2017, pp. 2152–2158.

[5] Z. Peng, M. Luo, J. Li, H. Liu, and Q. Zheng, “Anomalous:
A joint modeling approach for anomaly detection on attributed
networks.” in International Joint Conferences on Artificial Intelligence,
2018, pp. 3513–3519.

[6] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection
on attributed networks,” in Proceedings of the 2019 SIAM Interna-
tional Conference on Data Mining. SIAM, 2019, pp. 594–602.

[7] Y. Li, X. Huang, J. Li, M. Du, and N. Zou, “Specae: Spectral
autoencoder for anomaly detection in attributed networks,” in
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, pp. 2233–2236.

[8] K. Ding, J. Li, N. Agarwal, and H. Liu, “Inductive anomaly
detection on attributed networks,” in 29th International Joint Con-
ference on Artificial Intelligence. International Joint Conferences on
Artificial Intelligence, 2020, pp. 1288–1294.

[9] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58,
2009.

[10] G. Pang, C. Shen, L. Cao, and A. v. d. Hengel, “Deep learning
for anomaly detection: A review,” arXiv preprint arXiv:2007.02500,
2020.

[11] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
identifying density-based local outliers,” in Proceedings of the 2000
ACM SIGMOD international conference on Management of data, 2000,
pp. 93–104.

[12] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distri-
bution,” Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[13] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly
detection with outlier exposure,” arXiv preprint arXiv:1812.04606,
2018.

[14] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R.
Müller, and M. Kloft, “Deep semi-supervised anomaly detection,”
arXiv preprint arXiv:1906.02694, 2019.

[15] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly
detection on attributed networks via contrastive self-supervised
learning,” IEEE transactions on neural networks and learning systems,
2021.

[16] X. Liu, F. Zhang, Z. Hou, Z. Wang, L. Mian, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” 2020.

[17] L. Jing and Y. Tian, “Self-supervised visual feature learning with
deep neural networks: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

[18] Y. Liu, S. Pan, M. Jin, C. Zhou, F. Xia, and P. S. Yu, “Graph self-
supervised learning: A survey,” arXiv preprint arXiv:2103.00111,
2021.

[19] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax.” in International Conference on
Learning Representations, 2019.

[20] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view rep-
resentation learning on graphs,” in International Conference on
Machine Learning. PMLR, 2020, pp. 4116–4126.

[21] S. Wan, S. Pan, J. Yang, and C. Gong, “Contrastive and generative
graph convolutional networks for graph-based semi-supervised
learning,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, no. 11, 2021, pp. 10 049–10 057.

[22] M. Jin, Y. Zheng, Y.-F. Li, C. Gong, C. Zhou, and S. Pan, “Multi-
scale contrastive siamese networks for self-supervised graph rep-
resentation learning,” in International Joint Conference on Artificial
Intelligence, 2021.

[23] Y. You, T. Chen, Y. Shen, and Z. Wang, “Graph contrastive learning
automated,” in International Conference on Machine Learning, 2021.

[24] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A com-
prehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–21, 2020.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in International Conference on
Learning Representations, 2017.

[26] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference
on Learning Representations, 2018.

[27] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information process-
ing systems, 2017, pp. 1024–1034.

[28] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and
F. Monti, “Sign: Scalable inception graph neural networks,” in
ICML 2020 Workshop on Graph Representation Learning and Beyond,
2020.

[29] S. Geisler, D. Zügner, and S. Günnemann, “Reliable graph neural
networks via robust aggregation,” in Advances in Neural Informa-
tion Processing Systems, 2020.

[30] H. Wang, C. Zhou, X. Chen, J. Wu, S. Pan, and J. Wang, “Graph
stochastic neural networks for semi-supervised learning,” in Ad-
vances in Neural Information Processing Systems, 2020.

[31] S. Zhu, S. Pan, C. Zhou, J. Wu, Y. Cao, and B. Wang, “Graph
geometry interaction learning,” in Advances in Neural Information
Processing Systems, 2020.

[32] M. Wu, S. Pan, L. Du, and X. Zhu, “Learning graph neural
networks with positive and unlabeled nodes,” ACM Trans. Knowl.
Discov. Data, vol. 15, no. 6, Jun. 2021.

[33] S. Zhu, C. Zhou, S. Pan, X. Zhu, and B. Wang, “Relation structure-
aware heterogeneous graph neural network,” in 2019 IEEE Inter-
national Conference on Data Mining. IEEE, 2019, pp. 1534–1539.

[34] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connect-
ing the dots: Multivariate time series forecasting with graph neural
networks,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 753–
763.

[35] D. Jin, Z. Yu, P. Jiao, S. Pan, P. S. Yu, and W. Zhang, “A survey
of community detection approaches: From statistical modeling to
deep learning,” arXiv preprint arXiv:2101.01669, 2021.

[36] S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, and J. Yang, “Hyper-
spectral image classification with context-aware dynamic graph
convolutional network,” IEEE Transactions on Geoscience and Remote
Sensing, 2020.

[37] T. N. Kipf and M. Welling, “Variational graph auto-encoders,”
arXiv preprint arXiv:1611.07308, 2016.

[38] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in International Conference on
Learning Representations, 2018.

[39] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and
J. Leskovec, “Strategies for pre-training graph neural networks,”
in International Conference on Learning Representations, 2020.

[40] Y. You, T. Chen, Z. Wang, and Y. Shen, “When does self-
supervision help graph convolutional networks?” in International
Conference on Machine Learning. PMLR, 2020, pp. 10 871–10 880.

[41] Y. Jiao, Y. Xiong, J. Zhang, Y. Zhang, T. Zhang, and Y. Zhu, “Sub-
graph contrast for scalable self-supervised graph representation
learning,” in International Conference on Data Mining, 2020.

[42] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,”
in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XI 16. Springer, 2020,
pp. 776–794.

[43] C. Tosh, A. Krishnamurthy, and D. Hsu, “Contrastive learning,
multi-view redundancy, and linear models,” in Algorithmic Learn-
ing Theory. PMLR, 2021, pp. 1179–1206.

[44] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with
restart and its applications,” in International Conference on Data
Mining. IEEE, 2006, pp. 613–622.

[45] J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion im-
proves graph learning,” in Advances in Neural Information Process-
ing Systems, 2019, pp. 13 354–13 366.

[46] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” in Advances in Neural
Information Processing Systems, 2020.

[47] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust
deep autoencoders,” in Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, 2017,
pp. 665–674.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[48] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable
pooling,” in Advances in neural information processing systems, 2018,
pp. 4800–4810.

[49] L. Tang and H. Liu, “Relational learning via latent social di-
mensions,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2009, pp. 817–
826.

[50] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2008, pp. 990–998.

[51] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine,
vol. 29, no. 3, pp. 93–93, 2008.

[52] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in International Conference on
Learning Representations, 2019.

[53] M. Zhang, H. Li, S. Pan, X. Chang, C. Zhou, Z. Ge, and S. W.
Su, “One-shot neural architecture search: Maximising diversity
to overcome catastrophic forgetting,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

[54] M. Zhang, H. Li, S. Pan, X. Chang, Z. Ge, and S. W. Su, “Differ-
entiable neural architecture search in equivalent space with explo-
ration enhancement,” in Advances in Neural Information Processing
Systems, 2020.

[55] M. Zhang, H. Li, S. Pan, X. Chang, and S. Su, “Overcoming multi-
model forgetting in one-shot nas with diversity maximization,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 7809–7818.

	1 Introduction
	2 Related Work
	2.1 Anomaly detection
	2.2 Self-supervised learning
	2.3 Graph representation learning

	3 Problem Definition
	4 Methodology
	4.1 Graph View Establishment for Anomaly Detection
	4.2 Generative Learning with Attribute Reconstruction
	4.3 Multi-View Contrastive Learning
	4.4 Graph Anomaly Scoring
	4.5 Model Optimization and Algorithm
	4.5.1 Complexity Analysis

	5 Experimental Study
	5.1 Dataset Description
	5.2 Experimental Setup
	5.3 Comparison with the State-of-the-art Methods
	5.4 Effectiveness of Components
	5.5 Parameters Sensitivity
	5.5.1 Balance Factors
	5.5.2 Evaluation Rounds
	5.5.3 Subgraph Size
	5.5.4 Embedding Dimension
	5.5.5 Negative Ratio

	6 Conclusion
	References

